blob: 28b362c887a656d44ddf0a21d992139c236513e1 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* (C) Copyright 2015
* Texas Instruments Incorporated - https://www.ti.com/
*/
#define LOG_CATEGORY UCLASS_REMOTEPROC
#define pr_fmt(fmt) "%s: " fmt, __func__
#include <common.h>
#include <elf.h>
#include <errno.h>
#include <log.h>
#include <malloc.h>
#include <virtio_ring.h>
#include <remoteproc.h>
#include <asm/io.h>
#include <dm/device-internal.h>
#include <dm.h>
#include <dm/uclass.h>
#include <dm/uclass-internal.h>
#include <linux/compat.h>
#include <linux/printk.h>
DECLARE_GLOBAL_DATA_PTR;
struct resource_table {
u32 ver;
u32 num;
u32 reserved[2];
u32 offset[0];
} __packed;
typedef int (*handle_resource_t) (struct udevice *, void *, int offset, int avail);
static struct resource_table *rsc_table;
/**
* for_each_remoteproc_device() - iterate through the list of rproc devices
* @fn: check function to call per match, if this function returns fail,
* iteration is aborted with the resultant error value
* @skip_dev: Device to skip calling the callback about.
* @data: Data to pass to the callback function
*
* Return: 0 if none of the callback returned a non 0 result, else returns the
* result from the callback function
*/
static int for_each_remoteproc_device(int (*fn) (struct udevice *dev,
struct dm_rproc_uclass_pdata *uc_pdata,
const void *data),
struct udevice *skip_dev,
const void *data)
{
struct udevice *dev;
struct dm_rproc_uclass_pdata *uc_pdata;
int ret;
for (ret = uclass_find_first_device(UCLASS_REMOTEPROC, &dev); dev;
ret = uclass_find_next_device(&dev)) {
if (ret || dev == skip_dev)
continue;
uc_pdata = dev_get_uclass_plat(dev);
ret = fn(dev, uc_pdata, data);
if (ret)
return ret;
}
return 0;
}
/**
* _rproc_name_is_unique() - iteration helper to check if rproc name is unique
* @dev: device that we are checking name for
* @uc_pdata: uclass platform data
* @data: compare data (this is the name we want to ensure is unique)
*
* Return: 0 is there is no match(is unique); if there is a match(we dont
* have a unique name), return -EINVAL.
*/
static int _rproc_name_is_unique(struct udevice *dev,
struct dm_rproc_uclass_pdata *uc_pdata,
const void *data)
{
const char *check_name = data;
/* devices not yet populated with data - so skip them */
if (!uc_pdata->name || !check_name)
return 0;
/* Return 0 to search further if we dont match */
if (strlen(uc_pdata->name) != strlen(check_name))
return 0;
if (!strcmp(uc_pdata->name, check_name))
return -EINVAL;
return 0;
}
/**
* rproc_name_is_unique() - Check if the rproc name is unique
* @check_dev: Device we are attempting to ensure is unique
* @check_name: Name we are trying to ensure is unique.
*
* Return: true if we have a unique name, false if name is not unique.
*/
static bool rproc_name_is_unique(struct udevice *check_dev,
const char *check_name)
{
int ret;
ret = for_each_remoteproc_device(_rproc_name_is_unique,
check_dev, check_name);
return ret ? false : true;
}
/**
* rproc_pre_probe() - Pre probe accessor for the uclass
* @dev: device for which we are preprobing
*
* Parses and fills up the uclass pdata for use as needed by core and
* remote proc drivers.
*
* Return: 0 if all wernt ok, else appropriate error value.
