| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * ECDSA image signing implementation using libcrypto backend |
| * |
| * The signature is a binary representation of the (R, S) points, padded to the |
| * key size. The signature will be (2 * key_size_bits) / 8 bytes. |
| * |
| * Deviations from behavior of RSA equivalent: |
| * - Verification uses private key. This is not technically required, but a |
| * limitation on how clumsy the openssl API is to use. |
| * - Handling of keys and key paths: |
| * - The '-K' key directory option must contain path to the key file, |
| * instead of the key directory. |
| * - No assumptions are made about the file extension of the key |
| * - The 'key-name-hint' property is only used for naming devicetree nodes, |
| * but is not used for looking up keys on the filesystem. |
| * |
| * Copyright (c) 2020,2021, Alexandru Gagniuc <mr.nuke.me@gmail.com> |
| */ |
| |
| #define OPENSSL_API_COMPAT 0x10101000L |
| |
| #include <u-boot/ecdsa.h> |
| #include <u-boot/fdt-libcrypto.h> |
| #include <openssl/ssl.h> |
| #include <openssl/ec.h> |
| #include <openssl/bn.h> |
| |
| /* Image signing context for openssl-libcrypto */ |
| struct signer { |
| EVP_PKEY *evp_key; /* Pointer to EVP_PKEY object */ |
| EC_KEY *ecdsa_key; /* Pointer to EC_KEY object */ |
| void *hash; /* Pointer to hash used for verification */ |
| void *signature; /* Pointer to output signature. Do not free()!*/ |
| }; |
| |
| struct ecdsa_public_key { |
| const char *curve_name; |
| const uint8_t *x; |
| const uint8_t *y; |
| int size_bits; |
| }; |
| |
| static int fdt_get_key(struct ecdsa_public_key *key, const void *fdt, int node) |
| { |
| int x_len; |
| int y_len; |
| |
| key->curve_name = fdt_getprop(fdt, node, "ecdsa,curve", NULL); |
| if (!key->curve_name) |
| return -ENOMSG; |
| |
| if (!strcmp(key->curve_name, "prime256v1")) |
| key->size_bits = 256; |
| else if (!strcmp(key->curve_name, "secp384r1")) |
| key->size_bits = 384; |
| else |
| return -EINVAL; |
| |
| key->x = fdt_getprop(fdt, node, "ecdsa,x-point", &x_len); |
| key->y = fdt_getprop(fdt, node, "ecdsa,y-point", &y_len); |
| |
| if (!key->x || !key->y) |
| return -EINVAL; |
| |
| if (x_len != key->size_bits / 8 || y_len != key->size_bits / 8) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static int read_key_from_fdt(struct signer *ctx, const void *fdt, int node) |
| { |
| struct ecdsa_public_key pubkey; |
| const EC_GROUP *group; |
| EC_POINT *point; |
| EC_KEY *ec_key; |
| int ret; |
| int nid; |
| int len; |
| |
| ret = fdt_get_key(&pubkey, fdt, node); |
| if (ret) { |
| fprintf(stderr, "Failed to parse ECDSA key from FDT node %d (ret=%d)\n", node, ret); |
| return ret; |
| } |
| |
| if (!strcmp(pubkey.curve_name, "prime256v1")) { |
| nid = NID_X9_62_prime256v1; |
| } else if (!strcmp(pubkey.curve_name, "secp384r1")) { |
| nid = NID_secp384r1; |
| } else { |
| fprintf(stderr, "Unsupported curve name: '%s'\n", pubkey.curve_name); |
| return -EINVAL; |
| } |
| |
| fprintf(stderr, "Loading ECDSA key: curve=%s, bits=%d\n", pubkey.curve_name, |
