| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * (C) Copyright 2015 |
| * Texas Instruments Incorporated - http://www.ti.com/ |
| */ |
| |
| #define LOG_CATEGORY UCLASS_REMOTEPROC |
| |
| #define pr_fmt(fmt) "%s: " fmt, __func__ |
| #include <common.h> |
| #include <elf.h> |
| #include <errno.h> |
| #include <log.h> |
| #include <malloc.h> |
| #include <virtio_ring.h> |
| #include <remoteproc.h> |
| #include <asm/io.h> |
| #include <dm/device-internal.h> |
| #include <dm.h> |
| #include <dm/uclass.h> |
| #include <dm/uclass-internal.h> |
| #include <linux/compat.h> |
| |
| DECLARE_GLOBAL_DATA_PTR; |
| |
| struct resource_table { |
| u32 ver; |
| u32 num; |
| u32 reserved[2]; |
| u32 offset[0]; |
| } __packed; |
| |
| typedef int (*handle_resource_t) (struct udevice *, void *, int offset, int avail); |
| |
| static struct resource_table *rsc_table; |
| |
| /** |
| * for_each_remoteproc_device() - iterate through the list of rproc devices |
| * @fn: check function to call per match, if this function returns fail, |
| * iteration is aborted with the resultant error value |
| * @skip_dev: Device to skip calling the callback about. |
| * @data: Data to pass to the callback function |
| * |
| * Return: 0 if none of the callback returned a non 0 result, else returns the |
| * result from the callback function |
| */ |
| static int for_each_remoteproc_device(int (*fn) (struct udevice *dev, |
| struct dm_rproc_uclass_pdata *uc_pdata, |
| const void *data), |
| struct udevice *skip_dev, |
| const void *data) |
| { |
| struct udevice *dev; |
| struct dm_rproc_uclass_pdata *uc_pdata; |
| int ret; |
| |
| for (ret = uclass_find_first_device(UCLASS_REMOTEPROC, &dev); dev; |
| ret = uclass_find_next_device(&dev)) { |
| if (ret || dev == skip_dev) |
| continue; |
| uc_pdata = dev_get_uclass_plat(dev); |
| ret = fn(dev, uc_pdata, data); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * _rproc_name_is_unique() - iteration helper to check if rproc name is unique |
| * @dev: device that we are checking name for |
| * @uc_pdata: uclass platform data |
| * @data: compare data (this is the name we want to ensure is unique) |
| * |
| * Return: 0 is there is no match(is unique); if there is a match(we dont |
| * have a unique name), return -EINVAL. |
| */ |
| static int _rproc_name_is_unique(struct udevice *dev, |
| struct dm_rproc_uclass_pdata *uc_pdata, |
| const void *data) |
| { |
| const char *check_name = data; |
| |
| /* devices not yet populated with data - so skip them */ |
| if (!uc_pdata->name || !check_name) |
| return 0; |
| |
| /* Return 0 to search further if we dont match */ |
| if (strlen(uc_pdata->name) != strlen(check_name)) |
| return 0; |
| |
| if (!strcmp(uc_pdata->name, check_name)) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| /** |
| * rproc_name_is_unique() - Check if the rproc name is unique |
| * @check_dev: Device we are attempting to ensure is unique |
| * @check_name: Name we are trying to ensure is unique. |
| * |
| * Return: true if we have a unique name, false if name is not unique. |
| */ |
| static bool rproc_name_is_unique(struct udevice *check_dev, |
| const char *check_name) |
| { |
