| /* |
| * Boot a Marvell SoC, with Xmodem over UART0. |
| * supports Kirkwood, Dove, Avanta, Armada 370, Armada XP, Armada 375, |
| * Armada 38x and Armada 39x. |
| * |
| * (c) 2012 Daniel Stodden <daniel.stodden@gmail.com> |
| * (c) 2021 Pali Rohár <pali@kernel.org> |
| * (c) 2021 Marek Behún <kabel@kernel.org> |
| * |
| * References: |
| * - "88F6180, 88F6190, 88F6192, and 88F6281: Integrated Controller: Functional |
| * Specifications" December 2, 2008. Chapter 24.2 "BootROM Firmware". |
| * https://web.archive.org/web/20130730091033/https://www.marvell.com/embedded-processors/kirkwood/assets/FS_88F6180_9x_6281_OpenSource.pdf |
| * - "88AP510: High-Performance SoC with Integrated CPU, 2D/3D Graphics |
| * Processor, and High-Definition Video Decoder: Functional Specifications" |
| * August 3, 2011. Chapter 5 "BootROM Firmware" |
| * https://web.archive.org/web/20120130172443/https://www.marvell.com/application-processors/armada-500/assets/Armada-510-Functional-Spec.pdf |
| * - "88F6665, 88F6660, 88F6658, 88F6655, 88F6655F, 88F6650, 88F6650F, 88F6610, |
| * and 88F6610F Avanta LP Family Integrated Single/Dual CPU Ecosystem for |
| * Gateway (GW), Home Gateway Unit (HGU), and Single Family Unit (SFU) |
| * Functional Specifications" Doc. No. MV-S108952-00, Rev. A. November 7, 2013. |
| * Chapter 7 "Boot Flow" |
| * CONFIDENTIAL, no public documentation available |
| * - "88F6710, 88F6707, and 88F6W11: ARMADA(R) 370 SoC: Functional Specifications" |
| * May 26, 2014. Chapter 6 "BootROM Firmware". |
| * https://web.archive.org/web/20140617183701/https://www.marvell.com/embedded-processors/armada-300/assets/ARMADA370-FunctionalSpec-datasheet.pdf |
| * - "MV78230, MV78260, and MV78460: ARMADA(R) XP Family of Highly Integrated |
| * Multi-Core ARMv7 Based SoC Processors: Functional Specifications" |
| * May 29, 2014. Chapter 6 "BootROM Firmware". |
| * https://web.archive.org/web/20180829171131/https://www.marvell.com/embedded-processors/armada-xp/assets/ARMADA-XP-Functional-SpecDatasheet.pdf |
| * - "BobCat2 Control and Management Subsystem Functional Specifications" |
| * Doc. No. MV-S109400-00, Rev. A. December 4, 2014. |
| * Chapter 1.6 BootROM Firmware |
| * CONFIDENTIAL, no public documentation available |
| * - "AlleyCat3 and PONCat3 Highly Integrated 1/10 Gigabit Ethernet Switch |
| * Control and Management Subsystem: Functional Specifications" |
| * Doc. No. MV-S109693-00, Rev. A. May 20, 2014. |
| * Chapter 1.6 BootROM Firmware |
| * CONFIDENTIAL, no public documentation available |
| * - "ARMADA(R) 375 Value-Performance Dual Core CPU System on Chip: Functional |
| * Specifications" Doc. No. MV-S109377-00, Rev. A. September 18, 2013. |
| * Chapter 7 "Boot Sequence" |
| * CONFIDENTIAL, no public documentation available |
| * - "88F6810, 88F6811, 88F6821, 88F6W21, 88F6820, and 88F6828: ARMADA(R) 38x |
| * Family High-Performance Single/Dual CPU System on Chip: Functional |
| * Specifications" Doc. No. MV-S109094-00, Rev. C. August 2, 2015. |
| * Chapter 7 "Boot Flow" |
| * CONFIDENTIAL, no public documentation available |
| * - "88F6920, 88F6925 and 88F6928: ARMADA(R) 39x High-Performance Dual Core CPU |
| * System on Chip Functional Specifications" Doc. No. MV-S109896-00, Rev. B. |
| * December 22, 2015. Chapter 7 "Boot Flow" |
| * CONFIDENTIAL, no public documentation available |
| * - "Marvell boot image parser", Marvell U-Boot 2013.01, version 18.06. September 17, 2015. |
| * https://github.com/MarvellEmbeddedProcessors/u-boot-marvell/blob/u-boot-2013.01-armada-18.06/tools/marvell/doimage_mv/hdrparser.c |
| * - "Marvell doimage Tool", Marvell U-Boot 2013.01, version 18.06. August 30, 2015. |
| * https://github.com/MarvellEmbeddedProcessors/u-boot-marvell/blob/u-boot-2013.01-armada-18.06/tools/marvell/doimage_mv/doimage.c |
| * |
| * Storage location / offset of different image types: |
| * - IBR_HDR_SPI_ID (0x5A): |
| * SPI image can be stored at any 2 MB aligned offset in the first 16 MB of |
| * SPI-NOR or parallel-NOR. Despite the type name it really can be stored on |
| * parallel-NOR and cannot be stored on other SPI devices, like SPI-NAND. |
| * So it should have been named NOR image, not SPI image. This image type |
| * supports XIP - Execute In Place directly from NOR memory. Destination |
| * address of the XIP image is set to 0xFFFFFFFF and execute address to the |
| * absolute offset in bytes from the beginning of NOR memory. |
| * |
| * - IBR_HDR_NAND_ID (0x8B): |
| * NAND image can be stored either at any 2 MB aligned offset in the first |
| * 16 MB of SPI-NAND or at any blocksize aligned offset in the first 64 MB |
| * of parallel-NAND. |
| * |
| * - IBR_HDR_PEX_ID (0x9C): |
| * PEX image is used for booting from PCI Express device. Source address |
| * stored in image is ignored by BootROM. It is not the BootROM who parses |
| * or loads data part of the PEX image. BootROM just configures SoC to the |
| * PCIe endpoint mode and let the PCIe device on the other end of the PCIe |
| * link (which must be in Root Complex mode) to load kwbimage into SoC's |
| * memory and tell BootROM physical address. |
| * |
| * - IBR_HDR_UART_ID (0x69): |
| * UART image can be transfered via xmodem protocol over first UART. |
| * Unlike all other image types, header size stored in the image must be |
| * multiply of the 128 bytes (for all other image types it can be any size) |
| * and data part of the image does not have to contain 32-bit checksum |
| * (all other image types must have valid 32-bit checksum in its data part). |
| * And data size stored in the image is ignored. A38x BootROM determinates |
| * size of the data part implicitly by the end of the xmodem transfer. |
| * A38x BootROM has a bug which cause that BootROM loads data part of UART |
| * image into RAM target address increased by one byte when source address |
| * and header size stored in the image header are not same. So UART image |
| * should be constructed in a way that there is no gap between header and |
| * data part. |
| * |
| * - IBR_HDR_I2C_ID (0x4D): |
| * It is unknown for what kind of storage is used this image. It is not |
| * specified in any document from References section. |
| * |
