blob: 20cd0e851c4349c84e085f7abc6035e4726ec0df [file] [log] [blame]
#ifndef TARGET_ARM_TRANSLATE_H
#define TARGET_ARM_TRANSLATE_H
#include "cpu.h"
#include "tcg/tcg-op.h"
#include "tcg/tcg-op-gvec.h"
#include "exec/exec-all.h"
#include "exec/translator.h"
#include "exec/helper-gen.h"
#include "internals.h"
#include "cpu-features.h"
/* internal defines */
/*
* Save pc_save across a branch, so that we may restore the value from
* before the branch at the point the label is emitted.
*/
typedef struct DisasLabel {
TCGLabel *label;
target_ulong pc_save;
} DisasLabel;
typedef struct DisasContext {
DisasContextBase base;
const ARMISARegisters *isar;
/* The address of the current instruction being translated. */
target_ulong pc_curr;
/*
* For CF_PCREL, the full value of cpu_pc is not known
* (although the page offset is known). For convenience, the
* translation loop uses the full virtual address that triggered
* the translation, from base.pc_start through pc_curr.
* For efficiency, we do not update cpu_pc for every instruction.
* Instead, pc_save has the value of pc_curr at the time of the
* last update to cpu_pc, which allows us to compute the addend
* needed to bring cpu_pc current: pc_curr - pc_save.
* If cpu_pc now contains the destination of an indirect branch,
* pc_save contains -1 to indicate that relative updates are no
* longer possible.
*/
target_ulong pc_save;
target_ulong page_start;
uint32_t insn;
/* Nonzero if this instruction has been conditionally skipped. */
int condjmp;
/* The label that will be jumped to when the instruction is skipped. */
DisasLabel condlabel;
/* Thumb-2 conditional execution bits. */
int condexec_mask;
int condexec_cond;
/* M-profile ECI/ICI exception-continuable instruction state */
int eci;
/*
* trans_ functions for insns which are continuable should set this true
* after decode (ie after any UNDEF checks)
*/
bool eci_handled;
int sctlr_b;
MemOp be_data;
#if !defined(CONFIG_USER_ONLY)
int user;
#endif
ARMMMUIdx mmu_idx; /* MMU index to use for normal loads/stores */
uint8_t tbii; /* TBI1|TBI0 for insns */
uint8_t tbid; /* TBI1|TBI0 for data */
uint8_t tcma; /* TCMA1|TCMA0 for MTE */
bool ns; /* Use non-secure CPREG bank on access */
int fp_excp_el; /* FP exception EL or 0 if enabled */
int sve_excp_el; /* SVE exception EL or 0 if enabled */
int sme_excp_el; /* SME exception EL or 0 if enabled */
int vl; /* current vector length in bytes */
int svl; /* current streaming vector length in bytes */
bool vfp_enabled; /* FP enabled via FPSCR.EN */
int vec_len;
int vec_stride;
bool v7m_handler_mode;
bool v8m_secure; /* true if v8M and we're in Secure mode */
bool v8m_stackcheck; /* true if we need to perform v8M stack limit checks */
bool v8m_fpccr_s_wrong; /* true if v8M FPCCR.S != v8m_secure */
bool v7m_new_fp_ctxt_needed; /* ASPEN set but no active FP context */
bool v7m_lspact; /* FPCCR.LSPACT set */
/* Immediate value in AArch32 SVC insn; must be set if is_jmp == DISAS_SWI
* so that top level loop can generate correct syndrome information.
*/
uint32_t svc_imm;
int current_el;
GHashTable *cp_regs;
uint64_t features; /* CPU features bits */
bool aarch64;
bool thumb;
bool lse2;
/* Because unallocated encodings generate different exception syndrome
* information from traps due to FP being disabled, we can't do a single
* "is fp access disabled" check at a high level in the decode tree.
* To help in catching bugs where the access check was forgotten in some
* code path, we set this flag when the access check is done, and assert
* that it is set at the point where we actually touch the FP regs.
*/
bool fp_access_checked;
bool sve_access_checked;
/* ARMv8 single-step state (this is distinct from the QEMU gdbstub
* single-step support).