| int ret; |
| |
| ret = for_each_remoteproc_device(_rproc_name_is_unique, |
| check_dev, check_name); |
| return ret ? false : true; |
| } |
| |
| /** |
| * rproc_pre_probe() - Pre probe accessor for the uclass |
| * @dev: device for which we are preprobing |
| * |
| * Parses and fills up the uclass pdata for use as needed by core and |
| * remote proc drivers. |
| * |
| * Return: 0 if all wernt ok, else appropriate error value. |
| */ |
| static int rproc_pre_probe(struct udevice *dev) |
| { |
| struct dm_rproc_uclass_pdata *uc_pdata; |
| const struct dm_rproc_ops *ops; |
| |
| uc_pdata = dev_get_uclass_plat(dev); |
| |
| /* See if we need to populate via fdt */ |
| |
| if (!dev_get_plat(dev)) { |
| #if CONFIG_IS_ENABLED(OF_CONTROL) |
| bool tmp; |
| debug("'%s': using fdt\n", dev->name); |
| uc_pdata->name = dev_read_string(dev, "remoteproc-name"); |
| |
| /* Default is internal memory mapped */ |
| uc_pdata->mem_type = RPROC_INTERNAL_MEMORY_MAPPED; |
| tmp = dev_read_bool(dev, "remoteproc-internal-memory-mapped"); |
| if (tmp) |
| uc_pdata->mem_type = RPROC_INTERNAL_MEMORY_MAPPED; |
| #else |
| /* Nothing much we can do about this, can we? */ |
| return -EINVAL; |
| #endif |
| |
| } else { |
| struct dm_rproc_uclass_pdata *pdata = dev_get_plat(dev); |
| |
| debug("'%s': using legacy data\n", dev->name); |
| if (pdata->name) |
| uc_pdata->name = pdata->name; |
| uc_pdata->mem_type = pdata->mem_type; |
| uc_pdata->driver_plat_data = pdata->driver_plat_data; |
| } |
| |
| /* Else try using device Name */ |
| if (!uc_pdata->name) |
| uc_pdata->name = dev->name; |
| if (!uc_pdata->name) { |
| debug("Unnamed device!"); |
| return -EINVAL; |
| } |
| |
| if (!rproc_name_is_unique(dev, uc_pdata->name)) { |
| debug("%s duplicate name '%s'\n", dev->name, uc_pdata->name); |
| return -EINVAL; |
| } |
| |
| ops = rproc_get_ops(dev); |
| if (!ops) { |
| debug("%s driver has no ops?\n", dev->name); |
| return -EINVAL; |
| } |
| |
| if (!ops->load || !ops->start) { |
| debug("%s driver has missing mandatory ops?\n", dev->name); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * rproc_post_probe() - post probe accessor for the uclass |
| * @dev: deivce we finished probing |
| * |
| * initiate init function after the probe is completed. This allows |
| * the remote processor drivers to split up the initializations between |
| * probe and init as needed. |
| * |
| * Return: if the remote proc driver has a init routine, invokes it and |
| * hands over the return value. overall, 0 if all went well, else appropriate |
| * error value. |
| */ |
| static int rproc_post_probe(struct udevice *dev) |
| { |
| const struct dm_rproc_ops *ops; |
| |
| ops = rproc_get_ops(dev); |
| if (!ops) { |
| debug("%s driver has no ops?\n", dev->name); |
| return -EINVAL; |
| } |
| |
| if (ops->init) |
| return ops->init(dev); |
| |
| return 0; |
| } |
| |
| /** |
| * rproc_add_res() - After parsing the resource table add the mappings |
| * @dev: device we finished probing |
| * @mapping: rproc_mem_entry for the resource |
| * |
| * Return: if the remote proc driver has a add_res routine, invokes it and |
| * hands over the return value. overall, 0 if all went well, else appropriate |