| * - IBR_HDR_SATA_ID (0x78): |
| * SATA image can be stored at sector 1 (after the MBR table), sector 34 |
| * (after the GPT table) or at any next sector which is aligned to 2 MB and |
| * is in the first 16 MB of SATA disk. Note that source address in SATA image |
| * is stored in sector unit and not in bytes like for any other images. |
| * Unfortunately sector size is disk specific, in most cases it is 512 bytes |
| * but there are also Native 4K SATA disks which have 4096 bytes long sectors. |
| * |
| * - IBR_HDR_SDIO_ID (0xAE): |
| * SDIO image can be stored on different medias: |
| * - SD(SC) card |
| * - SDHC/SDXC card |
| * - eMMC HW boot partition |
| * - eMMC user data partition / MMC card |
| * It cannot be stored on SDIO card despite the image name. |
| * |
| * For SD(SC)/SDHC/SDXC cards, image can be stored at the same locations as |
| * the SATA image (sector 1, sector 34 or any 2 MB aligned sector) but within |
| * the first 64 MB. SDHC and SDXC cards have fixed 512 bytes long sector size. |
| * Old SD(SC) cards unfortunately can have also different sector sizes, mostly |
| * 1024 bytes long sector sizes and also can be changed at runtime. |
| * |
| * For MMC-compatible devices, image can be stored at offset 0 or at offset |
| * 2 MB. If MMC device supports HW boot partitions then image must be stored |
| * on the HW partition as is configured in the EXT_CSC register (it can be |
| * either boot or user data). |
| * |
| * Note that source address for SDIO image is stored in byte unit, like for |
| * any other images (except SATA). Marvell Functional Specifications for |
| * A38x and A39x SoCs say that source address is in sector units, but this |
| * is purely incorrect information. A385 BootROM really expects source address |
| * for SDIO images in bytes and also Marvell tools generate SDIO image with |
| * source address in byte units. |
| */ |
| |
| #include "kwbimage.h" |
| #include "mkimage.h" |
| #include "version.h" |
| |
| #include <stdlib.h> |
| #include <stdio.h> |
| #include <string.h> |
| #include <stdarg.h> |
| #include <image.h> |
| #include <libgen.h> |
| #include <fcntl.h> |
| #include <errno.h> |
| #include <unistd.h> |
| #include <stdint.h> |
| #include <time.h> |
| #include <sys/stat.h> |
| #include <pthread.h> |
| |
| #ifdef __linux__ |
| #include "termios_linux.h" |
| #else |
| #include <termios.h> |
| #endif |
| |
| /* |
| * These functions are in <term.h> header file, but this header file conflicts |
| * with "termios_linux.h" header file. So declare these functions manually. |
| */ |
| extern int setupterm(const char *, int, int *); |
| extern char *tigetstr(const char *); |
| |
| /* |
| * Marvell BootROM UART Sensing |
| */ |
| |
| static unsigned char kwboot_msg_boot[] = { |
| 0xBB, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77 |
| }; |
| |
| static unsigned char kwboot_msg_debug[] = { |
| 0xDD, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77 |
| }; |
| |
| /* Defines known to work on Kirkwood */ |
| #define KWBOOT_MSG_RSP_TIMEO 50 /* ms */ |
| |
| /* Defines known to work on Armada XP */ |
| #define KWBOOT_MSG_RSP_TIMEO_AXP 10 /* ms */ |
| |
| /* |
| * Xmodem Transfers |
| */ |
| |
| #define SOH 1 /* sender start of block header */ |
| #define EOT 4 /* sender end of block transfer */ |
| #define ACK 6 /* target block ack */ |
| #define NAK 21 /* target block negative ack */ |
| |
| #define KWBOOT_XM_BLKSZ 128 /* xmodem block size */ |
| |
| struct kwboot_block { |
| uint8_t soh; |
| uint8_t pnum; |
| uint8_t _pnum; |
| uint8_t data[KWBOOT_XM_BLKSZ]; |
| uint8_t csum; |
| } __packed; |
| |
| #define KWBOOT_BLK_RSP_TIMEO 2000 /* ms */ |
| #define KWBOOT_HDR_RSP_TIMEO 10000 /* ms */ |
| |
| /* ARM code to change baudrate */ |
| static unsigned char kwboot_baud_code[] = { |
| /* ; #define UART_BASE 0xd0012000 */ |
| /* ; #define DLL 0x00 */ |
| /* ; #define DLH 0x04 */ |
| /* ; #define LCR 0x0c */ |
| /* ; #define DLAB 0x80 */ |
| /* ; #define LSR 0x14 */ |
| /* ; #define TEMT 0x40 */ |
| /* ; #define DIV_ROUND(a, b) ((a + b/2) / b) */ |
| /* ; */ |
| /* ; u32 set_baudrate(u32 old_b, u32 new_b) { */ |
| /* ; while */ |
| /* ; (!(readl(UART_BASE + LSR) & TEMT)); */ |
| /* ; u32 lcr = readl(UART_BASE + LCR); */ |
| /* ; writel(UART_BASE + LCR, lcr | DLAB); */ |
| /* ; u8 old_dll = readl(UART_BASE + DLL); */ |
| /* ; u8 old_dlh = readl(UART_BASE + DLH); */ |
| /* ; u16 old_dl = old_dll | (old_dlh << 8); */ |
| /* ; u32 clk = old_b * old_dl; */ |
| /* ; u16 new_dl = DIV_ROUND(clk, new_b); */ |
| /* ; u8 new_dll = new_dl & 0xff; */ |
| /* ; u8 new_dlh = (new_dl >> 8) & 0xff; */ |
| /* ; writel(UART_BASE + DLL, new_dll); */ |
| /* ; writel(UART_BASE + DLH, new_dlh); */ |
| /* ; writel(UART_BASE + LCR, lcr & ~DLAB); */ |
| /* ; msleep(5); */ |
| /* ; return 0; */ |
| /* ; } */ |
| |
| /* ; r0 = UART_BASE */ |
| 0x0d, 0x02, 0xa0, 0xe3, /* mov r0, #0xd0000000 */ |
| 0x12, 0x0a, 0x80, 0xe3, /* orr r0, r0, #0x12000 */ |
| |
| /* ; Wait until Transmitter FIFO is Empty */ |
| /* .Lloop_txempty: */ |
| /* ; r1 = UART_BASE[LSR] & TEMT */ |
| 0x14, 0x10, 0x90, 0xe5, /* ldr r1, [r0, #0x14] */ |
| 0x40, 0x00, 0x11, 0xe3, /* tst r1, #0x40 */ |
| 0xfc, 0xff, 0xff, 0x0a, /* beq .Lloop_txempty */ |
| |
| /* ; Set Divisor Latch Access Bit */ |
| /* ; UART_BASE[LCR] |= DLAB */ |
| 0x0c, 0x10, 0x90, 0xe5, /* ldr r1, [r0, #0x0c] */ |
| 0x80, 0x10, 0x81, 0xe3, /* orr r1, r1, #0x80 */ |
| 0x0c, 0x10, 0x80, 0xe5, /* str r1, [r0, #0x0c] */ |
| |
| /* ; Read current Divisor Latch */ |
| /* ; r1 = UART_BASE[DLH]<<8 | UART_BASE[DLL] */ |
| 0x00, 0x10, 0x90, 0xe5, /* ldr r1, [r0, #0x00] */ |
| 0xff, 0x10, 0x01, 0xe2, /* and r1, r1, #0xff */ |
| 0x01, 0x20, 0xa0, 0xe1, /* mov r2, r1 */ |
| 0x04, 0x10, 0x90, 0xe5, /* ldr r1, [r0, #0x04] */ |
| 0xff, 0x10, 0x01, 0xe2, /* and r1, r1, #0xff */ |
| 0x41, 0x14, 0xa0, 0xe1, /* asr r1, r1, #8 */ |
| 0x02, 0x10, 0x81, 0xe1, /* orr r1, r1, r2 */ |
| |
| /* ; Read old baudrate value */ |
| /* ; r2 = old_baudrate */ |
| 0x74, 0x20, 0x9f, 0xe5, /* ldr r2, old_baudrate */ |
| |
| /* ; Calculate base clock */ |
| /* ; r1 = r2 * r1 */ |
| 0x92, 0x01, 0x01, 0xe0, /* mul r1, r2, r1 */ |
| |
| /* ; Read new baudrate value */ |