*/
bool ss_active;
bool pstate_ss;
/* True if the insn just emitted was a load-exclusive instruction
* (necessary for syndrome information for single step exceptions),
* ie A64 LDX*, LDAX*, A32/T32 LDREX*, LDAEX*.
*/
bool is_ldex;
/* True if AccType_UNPRIV should be used for LDTR et al */
bool unpriv;
/* True if v8.3-PAuth is active. */
bool pauth_active;
/* True if v8.5-MTE access to tags is enabled; index with is_unpriv. */
bool ata[2];
/* True if v8.5-MTE tag checks affect the PE; index with is_unpriv. */
bool mte_active[2];
/* True with v8.5-BTI and SCTLR_ELx.BT* set. */
bool bt;
/* True if any CP15 access is trapped by HSTR_EL2 */
bool hstr_active;
/* True if memory operations require alignment */
bool align_mem;
/* True if PSTATE.IL is set */
bool pstate_il;
/* True if PSTATE.SM is set. */
bool pstate_sm;
/* True if PSTATE.ZA is set. */
bool pstate_za;
/* True if non-streaming insns should raise an SME Streaming exception. */
bool sme_trap_nonstreaming;
/* True if the current instruction is non-streaming. */
bool is_nonstreaming;
/* True if MVE insns are definitely not predicated by VPR or LTPSIZE */
bool mve_no_pred;
/* True if fine-grained traps are active */
bool fgt_active;
/* True if fine-grained trap on SVC is enabled */
bool fgt_svc;
/* True if a trap on ERET is enabled (FGT or NV) */
bool trap_eret;
/* True if FEAT_LSE2 SCTLR_ELx.nAA is set */
bool naa;
/* True if FEAT_NV HCR_EL2.NV is enabled */
bool nv;
/* True if NV enabled and HCR_EL2.NV1 is set */
bool nv1;
/* True if NV enabled and HCR_EL2.NV2 is set */
bool nv2;
/* True if NV2 enabled and NV2 RAM accesses use EL2&0 translation regime */
bool nv2_mem_e20;
/* True if NV2 enabled and NV2 RAM accesses are big-endian */
bool nv2_mem_be;
/*
* >= 0, a copy of PSTATE.BTYPE, which will be 0 without v8.5-BTI.
* < 0, set by the current instruction.
*/
int8_t btype;
/* A copy of cpu->dcz_blocksize. */
uint8_t dcz_blocksize;
/* A copy of cpu->gm_blocksize. */
uint8_t gm_blocksize;
/* True if the current insn_start has been updated. */
bool insn_start_updated;
/* Bottom two bits of XScale c15_cpar coprocessor access control reg */
int c15_cpar;
/* Offset from VNCR_EL2 when FEAT_NV2 redirects this reg to memory */
uint32_t nv2_redirect_offset;
} DisasContext;
typedef struct DisasCompare {
TCGCond cond;
TCGv_i32 value;
} DisasCompare;
/* Share the TCG temporaries common between 32 and 64 bit modes. */
extern TCGv_i32 cpu_NF, cpu_ZF, cpu_CF, cpu_VF;
extern TCGv_i64 cpu_exclusive_addr;
extern TCGv_i64 cpu_exclusive_val;
/*
* Constant expanders for the decoders.
