blob: 8aff22386458d85a7a88b074a84e7938a6fe6066 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Renesas RCar Gen3 RPC QSPI driver
*
* Copyright (C) 2018 Marek Vasut <marek.vasut@gmail.com>
*/
#include <common.h>
#include <asm/global_data.h>
#include <asm/io.h>
#include <clk.h>
#include <dm.h>
#include <dm/of_access.h>
#include <dt-structs.h>
#include <errno.h>
#include <linux/bitops.h>
#include <linux/bug.h>
#include <linux/errno.h>
#include <spi.h>
#include <spi-mem.h>
#include <wait_bit.h>
#define RPC_CMNCR 0x0000 /* R/W */
#define RPC_CMNCR_MD BIT(31)
#define RPC_CMNCR_SFDE BIT(24)
#define RPC_CMNCR_MOIIO3(val) (((val) & 0x3) << 22)
#define RPC_CMNCR_MOIIO2(val) (((val) & 0x3) << 20)
#define RPC_CMNCR_MOIIO1(val) (((val) & 0x3) << 18)
#define RPC_CMNCR_MOIIO0(val) (((val) & 0x3) << 16)
#define RPC_CMNCR_MOIIO_HIZ (RPC_CMNCR_MOIIO0(3) | RPC_CMNCR_MOIIO1(3) | \
RPC_CMNCR_MOIIO2(3) | RPC_CMNCR_MOIIO3(3))
#define RPC_CMNCR_IO3FV(val) (((val) & 0x3) << 14)
#define RPC_CMNCR_IO2FV(val) (((val) & 0x3) << 12)
#define RPC_CMNCR_IO0FV(val) (((val) & 0x3) << 8)
#define RPC_CMNCR_IOFV_HIZ (RPC_CMNCR_IO0FV(3) | RPC_CMNCR_IO2FV(3) | \
RPC_CMNCR_IO3FV(3))
#define RPC_CMNCR_CPHAT BIT(6)
#define RPC_CMNCR_CPHAR BIT(5)
#define RPC_CMNCR_SSLP BIT(4)
#define RPC_CMNCR_CPOL BIT(3)
#define RPC_CMNCR_BSZ(val) (((val) & 0x3) << 0)
#define RPC_SSLDR 0x0004 /* R/W */
#define RPC_SSLDR_SPNDL(d) (((d) & 0x7) << 16)
#define RPC_SSLDR_SLNDL(d) (((d) & 0x7) << 8)
#define RPC_SSLDR_SCKDL(d) (((d) & 0x7) << 0)
#define RPC_DRCR 0x000C /* R/W */
#define RPC_DRCR_SSLN BIT(24)
#define RPC_DRCR_RBURST(v) (((v) & 0x1F) << 16)
#define RPC_DRCR_RCF BIT(9)
#define RPC_DRCR_RBE BIT(8)
#define RPC_DRCR_SSLE BIT(0)
#define RPC_DRCMR 0x0010 /* R/W */
#define RPC_DRCMR_CMD(c) (((c) & 0xFF) << 16)
#define RPC_DRCMR_OCMD(c) (((c) & 0xFF) << 0)
#define RPC_DREAR 0x0014 /* R/W */
#define RPC_DREAR_EAV(v) (((v) & 0xFF) << 16)
#define RPC_DREAR_EAC(v) (((v) & 0x7) << 0)
#define RPC_DROPR 0x0018 /* R/W */
#define RPC_DROPR_OPD3(o) (((o) & 0xFF) << 24)
#define RPC_DROPR_OPD2(o) (((o) & 0xFF) << 16)
#define RPC_DROPR_OPD1(o) (((o) & 0xFF) << 8)
#define RPC_DROPR_OPD0(o) (((o) & 0xFF) << 0)
#define RPC_DRENR 0x001C /* R/W */
#define RPC_DRENR_CDB(o) (u32)((((o) & 0x3) << 30))
#define RPC_DRENR_OCDB(o) (((o) & 0x3) << 28)
#define RPC_DRENR_ADB(o) (((o) & 0x3) << 24)
#define RPC_DRENR_OPDB(o) (((o) & 0x3) << 20)
#define RPC_DRENR_SPIDB(o) (((o) & 0x3) << 16)