| * error value. |
| */ |
| static int rproc_add_res(struct udevice *dev, struct rproc_mem_entry *mapping) |
| { |
| const struct dm_rproc_ops *ops = rproc_get_ops(dev); |
| |
| if (!ops->add_res) |
| return -ENOSYS; |
| |
| return ops->add_res(dev, mapping); |
| } |
| |
| /** |
| * rproc_alloc_mem() - After parsing the resource table allocat mem |
| * @dev: device we finished probing |
| * @len: rproc_mem_entry for the resource |
| * @align: alignment for the resource |
| * |
| * Return: if the remote proc driver has a add_res routine, invokes it and |
| * hands over the return value. overall, 0 if all went well, else appropriate |
| * error value. |
| */ |
| static void *rproc_alloc_mem(struct udevice *dev, unsigned long len, |
| unsigned long align) |
| { |
| const struct dm_rproc_ops *ops; |
| |
| ops = rproc_get_ops(dev); |
| if (!ops) { |
| debug("%s driver has no ops?\n", dev->name); |
| return NULL; |
| } |
| |
| if (ops->alloc_mem) |
| return ops->alloc_mem(dev, len, align); |
| |
| return NULL; |
| } |
| |
| /** |
| * rproc_config_pagetable() - Configure page table for remote processor |
| * @dev: device we finished probing |
| * @virt: Virtual address of the resource |
| * @phys: Physical address the resource |
| * @len: length the resource |
| * |
| * Return: if the remote proc driver has a add_res routine, invokes it and |
| * hands over the return value. overall, 0 if all went well, else appropriate |
| * error value. |
| */ |
| static int rproc_config_pagetable(struct udevice *dev, unsigned int virt, |
| unsigned int phys, unsigned int len) |
| { |
| const struct dm_rproc_ops *ops; |
| |
| ops = rproc_get_ops(dev); |
| if (!ops) { |
| debug("%s driver has no ops?\n", dev->name); |
| return -EINVAL; |
| } |
| |
| if (ops->config_pagetable) |
| return ops->config_pagetable(dev, virt, phys, len); |
| |
| return 0; |
| } |
| |
| UCLASS_DRIVER(rproc) = { |
| .id = UCLASS_REMOTEPROC, |
| .name = "remoteproc", |
| .flags = DM_UC_FLAG_SEQ_ALIAS, |
| .pre_probe = rproc_pre_probe, |
| .post_probe = rproc_post_probe, |
| .per_device_plat_auto = sizeof(struct dm_rproc_uclass_pdata), |
| }; |
| |
| /* Remoteproc subsystem access functions */ |
| /** |
| * _rproc_probe_dev() - iteration helper to probe a rproc device |
| * @dev: device to probe |
| * @uc_pdata: uclass data allocated for the device |
| * @data: unused |
| * |
| * Return: 0 if all ok, else appropriate error value. |
| */ |
| static int _rproc_probe_dev(struct udevice *dev, |
| struct dm_rproc_uclass_pdata *uc_pdata, |
| const void *data) |
| { |
| int ret; |
| |
| ret = device_probe(dev); |
| |
| if (ret) |
| debug("%s: Failed to initialize - %d\n", dev->name, ret); |
| return ret; |
| } |
| |
| /** |
| * _rproc_dev_is_probed() - check if the device has been probed |
| * @dev: device to check |
| * @uc_pdata: unused |
| * @data: unused |
| * |
| * Return: -EAGAIN if not probed else return 0 |
| */ |
| static int _rproc_dev_is_probed(struct udevice *dev, |
| struct dm_rproc_uclass_pdata *uc_pdata, |
| const void *data) |
| { |
| if (dev_get_flags(dev) & DM_FLAG_ACTIVATED) |
| return 0; |
| |
| return -EAGAIN; |
| } |
| |