*/
static int rproc_pre_probe(struct udevice *dev)
{
struct dm_rproc_uclass_pdata *uc_pdata;
const struct dm_rproc_ops *ops;
uc_pdata = dev_get_uclass_plat(dev);
/* See if we need to populate via fdt */
if (!dev_get_plat(dev)) {
#if CONFIG_IS_ENABLED(OF_CONTROL)
bool tmp;
debug("'%s': using fdt\n", dev->name);
uc_pdata->name = dev_read_string(dev, "remoteproc-name");
/* Default is internal memory mapped */
uc_pdata->mem_type = RPROC_INTERNAL_MEMORY_MAPPED;
tmp = dev_read_bool(dev, "remoteproc-internal-memory-mapped");
if (tmp)
uc_pdata->mem_type = RPROC_INTERNAL_MEMORY_MAPPED;
#else
/* Nothing much we can do about this, can we? */
return -EINVAL;
#endif
} else {
struct dm_rproc_uclass_pdata *pdata = dev_get_plat(dev);
debug("'%s': using legacy data\n", dev->name);
if (pdata->name)
uc_pdata->name = pdata->name;
uc_pdata->mem_type = pdata->mem_type;
uc_pdata->driver_plat_data = pdata->driver_plat_data;
}
/* Else try using device Name */
if (!uc_pdata->name)
uc_pdata->name = dev->name;
if (!uc_pdata->name) {
debug("Unnamed device!");
return -EINVAL;
}
if (!rproc_name_is_unique(dev, uc_pdata->name)) {
debug("%s duplicate name '%s'\n", dev->name, uc_pdata->name);
return -EINVAL;
}
ops = rproc_get_ops(dev);
if (!ops) {
debug("%s driver has no ops?\n", dev->name);
return -EINVAL;
}
if (!ops->load || !ops->start) {
debug("%s driver has missing mandatory ops?\n", dev->name);
return -EINVAL;
}
return 0;
}
/**
* rproc_post_probe() - post probe accessor for the uclass
* @dev: deivce we finished probing
*
* initiate init function after the probe is completed. This allows
* the remote processor drivers to split up the initializations between
* probe and init as needed.
*
* Return: if the remote proc driver has a init routine, invokes it and
* hands over the return value. overall, 0 if all went well, else appropriate
* error value.
*/
static int rproc_post_probe(struct udevice *dev)
{
const struct dm_rproc_ops *ops;
ops = rproc_get_ops(dev);
if (!ops) {
debug("%s driver has no ops?\n", dev->name);
return -EINVAL;
}
if (ops->init)
return ops->init(dev);
return 0;
}
/**
* rproc_add_res() - After parsing the resource table add the mappings
* @dev: device we finished probing
* @mapping: rproc_mem_entry for the resource
*
* Return: if the remote proc driver has a add_res routine, invokes it and
* hands over the return value. overall, 0 if all went well, else appropriate
* error value.
*/
static int rproc_add_res(struct udevice *dev, struct rproc_mem_entry *mapping)
{
const struct dm_rproc_ops *ops = rproc_get_ops(dev);
if (!ops->add_res)
return -ENOSYS;
return ops->add_res(dev, mapping);
}
/**
* rproc_alloc_mem() - After parsing the resource table allocat mem
* @dev: device we finished probing
* @len: rproc_mem_entry for the resource
* @align: alignment for the resource
*
* Return: if the remote proc driver has a add_res routine, invokes it and
* hands over the return value. overall, 0 if all went well, else appropriate
* error value.
*/
static void *rproc_alloc_mem(struct udevice *dev, unsigned long len,
unsigned long align)
{
const struct dm_rproc_ops *ops;
ops = rproc_get_ops(dev);
if (!ops) {
debug("%s driver has no ops?\n", dev->name);
return NULL;
}
if (ops->alloc_mem)
return ops->alloc_mem(dev, len, align);
return NULL;
}
/**
* rproc_config_pagetable() - Configure page table for remote processor
* @dev: device we finished probing
* @virt: Virtual address of the resource
* @phys: Physical address the resource
* @len: length the resource
*
* Return: if the remote proc driver has a add_res routine, invokes it and
* hands over the return value. overall, 0 if all went well, else appropriate
* error value.
*/
static int rproc_config_pagetable(struct udevice *dev, unsigned int virt,
unsigned int phys, unsigned int len)
{
const struct dm_rproc_ops *ops;
ops = rproc_get_ops(dev);
if (!ops) {
debug("%s driver has no ops?\n", dev->name);
return -EINVAL;
}
if (ops->config_pagetable)
return ops->config_pagetable(dev, virt, phys, len);
return 0;
}
UCLASS_DRIVER(rproc) = {
.id = UCLASS_REMOTEPROC,
.name = "remoteproc",
.flags = DM_UC_FLAG_SEQ_ALIAS,
.pre_probe = rproc_pre_probe,
.post_probe = rproc_post_probe,
.per_device_plat_auto = sizeof(struct dm_rproc_uclass_pdata),
};
/* Remoteproc subsystem access functions */
/**
* _rproc_probe_dev() - iteration helper to probe a rproc device
* @dev: device to probe
* @uc_pdata: uclass data allocated for the device
* @data: unused
*
* Return: 0 if all ok, else appropriate error value.