| pubkey.size_bits); |
| |
| ec_key = EC_KEY_new_by_curve_name(nid); |
| if (!ec_key) { |
| fprintf(stderr, "Failed to allocate EC_KEY for curve %s\n", pubkey.curve_name); |
| return -ENOMEM; |
| } |
| |
| group = EC_KEY_get0_group(ec_key); |
| point = EC_POINT_new(group); |
| if (!point) { |
| fprintf(stderr, "Failed to allocate EC_POINT\n"); |
| EC_KEY_free(ec_key); |
| return -ENOMEM; |
| } |
| |
| len = pubkey.size_bits / 8; |
| |
| uint8_t buf[1 + len * 2]; |
| |
| /* uncompressed */ |
| buf[0] = 0x04; |
| memcpy(&buf[1], pubkey.x, len); |
| memcpy(&buf[1 + len], pubkey.y, len); |
| if (!EC_POINT_oct2point(group, point, buf, sizeof(buf), NULL)) { |
| fprintf(stderr, "Failed to convert (x,y) point to EC_POINT\n"); |
| EC_POINT_free(point); |
| EC_KEY_free(ec_key); |
| return -EINVAL; |
| } |
| |
| if (!EC_KEY_set_public_key(ec_key, point)) { |
| fprintf(stderr, "Failed to set EC_POINT as public key\n"); |
| EC_POINT_free(point); |
| EC_KEY_free(ec_key); |
| return -EINVAL; |
| } |
| |
| fprintf(stderr, "Successfully loaded ECDSA key from FDT node %d\n", node); |
| EC_POINT_free(point); |
| ctx->ecdsa_key = ec_key; |
| |
| return 0; |
| } |
| |
| static int alloc_ctx(struct signer *ctx, const struct image_sign_info *info) |
| { |
| memset(ctx, 0, sizeof(*ctx)); |
| |
| if (!OPENSSL_init_ssl(0, NULL)) { |
| fprintf(stderr, "Failure to init SSL library\n"); |
| return -1; |
| } |
| |
| ctx->hash = malloc(info->checksum->checksum_len); |
| ctx->signature = malloc(info->crypto->key_len * 2); |
| |
| if (!ctx->hash || !ctx->signature) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| |
| static void free_ctx(struct signer *ctx) |
| { |
| if (ctx->ecdsa_key) |
| EC_KEY_free(ctx->ecdsa_key); |
| |
| if (ctx->evp_key) |
| EVP_PKEY_free(ctx->evp_key); |
| |
| if (ctx->hash) |
| free(ctx->hash); |
| } |
| |
| /* |
| * Convert an ECDSA signature to raw format |
| * |
| * openssl DER-encodes 'binary' signatures. We want the signature in a raw |
| * (R, S) point pair. So we have to dance a bit. |
| */ |
| static void ecdsa_sig_encode_raw(void *buf, const ECDSA_SIG *sig, size_t order) |
| { |
| int point_bytes = order; |
| const BIGNUM *r, *s; |
| uintptr_t s_buf; |
| |
| ECDSA_SIG_get0(sig, &r, &s); |
| s_buf = (uintptr_t)buf + point_bytes; |
| BN_bn2binpad(r, buf, point_bytes); |
| BN_bn2binpad(s, (void *)s_buf, point_bytes); |
| } |
| |
| /* Get a signature from a raw encoding */ |
| static ECDSA_SIG *ecdsa_sig_from_raw(void *buf, size_t order) |
| { |
| int point_bytes = order; |
| uintptr_t s_buf; |
| ECDSA_SIG *sig; |
| BIGNUM *r, *s; |
| |
| sig = ECDSA_SIG_new(); |
| if (!sig) |
| return NULL; |
| |
| s_buf = (uintptr_t)buf + point_bytes; |
| r = BN_bin2bn(buf, point_bytes, NULL); |
| s = BN_bin2bn((void *)s_buf, point_bytes, NULL); |
| ECDSA_SIG_set0(sig, r, s); |
| |
| return sig; |
| } |
| |
| /* ECDSA key size in bytes */ |
| static size_t ecdsa_key_size_bytes(const EC_KEY *key) |
| { |
| const EC_GROUP *group; |
| |
| group = EC_KEY_get0_group(key); |
| return (EC_GROUP_order_bits(group) + 7) / 8; |