| bool rproc_is_initialized(void) |
| { |
| int ret = for_each_remoteproc_device(_rproc_dev_is_probed, NULL, NULL); |
| return ret ? false : true; |
| } |
| |
| int rproc_init(void) |
| { |
| int ret; |
| |
| if (rproc_is_initialized()) { |
| debug("Already initialized\n"); |
| return -EINVAL; |
| } |
| |
| ret = for_each_remoteproc_device(_rproc_probe_dev, NULL, NULL); |
| return ret; |
| } |
| |
| int rproc_dev_init(int id) |
| { |
| struct udevice *dev = NULL; |
| int ret; |
| |
| ret = uclass_get_device_by_seq(UCLASS_REMOTEPROC, id, &dev); |
| if (ret) { |
| debug("Unknown remote processor id '%d' requested(%d)\n", |
| id, ret); |
| return ret; |
| } |
| |
| ret = device_probe(dev); |
| if (ret) |
| debug("%s: Failed to initialize - %d\n", dev->name, ret); |
| |
| return ret; |
| } |
| |
| int rproc_load(int id, ulong addr, ulong size) |
| { |
| struct udevice *dev = NULL; |
| struct dm_rproc_uclass_pdata *uc_pdata; |
| const struct dm_rproc_ops *ops; |
| int ret; |
| |
| ret = uclass_get_device_by_seq(UCLASS_REMOTEPROC, id, &dev); |
| if (ret) { |
| debug("Unknown remote processor id '%d' requested(%d)\n", |
| id, ret); |
| return ret; |
| } |
| |
| uc_pdata = dev_get_uclass_plat(dev); |
| |
| ops = rproc_get_ops(dev); |
| if (!ops) { |
| debug("%s driver has no ops?\n", dev->name); |
| return -EINVAL; |
| } |
| |
| debug("Loading to '%s' from address 0x%08lX size of %lu bytes\n", |
| uc_pdata->name, addr, size); |
| if (ops->load) |
| return ops->load(dev, addr, size); |
| |
| debug("%s: data corruption?? mandatory function is missing!\n", |
| dev->name); |
| |
| return -EINVAL; |
| }; |
| |
| /* |
| * Completely internal helper enums.. |
| * Keeping this isolated helps this code evolve independent of other |
| * parts.. |
| */ |
| enum rproc_ops { |
| RPROC_START, |
| RPROC_STOP, |
| RPROC_RESET, |
| RPROC_PING, |
| RPROC_RUNNING, |
| }; |
| |
| /** |
| * _rproc_ops_wrapper() - wrapper for invoking remote proc driver callback |
| * @id: id of the remote processor |
| * @op: one of rproc_ops that indicate what operation to invoke |
| * |
| * Most of the checks and verification for remoteproc operations are more |
| * or less same for almost all operations. This allows us to put a wrapper |
| * and use the common checks to allow the driver to function appropriately. |
| * |
| * Return: 0 if all ok, else appropriate error value. |
| */ |
| static int _rproc_ops_wrapper(int id, enum rproc_ops op) |
| { |
| struct udevice *dev = NULL; |
| struct dm_rproc_uclass_pdata *uc_pdata; |
| const struct dm_rproc_ops *ops; |
| int (*fn)(struct udevice *dev); |
| bool mandatory = false; |
| char *op_str; |
| int ret; |
| |
| ret = uclass_get_device_by_seq(UCLASS_REMOTEPROC, id, &dev); |
| if (ret) { |
| debug("Unknown remote processor id '%d' requested(%d)\n", |
| id, ret); |
| return ret; |
| } |
| |
| uc_pdata = dev_get_uclass_plat(dev); |
| |
| ops = rproc_get_ops(dev); |
| if (!ops) { |
| debug("%s driver has no ops?\n", dev->name); |
| return -EINVAL; |
| } |
| switch (op) { |
| case RPROC_START: |
| fn = ops->start; |
| mandatory = true; |
| op_str = "Starting"; |
| break; |
| case RPROC_STOP: |
| fn = ops->stop; |
| op_str = "Stopping"; |