| /* ; r2 = new_baudrate */ |
| 0x70, 0x20, 0x9f, 0xe5, /* ldr r2, new_baudrate */ |
| |
| /* ; Calculate new Divisor Latch */ |
| /* ; r1 = DIV_ROUND(r1, r2) = */ |
| /* ; = (r1 + r2/2) / r2 */ |
| 0xa2, 0x10, 0x81, 0xe0, /* add r1, r1, r2, lsr #1 */ |
| 0x02, 0x40, 0xa0, 0xe1, /* mov r4, r2 */ |
| 0xa1, 0x00, 0x54, 0xe1, /* cmp r4, r1, lsr #1 */ |
| /* .Lloop_div1: */ |
| 0x84, 0x40, 0xa0, 0x91, /* movls r4, r4, lsl #1 */ |
| 0xa1, 0x00, 0x54, 0xe1, /* cmp r4, r1, lsr #1 */ |
| 0xfc, 0xff, 0xff, 0x9a, /* bls .Lloop_div1 */ |
| 0x00, 0x30, 0xa0, 0xe3, /* mov r3, #0 */ |
| /* .Lloop_div2: */ |
| 0x04, 0x00, 0x51, 0xe1, /* cmp r1, r4 */ |
| 0x04, 0x10, 0x41, 0x20, /* subhs r1, r1, r4 */ |
| 0x03, 0x30, 0xa3, 0xe0, /* adc r3, r3, r3 */ |
| 0xa4, 0x40, 0xa0, 0xe1, /* mov r4, r4, lsr #1 */ |
| 0x02, 0x00, 0x54, 0xe1, /* cmp r4, r2 */ |
| 0xf9, 0xff, 0xff, 0x2a, /* bhs .Lloop_div2 */ |
| 0x03, 0x10, 0xa0, 0xe1, /* mov r1, r3 */ |
| |
| /* ; Set new Divisor Latch Low */ |
| /* ; UART_BASE[DLL] = r1 & 0xff */ |
| 0x01, 0x20, 0xa0, 0xe1, /* mov r2, r1 */ |
| 0xff, 0x20, 0x02, 0xe2, /* and r2, r2, #0xff */ |
| 0x00, 0x20, 0x80, 0xe5, /* str r2, [r0, #0x00] */ |
| |
| /* ; Set new Divisor Latch High */ |
| /* ; UART_BASE[DLH] = r1>>8 & 0xff */ |
| 0x41, 0x24, 0xa0, 0xe1, /* asr r2, r1, #8 */ |
| 0xff, 0x20, 0x02, 0xe2, /* and r2, r2, #0xff */ |
| 0x04, 0x20, 0x80, 0xe5, /* str r2, [r0, #0x04] */ |
| |
| /* ; Clear Divisor Latch Access Bit */ |
| /* ; UART_BASE[LCR] &= ~DLAB */ |
| 0x0c, 0x10, 0x90, 0xe5, /* ldr r1, [r0, #0x0c] */ |
| 0x80, 0x10, 0xc1, 0xe3, /* bic r1, r1, #0x80 */ |
| 0x0c, 0x10, 0x80, 0xe5, /* str r1, [r0, #0x0c] */ |
| |
| /* ; Loop 0x2dc000 (2998272) cycles */ |
| /* ; which is about 5ms on 1200 MHz CPU */ |
| /* ; r1 = 0x2dc000 */ |
| 0xb7, 0x19, 0xa0, 0xe3, /* mov r1, #0x2dc000 */ |
| /* .Lloop_sleep: */ |
| 0x01, 0x10, 0x41, 0xe2, /* sub r1, r1, #1 */ |
| 0x00, 0x00, 0x51, 0xe3, /* cmp r1, #0 */ |
| 0xfc, 0xff, 0xff, 0x1a, /* bne .Lloop_sleep */ |
| |
| /* ; Jump to the end of execution */ |
| 0x01, 0x00, 0x00, 0xea, /* b end */ |
| |
| /* ; Placeholder for old baudrate value */ |
| /* old_baudrate: */ |
| 0x00, 0x00, 0x00, 0x00, /* .word 0 */ |
| |
| /* ; Placeholder for new baudrate value */ |
| /* new_baudrate: */ |
| 0x00, 0x00, 0x00, 0x00, /* .word 0 */ |
| |
| /* end: */ |
| }; |
| |
| /* ARM code from binary header executed by BootROM before changing baudrate */ |
| static unsigned char kwboot_baud_code_binhdr_pre[] = { |
| /* ; #define UART_BASE 0xd0012000 */ |
| /* ; #define THR 0x00 */ |
| /* ; #define LSR 0x14 */ |
| /* ; #define THRE 0x20 */ |
| /* ; */ |
| /* ; void send_preamble(void) { */ |
| /* ; const u8 *str = "$baudratechange"; */ |
| /* ; u8 c; */ |
| /* ; do { */ |
| /* ; while */ |
| /* ; ((readl(UART_BASE + LSR) & THRE)); */ |
| /* ; c = *str++; */ |
| /* ; writel(UART_BASE + THR, c); */ |
| /* ; } while (c); */ |
| /* ; } */ |
| |
| /* ; Preserve registers for BootROM */ |
| 0xfe, 0x5f, 0x2d, 0xe9, /* push { r1 - r12, lr } */ |
| |
| /* ; r0 = UART_BASE */ |
| 0x0d, 0x02, 0xa0, 0xe3, /* mov r0, #0xd0000000 */ |
| 0x12, 0x0a, 0x80, 0xe3, /* orr r0, r0, #0x12000 */ |
| |
| /* ; r2 = address of preamble string */ |
| 0x00, 0x20, 0x8f, 0xe2, /* adr r2, .Lstr_preamble */ |
| |
| /* ; Skip preamble data section */ |
| 0x03, 0x00, 0x00, 0xea, /* b .Lloop_preamble */ |
| |
| /* ; Preamble string */ |
| /* .Lstr_preamble: */ |
| 0x24, 0x62, 0x61, 0x75, /* .asciz "$baudratechange" */ |
| 0x64, 0x72, 0x61, 0x74, |
| 0x65, 0x63, 0x68, 0x61, |
| 0x6e, 0x67, 0x65, 0x00, |
| |
| /* ; Send preamble string over UART */ |
| /* .Lloop_preamble: */ |
| /* */ |
| /* ; Wait until Transmitter Holding is Empty */ |
| /* .Lloop_thre: */ |
| /* ; r1 = UART_BASE[LSR] & THRE */ |
| 0x14, 0x10, 0x90, 0xe5, /* ldr r1, [r0, #0x14] */ |
| 0x20, 0x00, 0x11, 0xe3, /* tst r1, #0x20 */ |
| 0xfc, 0xff, 0xff, 0x0a, /* beq .Lloop_thre */ |
| |
| /* ; Put character into Transmitter FIFO */ |
| /* ; r1 = *r2++ */ |
| 0x01, 0x10, 0xd2, 0xe4, /* ldrb r1, [r2], #1 */ |
| /* ; UART_BASE[THR] = r1 */ |
| 0x00, 0x10, 0x80, 0xe5, /* str r1, [r0, #0x0] */ |
| |
| /* ; Loop until end of preamble string */ |
| 0x00, 0x00, 0x51, 0xe3, /* cmp r1, #0 */ |
| 0xf8, 0xff, 0xff, 0x1a, /* bne .Lloop_preamble */ |
| }; |
| |
| /* ARM code for returning from binary header back to BootROM */ |
| static unsigned char kwboot_baud_code_binhdr_post[] = { |
| /* ; Return 0 - no error */ |
| 0x00, 0x00, 0xa0, 0xe3, /* mov r0, #0 */ |
| 0xfe, 0x9f, 0xbd, 0xe8, /* pop { r1 - r12, pc } */ |
| }; |
| |
| /* ARM code for jumping to the original image exec_addr */ |
| static unsigned char kwboot_baud_code_data_jump[] = { |
| 0x04, 0xf0, 0x1f, 0xe5, /* ldr pc, exec_addr */ |
| /* ; Placeholder for exec_addr */ |
| /* exec_addr: */ |
| 0x00, 0x00, 0x00, 0x00, /* .word 0 */ |
| }; |
| |
| static const char kwb_baud_magic[16] = "$baudratechange"; |
| |
| static int kwboot_verbose; |
| |
| static int msg_rsp_timeo = KWBOOT_MSG_RSP_TIMEO; |
| static int blk_rsp_timeo = KWBOOT_BLK_RSP_TIMEO; |
| |
| static ssize_t |
| kwboot_write(int fd, const char *buf, size_t len) |
| { |
| ssize_t tot = 0; |
| |
| while (tot < len) { |
| ssize_t wr = write(fd, buf + tot, len - tot); |
| |
| if (wr < 0 && errno == EINTR) |
| continue; |
| else if (wr < 0) |
| return wr; |
| |
| tot += wr; |
| } |
| |
| return tot; |
| } |
| |
| static void |
| kwboot_printv(const char *fmt, ...) |
| { |
| va_list ap; |
| |
| if (kwboot_verbose) { |
| va_start(ap, fmt); |
| vprintf(fmt, ap); |
| va_end(ap); |
| fflush(stdout); |
| } |
| } |
| |
| static void |
| __spinner(void) |
| { |
| const char seq[] = { '-', '\\', '|', '/' }; |
| const int div = 8; |
| static int state, bs; |
| |
| if (state % div == 0) { |
| fputc(bs, stdout); |
| fputc(seq[state / div % sizeof(seq)], stdout); |
| fflush(stdout); |
| } |
| |
| bs = '\b'; |
| state++; |
| } |
| |
| static void |
| kwboot_spinner(void) |
| { |
| if (kwboot_verbose) |
| __spinner(); |
| } |
| |
| static void |
| __progress(int pct, char c) |
| { |
| const int width = 70; |
| static const char *nl = ""; |
| static int pos; |
| |
| if (pos % width == 0) |
| printf("%s%3d %% [", nl, pct); |
| |