#define RPC_DRENR_DME BIT(15)
#define RPC_DRENR_CDE BIT(14)
#define RPC_DRENR_OCDE BIT(12)
#define RPC_DRENR_ADE(v) (((v) & 0xF) << 8)
#define RPC_DRENR_OPDE(v) (((v) & 0xF) << 4)
#define RPC_SMCR 0x0020 /* R/W */
#define RPC_SMCR_SSLKP BIT(8)
#define RPC_SMCR_SPIRE BIT(2)
#define RPC_SMCR_SPIWE BIT(1)
#define RPC_SMCR_SPIE BIT(0)
#define RPC_SMCMR 0x0024 /* R/W */
#define RPC_SMCMR_CMD(c) (((c) & 0xFF) << 16)
#define RPC_SMCMR_OCMD(c) (((c) & 0xFF) << 0)
#define RPC_SMADR 0x0028 /* R/W */
#define RPC_SMOPR 0x002C /* R/W */
#define RPC_SMOPR_OPD0(o) (((o) & 0xFF) << 0)
#define RPC_SMOPR_OPD1(o) (((o) & 0xFF) << 8)
#define RPC_SMOPR_OPD2(o) (((o) & 0xFF) << 16)
#define RPC_SMOPR_OPD3(o) (((o) & 0xFF) << 24)
#define RPC_SMENR 0x0030 /* R/W */
#define RPC_SMENR_CDB(o) (((o) & 0x3) << 30)
#define RPC_SMENR_OCDB(o) (((o) & 0x3) << 28)
#define RPC_SMENR_ADB(o) (((o) & 0x3) << 24)
#define RPC_SMENR_OPDB(o) (((o) & 0x3) << 20)
#define RPC_SMENR_SPIDB(o) (((o) & 0x3) << 16)
#define RPC_SMENR_DME BIT(15)
#define RPC_SMENR_CDE BIT(14)
#define RPC_SMENR_OCDE BIT(12)
#define RPC_SMENR_ADE(v) (((v) & 0xF) << 8)
#define RPC_SMENR_OPDE(v) (((v) & 0xF) << 4)
#define RPC_SMENR_SPIDE(v) (((v) & 0xF) << 0)
#define RPC_SMRDR0 0x0038 /* R */
#define RPC_SMRDR1 0x003C /* R */
#define RPC_SMWDR0 0x0040 /* R/W */
#define RPC_SMWDR1 0x0044 /* R/W */
#define RPC_CMNSR 0x0048 /* R */
#define RPC_CMNSR_SSLF BIT(1)
#define RPC_CMNSR_TEND BIT(0)
#define RPC_DRDMCR 0x0058 /* R/W */
#define RPC_DRDMCR_DMCYC(v) (((v) & 0xF) << 0)
#define RPC_DRDRENR 0x005C /* R/W */
#define RPC_DRDRENR_HYPE (0x5 << 12)
#define RPC_DRDRENR_ADDRE BIT(8)
#define RPC_DRDRENR_OPDRE BIT(4)
#define RPC_DRDRENR_DRDRE BIT(0)
#define RPC_SMDMCR 0x0060 /* R/W */
#define RPC_SMDMCR_DMCYC(v) (((v) & 0xF) << 0)
#define RPC_SMDRENR 0x0064 /* R/W */
#define RPC_SMDRENR_HYPE (0x5 << 12)
#define RPC_SMDRENR_ADDRE BIT(8)
#define RPC_SMDRENR_OPDRE BIT(4)
#define RPC_SMDRENR_SPIDRE BIT(0)
#define RPC_PHYCNT 0x007C /* R/W */
#define RPC_PHYCNT_CAL BIT(31)
#define PRC_PHYCNT_OCTA_AA BIT(22)
#define PRC_PHYCNT_OCTA_SA BIT(23)
#define PRC_PHYCNT_EXDS BIT(21)
#define RPC_PHYCNT_OCT BIT(20)
#define RPC_PHYCNT_STRTIM(v) (((v) & 0x7) << 15)
#define RPC_PHYCNT_STRTIM2(v) ((((v) & 0x7) << 15) | (((v) & 0x8) << 24))
#define RPC_PHYCNT_WBUF2 BIT(4)
#define RPC_PHYCNT_WBUF BIT(2)
#define RPC_PHYCNT_MEM(v) (((v) & 0x3) << 0)
#define RPC_PHYINT 0x0088 /* R/W */
#define RPC_PHYINT_RSTEN BIT(18)