*/
static inline int negate(DisasContext *s, int x)
{
return -x;
}
static inline int plus_1(DisasContext *s, int x)
{
return x + 1;
}
static inline int plus_2(DisasContext *s, int x)
{
return x + 2;
}
static inline int plus_12(DisasContext *s, int x)
{
return x + 12;
}
static inline int times_2(DisasContext *s, int x)
{
return x * 2;
}
static inline int times_4(DisasContext *s, int x)
{
return x * 4;
}
static inline int times_8(DisasContext *s, int x)
{
return x * 8;
}
static inline int times_2_plus_1(DisasContext *s, int x)
{
return x * 2 + 1;
}
static inline int rsub_64(DisasContext *s, int x)
{
return 64 - x;
}
static inline int rsub_32(DisasContext *s, int x)
{
return 32 - x;
}
static inline int rsub_16(DisasContext *s, int x)
{
return 16 - x;
}
static inline int rsub_8(DisasContext *s, int x)
{
return 8 - x;
}
static inline int shl_12(DisasContext *s, int x)
{
return x << 12;
}
static inline int xor_2(DisasContext *s, int x)
{
return x ^ 2;
}
static inline int neon_3same_fp_size(DisasContext *s, int x)
{
/* Convert 0==fp32, 1==fp16 into a MO_* value */
return MO_32 - x;
}
static inline int arm_dc_feature(DisasContext *dc, int feature)
{
return (dc->features & (1ULL << feature)) != 0;
}
static inline int get_mem_index(DisasContext *s)
{
return arm_to_core_mmu_idx(s->mmu_idx);
}
static inline void disas_set_insn_syndrome(DisasContext *s, uint32_t syn)
{
/* We don't need to save all of the syndrome so we mask and shift
* out unneeded bits to help the sleb128 encoder do a better job.
*/
syn &= ARM_INSN_START_WORD2_MASK;
syn >>= ARM_INSN_START_WORD2_SHIFT;
/* Check for multiple updates. */
assert(!s->insn_start_updated);
s->insn_start_updated = true;
tcg_set_insn_start_param(s->base.insn_start, 2, syn);
}
static inline int curr_insn_len(DisasContext *s)
{
return s->base.pc_next - s->pc_curr;
}
/* is_jmp field values */
#define DISAS_JUMP DISAS_TARGET_0 /* only pc was modified dynamically */
/* CPU state was modified dynamically; exit to main loop for interrupts. */
#define DISAS_UPDATE_EXIT DISAS_TARGET_1
/* These instructions trap after executing, so the A32/T32 decoder must
* defer them until after the conditional execution state has been updated.
* WFI also needs special handling when single-stepping.
*/
#define DISAS_WFI DISAS_TARGET_2
#define DISAS_SWI DISAS_TARGET_3
/* WFE */
#define DISAS_WFE DISAS_TARGET_4
#define DISAS_HVC DISAS_TARGET_5
#define DISAS_SMC DISAS_TARGET_6
#define DISAS_YIELD DISAS_TARGET_7
/* M profile branch which might be an exception return (and so needs
* custom end-of-TB code)
*/
#define DISAS_BX_EXCRET DISAS_TARGET_8
/*
* For instructions which want an immediate exit to the main loop, as opposed
* to attempting to use lookup_and_goto_ptr. Unlike DISAS_UPDATE_EXIT, this
* doesn't write the PC on exiting the translation loop so you need to ensure
* something (gen_a64_update_pc or runtime helper) has done so before we reach
* return from cpu_tb_exec.
*/
#define DISAS_EXIT DISAS_TARGET_9
/* CPU state was modified dynamically; no need to exit, but do not chain. */
#define DISAS_UPDATE_NOCHAIN DISAS_TARGET_10
#ifdef TARGET_AARCH64
void a64_translate_init(void);
void gen_a64_update_pc(DisasContext *s, target_long diff);
extern const TranslatorOps aarch64_translator_ops;
#else
static inline void a64_translate_init(void)
{
}
static inline void gen_a64_update_pc(DisasContext *s, target_long diff)
{
}
#endif
void arm_test_cc(DisasCompare *cmp, int cc);
void arm_jump_cc(DisasCompare *cmp, TCGLabel *label);
void arm_gen_test_cc(int cc, TCGLabel *label);
MemOp pow2_align(unsigned i);
void unallocated_encoding(DisasContext *s);
void gen_exception_insn_el(DisasContext *s, target_long pc_diff, int excp,
uint32_t syn, uint32_t target_el);
void gen_exception_insn(DisasContext *s, target_long pc_diff,
int excp, uint32_t syn);
/* Return state of Alternate Half-precision flag, caller frees result */
static inline TCGv_i32 get_ahp_flag(void)
{
TCGv_i32 ret = tcg_temp_new_i32();
tcg_gen_ld_i32(ret, tcg_env, offsetoflow32(CPUARMState, vfp.fpcr));
tcg_gen_extract_i32(ret, ret, 26, 1);
return ret;
}
/* Set bits within PSTATE. */
static inline void set_pstate_bits(uint32_t bits)
{
TCGv_i32 p = tcg_temp_new_i32();
tcg_debug_assert(!(bits & CACHED_PSTATE_BITS));
tcg_gen_ld_i32(p, tcg_env, offsetof(CPUARMState, pstate));
tcg_gen_ori_i32(p, p, bits);
tcg_gen_st_i32(p, tcg_env, offsetof(CPUARMState, pstate));
}
/* Clear bits within PSTATE. */
static inline void clear_pstate_bits(uint32_t bits)
{
TCGv_i32 p = tcg_temp_new_i32();
tcg_debug_assert(!(bits & CACHED_PSTATE_BITS));