*/
static int _rproc_probe_dev(struct udevice *dev,
struct dm_rproc_uclass_pdata *uc_pdata,
const void *data)
{
int ret;
ret = device_probe(dev);
if (ret)
debug("%s: Failed to initialize - %d\n", dev->name, ret);
return ret;
}
/**
* _rproc_dev_is_probed() - check if the device has been probed
* @dev: device to check
* @uc_pdata: unused
* @data: unused
*
* Return: -EAGAIN if not probed else return 0
*/
static int _rproc_dev_is_probed(struct udevice *dev,
struct dm_rproc_uclass_pdata *uc_pdata,
const void *data)
{
if (dev_get_flags(dev) & DM_FLAG_ACTIVATED)
return 0;
return -EAGAIN;
}
bool rproc_is_initialized(void)
{
int ret = for_each_remoteproc_device(_rproc_dev_is_probed, NULL, NULL);
return ret ? false : true;
}
int rproc_init(void)
{
int ret;
if (rproc_is_initialized()) {
debug("Already initialized\n");
return -EINVAL;
}
ret = for_each_remoteproc_device(_rproc_probe_dev, NULL, NULL);
return ret;
}
int rproc_dev_init(int id)
{
struct udevice *dev = NULL;
int ret;
ret = uclass_get_device_by_seq(UCLASS_REMOTEPROC, id, &dev);
if (ret) {
debug("Unknown remote processor id '%d' requested(%d)\n",
id, ret);
return ret;
}
ret = device_probe(dev);
if (ret)
debug("%s: Failed to initialize - %d\n", dev->name, ret);
return ret;
}
int rproc_load(int id, ulong addr, ulong size)
{
struct udevice *dev = NULL;
struct dm_rproc_uclass_pdata *uc_pdata;
const struct dm_rproc_ops *ops;
int ret;
ret = uclass_get_device_by_seq(UCLASS_REMOTEPROC, id, &dev);
if (ret) {
debug("Unknown remote processor id '%d' requested(%d)\n",
id, ret);
return ret;
}
uc_pdata = dev_get_uclass_plat(dev);
ops = rproc_get_ops(dev);
if (!ops) {
debug("%s driver has no ops?\n", dev->name);
return -EINVAL;
}
debug("Loading to '%s' from address 0x%08lX size of %lu bytes\n",
uc_pdata->name, addr, size);
if (ops->load)
return ops->load(dev, addr, size);
debug("%s: data corruption?? mandatory function is missing!\n",
dev->name);
return -EINVAL;
};
/*
* Completely internal helper enums..
* Keeping this isolated helps this code evolve independent of other
* parts..
*/
enum rproc_ops {
RPROC_START,
RPROC_STOP,
RPROC_RESET,
RPROC_PING,
RPROC_RUNNING,
};
/**
* _rproc_ops_wrapper() - wrapper for invoking remote proc driver callback
* @id: id of the remote processor
* @op: one of rproc_ops that indicate what operation to invoke
*
* Most of the checks and verification for remoteproc operations are more
* or less same for almost all operations. This allows us to put a wrapper
* and use the common checks to allow the driver to function appropriately.
*
* Return: 0 if all ok, else appropriate error value.