#define RPC_PHYINT_WPEN BIT(17)
#define RPC_PHYINT_INTEN BIT(16)
#define RPC_PHYINT_RST BIT(2)
#define RPC_PHYINT_WP BIT(1)
#define RPC_PHYINT_INT BIT(0)
#define RPC_WBUF 0x8000 /* R/W size=4/8/16/32/64Bytes */
#define RPC_WBUF_SIZE 0x100
DECLARE_GLOBAL_DATA_PTR;
struct rpc_spi_plat {
fdt_addr_t regs;
fdt_addr_t extr;
s32 freq; /* Default clock freq, -1 for none */
};
struct rpc_spi_priv {
fdt_addr_t regs;
fdt_addr_t extr;
struct clk clk;
};
static int rpc_spi_wait_sslf(struct udevice *dev)
{
struct rpc_spi_priv *priv = dev_get_priv(dev->parent);
return wait_for_bit_le32((void *)priv->regs + RPC_CMNSR, RPC_CMNSR_SSLF,
false, 1000, false);
}
static int rpc_spi_wait_tend(struct udevice *dev)
{
struct rpc_spi_priv *priv = dev_get_priv(dev->parent);
return wait_for_bit_le32((void *)priv->regs + RPC_CMNSR, RPC_CMNSR_TEND,
true, 1000, false);
}
static void rpc_spi_flush_read_cache(struct udevice *dev)
{
struct udevice *bus = dev->parent;
struct rpc_spi_priv *priv = dev_get_priv(bus);
/* Flush read cache */
writel(RPC_DRCR_SSLN | RPC_DRCR_RBURST(0x1f) |
RPC_DRCR_RCF | RPC_DRCR_RBE | RPC_DRCR_SSLE,
priv->regs + RPC_DRCR);
readl(priv->regs + RPC_DRCR);
}
static u32 rpc_spi_get_strobe_delay(void)
{
#ifndef CONFIG_RZA1
u32 cpu_type = renesas_get_cpu_type();
/*
* NOTE: RPC_PHYCNT_STRTIM value:
* 0: On H3 ES1.x (not supported in mainline U-Boot)
* 6: On M3 ES1.x
* 7: On other R-Car Gen3
* 15: On R-Car Gen4
*/
if (cpu_type == RENESAS_CPU_TYPE_R8A7796 && renesas_get_cpu_rev_integer() == 1)
return RPC_PHYCNT_STRTIM(6);
else if (cpu_type == RENESAS_CPU_TYPE_R8A779F0 ||
cpu_type == RENESAS_CPU_TYPE_R8A779G0 ||
cpu_type == RENESAS_CPU_TYPE_R8A779H0)
return RPC_PHYCNT_STRTIM2(15);
else
#endif
return RPC_PHYCNT_STRTIM(7);
}
static int rpc_spi_claim_bus(struct udevice *dev, bool manual)
{
struct udevice *bus = dev->parent;
struct rpc_spi_priv *priv = dev_get_priv(bus);
/* NOTE: The 0x260 are undocumented bits, but they must be set. */
writel(RPC_PHYCNT_CAL | rpc_spi_get_strobe_delay() | 0x260,
priv->regs + RPC_PHYCNT);
writel((manual ? RPC_CMNCR_MD : 0) | RPC_CMNCR_SFDE |
RPC_CMNCR_MOIIO_HIZ | RPC_CMNCR_IOFV_HIZ | RPC_CMNCR_BSZ(0),
priv->regs + RPC_CMNCR);
writel(RPC_SSLDR_SPNDL(7) | RPC_SSLDR_SLNDL(7) |
RPC_SSLDR_SCKDL(7), priv->regs + RPC_SSLDR);
rpc_spi_flush_read_cache(dev);
return 0;
}
static int rpc_spi_release_bus(struct udevice *dev)
{
struct udevice *bus = dev->parent;
struct rpc_spi_priv *priv = dev_get_priv(bus);