| fputc(c, stdout); |
| |
| nl = "]\n"; |
| pos = (pos + 1) % width; |
| |
| if (pct == 100) { |
| while (pos && pos++ < width) |
| fputc(' ', stdout); |
| fputs(nl, stdout); |
| nl = ""; |
| pos = 0; |
| } |
| |
| fflush(stdout); |
| |
| } |
| |
| static void |
| kwboot_progress(int _pct, char c) |
| { |
| static int pct; |
| |
| if (_pct != -1) |
| pct = _pct; |
| |
| if (kwboot_verbose) |
| __progress(pct, c); |
| |
| if (pct == 100) |
| pct = 0; |
| } |
| |
| static int |
| kwboot_tty_recv(int fd, void *buf, size_t len, int timeo) |
| { |
| int rc, nfds; |
| fd_set rfds; |
| struct timeval tv; |
| ssize_t n; |
| |
| rc = -1; |
| |
| FD_ZERO(&rfds); |
| FD_SET(fd, &rfds); |
| |
| tv.tv_sec = 0; |
| tv.tv_usec = timeo * 1000; |
| if (tv.tv_usec > 1000000) { |
| tv.tv_sec += tv.tv_usec / 1000000; |
| tv.tv_usec %= 1000000; |
| } |
| |
| do { |
| nfds = select(fd + 1, &rfds, NULL, NULL, &tv); |
| if (nfds < 0 && errno == EINTR) |
| continue; |
| else if (nfds < 0) |
| goto out; |
| else if (!nfds) { |
| errno = ETIMEDOUT; |
| goto out; |
| } |
| |
| n = read(fd, buf, len); |
| if (n < 0 && errno == EINTR) |
| continue; |
| else if (n <= 0) |
| goto out; |
| |
| buf = (char *)buf + n; |
| len -= n; |
| } while (len > 0); |
| |
| rc = 0; |
| out: |
| return rc; |
| } |
| |
| static int |
| kwboot_tty_send(int fd, const void *buf, size_t len, int nodrain) |
| { |
| if (!buf) |
| return 0; |
| |
| if (kwboot_write(fd, buf, len) < 0) |
| return -1; |
| |
| if (nodrain) |
| return 0; |
| |
| return tcdrain(fd); |
| } |
| |
| static int |
| kwboot_tty_send_char(int fd, unsigned char c) |
| { |
| return kwboot_tty_send(fd, &c, 1, 0); |
| } |
| |
| static speed_t |
| kwboot_tty_baudrate_to_speed(int baudrate) |
| { |
| switch (baudrate) { |
| #ifdef B4000000 |
| case 4000000: |
| return B4000000; |
| #endif |
| #ifdef B3500000 |
| case 3500000: |
| return B3500000; |
| #endif |
| #ifdef B3000000 |
| case 3000000: |
| return B3000000; |
| #endif |
| #ifdef B2500000 |
| case 2500000: |
| return B2500000; |
| #endif |
| #ifdef B2000000 |
| case 2000000: |
| return B2000000; |
| #endif |
| #ifdef B1500000 |
| case 1500000: |
| return B1500000; |
| #endif |
| #ifdef B1152000 |
| case 1152000: |
| return B1152000; |
| #endif |
| #ifdef B1000000 |
| case 1000000: |
| return B1000000; |
| #endif |
| #ifdef B921600 |
| case 921600: |
| return B921600; |
| #endif |
| #ifdef B614400 |
| case 614400: |
| return B614400; |
| #endif |
| #ifdef B576000 |
| case 576000: |
| return B576000; |
| #endif |
| #ifdef B500000 |
| case 500000: |
| return B500000; |
| #endif |
| #ifdef B460800 |
| case 460800: |
| return B460800; |
| #endif |
| #ifdef B307200 |
| case 307200: |
| return B307200; |
| #endif |
| #ifdef B230400 |
| case 230400: |
| return B230400; |
| #endif |
| #ifdef B153600 |
| case 153600: |
| return B153600; |
| #endif |
| #ifdef B115200 |
| case 115200: |
| return B115200; |
| #endif |
| #ifdef B76800 |
| case 76800: |
| return B76800; |
| #endif |
| #ifdef B57600 |
| case 57600: |
| return B57600; |
| #endif |
| #ifdef B38400 |
| case 38400: |
| return B38400; |
| #endif |
| #ifdef B19200 |
| case 19200: |
| return B19200; |
| #endif |
| #ifdef B9600 |
| case 9600: |
| return B9600; |
| #endif |
| #ifdef B4800 |
| case 4800: |
| return B4800; |
| #endif |
| #ifdef B2400 |
| case 2400: |
| return B2400; |
| #endif |
| #ifdef B1800 |
| case 1800: |
| return B1800; |
| #endif |
| #ifdef B1200 |
| case 1200: |
| return B1200; |
| #endif |
| #ifdef B600 |
| case 600: |
| return B600; |
| #endif |
| #ifdef B300 |
| case 300: |
| return B300; |
| #endif |
| #ifdef B200 |
| case 200: |
| return B200; |
| #endif |
| #ifdef B150 |
| case 150: |
| return B150; |
| #endif |
| #ifdef B134 |
| case 134: |
| return B134; |
| #endif |
| #ifdef B110 |
| case 110: |
| return B110; |
| #endif |
| #ifdef B75 |
| case 75: |
| return B75; |
| #endif |
| #ifdef B50 |
| case 50: |
| return B50; |
| #endif |
| default: |
| #ifdef BOTHER |
| return BOTHER; |
| #else |
| return B0; |
| #endif |
| } |
| } |
| |
| static int |
| _is_within_tolerance(int value, int reference, int tolerance) |
| { |
| return 100 * value >= reference * (100 - tolerance) && |
| 100 * value <= reference * (100 + tolerance); |
| } |
| |
| static int |
| kwboot_tty_change_baudrate(int fd, int baudrate) |
| { |
| struct termios tio; |
| speed_t speed; |
| int rc; |
| |
| rc = tcgetattr(fd, &tio); |
| if (rc) |
| return rc; |
| |
| speed = kwboot_tty_baudrate_to_speed(baudrate); |
| if (speed == B0) { |
| errno = EINVAL; |
| return -1; |
| } |
| |
| #ifdef BOTHER |
| if (speed == BOTHER) |
| tio.c_ospeed = tio.c_ispeed = baudrate; |
| #endif |
| |
| rc = cfsetospeed(&tio, speed); |
| if (rc) |
| return rc; |
| |
| rc = cfsetispeed(&tio, speed); |
| if (rc) |
| return rc; |
| |
| rc = tcsetattr(fd, TCSANOW, &tio); |
| if (rc) |
| return rc; |
| |
| rc = tcgetattr(fd, &tio); |
| if (rc) |
| return rc; |
| |
| if (cfgetospeed(&tio) != speed || cfgetispeed(&tio) != speed) |
| goto baud_fail; |
| |
| #ifdef BOTHER |
| /* |
| * Check whether set baudrate is within 3% tolerance. |
| * If BOTHER is defined, Linux always fills out c_ospeed / c_ispeed |
| * with real values. |
| */ |
| if (!_is_within_tolerance(tio.c_ospeed, baudrate, 3)) |
| goto baud_fail; |
| |
| if (!_is_within_tolerance(tio.c_ispeed, baudrate, 3)) |
| goto baud_fail; |
| #endif |
| |
| return 0; |
| |
| baud_fail: |
| fprintf(stderr, "Could not set baudrate to requested value\n"); |
| errno = EINVAL; |
| return -1; |
| } |
| |
| static int |
| kwboot_open_tty(const char *path, int baudrate) |
| { |
| int rc, fd, flags; |
| struct termios tio; |
| |
| rc = -1; |
| |
| fd = open(path, O_RDWR | O_NOCTTY | O_NDELAY); |
| if (fd < 0) |
| goto out; |
| |
| rc = tcgetattr(fd, &tio); |
| if (rc) |
| goto out; |
| |
| cfmakeraw(&tio); |
| tio.c_cflag |= CREAD | CLOCAL; |
| tio.c_cflag &= ~(CSTOPB | HUPCL | CRTSCTS); |
| tio.c_cc[VMIN] = 1; |
| tio.c_cc[VTIME] = 0; |
| |
| rc = tcsetattr(fd, TCSANOW, &tio); |
| if (rc) |
| goto out; |
| |
| flags = fcntl(fd, F_GETFL); |
| if (flags < 0) |
| goto out; |
| |
| rc = fcntl(fd, F_SETFL, flags & ~O_NDELAY); |
| if (rc) |
| goto out; |
| |