tcg_gen_ld_i32(p, tcg_env, offsetof(CPUARMState, pstate));
tcg_gen_andi_i32(p, p, ~bits);
tcg_gen_st_i32(p, tcg_env, offsetof(CPUARMState, pstate));
}
/* If the singlestep state is Active-not-pending, advance to Active-pending. */
static inline void gen_ss_advance(DisasContext *s)
{
if (s->ss_active) {
s->pstate_ss = 0;
clear_pstate_bits(PSTATE_SS);
}
}
/* Generate an architectural singlestep exception */
static inline void gen_swstep_exception(DisasContext *s, int isv, int ex)
{
/* Fill in the same_el field of the syndrome in the helper. */
uint32_t syn = syn_swstep(false, isv, ex);
gen_helper_exception_swstep(tcg_env, tcg_constant_i32(syn));
}
/*
* Given a VFP floating point constant encoded into an 8 bit immediate in an
* instruction, expand it to the actual constant value of the specified
* size, as per the VFPExpandImm() pseudocode in the Arm ARM.
*/
uint64_t vfp_expand_imm(int size, uint8_t imm8);
static inline void gen_vfp_absh(TCGv_i32 d, TCGv_i32 s)
{
tcg_gen_andi_i32(d, s, INT16_MAX);
}
static inline void gen_vfp_abss(TCGv_i32 d, TCGv_i32 s)
{
tcg_gen_andi_i32(d, s, INT32_MAX);
}
static inline void gen_vfp_absd(TCGv_i64 d, TCGv_i64 s)
{
tcg_gen_andi_i64(d, s, INT64_MAX);
}
static inline void gen_vfp_negh(TCGv_i32 d, TCGv_i32 s)
{
tcg_gen_xori_i32(d, s, 1u << 15);
}
static inline void gen_vfp_negs(TCGv_i32 d, TCGv_i32 s)
{
tcg_gen_xori_i32(d, s, 1u << 31);
}
static inline void gen_vfp_negd(TCGv_i64 d, TCGv_i64 s)
{
tcg_gen_xori_i64(d, s, 1ull << 63);
}
/* Vector operations shared between ARM and AArch64. */
void gen_gvec_ceq0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_clt0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_cgt0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_cle0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_cge0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_mla(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_mls(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_cmtst(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_sshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_ushl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_srshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_urshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
void gen_neon_sqshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
void gen_neon_uqshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
void gen_neon_sqrshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
void gen_neon_uqrshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
void gen_neon_sqshli(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
int64_t c, uint32_t opr_sz, uint32_t max_sz);
void gen_neon_uqshli(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
int64_t c, uint32_t opr_sz, uint32_t max_sz);
void gen_neon_sqshlui(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
int64_t c, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_shadd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_uhadd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_shsub(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_uhsub(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_srhadd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_urhadd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
void gen_cmtst_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b);
void gen_ushl_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b);
void gen_sshl_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b);
void gen_ushl_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b);
void gen_sshl_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b);
void gen_uqadd_bhs(TCGv_i64 res, TCGv_i64 qc,
TCGv_i64 a, TCGv_i64 b, MemOp esz);
void gen_uqadd_d(TCGv_i64 d, TCGv_i64 q, TCGv_i64 a, TCGv_i64 b);
void gen_gvec_uqadd_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
void gen_sqadd_bhs(TCGv_i64 res, TCGv_i64 qc,
TCGv_i64 a, TCGv_i64 b, MemOp esz);
void gen_sqadd_d(TCGv_i64 d, TCGv_i64 q, TCGv_i64 a, TCGv_i64 b);
void gen_gvec_sqadd_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
void gen_uqsub_bhs(TCGv_i64 res, TCGv_i64 qc,
TCGv_i64 a, TCGv_i64 b, MemOp esz);
void gen_uqsub_d(TCGv_i64 d, TCGv_i64 q, TCGv_i64 a, TCGv_i64 b);
void gen_gvec_uqsub_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
void gen_sqsub_bhs(TCGv_i64 res, TCGv_i64 qc,
TCGv_i64 a, TCGv_i64 b, MemOp esz);
void gen_sqsub_d(TCGv_i64 d, TCGv_i64 q, TCGv_i64 a, TCGv_i64 b);
void gen_gvec_sqsub_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_sshr(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