| break; |
| case RPROC_RESET: |
| fn = ops->reset; |
| op_str = "Resetting"; |
| break; |
| case RPROC_RUNNING: |
| fn = ops->is_running; |
| op_str = "Checking if running:"; |
| break; |
| case RPROC_PING: |
| fn = ops->ping; |
| op_str = "Pinging"; |
| break; |
| default: |
| debug("what is '%d' operation??\n", op); |
| return -EINVAL; |
| } |
| |
| debug("%s %s...\n", op_str, uc_pdata->name); |
| if (fn) |
| return fn(dev); |
| |
| if (mandatory) |
| debug("%s: data corruption?? mandatory function is missing!\n", |
| dev->name); |
| |
| return -ENOSYS; |
| } |
| |
| int rproc_start(int id) |
| { |
| return _rproc_ops_wrapper(id, RPROC_START); |
| }; |
| |
| int rproc_stop(int id) |
| { |
| return _rproc_ops_wrapper(id, RPROC_STOP); |
| }; |
| |
| int rproc_reset(int id) |
| { |
| return _rproc_ops_wrapper(id, RPROC_RESET); |
| }; |
| |
| int rproc_ping(int id) |
| { |
| return _rproc_ops_wrapper(id, RPROC_PING); |
| }; |
| |
| int rproc_is_running(int id) |
| { |
| return _rproc_ops_wrapper(id, RPROC_RUNNING); |
| }; |
| |
| |
| static int handle_trace(struct udevice *dev, struct fw_rsc_trace *rsc, |
| int offset, int avail) |
| { |
| if (sizeof(*rsc) > avail) { |
| debug("trace rsc is truncated\n"); |
| return -EINVAL; |
| } |
| |
| /* |
| * make sure reserved bytes are zeroes |
| */ |
| if (rsc->reserved) { |
| debug("trace rsc has non zero reserved bytes\n"); |
| return -EINVAL; |
| } |
| |
| debug("trace rsc: da 0x%x, len 0x%x\n", rsc->da, rsc->len); |
| |
| return 0; |
| } |
| |
| static int handle_devmem(struct udevice *dev, struct fw_rsc_devmem *rsc, |
| int offset, int avail) |
| { |
| struct rproc_mem_entry *mapping; |
| |
| if (sizeof(*rsc) > avail) { |
| debug("devmem rsc is truncated\n"); |
| return -EINVAL; |
| } |
| |
| /* |
| * make sure reserved bytes are zeroes |
| */ |
| if (rsc->reserved) { |
| debug("devmem rsc has non zero reserved bytes\n"); |
| return -EINVAL; |
| } |
| |
| debug("devmem rsc: pa 0x%x, da 0x%x, len 0x%x\n", |
| rsc->pa, rsc->da, rsc->len); |
| |
| rproc_config_pagetable(dev, rsc->da, rsc->pa, rsc->len); |
| |
| mapping = kzalloc(sizeof(*mapping), GFP_KERNEL); |
| if (!mapping) |
| return -ENOMEM; |
| |
| /* |
| * We'll need this info later when we'll want to unmap everything |
| * (e.g. on shutdown). |
| * |
| * We can't trust the remote processor not to change the resource |
| * table, so we must maintain this info independently. |
| */ |
| mapping->dma = rsc->pa; |
| mapping->da = rsc->da; |
| mapping->len = rsc->len; |
| rproc_add_res(dev, mapping); |
| |
| debug("mapped devmem pa 0x%x, da 0x%x, len 0x%x\n", |
| rsc->pa, rsc->da, rsc->len); |
| |
| return 0; |
| } |
| |
| static int handle_carveout(struct udevice *dev, struct fw_rsc_carveout *rsc, |
| int offset, int avail) |
| { |
| struct rproc_mem_entry *mapping; |
| |
| if (sizeof(*rsc) > avail) { |
| debug("carveout rsc is truncated\n"); |
| return -EINVAL; |
| } |
| |
| /* |
| * make sure reserved bytes are zeroes |
| */ |
| if (rsc->reserved) { |
| debug("carveout rsc has non zero reserved bytes\n"); |
| return -EINVAL; |
| } |
| |
| debug("carveout rsc: da %x, pa %x, len %x, flags %x\n", |