| rc = kwboot_tty_change_baudrate(fd, baudrate); |
| if (rc) |
| goto out; |
| |
| rc = fd; |
| out: |
| if (rc < 0) { |
| if (fd >= 0) |
| close(fd); |
| } |
| |
| return rc; |
| } |
| |
| static void * |
| kwboot_msg_write_handler(void *arg) |
| { |
| int tty = *(int *)((void **)arg)[0]; |
| const void *msg = ((void **)arg)[1]; |
| int rsp_timeo = msg_rsp_timeo; |
| int i, dummy_oldtype; |
| |
| /* allow to cancel this thread at any time */ |
| pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &dummy_oldtype); |
| |
| while (1) { |
| /* write 128 samples of message pattern into the output queue without waiting */ |
| for (i = 0; i < 128; i++) { |
| if (kwboot_tty_send(tty, msg, 8, 1) < 0) { |
| perror("\nFailed to send message pattern"); |
| exit(1); |
| } |
| } |
| /* wait until output queue is transmitted and then make pause */ |
| if (tcdrain(tty) < 0) { |
| perror("\nFailed to send message pattern"); |
| exit(1); |
| } |
| /* BootROM requires pause on UART after it detects message pattern */ |
| usleep(rsp_timeo * 1000); |
| } |
| } |
| |
| static int |
| kwboot_msg_start_thread(pthread_t *thread, int *tty, void *msg) |
| { |
| void *arg[2]; |
| int rc; |
| |
| arg[0] = tty; |
| arg[1] = msg; |
| rc = pthread_create(thread, NULL, kwboot_msg_write_handler, arg); |
| if (rc) { |
| errno = rc; |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| static int |
| kwboot_msg_stop_thread(pthread_t thread) |
| { |
| int rc; |
| |
| rc = pthread_cancel(thread); |
| if (rc) { |
| errno = rc; |
| return -1; |
| } |
| |
| rc = pthread_join(thread, NULL); |
| if (rc) { |
| errno = rc; |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| static int |
| kwboot_bootmsg(int tty) |
| { |
| struct kwboot_block block; |
| pthread_t write_thread; |
| int rc, err; |
| char c; |
| |
| /* flush input and output queue */ |
| tcflush(tty, TCIOFLUSH); |
| |
| rc = kwboot_msg_start_thread(&write_thread, &tty, kwboot_msg_boot); |
| if (rc) { |
| perror("Failed to start write thread"); |
| return rc; |
| } |
| |
| kwboot_printv("Sending boot message. Please reboot the target..."); |
| |
| err = 0; |
| while (1) { |
| kwboot_spinner(); |
| |
| rc = kwboot_tty_recv(tty, &c, 1, msg_rsp_timeo); |
| if (rc && errno == ETIMEDOUT) { |
| continue; |
| } else if (rc) { |
| err = errno; |
| break; |
| } |
| |
| if (c == NAK) |
| break; |
| } |
| |
| kwboot_printv("\n"); |
| |
| rc = kwboot_msg_stop_thread(write_thread); |
| if (rc) { |
| perror("Failed to stop write thread"); |
| return rc; |
| } |
| |
| if (err) { |
| errno = err; |
| perror("Failed to read response for boot message pattern"); |
| return -1; |
| } |
| |
| /* |
| * At this stage we have sent more boot message patterns and BootROM |
| * (at least on Armada XP and 385) started interpreting sent bytes as |
| * part of xmodem packets. If BootROM is expecting SOH byte as start of |
| * a xmodem packet and it receives byte 0xff, then it throws it away and |
| * sends a NAK reply to host. If BootROM does not receive any byte for |
| * 2s when expecting some continuation of the xmodem packet, it throws |
| * away the partially received xmodem data and sends NAK reply to host. |
| * |
| * Therefore for starting xmodem transfer we have two options: Either |
| * wait 2s or send 132 0xff bytes (which is the size of xmodem packet) |
| * to ensure that BootROM throws away any partially received data. |
| */ |
| |
| /* flush output queue with remaining boot message patterns */ |
| rc = tcflush(tty, TCOFLUSH); |
| if (rc) { |
| perror("Failed to flush output queue"); |
| return rc; |
| } |
| |
| /* send one xmodem packet with 0xff bytes to force BootROM to re-sync */ |
| memset(&block, 0xff, sizeof(block)); |
| rc = kwboot_tty_send(tty, &block, sizeof(block), 0); |
| if (rc) { |
| perror("Failed to send sync sequence"); |
| return rc; |
| } |
| |
| /* |
| * Sending 132 bytes via 115200B/8-N-1 takes 11.45 ms, reading 132 bytes |
| * takes 11.45 ms, so waiting for 30 ms should be enough. |
| */ |
| usleep(30 * 1000); |
| |
| /* flush remaining NAK replies from input queue */ |
| rc = tcflush(tty, TCIFLUSH); |
| if (rc) { |
| perror("Failed to flush input queue"); |
| return rc; |
| } |
| |
| return 0; |
| } |
| |
| static int |
| kwboot_debugmsg(int tty) |
| { |
| unsigned char buf[8192]; |
| pthread_t write_thread; |
| int rc, err, i, pos; |
| size_t off; |
| |
| /* flush input and output queue */ |
| tcflush(tty, TCIOFLUSH); |
| |
| rc = kwboot_msg_start_thread(&write_thread, &tty, kwboot_msg_debug); |
| if (rc) { |
| perror("Failed to start write thread"); |
| return rc; |
| } |
| |
| kwboot_printv("Sending debug message. Please reboot the target..."); |
| kwboot_spinner(); |
| |
| err = 0; |
| off = 0; |
| while (1) { |
| /* Read immediately all bytes in queue without waiting */ |
| rc = read(tty, buf + off, sizeof(buf) - off); |
| if ((rc < 0 && errno == EINTR) || rc == 0) { |
| continue; |
| } else if (rc < 0) { |
| err = errno; |
| break; |
| } |
| off += rc - 1; |
| |
| kwboot_spinner(); |
| |
| /* |
| * Check if we received at least 4 debug message patterns |
| * (console echo from BootROM) in cyclic buffer |
| */ |
| |
| for (pos = 0; pos < sizeof(kwboot_msg_debug); pos++) |
| if (buf[off] == kwboot_msg_debug[(pos + off) % sizeof(kwboot_msg_debug)]) |
| break; |
| |
| for (i = off; i >= 0; i--) |
| if (buf[i] != kwboot_msg_debug[(pos + i) % sizeof(kwboot_msg_debug)]) |
| break; |
| |
| off -= i; |
| |
| if (off >= 4 * sizeof(kwboot_msg_debug)) |
| break; |
| |
| /* If not move valid suffix from end of the buffer to the beginning of buffer */ |
| memmove(buf, buf + i + 1, off); |
| } |
| |
| kwboot_printv("\n"); |
| |
| rc = kwboot_msg_stop_thread(write_thread); |
| if (rc) { |
| perror("Failed to stop write thread"); |
| return rc; |
| } |
| |
| if (err) { |
| errno = err; |
| perror("Failed to read response for debug message pattern"); |
| return -1; |
| } |
| |
| /* flush output queue with remaining debug message patterns */ |
| rc = tcflush(tty, TCOFLUSH); |
| if (rc) { |
| perror("Failed to flush output queue"); |
| return rc; |
| } |
| |
| kwboot_printv("Clearing input buffer...\n"); |
| |
| /* |
| * Wait until BootROM transmit all remaining echo characters. |