*/
static int _rproc_ops_wrapper(int id, enum rproc_ops op)
{
struct udevice *dev = NULL;
struct dm_rproc_uclass_pdata *uc_pdata;
const struct dm_rproc_ops *ops;
int (*fn)(struct udevice *dev);
bool mandatory = false;
char *op_str;
int ret;
ret = uclass_get_device_by_seq(UCLASS_REMOTEPROC, id, &dev);
if (ret) {
debug("Unknown remote processor id '%d' requested(%d)\n",
id, ret);
return ret;
}
uc_pdata = dev_get_uclass_plat(dev);
ops = rproc_get_ops(dev);
if (!ops) {
debug("%s driver has no ops?\n", dev->name);
return -EINVAL;
}
switch (op) {
case RPROC_START:
fn = ops->start;
mandatory = true;
op_str = "Starting";
break;
case RPROC_STOP:
fn = ops->stop;
op_str = "Stopping";
break;
case RPROC_RESET:
fn = ops->reset;
op_str = "Resetting";
break;
case RPROC_RUNNING:
fn = ops->is_running;
op_str = "Checking if running:";
break;
case RPROC_PING:
fn = ops->ping;
op_str = "Pinging";
break;
default:
debug("what is '%d' operation??\n", op);
return -EINVAL;
}
debug("%s %s...\n", op_str, uc_pdata->name);
if (fn)
return fn(dev);
if (mandatory)
debug("%s: data corruption?? mandatory function is missing!\n",
dev->name);
return -ENOSYS;
}
int rproc_start(int id)
{
return _rproc_ops_wrapper(id, RPROC_START);
};
int rproc_stop(int id)
{
return _rproc_ops_wrapper(id, RPROC_STOP);
};
int rproc_reset(int id)
{
return _rproc_ops_wrapper(id, RPROC_RESET);
};
int rproc_ping(int id)
{
return _rproc_ops_wrapper(id, RPROC_PING);
};
int rproc_is_running(int id)
{
return _rproc_ops_wrapper(id, RPROC_RUNNING);
};
static int handle_trace(struct udevice *dev, struct fw_rsc_trace *rsc,
int offset, int avail)
{
if (sizeof(*rsc) > avail) {
debug("trace rsc is truncated\n");
return -EINVAL;
}
/*
* make sure reserved bytes are zeroes
*/
if (rsc->reserved) {
debug("trace rsc has non zero reserved bytes\n");
return -EINVAL;
}
debug("trace rsc: da 0x%x, len 0x%x\n", rsc->da, rsc->len);
return 0;
}
static int handle_devmem(struct udevice *dev, struct fw_rsc_devmem *rsc,
int offset, int avail)
{
struct rproc_mem_entry *mapping;
if (sizeof(*rsc) > avail) {
debug("devmem rsc is truncated\n");
return -EINVAL;
}
/*
* make sure reserved bytes are zeroes
*/
if (rsc->reserved) {
debug("devmem rsc has non zero reserved bytes\n");
return -EINVAL;
}
debug("devmem rsc: pa 0x%x, da 0x%x, len 0x%x\n",
rsc->pa, rsc->da, rsc->len);
rproc_config_pagetable(dev, rsc->da, rsc->pa, rsc->len);
mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
if (!mapping)
return -ENOMEM;
/*
* We'll need this info later when we'll want to unmap everything
* (e.g. on shutdown).
*
* We can't trust the remote processor not to change the resource
* table, so we must maintain this info independently.
*/
mapping->dma = rsc->pa;
mapping->da = rsc->da;
mapping->len = rsc->len;
rproc_add_res(dev, mapping);
debug("mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
rsc->pa, rsc->da, rsc->len);
return 0;
}
static int handle_carveout(struct udevice *dev, struct fw_rsc_carveout *rsc,
int offset, int avail)
{
struct rproc_mem_entry *mapping;
if (sizeof(*rsc) > avail) {
debug("carveout rsc is truncated\n");
return -EINVAL;
}
/*
* make sure reserved bytes are zeroes
*/
if (rsc->reserved) {
debug("carveout rsc has non zero reserved bytes\n");
return -EINVAL;
}
debug("carveout rsc: da %x, pa %x, len %x, flags %x\n",
rsc->da, rsc->pa, rsc->len, rsc->flags);
rsc->pa = (uintptr_t)rproc_alloc_mem(dev, rsc->len, 8);
if (!rsc->pa) {
debug
("failed to allocate carveout rsc: da %x, pa %x, len %x, flags %x\n",
rsc->da, rsc->pa, rsc->len, rsc->flags);
return -ENOMEM;
}
rproc_config_pagetable(dev, rsc->da, rsc->pa, rsc->len);
/*
* Ok, this is non-standard.
*
* Sometimes we can't rely on the generic iommu-based DMA API
* to dynamically allocate the device address and then set the IOMMU
* tables accordingly, because some remote processors might
* _require_ us to use hard coded device addresses that their
* firmware was compiled with.
*
* In this case, we must use the IOMMU API directly and map
* the memory to the device address as expected by the remote
* processor.
*
* Obviously such remote processor devices should not be configured
* to use the iommu-based DMA API: we expect 'dma' to contain the
* physical address in this case.
*/
mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
if (!mapping)
return -ENOMEM;
/*
* We'll need this info later when we'll want to unmap
* everything (e.g. on shutdown).
*
* We can't trust the remote processor not to change the
* resource table, so we must maintain this info independently.