int64_t shift, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_ushr(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
int64_t shift, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_ssra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
int64_t shift, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_usra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
int64_t shift, uint32_t opr_sz, uint32_t max_sz);
void gen_srshr32_i32(TCGv_i32 d, TCGv_i32 a, int32_t sh);
void gen_srshr64_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh);
void gen_urshr32_i32(TCGv_i32 d, TCGv_i32 a, int32_t sh);
void gen_urshr64_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh);
void gen_gvec_srshr(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
int64_t shift, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_urshr(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
int64_t shift, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_srsra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
int64_t shift, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_ursra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
int64_t shift, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_sri(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
int64_t shift, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_sli(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
int64_t shift, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_sqdmulh_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_sqrdmulh_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_sqrdmlah_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_sqrdmlsh_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_sabd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_uabd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_saba(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_uaba(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_addp(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_smaxp(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_sminp(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_umaxp(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_uminp(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
/*
* Forward to the isar_feature_* tests given a DisasContext pointer.
*/
#define dc_isar_feature(name, ctx) \
({ DisasContext *ctx_ = (ctx); isar_feature_##name(ctx_->isar); })
/* Note that the gvec expanders operate on offsets + sizes. */
typedef void GVecGen2Fn(unsigned, uint32_t, uint32_t, uint32_t, uint32_t);
typedef void GVecGen2iFn(unsigned, uint32_t, uint32_t, int64_t,
uint32_t, uint32_t);
typedef void GVecGen3Fn(unsigned, uint32_t, uint32_t,
uint32_t, uint32_t, uint32_t);
typedef void GVecGen4Fn(unsigned, uint32_t, uint32_t, uint32_t,
uint32_t, uint32_t, uint32_t);
/* Function prototype for gen_ functions for calling Neon helpers */
typedef void NeonGenOneOpFn(TCGv_i32, TCGv_i32);
typedef void NeonGenOneOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32);
typedef void NeonGenTwoOpFn(TCGv_i32, TCGv_i32, TCGv_i32);
typedef void NeonGenTwoOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32);
typedef void NeonGenThreeOpEnvFn(TCGv_i32, TCGv_env, TCGv_i32,
TCGv_i32, TCGv_i32);
typedef void NeonGenTwo64OpFn(TCGv_i64, TCGv_i64, TCGv_i64);
typedef void NeonGenTwo64OpEnvFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i64);
typedef void NeonGenNarrowFn(TCGv_i32, TCGv_i64);
typedef void NeonGenWidenFn(TCGv_i64, TCGv_i32);
typedef void NeonGenTwoOpWidenFn(TCGv_i64, TCGv_i32, TCGv_i32);
typedef void NeonGenOneSingleOpFn(TCGv_i32, TCGv_i32, TCGv_ptr);
typedef void NeonGenTwoSingleOpFn(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
typedef void NeonGenTwoDoubleOpFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr);
typedef void NeonGenOne64OpFn(TCGv_i64, TCGv_i64);
typedef void NeonGenOne64OpEnvFn(TCGv_i64, TCGv_env, TCGv_i64);
typedef void CryptoTwoOpFn(TCGv_ptr, TCGv_ptr);
typedef void CryptoThreeOpIntFn(TCGv_ptr, TCGv_ptr, TCGv_i32);
typedef void CryptoThreeOpFn(TCGv_ptr, TCGv_ptr, TCGv_ptr);
typedef void AtomicThreeOpFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGArg, MemOp);
typedef void WideShiftImmFn(TCGv_i64, TCGv_i64, int64_t shift);
typedef void WideShiftFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i32);
typedef void ShiftImmFn(TCGv_i32, TCGv_i32, int32_t shift);
typedef void ShiftFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32);
/**
* arm_tbflags_from_tb:
* @tb: the TranslationBlock
*
* Extract the flag values from @tb.
