| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Copyright (C) 2020 Philippe Reynes <philippe.reynes@softathome.com> |
| * |
| * Based on led.c |
| */ |
| |
| #include <dm.h> |
| #include <adc.h> |
| #include <button.h> |
| #include <power/regulator.h> |
| #include <power/sandbox_pmic.h> |
| #include <asm/gpio.h> |
| #include <dm/test.h> |
| #include <dt-bindings/input/input.h> |
| #include <test/ut.h> |
| |
| /* Base test of the button uclass */ |
| static int dm_test_button_base(struct unit_test_state *uts) |
| { |
| struct udevice *dev; |
| |
| /* Get the top-level gpio buttons device */ |
| ut_assertok(uclass_get_device(UCLASS_BUTTON, 0, &dev)); |
| /* Get the 2 gpio buttons */ |
| ut_assertok(uclass_get_device(UCLASS_BUTTON, 1, &dev)); |
| ut_assertok(uclass_get_device(UCLASS_BUTTON, 2, &dev)); |
| |
| /* Get the top-level adc buttons device */ |
| ut_assertok(uclass_get_device(UCLASS_BUTTON, 3, &dev)); |
| /* Get the 3 adc buttons */ |
| ut_assertok(uclass_get_device(UCLASS_BUTTON, 4, &dev)); |
| ut_assertok(uclass_get_device(UCLASS_BUTTON, 5, &dev)); |
| ut_assertok(uclass_get_device(UCLASS_BUTTON, 6, &dev)); |
| |
| ut_asserteq(-ENODEV, uclass_get_device(UCLASS_BUTTON, 7, &dev)); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_button_base, UTF_SCAN_PDATA | UTF_SCAN_FDT); |
| |
| /* Test of the button uclass using the button_gpio driver */ |
| static int dm_test_button_gpio(struct unit_test_state *uts) |
| { |
| const int offset = 3; |
| struct udevice *dev, *gpio; |
| |
| /* |
| * Check that we can manipulate a BUTTON. BUTTON 1 is connected to GPIO |
| * bank gpio_a, offset 3. |
| */ |
| ut_assertok(uclass_get_device(UCLASS_BUTTON, 1, &dev)); |
| ut_assertok(uclass_get_device(UCLASS_GPIO, 1, &gpio)); |
| |
| ut_asserteq(0, sandbox_gpio_set_value(gpio, offset, 0)); |
| ut_asserteq(0, sandbox_gpio_get_value(gpio, offset)); |
| ut_asserteq(BUTTON_OFF, button_get_state(dev)); |
| |
| ut_asserteq(0, sandbox_gpio_set_value(gpio, offset, 1)); |
| ut_asserteq(1, sandbox_gpio_get_value(gpio, offset)); |
| ut_asserteq(BUTTON_ON, button_get_state(dev)); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_button_gpio, UTF_SCAN_PDATA | UTF_SCAN_FDT); |
| |
| /* Test obtaining a BUTTON by label */ |
| static int dm_test_button_label(struct unit_test_state *uts) |
| { |
| struct udevice *dev, *cmp; |
| |
| ut_assertok(button_get_by_label("button1", &dev)); |
| ut_asserteq(1, device_active(dev)); |
| ut_assertok(uclass_get_device(UCLASS_BUTTON, 1, &cmp)); |
| ut_asserteq_ptr(dev, cmp); |
| |
| ut_assertok(button_get_by_label("button2", &dev)); |
| ut_asserteq(1, device_active(dev)); |
| ut_assertok(uclass_get_device(UCLASS_BUTTON, 2, &cmp)); |
| ut_asserteq_ptr(dev, cmp); |
| |
| ut_asserteq(-ENODEV, button_get_by_label("nobutton", &dev)); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_button_label, UTF_SCAN_PDATA | UTF_SCAN_FDT); |
| |
| /* Test button has linux,code */ |
| static int dm_test_button_linux_code(struct unit_test_state *uts) |
| { |
| struct udevice *dev; |
| |
| ut_assertok(uclass_get_device(UCLASS_BUTTON, 1, &dev)); |
| ut_asserteq(BTN_1, button_get_code(dev)); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_button_linux_code, UTF_SCAN_PDATA | UTF_SCAN_FDT); |
| |
| /* Test adc-keys driver */ |
| static int dm_test_button_keys_adc(struct unit_test_state *uts) |
| { |
| struct udevice *supply; |
| struct udevice *dev; |
| int uV; |
| |
| ut_assertok(uclass_get_device_by_name(UCLASS_ADC, "adc@0", &dev)); |
| |
| ut_assertok(regulator_get_by_devname(SANDBOX_BUCK2_DEVNAME, &supply)); |
| ut_assertok(regulator_set_value(supply, SANDBOX_BUCK2_SET_UV)); |
| ut_asserteq(SANDBOX_BUCK2_SET_UV, regulator_get_value(supply)); |
| /* Update ADC plat and get new Vdd value */ |
| ut_assertok(adc_vdd_value(dev, &uV)); |
| ut_asserteq(SANDBOX_BUCK2_SET_UV, uV); |
| |
| /* |
| * sandbox-adc returns constant value on channel 3, is used by adc-keys: |
| * SANDBOX_ADC_CHANNEL3_DATA * SANDBOX_BUCK2_SET_UV / SANDBOX_ADC_DATA_MASK = |