| rsc->da, rsc->pa, rsc->len, rsc->flags); |
| |
| rsc->pa = (uintptr_t)rproc_alloc_mem(dev, rsc->len, 8); |
| if (!rsc->pa) { |
| debug |
| ("failed to allocate carveout rsc: da %x, pa %x, len %x, flags %x\n", |
| rsc->da, rsc->pa, rsc->len, rsc->flags); |
| return -ENOMEM; |
| } |
| rproc_config_pagetable(dev, rsc->da, rsc->pa, rsc->len); |
| |
| /* |
| * Ok, this is non-standard. |
| * |
| * Sometimes we can't rely on the generic iommu-based DMA API |
| * to dynamically allocate the device address and then set the IOMMU |
| * tables accordingly, because some remote processors might |
| * _require_ us to use hard coded device addresses that their |
| * firmware was compiled with. |
| * |
| * In this case, we must use the IOMMU API directly and map |
| * the memory to the device address as expected by the remote |
| * processor. |
| * |
| * Obviously such remote processor devices should not be configured |
| * to use the iommu-based DMA API: we expect 'dma' to contain the |
| * physical address in this case. |
| */ |
| mapping = kzalloc(sizeof(*mapping), GFP_KERNEL); |
| if (!mapping) |
| return -ENOMEM; |
| |
| /* |
| * We'll need this info later when we'll want to unmap |
| * everything (e.g. on shutdown). |
| * |
| * We can't trust the remote processor not to change the |
| * resource table, so we must maintain this info independently. |
| */ |
| mapping->dma = rsc->pa; |
| mapping->da = rsc->da; |
| mapping->len = rsc->len; |
| rproc_add_res(dev, mapping); |
| |
| debug("carveout mapped 0x%x to 0x%x\n", rsc->da, rsc->pa); |
| |
| return 0; |
| } |
| |
| #define RPROC_PAGE_SHIFT 12 |
| #define RPROC_PAGE_SIZE BIT(RPROC_PAGE_SHIFT) |
| #define RPROC_PAGE_ALIGN(x) (((x) + (RPROC_PAGE_SIZE - 1)) & ~(RPROC_PAGE_SIZE - 1)) |
| |
| static int alloc_vring(struct udevice *dev, struct fw_rsc_vdev *rsc, int i) |
| { |
| struct fw_rsc_vdev_vring *vring = &rsc->vring[i]; |
| int size; |
| int order; |
| void *pa; |
| |
| debug("vdev rsc: vring%d: da %x, qsz %d, align %d\n", |
| i, vring->da, vring->num, vring->align); |
| |
| /* |
| * verify queue size and vring alignment are sane |
| */ |
| if (!vring->num || !vring->align) { |
| debug("invalid qsz (%d) or alignment (%d)\n", vring->num, |
| vring->align); |
| return -EINVAL; |
| } |
| |
| /* |
| * actual size of vring (in bytes) |
| */ |
| size = RPROC_PAGE_ALIGN(vring_size(vring->num, vring->align)); |
| order = vring->align >> RPROC_PAGE_SHIFT; |
| |
| pa = rproc_alloc_mem(dev, size, order); |
| if (!pa) { |
| debug("failed to allocate vring rsc\n"); |
| return -ENOMEM; |
| } |
| debug("alloc_mem(%#x, %d): %p\n", size, order, pa); |
| vring->da = (uintptr_t)pa; |
| |
| return !pa; |
| } |
| |
| static int handle_vdev(struct udevice *dev, struct fw_rsc_vdev *rsc, |
| int offset, int avail) |
| { |
| int i, ret; |
| void *pa; |
| |
| /* |
| * make sure resource isn't truncated |
| */ |
| if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring) |
| + rsc->config_len > avail) { |
| debug("vdev rsc is truncated\n"); |
| return -EINVAL; |
| } |
| |
| /* |
| * make sure reserved bytes are zeroes |
| */ |
| if (rsc->reserved[0] || rsc->reserved[1]) { |
| debug("vdev rsc has non zero reserved bytes\n"); |