*/
static inline CPUARMTBFlags arm_tbflags_from_tb(const TranslationBlock *tb)
{
return (CPUARMTBFlags){ tb->flags, tb->cs_base };
}
/*
* Enum for argument to fpstatus_ptr().
*/
typedef enum ARMFPStatusFlavour {
FPST_FPCR,
FPST_FPCR_F16,
FPST_STD,
FPST_STD_F16,
} ARMFPStatusFlavour;
/**
* fpstatus_ptr: return TCGv_ptr to the specified fp_status field
*
* We have multiple softfloat float_status fields in the Arm CPU state struct
* (see the comment in cpu.h for details). Return a TCGv_ptr which has
* been set up to point to the requested field in the CPU state struct.
* The options are:
*
* FPST_FPCR
* for non-FP16 operations controlled by the FPCR
* FPST_FPCR_F16
* for operations controlled by the FPCR where FPCR.FZ16 is to be used
* FPST_STD
* for A32/T32 Neon operations using the "standard FPSCR value"
* FPST_STD_F16
* as FPST_STD, but where FPCR.FZ16 is to be used
*/
static inline TCGv_ptr fpstatus_ptr(ARMFPStatusFlavour flavour)
{
TCGv_ptr statusptr = tcg_temp_new_ptr();
int offset;
switch (flavour) {
case FPST_FPCR:
offset = offsetof(CPUARMState, vfp.fp_status);
break;
case FPST_FPCR_F16:
offset = offsetof(CPUARMState, vfp.fp_status_f16);
break;
case FPST_STD:
offset = offsetof(CPUARMState, vfp.standard_fp_status);
break;
case FPST_STD_F16:
offset = offsetof(CPUARMState, vfp.standard_fp_status_f16);
break;
default:
g_assert_not_reached();
}
tcg_gen_addi_ptr(statusptr, tcg_env, offset);
return statusptr;
}
/**
* finalize_memop_atom:
* @s: DisasContext
* @opc: size+sign+align of the memory operation
* @atom: atomicity of the memory operation
*
* Build the complete MemOp for a memory operation, including alignment,
* endianness, and atomicity.
*
* If (op & MO_AMASK) then the operation already contains the required
* alignment, e.g. for AccType_ATOMIC. Otherwise, this an optionally
* unaligned operation, e.g. for AccType_NORMAL.
*
* In the latter case, there are configuration bits that require alignment,
* and this is applied here. Note that there is no way to indicate that
* no alignment should ever be enforced; this must be handled manually.
*/
static inline MemOp finalize_memop_atom(DisasContext *s, MemOp opc, MemOp atom)
{
if (s->align_mem && !(opc & MO_AMASK)) {
opc |= MO_ALIGN;
}
return opc | atom | s->be_data;
}
/**
* finalize_memop:
* @s: DisasContext
* @opc: size+sign+align of the memory operation
*
* Like finalize_memop_atom, but with default atomicity.
*/
static inline MemOp finalize_memop(DisasContext *s, MemOp opc)
{
MemOp atom = s->lse2 ? MO_ATOM_WITHIN16 : MO_ATOM_IFALIGN;
return finalize_memop_atom(s, opc, atom);
}
/**
* finalize_memop_pair:
* @s: DisasContext
* @opc: size+sign+align of the memory operation
*
* Like finalize_memop_atom, but with atomicity for a pair.
* C.f. Pseudocode for Mem[], operand ispair.