| * Experimentally it was measured that for Armada 385 BootROM |
| * it is required to wait at least 0.415s. So wait 0.5s. |
| */ |
| usleep(500 * 1000); |
| |
| /* |
| * In off variable is stored number of characters received after the |
| * successful detection of echo reply. So these characters are console |
| * echo for other following debug message patterns. BootROM may have in |
| * its output queue other echo characters which were being transmitting |
| * before above sleep call. So read remaining number of echo characters |
| * sent by the BootROM now. |
| */ |
| while ((rc = kwboot_tty_recv(tty, &buf[0], 1, 0)) == 0) |
| off++; |
| if (errno != ETIMEDOUT) { |
| perror("Failed to read response"); |
| return rc; |
| } |
| |
| /* |
| * Clear every echo character set by the BootROM by backspace byte. |
| * This is required prior writing any command to the BootROM debug |
| * because BootROM command line buffer has limited size. If length |
| * of the command is larger than buffer size then it looks like |
| * that Armada 385 BootROM crashes after sending ENTER. So erase it. |
| * Experimentally it was measured that for Armada 385 BootROM it is |
| * required to send at least 3 backspace bytes for one echo character. |
| * This is unknown why. But lets do it. |
| */ |
| off *= 3; |
| memset(buf, '\x08', sizeof(buf)); |
| while (off > sizeof(buf)) { |
| rc = kwboot_tty_send(tty, buf, sizeof(buf), 1); |
| if (rc) { |
| perror("Failed to send clear sequence"); |
| return rc; |
| } |
| off -= sizeof(buf); |
| } |
| rc = kwboot_tty_send(tty, buf, off, 0); |
| if (rc) { |
| perror("Failed to send clear sequence"); |
| return rc; |
| } |
| |
| usleep(msg_rsp_timeo * 1000); |
| rc = tcflush(tty, TCIFLUSH); |
| if (rc) { |
| perror("Failed to flush input queue"); |
| return rc; |
| } |
| |
| return 0; |
| } |
| |
| static size_t |
| kwboot_xm_makeblock(struct kwboot_block *block, const void *data, |
| size_t size, int pnum) |
| { |
| size_t i, n; |
| |
| block->soh = SOH; |
| block->pnum = pnum; |
| block->_pnum = ~block->pnum; |
| |
| n = size < KWBOOT_XM_BLKSZ ? size : KWBOOT_XM_BLKSZ; |
| memcpy(&block->data[0], data, n); |
| memset(&block->data[n], 0, KWBOOT_XM_BLKSZ - n); |
| |
| block->csum = 0; |
| for (i = 0; i < n; i++) |
| block->csum += block->data[i]; |
| |
| return n; |
| } |
| |
| static uint64_t |
| _now(void) |
| { |
| struct timespec ts; |
| |
| if (clock_gettime(CLOCK_MONOTONIC, &ts)) { |
| static int err_print; |
| |
| if (!err_print) { |
| perror("clock_gettime() does not work"); |
| err_print = 1; |
| } |
| |
| /* this will just make the timeout not work */ |
| return -1ULL; |
| } |
| |
| return ts.tv_sec * 1000ULL + (ts.tv_nsec + 500000) / 1000000; |
| } |
| |
| static int |
| _is_xm_reply(char c) |
| { |
| return c == ACK || c == NAK; |
| } |
| |
| static int |
| _xm_reply_to_error(int c) |
| { |
| int rc = -1; |
| |
| switch (c) { |
| case ACK: |
| rc = 0; |
| break; |
| case NAK: |
| errno = EBADMSG; |
| break; |
| default: |
| errno = EPROTO; |
| break; |
| } |
| |
| return rc; |
| } |
| |
| static int |
| kwboot_baud_magic_handle(int fd, char c, int baudrate) |
| { |
| static size_t rcv_len; |
| |
| if (rcv_len < sizeof(kwb_baud_magic)) { |
| /* try to recognize whole magic word */ |
| if (c == kwb_baud_magic[rcv_len]) { |
| rcv_len++; |
| } else { |
| printf("%.*s%c", (int)rcv_len, kwb_baud_magic, c); |
| fflush(stdout); |
| rcv_len = 0; |
| } |
| } |
| |
| if (rcv_len == sizeof(kwb_baud_magic)) { |
| /* magic word received */ |
| kwboot_printv("\nChanging baudrate to %d Bd\n", baudrate); |
| |
| return kwboot_tty_change_baudrate(fd, baudrate) ? : 1; |
| } else { |
| return 0; |
| } |
| } |
| |
| static int |
| kwboot_xm_recv_reply(int fd, char *c, int stop_on_non_xm, |
| int ignore_nak_reply, |
| int allow_non_xm, int *non_xm_print, |
| int baudrate, int *baud_changed) |
| { |
| int timeout = allow_non_xm ? KWBOOT_HDR_RSP_TIMEO : blk_rsp_timeo; |
| uint64_t recv_until = _now() + timeout; |
| int rc; |
| |
| while (1) { |
| rc = kwboot_tty_recv(fd, c, 1, timeout); |
| if (rc) { |
| if (errno != ETIMEDOUT) |
| return rc; |
| else if (allow_non_xm && *non_xm_print) |
| return -1; |
| else |
| *c = NAK; |
| } |
| |
| /* If received xmodem reply, end. */ |
| if (_is_xm_reply(*c)) { |
| if (*c == NAK && ignore_nak_reply) { |
| timeout = recv_until - _now(); |
| if (timeout >= 0) |
| continue; |
| } |
| break; |
| } |
| |
| /* |
| * If receiving/printing non-xmodem text output is allowed and |
| * such a byte was received, we want to increase receiving time |
| * and either: |
| * - print the byte, if it is not part of baudrate change magic |
| * sequence while baudrate change was requested (-B option) |
| * - change baudrate |
| * Otherwise decrease timeout by time elapsed. |
| */ |
| if (allow_non_xm) { |
| recv_until = _now() + timeout; |
| |
| if (baudrate && !*baud_changed) { |
| rc = kwboot_baud_magic_handle(fd, *c, baudrate); |
| if (rc == 1) |
| *baud_changed = 1; |
| else if (!rc) |
| *non_xm_print = 1; |
| else |
| return rc; |
| } else if (!baudrate || !*baud_changed) { |
| putchar(*c); |
| fflush(stdout); |
| *non_xm_print = 1; |
| } |
| } else { |
| if (stop_on_non_xm) |
| break; |
| timeout = recv_until - _now(); |
| if (timeout < 0) { |
| errno = ETIMEDOUT; |
| return -1; |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int |
| kwboot_xm_sendblock(int fd, struct kwboot_block *block, int allow_non_xm, |
| int *done_print, int baudrate, int allow_retries) |
| { |
| int non_xm_print, baud_changed; |
| int rc, err, retries; |
| char c; |
| |
| *done_print = 0; |
| non_xm_print = 0; |
| baud_changed = 0; |
| |
| retries = 0; |
| do { |
| rc = kwboot_tty_send(fd, block, sizeof(*block), 1); |
| if (rc) |
| goto err; |
| |
| if (allow_non_xm && !*done_print) { |
| kwboot_progress(100, '.'); |
| kwboot_printv("Done\n"); |
| *done_print = 1; |
| } |
| |
| rc = kwboot_xm_recv_reply(fd, &c, retries < 3, |
| retries > 8, |
| allow_non_xm, &non_xm_print, |
| baudrate, &baud_changed); |
| if (rc) |
| goto err; |
| |
| if (!allow_non_xm && c != ACK) { |
| if (c == NAK && allow_retries && retries + 1 < 16) |
| kwboot_progress(-1, '+'); |
| else |