| return -EINVAL; |
| } |
| |
| debug("vdev rsc: id %d, dfeatures %x, cfg len %d, %d vrings\n", |
| rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings); |
| |
| /* |
| * we currently support only two vrings per rvdev |
| */ |
| if (rsc->num_of_vrings > 2) { |
| debug("too many vrings: %d\n", rsc->num_of_vrings); |
| return -EINVAL; |
| } |
| |
| /* |
| * allocate the vrings |
| */ |
| for (i = 0; i < rsc->num_of_vrings; i++) { |
| ret = alloc_vring(dev, rsc, i); |
| if (ret) |
| goto alloc_error; |
| } |
| |
| pa = rproc_alloc_mem(dev, RPMSG_TOTAL_BUF_SPACE, 6); |
| if (!pa) { |
| debug("failed to allocate vdev rsc\n"); |
| return -ENOMEM; |
| } |
| debug("vring buffer alloc_mem(%#x, 6): %p\n", RPMSG_TOTAL_BUF_SPACE, |
| pa); |
| |
| return 0; |
| |
| alloc_error: |
| return ret; |
| } |
| |
| /* |
| * A lookup table for resource handlers. The indices are defined in |
| * enum fw_resource_type. |
| */ |
| static handle_resource_t loading_handlers[RSC_LAST] = { |
| [RSC_CARVEOUT] = (handle_resource_t)handle_carveout, |
| [RSC_DEVMEM] = (handle_resource_t)handle_devmem, |
| [RSC_TRACE] = (handle_resource_t)handle_trace, |
| [RSC_VDEV] = (handle_resource_t)handle_vdev, |
| }; |
| |
| /* |
| * handle firmware resource entries before booting the remote processor |
| */ |
| static int handle_resources(struct udevice *dev, int len, |
| handle_resource_t handlers[RSC_LAST]) |
| { |
| handle_resource_t handler; |
| int ret = 0, i; |
| |
| for (i = 0; i < rsc_table->num; i++) { |
| int offset = rsc_table->offset[i]; |
| struct fw_rsc_hdr *hdr = (void *)rsc_table + offset; |
| int avail = len - offset - sizeof(*hdr); |
| void *rsc = (void *)hdr + sizeof(*hdr); |
| |
| /* |
| * make sure table isn't truncated |
| */ |
| if (avail < 0) { |
| debug("rsc table is truncated\n"); |
| return -EINVAL; |
| } |
| |
| debug("rsc: type %d\n", hdr->type); |
| |
| if (hdr->type >= RSC_LAST) { |
| debug("unsupported resource %d\n", hdr->type); |
| continue; |
| } |
| |
| handler = handlers[hdr->type]; |
| if (!handler) |
| continue; |
| |
| ret = handler(dev, rsc, offset + sizeof(*hdr), avail); |
| if (ret) |
| break; |
| } |
| |
| return ret; |
| } |
| |
| static int |
| handle_intmem_to_l3_mapping(struct udevice *dev, |
| struct rproc_intmem_to_l3_mapping *l3_mapping) |
| { |
| u32 i = 0; |
| |
| for (i = 0; i < l3_mapping->num_entries; i++) { |
| struct l3_map *curr_map = &l3_mapping->mappings[i]; |
| struct rproc_mem_entry *mapping; |
| |
| mapping = kzalloc(sizeof(*mapping), GFP_KERNEL); |
| if (!mapping) |
| return -ENOMEM; |
| |
| mapping->dma = curr_map->l3_addr; |
| mapping->da = curr_map->priv_addr; |
| mapping->len = curr_map->len; |
| rproc_add_res(dev, mapping); |
| } |
| |
| return 0; |
| } |
| |
| static Elf32_Shdr *rproc_find_table(unsigned int addr) |
| { |
| Elf32_Ehdr *ehdr; /* Elf header structure pointer */ |
| Elf32_Shdr *shdr; /* Section header structure pointer */ |
| Elf32_Shdr sectionheader; |
| int i; |
| u8 *elf_data; |
| char *name_table; |
| struct resource_table *ptable; |
| |
| ehdr = (Elf32_Ehdr *)(uintptr_t)addr; |
| elf_data = (u8 *)ehdr; |
| shdr = (Elf32_Shdr *)(elf_data + ehdr->e_shoff); |