*/
static inline MemOp finalize_memop_pair(DisasContext *s, MemOp opc)
{
MemOp atom = s->lse2 ? MO_ATOM_WITHIN16_PAIR : MO_ATOM_IFALIGN_PAIR;
return finalize_memop_atom(s, opc, atom);
}
/**
* finalize_memop_asimd:
* @s: DisasContext
* @opc: size+sign+align of the memory operation
*
* Like finalize_memop_atom, but with atomicity of AccessType_ASIMD.
*/
static inline MemOp finalize_memop_asimd(DisasContext *s, MemOp opc)
{
/*
* In the pseudocode for Mem[], with AccessType_ASIMD, size == 16,
* if IsAligned(8), the first case provides separate atomicity for
* the pair of 64-bit accesses. If !IsAligned(8), the middle cases
* do not apply, and we're left with the final case of no atomicity.
* Thus MO_ATOM_IFALIGN_PAIR.
*
* For other sizes, normal LSE2 rules apply.
*/
if ((opc & MO_SIZE) == MO_128) {
return finalize_memop_atom(s, opc, MO_ATOM_IFALIGN_PAIR);
}
return finalize_memop(s, opc);
}
/**
* asimd_imm_const: Expand an encoded SIMD constant value
*
* Expand a SIMD constant value. This is essentially the pseudocode
* AdvSIMDExpandImm, except that we also perform the boolean NOT needed for
* VMVN and VBIC (when cmode < 14 && op == 1).
*
* The combination cmode == 15 op == 1 is a reserved encoding for AArch32;
* callers must catch this; we return the 64-bit constant value defined
* for AArch64.
*
* cmode = 2,3,4,5,6,7,10,11,12,13 imm=0 was UNPREDICTABLE in v7A but
* is either not unpredictable or merely CONSTRAINED UNPREDICTABLE in v8A;
* we produce an immediate constant value of 0 in these cases.
*/
uint64_t asimd_imm_const(uint32_t imm, int cmode, int op);
/*
* gen_disas_label:
* Create a label and cache a copy of pc_save.
*/
static inline DisasLabel gen_disas_label(DisasContext *s)
{
return (DisasLabel){
.label = gen_new_label(),
.pc_save = s->pc_save,
};
}
/*
* set_disas_label:
* Emit a label and restore the cached copy of pc_save.
*/
static inline void set_disas_label(DisasContext *s, DisasLabel l)
{
gen_set_label(l.label);
s->pc_save = l.pc_save;
}
static inline TCGv_ptr gen_lookup_cp_reg(uint32_t key)
{
TCGv_ptr ret = tcg_temp_new_ptr();
gen_helper_lookup_cp_reg(ret, tcg_env, tcg_constant_i32(key));
return ret;
}
/*
* Set and reset rounding mode around another operation.
*/
static inline TCGv_i32 gen_set_rmode(ARMFPRounding rmode, TCGv_ptr fpst)
{
TCGv_i32 new = tcg_constant_i32(arm_rmode_to_sf(rmode));
TCGv_i32 old = tcg_temp_new_i32();
gen_helper_set_rmode(old, new, fpst);
return old;
}
static inline void gen_restore_rmode(TCGv_i32 old, TCGv_ptr fpst)
{
gen_helper_set_rmode(old, old, fpst);
}
/*
* Helpers for implementing sets of trans_* functions.
* Defer the implementation of NAME to FUNC, with optional extra arguments.
*/
#define TRANS(NAME, FUNC, ...) \
static bool trans_##NAME(DisasContext *s, arg_##NAME *a) \
{ return FUNC(s, __VA_ARGS__); }
#define TRANS_FEAT(NAME, FEAT, FUNC, ...) \
static bool trans_##NAME(DisasContext *s, arg_##NAME *a) \
{ return dc_isar_feature(FEAT, s) && FUNC(s, __VA_ARGS__); }
#define TRANS_FEAT_NONSTREAMING(NAME, FEAT, FUNC, ...) \
static bool trans_##NAME(DisasContext *s, arg_##NAME *a) \
{ \
s->is_nonstreaming = true; \
return dc_isar_feature(FEAT, s) && FUNC(s, __VA_ARGS__); \
}
#endif /* TARGET_ARM_TRANSLATE_H */