*/
mapping->dma = rsc->pa;
mapping->da = rsc->da;
mapping->len = rsc->len;
rproc_add_res(dev, mapping);
debug("carveout mapped 0x%x to 0x%x\n", rsc->da, rsc->pa);
return 0;
}
#define RPROC_PAGE_SHIFT 12
#define RPROC_PAGE_SIZE BIT(RPROC_PAGE_SHIFT)
#define RPROC_PAGE_ALIGN(x) (((x) + (RPROC_PAGE_SIZE - 1)) & ~(RPROC_PAGE_SIZE - 1))
static int alloc_vring(struct udevice *dev, struct fw_rsc_vdev *rsc, int i)
{
struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
int size;
int order;
void *pa;
debug("vdev rsc: vring%d: da %x, qsz %d, align %d\n",
i, vring->da, vring->num, vring->align);
/*
* verify queue size and vring alignment are sane
*/
if (!vring->num || !vring->align) {
debug("invalid qsz (%d) or alignment (%d)\n", vring->num,
vring->align);
return -EINVAL;
}
/*
* actual size of vring (in bytes)
*/
size = RPROC_PAGE_ALIGN(vring_size(vring->num, vring->align));
order = vring->align >> RPROC_PAGE_SHIFT;
pa = rproc_alloc_mem(dev, size, order);
if (!pa) {
debug("failed to allocate vring rsc\n");
return -ENOMEM;
}
debug("alloc_mem(%#x, %d): %p\n", size, order, pa);
vring->da = (uintptr_t)pa;
return 0;
}
static int handle_vdev(struct udevice *dev, struct fw_rsc_vdev *rsc,
int offset, int avail)
{
int i, ret;
void *pa;
/*
* make sure resource isn't truncated
*/
if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring)
+ rsc->config_len > avail) {
debug("vdev rsc is truncated\n");
return -EINVAL;
}
/*
* make sure reserved bytes are zeroes
*/
if (rsc->reserved[0] || rsc->reserved[1]) {
debug("vdev rsc has non zero reserved bytes\n");
return -EINVAL;
}
debug("vdev rsc: id %d, dfeatures %x, cfg len %d, %d vrings\n",
rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
/*
* we currently support only two vrings per rvdev
*/
if (rsc->num_of_vrings > 2) {
debug("too many vrings: %d\n", rsc->num_of_vrings);
return -EINVAL;
}
/*
* allocate the vrings
*/
for (i = 0; i < rsc->num_of_vrings; i++) {
ret = alloc_vring(dev, rsc, i);
if (ret)
goto alloc_error;
}
pa = rproc_alloc_mem(dev, RPMSG_TOTAL_BUF_SPACE, 6);
if (!pa) {
debug("failed to allocate vdev rsc\n");
return -ENOMEM;
}
debug("vring buffer alloc_mem(%#x, 6): %p\n", RPMSG_TOTAL_BUF_SPACE,
pa);
return 0;
alloc_error:
return ret;
}
/*
* A lookup table for resource handlers. The indices are defined in
* enum fw_resource_type.
*/
static handle_resource_t loading_handlers[RSC_LAST] = {
[RSC_CARVEOUT] = (handle_resource_t)handle_carveout,
[RSC_DEVMEM] = (handle_resource_t)handle_devmem,
[RSC_TRACE] = (handle_resource_t)handle_trace,
[RSC_VDEV] = (handle_resource_t)handle_vdev,
};
/*
* handle firmware resource entries before booting the remote processor
*/
static int handle_resources(struct udevice *dev, int len,
handle_resource_t handlers[RSC_LAST])
{
handle_resource_t handler;
int ret = 0, i;
for (i = 0; i < rsc_table->num; i++) {
int offset = rsc_table->offset[i];
struct fw_rsc_hdr *hdr = (void *)rsc_table + offset;
int avail = len - offset - sizeof(*hdr);
void *rsc = (void *)hdr + sizeof(*hdr);
/*
* make sure table isn't truncated
*/
if (avail < 0) {
debug("rsc table is truncated\n");
return -EINVAL;
}
debug("rsc: type %d\n", hdr->type);
if (hdr->type >= RSC_LAST) {
debug("unsupported resource %d\n", hdr->type);
continue;
}
handler = handlers[hdr->type];
if (!handler)
continue;
ret = handler(dev, rsc, offset + sizeof(*hdr), avail);
if (ret)
break;
}
return ret;
}
static int
handle_intmem_to_l3_mapping(struct udevice *dev,
struct rproc_intmem_to_l3_mapping *l3_mapping)