| } |
| |
| static int default_password(char *buf, int size, int rwflag, void *u) |
| { |
| strncpy(buf, (char *)u, size); |
| buf[size - 1] = '\0'; |
| return strlen(buf); |
| } |
| |
| static int read_key(struct signer *ctx, const char *key_name) |
| { |
| FILE *f = fopen(key_name, "r"); |
| const char *key_pass; |
| |
| if (!f) { |
| fprintf(stderr, "Can not get key file '%s'\n", key_name); |
| return -ENOENT; |
| } |
| |
| key_pass = getenv("MKIMAGE_SIGN_PASSWORD"); |
| if (key_pass) { |
| ctx->evp_key = PEM_read_PrivateKey(f, NULL, default_password, (void *)key_pass); |
| |
| } else { |
| ctx->evp_key = PEM_read_PrivateKey(f, NULL, NULL, NULL); |
| } |
| fclose(f); |
| if (!ctx->evp_key) { |
| fprintf(stderr, "Can not read key from '%s'\n", key_name); |
| return -EIO; |
| } |
| |
| if (EVP_PKEY_id(ctx->evp_key) != EVP_PKEY_EC) { |
| fprintf(stderr, "'%s' is not an ECDSA key\n", key_name); |
| return -EINVAL; |
| } |
| |
| ctx->ecdsa_key = EVP_PKEY_get1_EC_KEY(ctx->evp_key); |
| if (!ctx->ecdsa_key) |
| fprintf(stderr, "Can not extract ECDSA key\n"); |
| |
| return (ctx->ecdsa_key) ? 0 : -EINVAL; |
| } |
| |
| static int load_key_from_fdt(struct signer *ctx, const struct image_sign_info *info) |
| { |
| const void *fdt = info->fdt_blob; |
| char name[128]; |
| int sig_node; |
| int key_node; |
| int key_len; |
| int ret; |
| |
| if (!fdt) |
| return -EINVAL; |
| |
| ret = alloc_ctx(ctx, info); |
| if (ret) |
| return ret; |
| |
| sig_node = fdt_subnode_offset(fdt, 0, FIT_SIG_NODENAME); |
| if (sig_node < 0) { |
| fprintf(stderr, "No /signature node found\n"); |
| return -ENOENT; |
| } |
| |
| /* Case 1: explicitly specified key node */ |
| if (info->required_keynode >= 0) { |
| ret = read_key_from_fdt(ctx, fdt, info->required_keynode); |
| if (ret == 0) |
| goto check_key_len; |
| |
| fprintf(stderr, "Failed to load required keynode %d\n", info->required_keynode); |
| return ret; |
| } |
| |
| /* Case 2: use keyname hint */ |
| if (info->keyname) { |
| snprintf(name, sizeof(name), "%s", info->keyname); |
| key_node = fdt_subnode_offset(fdt, sig_node, name); |
| if (key_node >= 0) { |
| ret = read_key_from_fdt(ctx, fdt, key_node); |
| if (ret == 0) |
| goto check_key_len; |
| |
| fprintf(stderr, "Key hint '%s' found but failed to load\n", info->keyname); |
| } |
| } |
| |
| /* Case 3: try all subnodes */ |
| fdt_for_each_subnode(key_node, fdt, sig_node) { |
| ret = read_key_from_fdt(ctx, fdt, key_node); |
| if (ret == 0) |
| goto check_key_len; |
| } |
| |
| fprintf(stderr, "Failed to load any usable ECDSA key from FDT\n"); |
| return -EINVAL; |
| |
| check_key_len: |
| key_len = ecdsa_key_size_bytes(ctx->ecdsa_key); |
| if (key_len != info->crypto->key_len) { |
| fprintf(stderr, "Expected %u-bit key, got %u-bit key\n", |
| info->crypto->key_len * 8, key_len * 8); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| /* Prepare a 'signer' context that's ready to sign and verify. */ |
| static int prepare_ctx(struct signer *ctx, const struct image_sign_info *info) |
| { |
| int key_len_bytes, ret; |