| kwboot_progress(-1, 'E'); |
| } |
| } while (c == NAK && allow_retries && retries++ < 16); |
| |
| if (non_xm_print) |
| kwboot_printv("\n"); |
| |
| if (allow_non_xm && baudrate && !baud_changed) { |
| fprintf(stderr, "Baudrate was not changed\n"); |
| errno = EPROTO; |
| return -1; |
| } |
| |
| return _xm_reply_to_error(c); |
| err: |
| err = errno; |
| kwboot_printv("\n"); |
| errno = err; |
| return rc; |
| } |
| |
| static int |
| kwboot_xm_finish(int fd) |
| { |
| int rc, retries; |
| char c; |
| |
| kwboot_printv("Finishing transfer\n"); |
| |
| retries = 0; |
| do { |
| rc = kwboot_tty_send_char(fd, EOT); |
| if (rc) |
| return rc; |
| |
| rc = kwboot_xm_recv_reply(fd, &c, retries < 3, |
| retries > 8, |
| 0, NULL, 0, NULL); |
| if (rc) |
| return rc; |
| } while (c == NAK && retries++ < 16); |
| |
| return _xm_reply_to_error(c); |
| } |
| |
| static int |
| kwboot_xmodem_one(int tty, int *pnum, int header, const uint8_t *data, |
| size_t size, int baudrate) |
| { |
| int done_print = 0; |
| size_t sent, left; |
| int rc; |
| |
| kwboot_printv("Sending boot image %s (%zu bytes)...\n", |
| header ? "header" : "data", size); |
| |
| left = size; |
| sent = 0; |
| |
| while (sent < size) { |
| struct kwboot_block block; |
| int last_block; |
| size_t blksz; |
| |
| blksz = kwboot_xm_makeblock(&block, data, left, (*pnum)++); |
| data += blksz; |
| |
| last_block = (left <= blksz); |
| |
| /* |
| * Handling of repeated xmodem packets is completely broken in |
| * Armada 385 BootROM - it completely ignores xmodem packet |
| * numbers, they are only used for checksum verification. |
| * BootROM can handle a retry of the xmodem packet only during |
| * the transmission of kwbimage header and only if BootROM |
| * itself sent NAK response to previous attempt (it does it on |
| * checksum failure). During the transmission of kwbimage data |
| * part, BootROM always expects next xmodem packet, even if it |
| * sent NAK to previous attempt - there is absolutely no way to |
| * repair incorrectly transmitted xmodem packet during kwbimage |
| * data part upload. Also, if kwboot receives non-ACK/NAK |
| * response (meaning that original BootROM response was damaged |
| * on UART) there is no way to detect if BootROM accepted xmodem |
| * packet or not and no way to check if kwboot could repeat the |
| * packet or not. |
| * |
| * Stop transfer and return failure if kwboot receives unknown |
| * reply if non-xmodem reply is not allowed (for all xmodem |
| * packets except the last header packet) or when non-ACK reply |
| * is received during data part transfer. |
| */ |
| rc = kwboot_xm_sendblock(tty, &block, header && last_block, |
| &done_print, baudrate, header); |
| if (rc) |
| goto out; |
| |
| sent += blksz; |
| left -= blksz; |
| |
| if (!done_print) |
| kwboot_progress(sent * 100 / size, '.'); |
| } |
| |
| if (!done_print) |
| kwboot_printv("Done\n"); |
| |
| return 0; |
| out: |
| kwboot_printv("\n"); |
| return rc; |
| } |
| |
| static int |
| kwboot_xmodem(int tty, const void *_img, size_t size, int baudrate) |
| { |
| const uint8_t *img = _img; |
| int rc, pnum; |
| size_t hdrsz; |
| |
| hdrsz = kwbheader_size(img); |
| |
| /* |
| * If header size is not aligned to xmodem block size (which applies |
| * for all images in kwbimage v0 format) then we have to ensure that |
| * the last xmodem block of header contains beginning of the data |
| * followed by the header. So align header size to xmodem block size. |
| */ |
| hdrsz += (KWBOOT_XM_BLKSZ - hdrsz % KWBOOT_XM_BLKSZ) % KWBOOT_XM_BLKSZ; |
| if (hdrsz > size) |
| hdrsz = size; |
| |
| pnum = 1; |
| |
| rc = kwboot_xmodem_one(tty, &pnum, 1, img, hdrsz, baudrate); |
| if (rc) |
| return rc; |
| |
| /* |
| * If we have already sent image data as a part of the last |
| * xmodem header block then we have nothing more to send. |
| */ |
| if (hdrsz < size) { |
| img += hdrsz; |
| size -= hdrsz; |
| rc = kwboot_xmodem_one(tty, &pnum, 0, img, size, 0); |
| if (rc) |
| return rc; |
| } |
| |
| rc = kwboot_xm_finish(tty); |
| if (rc) |
| return rc; |
| |
| if (baudrate) { |
| kwboot_printv("\nChanging baudrate back to 115200 Bd\n\n"); |
| rc = kwboot_tty_change_baudrate(tty, 115200); |
| if (rc) |
| return rc; |
| } |
| |
| return 0; |
| } |
| |
| static int |
| kwboot_term_pipe(int in, int out, const char *quit, int *s, const char *kbs, int *k) |
| { |
| char buf[128]; |
| ssize_t nin, noff; |
| |
| nin = read(in, buf, sizeof(buf)); |
| if (nin <= 0) |
| return -1; |
| |
| noff = 0; |
| |
| if (quit || kbs) { |
| int i; |
| |
| for (i = 0; i < nin; i++) { |
| if ((quit || kbs) && |
| (!quit || buf[i] != quit[*s]) && |
| (!kbs || buf[i] != kbs[*k])) { |
| const char *prefix; |
| int plen; |
| |
| if (quit && kbs) { |
| prefix = (*s >= *k) ? quit : kbs; |
| plen = (*s >= *k) ? *s : *k; |
| } else if (quit) { |
| prefix = quit; |
| plen = *s; |
| } else { |
| prefix = kbs; |
| plen = *k; |
| } |
| |
| if (plen > i && kwboot_write(out, prefix, plen - i) < 0) |
| return -1; |
| } |
| |
| if (quit && buf[i] == quit[*s]) { |
| (*s)++; |
| if (!quit[*s]) { |
| nin = (i > *s) ? (i - *s) : 0; |
| break; |
| } |
| } else if (quit) { |
| *s = 0; |
| } |
| |
| if (kbs && buf[i] == kbs[*k]) { |
| (*k)++; |
| if (!kbs[*k]) { |
| if (i > *k + noff && |
| kwboot_write(out, buf + noff, i - *k - noff) < 0) |
| return -1; |
| /* |
| * Replace backspace key by '\b' (0x08) |
| * byte which is the only recognized |
| * backspace byte by Marvell BootROM. |
| */ |
| if (write(out, "\x08", 1) < 0) |
| return -1; |
| noff = i + 1; |
| *k = 0; |
| } |
| } else if (kbs) { |
| *k = 0; |
| } |
| } |
| |
| if (i == nin) { |
| i = 0; |
| if (quit && i < *s) |
| i = *s; |
| if (kbs && i < *k) |
| i = *k; |
| nin -= (nin > i) ? i : nin; |
| } |
| } |
| |
| if (nin > noff && kwboot_write(out, buf + noff, nin - noff) < 0) |
| return -1; |
| |
| return 0; |
| } |
| |
| static int |
| kwboot_terminal(int tty) |
| { |
| int rc, in, s, k; |
| const char *kbs = NULL; |
| const char *quit = "\34c"; |
| struct termios otio, tio; |
| |
| rc = -1; |
| |
| in = STDIN_FILENO; |
| if (isatty(in)) { |
| rc = tcgetattr(in, &otio); |
| if (!rc) { |
| tio = otio; |
| cfmakeraw(&tio); |