/* NOTE: The 0x260 are undocumented bits, but they must be set. */
writel(rpc_spi_get_strobe_delay() | 0x260, priv->regs + RPC_PHYCNT);
rpc_spi_flush_read_cache(dev);
return 0;
}
static int rpc_spi_mem_exec_op(struct spi_slave *spi,
const struct spi_mem_op *op)
{
struct udevice *bus = spi->dev->parent;
struct rpc_spi_priv *priv = dev_get_priv(bus);
const void *dout = op->data.buf.out ? op->data.buf.out : NULL;
void *din = op->data.buf.in ? op->data.buf.in : NULL;
int ret = 0;
u32 offset = 0;
u32 smenr, smcr;
smenr = 0;
offset = op->addr.val;
switch (op->data.dir) {
case SPI_MEM_DATA_IN:
rpc_spi_claim_bus(spi->dev, false);
writel(0, priv->regs + RPC_DRCMR);
writel(RPC_DRCMR_CMD(op->cmd.opcode), priv->regs + RPC_DRCMR);
smenr |= RPC_DRENR_CDE;
writel(0, priv->regs + RPC_DREAR);
if (op->addr.nbytes == 4) {
writel(RPC_DREAR_EAV(offset >> 25) | RPC_DREAR_EAC(1),
priv->regs + RPC_DREAR);
smenr |= RPC_DRENR_ADE(0xF);
} else if (op->addr.nbytes == 3) {
smenr |= RPC_DRENR_ADE(0x7);
} else {
smenr |= RPC_DRENR_ADE(0);
}
writel(0, priv->regs + RPC_DRDMCR);
if (op->dummy.nbytes) {
writel(8 * op->dummy.nbytes - 1, priv->regs + RPC_DRDMCR);
smenr |= RPC_DRENR_DME;
}
writel(0, priv->regs + RPC_DROPR);
writel(smenr, priv->regs + RPC_DRENR);
memcpy_fromio(din, (void *)(priv->extr + offset), op->data.nbytes);
rpc_spi_release_bus(spi->dev);
break;
case SPI_MEM_DATA_OUT:
case SPI_MEM_NO_DATA:
rpc_spi_claim_bus(spi->dev, true);
writel(0, priv->regs + RPC_SMCR);
writel(0, priv->regs + RPC_SMCMR);
writel(RPC_SMCMR_CMD(op->cmd.opcode), priv->regs + RPC_SMCMR);
smenr |= RPC_SMENR_CDE;
writel(0, priv->regs + RPC_SMADR);
if (op->addr.nbytes == 4)
smenr |= RPC_SMENR_ADE(0xF);
else if (op->addr.nbytes == 3)
smenr |= RPC_SMENR_ADE(0x7);
else
smenr |= RPC_SMENR_ADE(0);
writel(offset, priv->regs + RPC_SMADR);
writel(0, priv->regs + RPC_SMDMCR);
if (op->dummy.nbytes) {
writel(8 * op->dummy.nbytes - 1, priv->regs + RPC_SMDMCR);
smenr |= RPC_SMENR_DME;
}
writel(0, priv->regs + RPC_SMOPR);
writel(0, priv->regs + RPC_SMDRENR);
if (dout && op->data.nbytes) {
u32 *datout = (u32 *)dout;
u32 wloop = DIV_ROUND_UP(op->data.nbytes, 4);
smenr |= RPC_SMENR_SPIDE(0xF);
while (wloop--) {
smcr = RPC_SMCR_SPIWE | RPC_SMCR_SPIE;
if (wloop >= 1)
smcr |= RPC_SMCR_SSLKP;
writel(smenr, priv->regs + RPC_SMENR);
writel(*datout, priv->regs + RPC_SMWDR0);
writel(smcr, priv->regs + RPC_SMCR);
ret = rpc_spi_wait_tend(spi->dev);
if (ret) {
rpc_spi_release_bus(spi->dev);