| char kname[1024]; |
| |
| memset(ctx, 0, sizeof(*ctx)); |
| |
| if (info->fdt_blob) { |
| return load_key_from_fdt(ctx, info); |
| } else if (info->keyfile) { |
| snprintf(kname, sizeof(kname), "%s", info->keyfile); |
| } else if (info->keydir && info->keyname) { |
| snprintf(kname, sizeof(kname), "%s/%s.pem", info->keydir, |
| info->keyname); |
| } else { |
| fprintf(stderr, "keyfile, keyname, or key-name-hint missing\n"); |
| return -EINVAL; |
| } |
| |
| ret = alloc_ctx(ctx, info); |
| if (ret) |
| return ret; |
| |
| ret = read_key(ctx, kname); |
| if (ret) |
| return ret; |
| |
| key_len_bytes = ecdsa_key_size_bytes(ctx->ecdsa_key); |
| if (key_len_bytes != info->crypto->key_len) { |
| fprintf(stderr, "Expected a %u-bit key, got %u-bit key\n", |
| info->crypto->key_len * 8, key_len_bytes * 8); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int do_sign(struct signer *ctx, struct image_sign_info *info, |
| const struct image_region region[], int region_count) |
| { |
| const struct checksum_algo *algo = info->checksum; |
| ECDSA_SIG *sig; |
| |
| algo->calculate(algo->name, region, region_count, ctx->hash); |
| sig = ECDSA_do_sign(ctx->hash, algo->checksum_len, ctx->ecdsa_key); |
| |
| ecdsa_sig_encode_raw(ctx->signature, sig, info->crypto->key_len); |
| |
| return 0; |
| } |
| |
| static int ecdsa_check_signature(struct signer *ctx, struct image_sign_info *info) |
| { |
| ECDSA_SIG *sig; |
| int okay; |
| |
| sig = ecdsa_sig_from_raw(ctx->signature, info->crypto->key_len); |
| if (!sig) |
| return -ENOMEM; |
| |
| okay = ECDSA_do_verify(ctx->hash, info->checksum->checksum_len, |
| sig, ctx->ecdsa_key); |
| if (!okay) |
| fprintf(stderr, "WARNING: Signature is fake news!\n"); |
| |
| ECDSA_SIG_free(sig); |
| return !okay; |
| } |
| |
| static int do_verify(struct signer *ctx, struct image_sign_info *info, |
| const struct image_region region[], int region_count, |
| uint8_t *raw_sig, uint sig_len) |
| { |
| const struct checksum_algo *algo = info->checksum; |
| |
| if (sig_len != info->crypto->key_len * 2) { |
| fprintf(stderr, "Signature has wrong length\n"); |
| return -EINVAL; |
| } |
| |
| memcpy(ctx->signature, raw_sig, sig_len); |
| algo->calculate(algo->name, region, region_count, ctx->hash); |
| |
| return ecdsa_check_signature(ctx, info); |
| } |
| |
| int ecdsa_sign(struct image_sign_info *info, const struct image_region region[], |
| int region_count, uint8_t **sigp, uint *sig_len) |
| { |
| struct signer ctx; |
| int ret; |
| |
| ret = prepare_ctx(&ctx, info); |
| if (ret >= 0) { |
| do_sign(&ctx, info, region, region_count); |
| *sigp = ctx.signature; |
| *sig_len = info->crypto->key_len * 2; |
| |
| ret = ecdsa_check_signature(&ctx, info); |
| } |
| |
| free_ctx(&ctx); |
| return ret; |
| } |
| |
| int ecdsa_verify(struct image_sign_info *info, |
| const struct image_region region[], int region_count, |
| uint8_t *sig, uint sig_len) |
| { |
| struct signer ctx; |
| int ret; |
| |
| ret = prepare_ctx(&ctx, info); |
| if (ret >= 0) |
| ret = do_verify(&ctx, info, region, region_count, sig, sig_len); |