| memcpy(§ionheader, &shdr[ehdr->e_shstrndx], sizeof(sectionheader)); |
| name_table = (char *)(elf_data + sectionheader.sh_offset); |
| |
| for (i = 0; i < ehdr->e_shnum; i++, shdr++) { |
| memcpy(§ionheader, shdr, sizeof(sectionheader)); |
| u32 size = sectionheader.sh_size; |
| u32 offset = sectionheader.sh_offset; |
| |
| if (strcmp |
| (name_table + sectionheader.sh_name, ".resource_table")) |
| continue; |
| |
| ptable = (struct resource_table *)(elf_data + offset); |
| |
| /* |
| * make sure table has at least the header |
| */ |
| if (sizeof(struct resource_table) > size) { |
| debug("header-less resource table\n"); |
| return NULL; |
| } |
| |
| /* |
| * we don't support any version beyond the first |
| */ |
| if (ptable->ver != 1) { |
| debug("unsupported fw ver: %d\n", ptable->ver); |
| return NULL; |
| } |
| |
| /* |
| * make sure reserved bytes are zeroes |
| */ |
| if (ptable->reserved[0] || ptable->reserved[1]) { |
| debug("non zero reserved bytes\n"); |
| return NULL; |
| } |
| |
| /* |
| * make sure the offsets array isn't truncated |
| */ |
| if (ptable->num * sizeof(ptable->offset[0]) + |
| sizeof(struct resource_table) > size) { |
| debug("resource table incomplete\n"); |
| return NULL; |
| } |
| |
| return shdr; |
| } |
| |
| return NULL; |
| } |
| |
| struct resource_table *rproc_find_resource_table(struct udevice *dev, |
| unsigned int addr, |
| int *tablesz) |
| { |
| Elf32_Shdr *shdr; |
| Elf32_Shdr sectionheader; |
| struct resource_table *ptable; |
| u8 *elf_data = (u8 *)(uintptr_t)addr; |
| |
| shdr = rproc_find_table(addr); |
| if (!shdr) { |
| debug("%s: failed to get resource section header\n", __func__); |
| return NULL; |
| } |
| |
| memcpy(§ionheader, shdr, sizeof(sectionheader)); |
| ptable = (struct resource_table *)(elf_data + sectionheader.sh_offset); |
| if (tablesz) |
| *tablesz = sectionheader.sh_size; |
| |
| return ptable; |
| } |
| |
| unsigned long rproc_parse_resource_table(struct udevice *dev, struct rproc *cfg) |
| { |
| struct resource_table *ptable = NULL; |
| int tablesz; |
| int ret; |
| unsigned long addr; |
| |
| addr = cfg->load_addr; |
| |
| ptable = rproc_find_resource_table(dev, addr, &tablesz); |
| if (!ptable) { |
| debug("%s : failed to find resource table\n", __func__); |
| return 0; |
| } |
| |
| debug("%s : found resource table\n", __func__); |
| rsc_table = kzalloc(tablesz, GFP_KERNEL); |
| if (!rsc_table) { |
| debug("resource table alloc failed!\n"); |
| return 0; |
| } |
| |
| /* |
| * Copy the resource table into a local buffer before handling the |
| * resource table. |
| */ |
| memcpy(rsc_table, ptable, tablesz); |
| if (cfg->intmem_to_l3_mapping) |
| handle_intmem_to_l3_mapping(dev, cfg->intmem_to_l3_mapping); |
| ret = handle_resources(dev, tablesz, loading_handlers); |
| if (ret) { |
| debug("handle_resources failed: %d\n", ret); |
| return 0; |
| } |
| |
| /* |
| * Instead of trying to mimic the kernel flow of copying the |
| * processed resource table into its post ELF load location in DDR |
| * copying it into its original location. |
| */ |
| memcpy(ptable, rsc_table, tablesz); |
| free(rsc_table); |
| rsc_table = NULL; |
| |
| return 1; |
| } |