return ret;
}
datout++;
smenr &= (~RPC_SMENR_CDE & ~RPC_SMENR_ADE(0xF));
}
ret = rpc_spi_wait_sslf(spi->dev);
} else {
writel(smenr, priv->regs + RPC_SMENR);
writel(RPC_SMCR_SPIE, priv->regs + RPC_SMCR);
ret = rpc_spi_wait_tend(spi->dev);
}
rpc_spi_release_bus(spi->dev);
break;
default:
break;
}
return ret;
}
static int rpc_spi_set_speed(struct udevice *bus, uint speed)
{
/* This is a SPI NOR controller, do nothing. */
return 0;
}
static int rpc_spi_set_mode(struct udevice *bus, uint mode)
{
/* This is a SPI NOR controller, do nothing. */
return 0;
}
static const struct spi_controller_mem_ops rpc_spi_mem_ops = {
.exec_op = rpc_spi_mem_exec_op
};
static int rpc_spi_bind(struct udevice *parent)
{
const void *fdt = gd->fdt_blob;
ofnode node;
int ret, off;
/*
* Check if there are any SPI NOR child nodes, if so, bind as
* this controller will be operated in SPI mode.
*/
dev_for_each_subnode(node, parent) {
off = ofnode_to_offset(node);
ret = fdt_node_check_compatible(fdt, off, "spi-flash");
if (!ret)
return 0;
ret = fdt_node_check_compatible(fdt, off, "jedec,spi-nor");
if (!ret)
return 0;
}
return -ENODEV;
}
static int rpc_spi_probe(struct udevice *dev)
{
struct rpc_spi_plat *plat = dev_get_plat(dev);
struct rpc_spi_priv *priv = dev_get_priv(dev);
priv->regs = plat->regs;
priv->extr = plat->extr;
#if CONFIG_IS_ENABLED(CLK)
clk_enable(&priv->clk);
#endif
return 0;
}
static int rpc_spi_of_to_plat(struct udevice *bus)
{
struct rpc_spi_plat *plat = dev_get_plat(bus);
plat->regs = dev_read_addr_index(bus, 0);
plat->extr = dev_read_addr_index(bus, 1);
#if CONFIG_IS_ENABLED(CLK)
struct rpc_spi_priv *priv = dev_get_priv(bus);
int ret;
ret = clk_get_by_index(bus, 0, &priv->clk);
if (ret < 0) {
printf("%s: Could not get clock for %s: %d\n",
__func__, bus->name, ret);
return ret;
}
#endif
plat->freq = dev_read_u32_default(bus, "spi-max-freq", 50000000);
return 0;
}
static const struct dm_spi_ops rpc_spi_ops = {
.set_speed = rpc_spi_set_speed,
.set_mode = rpc_spi_set_mode,
.mem_ops = &rpc_spi_mem_ops
};
static const struct udevice_id rpc_spi_ids[] = {
{ .compatible = "renesas,r7s72100-rpc-if" },
{ .compatible = "renesas,rcar-gen3-rpc-if" },
{ }
};
U_BOOT_DRIVER(rpc_spi) = {
.name = "rpc_spi",
.id = UCLASS_SPI,
.of_match = rpc_spi_ids,
.ops = &rpc_spi_ops,
.of_to_plat = rpc_spi_of_to_plat,
.plat_auto = sizeof(struct rpc_spi_plat),
.priv_auto = sizeof(struct rpc_spi_priv),
.bind = rpc_spi_bind,
.probe = rpc_spi_probe,
};