| * 0x3000 * 3300000 / 0xffff = 618759uV |
| * This means that button3 and button4 are released and button5 |
| * is pressed. |
| */ |
| ut_assertok(button_get_by_label("button3", &dev)); |
| ut_asserteq(BUTTON_OFF, button_get_state(dev)); |
| ut_assertok(button_get_by_label("button4", &dev)); |
| ut_asserteq(BUTTON_OFF, button_get_state(dev)); |
| ut_assertok(button_get_by_label("button5", &dev)); |
| ut_asserteq(BUTTON_ON, button_get_state(dev)); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_button_keys_adc, UTF_SCAN_PDATA | UTF_SCAN_FDT); |
| |
| /* Test of the button uclass using the button_gpio driver */ |
| static int dm_test_button_cmd(struct unit_test_state *uts) |
| { |
| struct udevice *btn1_dev, *btn2_dev, *gpio; |
| const char *envstr; |
| |
| #define BTN1_GPIO 3 |
| #define BTN2_GPIO 4 |
| #define BTN1_PASS_VAR "test_button_cmds_0" |
| #define BTN2_PASS_VAR "test_button_cmds_1" |
| |
| /* |
| * Buttons 1 and 2 are connected to gpio_a gpios 3 and 4 respectively. |
| * set the GPIOs to known values and then check that the appropriate |
| * commands are run when invoking process_button_cmds(). |
| */ |
| ut_assertok(uclass_get_device(UCLASS_BUTTON, 1, &btn1_dev)); |
| ut_assertok(uclass_get_device(UCLASS_BUTTON, 2, &btn2_dev)); |
| ut_assertok(uclass_get_device(UCLASS_GPIO, 1, &gpio)); |
| |
| /* |
| * Map a command to button 1 and check that it process_button_cmds() |
| * runs it if called with button 1 pressed. |
| */ |
| ut_assertok(env_set("button_cmd_0_name", "button1")); |
| ut_assertok(env_set("button_cmd_0", "env set " BTN1_PASS_VAR " PASS")); |
| ut_assertok(sandbox_gpio_set_value(gpio, BTN1_GPIO, 1)); |
| /* Sanity check that the button is actually pressed */ |
| ut_asserteq(BUTTON_ON, button_get_state(btn1_dev)); |
| process_button_cmds(); |
| ut_assertnonnull((envstr = env_get(BTN1_PASS_VAR))); |
| ut_asserteq_str(envstr, "PASS"); |
| |
| /* Clear result */ |
| ut_assertok(env_set(BTN1_PASS_VAR, NULL)); |
| |
| /* |
| * Map a command for button 2, press it, check that only the command |
| * for button 1 runs because it comes first and is also pressed. |
| */ |
| ut_assertok(env_set("button_cmd_1_name", "button2")); |
| ut_assertok(env_set("button_cmd_1", "env set " BTN2_PASS_VAR " PASS")); |
| ut_assertok(sandbox_gpio_set_value(gpio, BTN2_GPIO, 1)); |
| ut_asserteq(BUTTON_ON, button_get_state(btn2_dev)); |
| process_button_cmds(); |
| /* Check that button 1 triggered again */ |
| ut_assertnonnull((envstr = env_get(BTN1_PASS_VAR))); |
| ut_asserteq_str(envstr, "PASS"); |
| /* And button 2 didn't */ |
| ut_assertnull(env_get(BTN2_PASS_VAR)); |
| |
| /* Clear result */ |
| ut_assertok(env_set(BTN1_PASS_VAR, NULL)); |
| |
| /* |
| * Release button 1 and check that the command for button 2 is run |
| */ |
| ut_assertok(sandbox_gpio_set_value(gpio, BTN1_GPIO, 0)); |
| process_button_cmds(); |
| ut_assertnull(env_get(BTN1_PASS_VAR)); |
| /* Check that the command for button 2 ran */ |
| ut_assertnonnull((envstr = env_get(BTN2_PASS_VAR))); |
| ut_asserteq_str(envstr, "PASS"); |
| |
| /* Clear result */ |
| ut_assertok(env_set(BTN2_PASS_VAR, NULL)); |
| |
| /* |
| * Unset "button_cmd_0_name" and check that no commands run even |
| * with both buttons pressed. |
| */ |
| ut_assertok(env_set("button_cmd_0_name", NULL)); |
| /* Press button 1 (button 2 is already pressed )*/ |
| ut_assertok(sandbox_gpio_set_value(gpio, BTN1_GPIO, 1)); |
| ut_asserteq(BUTTON_ON, button_get_state(btn1_dev)); |
| process_button_cmds(); |
| ut_assertnull(env_get(BTN1_PASS_VAR)); |
| ut_assertnull(env_get(BTN2_PASS_VAR)); |
| |
| /* |
| * Check that no command is run if the button name is wrong. |
| */ |
| ut_assertok(env_set("button_cmd_0_name", "invalid_button")); |
| process_button_cmds(); |
| ut_assertnull(env_get(BTN1_PASS_VAR)); |
| ut_assertnull(env_get(BTN2_PASS_VAR)); |
| |
| #undef BTN1_PASS_VAR |
| #undef BTN2_PASS_VAR |
| #undef BTN1_GPIO |
| #undef BTN2_GPIO |
| |
| return 0; |
| } |
| DM_TEST(dm_test_button_cmd, UTF_SCAN_PDATA | UTF_SCAN_FDT); |