| |
| free_ctx(&ctx); |
| return ret; |
| } |
| |
| static int do_add(struct signer *ctx, void *fdt, const char *key_node_name, |
| struct image_sign_info *info) |
| { |
| int signature_node, key_node, ret, key_bits; |
| const char *curve_name; |
| const EC_GROUP *group; |
| const EC_POINT *point; |
| BIGNUM *x, *y; |
| |
| signature_node = fdt_subnode_offset(fdt, 0, FIT_SIG_NODENAME); |
| if (signature_node == -FDT_ERR_NOTFOUND) { |
| signature_node = fdt_add_subnode(fdt, 0, FIT_SIG_NODENAME); |
| if (signature_node < 0) { |
| if (signature_node != -FDT_ERR_NOSPACE) { |
| fprintf(stderr, "Couldn't create signature node: %s\n", |
| fdt_strerror(signature_node)); |
| } |
| return signature_node; |
| } |
| } else if (signature_node < 0) { |
| fprintf(stderr, "Cannot select keys signature_node: %s\n", |
| fdt_strerror(signature_node)); |
| return signature_node; |
| } |
| |
| /* Either create or overwrite the named key node */ |
| key_node = fdt_subnode_offset(fdt, signature_node, key_node_name); |
| if (key_node == -FDT_ERR_NOTFOUND) { |
| key_node = fdt_add_subnode(fdt, signature_node, key_node_name); |
| if (key_node < 0) { |
| if (key_node != -FDT_ERR_NOSPACE) { |
| fprintf(stderr, "Could not create key subnode: %s\n", |
| fdt_strerror(key_node)); |
| } |
| return key_node; |
| } |
| } else if (key_node < 0) { |
| fprintf(stderr, "Cannot select keys key_node: %s\n", |
| fdt_strerror(key_node)); |
| return key_node; |
| } |
| |
| group = EC_KEY_get0_group(ctx->ecdsa_key); |
| key_bits = EC_GROUP_order_bits(group); |
| curve_name = OBJ_nid2sn(EC_GROUP_get_curve_name(group)); |
| /* Let 'x' and 'y' memory leak by not BN_free()'ing them. */ |
| x = BN_new(); |
| y = BN_new(); |
| point = EC_KEY_get0_public_key(ctx->ecdsa_key); |
| EC_POINT_get_affine_coordinates(group, point, x, y, NULL); |
| |
| ret = fdt_setprop_string(fdt, key_node, FIT_KEY_HINT, |
| info->keyname); |
| if (ret < 0) |
| return ret; |
| |
| ret = fdt_setprop_string(fdt, key_node, "ecdsa,curve", curve_name); |
| if (ret < 0) |
| return ret; |
| |
| ret = fdt_add_bignum(fdt, key_node, "ecdsa,x-point", x, key_bits); |
| if (ret < 0) |
| return ret; |
| |
| ret = fdt_add_bignum(fdt, key_node, "ecdsa,y-point", y, key_bits); |
| if (ret < 0) |
| return ret; |
| |
| ret = fdt_setprop_string(fdt, key_node, FIT_ALGO_PROP, |
| info->name); |
| if (ret < 0) |
| return ret; |
| |
| if (info->require_keys) { |
| ret = fdt_setprop_string(fdt, key_node, FIT_KEY_REQUIRED, |
| info->require_keys); |
| if (ret < 0) |
| return ret; |
| } |
| |
| return key_node; |
| } |
| |
| int ecdsa_add_verify_data(struct image_sign_info *info, void *fdt) |
| { |
| const char *fdt_key_name; |
| struct signer ctx; |
| int ret; |
| |
| fdt_key_name = info->keyname ? info->keyname : "default-key"; |
| ret = prepare_ctx(&ctx, info); |
| if (ret >= 0) { |
| ret = do_add(&ctx, fdt, fdt_key_name, info); |
| if (ret < 0) { |
| free_ctx(&ctx); |
| return ret == -FDT_ERR_NOSPACE ? -ENOSPC : -EIO; |
| } |
| } |
| |
| free_ctx(&ctx); |
| return ret; |
| } |