{
u32 i = 0;
for (i = 0; i < l3_mapping->num_entries; i++) {
struct l3_map *curr_map = &l3_mapping->mappings[i];
struct rproc_mem_entry *mapping;
mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
if (!mapping)
return -ENOMEM;
mapping->dma = curr_map->l3_addr;
mapping->da = curr_map->priv_addr;
mapping->len = curr_map->len;
rproc_add_res(dev, mapping);
}
return 0;
}
static Elf32_Shdr *rproc_find_table(unsigned int addr)
{
Elf32_Ehdr *ehdr; /* Elf header structure pointer */
Elf32_Shdr *shdr; /* Section header structure pointer */
Elf32_Shdr sectionheader;
int i;
u8 *elf_data;
char *name_table;
struct resource_table *ptable;
ehdr = (Elf32_Ehdr *)(uintptr_t)addr;
elf_data = (u8 *)ehdr;
shdr = (Elf32_Shdr *)(elf_data + ehdr->e_shoff);
memcpy(&sectionheader, &shdr[ehdr->e_shstrndx], sizeof(sectionheader));
name_table = (char *)(elf_data + sectionheader.sh_offset);
for (i = 0; i < ehdr->e_shnum; i++, shdr++) {
memcpy(&sectionheader, shdr, sizeof(sectionheader));
u32 size = sectionheader.sh_size;
u32 offset = sectionheader.sh_offset;
if (strcmp
(name_table + sectionheader.sh_name, ".resource_table"))
continue;
ptable = (struct resource_table *)(elf_data + offset);
/*
* make sure table has at least the header
*/
if (sizeof(struct resource_table) > size) {
debug("header-less resource table\n");
return NULL;
}
/*
* we don't support any version beyond the first
*/
if (ptable->ver != 1) {
debug("unsupported fw ver: %d\n", ptable->ver);
return NULL;
}
/*
* make sure reserved bytes are zeroes
*/
if (ptable->reserved[0] || ptable->reserved[1]) {
debug("non zero reserved bytes\n");
return NULL;
}
/*
* make sure the offsets array isn't truncated
*/
if (ptable->num * sizeof(ptable->offset[0]) +
sizeof(struct resource_table) > size) {
debug("resource table incomplete\n");
return NULL;
}
return shdr;
}
return NULL;
}
struct resource_table *rproc_find_resource_table(struct udevice *dev,
unsigned int addr,
int *tablesz)
{
Elf32_Shdr *shdr;
Elf32_Shdr sectionheader;
struct resource_table *ptable;
u8 *elf_data = (u8 *)(uintptr_t)addr;
shdr = rproc_find_table(addr);
if (!shdr) {
debug("%s: failed to get resource section header\n", __func__);
return NULL;
}
memcpy(&sectionheader, shdr, sizeof(sectionheader));
ptable = (struct resource_table *)(elf_data + sectionheader.sh_offset);
if (tablesz)
*tablesz = sectionheader.sh_size;
return ptable;
}
unsigned long rproc_parse_resource_table(struct udevice *dev, struct rproc *cfg)
{
struct resource_table *ptable = NULL;
int tablesz;
int ret;
unsigned long addr;
addr = cfg->load_addr;
ptable = rproc_find_resource_table(dev, addr, &tablesz);
if (!ptable) {
debug("%s : failed to find resource table\n", __func__);
return 0;
}
debug("%s : found resource table\n", __func__);
rsc_table = kzalloc(tablesz, GFP_KERNEL);
if (!rsc_table) {
debug("resource table alloc failed!\n");
return 0;
}
/*
* Copy the resource table into a local buffer before handling the
* resource table.
*/
memcpy(rsc_table, ptable, tablesz);
if (cfg->intmem_to_l3_mapping)
handle_intmem_to_l3_mapping(dev, cfg->intmem_to_l3_mapping);
ret = handle_resources(dev, tablesz, loading_handlers);
if (ret) {
debug("handle_resources failed: %d\n", ret);
return 0;
}
/*
* Instead of trying to mimic the kernel flow of copying the
* processed resource table into its post ELF load location in DDR
* copying it into its original location.
*/
memcpy(ptable, rsc_table, tablesz);
free(rsc_table);
rsc_table = NULL;
return 1;
}