| rc = tcsetattr(in, TCSANOW, &tio); |
| } |
| if (rc) { |
| perror("tcsetattr"); |
| goto out; |
| } |
| |
| /* |
| * Get sequence for backspace key used by the current |
| * terminal. Every occurrence of this sequence will be |
| * replaced by '\b' byte which is the only recognized |
| * backspace byte by Marvell BootROM. |
| * |
| * Note that we cannot read this sequence from termios |
| * c_cc[VERASE] as VERASE is valid only when ICANON is |
| * set in termios c_lflag, which is not case for us. |
| * |
| * Also most terminals do not set termios c_cc[VERASE] |
| * as c_cc[VERASE] can specify only one-byte sequence |
| * and instead let applications to read (possible |
| * multi-byte) sequence for backspace key from "kbs" |
| * terminfo database based on $TERM env variable. |
| * |
| * So read "kbs" from terminfo database via tigetstr() |
| * call after successful setupterm(). Most terminals |
| * use byte 0x7F for backspace key, so replacement with |
| * '\b' is required. |
| */ |
| if (setupterm(NULL, STDOUT_FILENO, &rc) == 0) { |
| kbs = tigetstr("kbs"); |
| if (kbs == (char *)-1) |
| kbs = NULL; |
| } |
| |
| kwboot_printv("[Type Ctrl-%c + %c to quit]\r\n", |
| quit[0] | 0100, quit[1]); |
| } else |
| in = -1; |
| |
| rc = 0; |
| s = 0; |
| k = 0; |
| |
| do { |
| fd_set rfds; |
| int nfds = 0; |
| |
| FD_ZERO(&rfds); |
| FD_SET(tty, &rfds); |
| nfds = nfds < tty ? tty : nfds; |
| |
| if (in >= 0) { |
| FD_SET(in, &rfds); |
| nfds = nfds < in ? in : nfds; |
| } |
| |
| nfds = select(nfds + 1, &rfds, NULL, NULL, NULL); |
| if (nfds < 0) |
| break; |
| |
| if (FD_ISSET(tty, &rfds)) { |
| rc = kwboot_term_pipe(tty, STDOUT_FILENO, NULL, NULL, NULL, NULL); |
| if (rc) |
| break; |
| } |
| |
| if (in >= 0 && FD_ISSET(in, &rfds)) { |
| rc = kwboot_term_pipe(in, tty, quit, &s, kbs, &k); |
| if (rc) |
| break; |
| } |
| } while (quit[s] != 0); |
| |
| if (in >= 0) |
| tcsetattr(in, TCSANOW, &otio); |
| printf("\n"); |
| out: |
| return rc; |
| } |
| |
| static void * |
| kwboot_read_image(const char *path, size_t *size, size_t reserve) |
| { |
| int rc, fd; |
| void *img; |
| off_t len; |
| off_t tot; |
| |
| rc = -1; |
| img = NULL; |
| |
| fd = open(path, O_RDONLY); |
| if (fd < 0) |
| goto out; |
| |
| len = lseek(fd, 0, SEEK_END); |
| if (len == (off_t)-1) |
| goto out; |
| |
| if (lseek(fd, 0, SEEK_SET) == (off_t)-1) |
| goto out; |
| |
| img = malloc(len + reserve); |
| if (!img) |
| goto out; |
| |
| tot = 0; |
| while (tot < len) { |
| ssize_t rd = read(fd, img + tot, len - tot); |
| |
| if (rd < 0) |
| goto out; |
| |
| tot += rd; |
| |
| if (!rd && tot < len) { |
| errno = EIO; |
| goto out; |
| } |
| } |
| |
| rc = 0; |
| *size = len; |
| out: |
| if (rc && img) { |
| free(img); |
| img = NULL; |
| } |
| if (fd >= 0) |
| close(fd); |
| |
| return img; |
| } |
| |
| static uint8_t |
| kwboot_hdr_csum8(const void *hdr) |
| { |
| const uint8_t *data = hdr; |
| uint8_t csum; |
| size_t size; |
| |
| size = kwbheader_size_for_csum(hdr); |
| |
| for (csum = 0; size-- > 0; data++) |
| csum += *data; |
| |
| return csum; |
| } |
| |
| static uint32_t * |
| kwboot_img_csum32_ptr(void *img) |
| { |
| struct main_hdr_v1 *hdr = img; |
| uint32_t datasz; |
| |
| datasz = le32_to_cpu(hdr->blocksize) - sizeof(uint32_t); |
| |
| return img + le32_to_cpu(hdr->srcaddr) + datasz; |
| } |
| |
| static uint32_t |
| kwboot_img_csum32(const void *img) |
| { |
| const struct main_hdr_v1 *hdr = img; |
| uint32_t datasz, csum = 0; |
| const uint32_t *data; |
| |
| datasz = le32_to_cpu(hdr->blocksize) - sizeof(csum); |
| if (datasz % sizeof(uint32_t)) |
| return 0; |
| |
| data = img + le32_to_cpu(hdr->srcaddr); |
| while (datasz > 0) { |
| csum += le32_to_cpu(*data++); |
| datasz -= 4; |
| } |
| |
| return cpu_to_le32(csum); |
| } |
| |
| static int |
| kwboot_img_is_secure(void *img) |
| { |
| struct opt_hdr_v1 *ohdr; |
| |
| for_each_opt_hdr_v1 (ohdr, img) |
| if (ohdr->headertype == OPT_HDR_V1_SECURE_TYPE) |
| return 1; |
| |
| return 0; |
| } |
| |
| static int |
| kwboot_img_has_ddr_init(void *img) |
| { |
| const struct register_set_hdr_v1 *rhdr; |
| const struct main_hdr_v0 *hdr0; |
| struct opt_hdr_v1 *ohdr; |
| u32 ohdrsz; |
| int last; |
| |
| /* |
| * kwbimage v0 image headers contain DDR init code either in |
| * extension header or in binary code header. |
| */ |
| if (kwbimage_version(img) == 0) { |
| hdr0 = img; |
| return hdr0->ext || hdr0->bin; |
| } |
| |
| /* |
| * kwbimage v1 image headers contain DDR init code either in binary |
| * code header or in a register set list header with SDRAM_SETUP. |
| */ |
| for_each_opt_hdr_v1 (ohdr, img) { |
| if (ohdr->headertype == OPT_HDR_V1_BINARY_TYPE) |
| return 1; |
| if (ohdr->headertype == OPT_HDR_V1_REGISTER_TYPE) { |
| rhdr = (const struct register_set_hdr_v1 *)ohdr; |
| ohdrsz = opt_hdr_v1_size(ohdr); |
| if (ohdrsz >= sizeof(*ohdr) + sizeof(rhdr->data[0].last_entry)) { |
| ohdrsz -= sizeof(*ohdr) + sizeof(rhdr->data[0].last_entry); |
| last = ohdrsz / sizeof(rhdr->data[0].entry); |
| if (rhdr->data[last].last_entry.delay == |
| REGISTER_SET_HDR_OPT_DELAY_SDRAM_SETUP) |
| return 1; |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void * |
| kwboot_img_grow_data_right(void *img, size_t *size, size_t grow) |
| { |
| struct main_hdr_v1 *hdr = img; |
| void *result; |
| |
| /* |
| * 32-bit checksum comes after end of image code, so we will be putting |
| * new code there. So we get this pointer and then increase data size |
| * (since increasing data size changes kwboot_img_csum32_ptr() return |
| * value). |
| */ |
| result = kwboot_img_csum32_ptr(img); |
| hdr->blocksize = cpu_to_le32(le32_to_cpu(hdr->blocksize) + grow); |
| *size += grow; |
| |
| return result; |
| } |
| |
| static void |
| kwboot_img_grow_hdr(void *img, size_t *size, size_t grow) |
| { |
| uint32_t hdrsz, datasz, srcaddr; |
| struct main_hdr_v1 *hdr = img; |
| struct opt_hdr_v1 *ohdr; |
| uint8_t *data; |
| |
| srcaddr = le32_to_cpu(hdr->srcaddr); |
| |
| /* calculate real used space in kwbimage header */ |
| if (kwbimage_version(img) == 0) { |
| hdrsz = kwbheader_size(img); |
| } else { |
| hdrsz = sizeof(*hdr); |
| for_each_opt_hdr_v1 (ohdr, hdr) |
| hdrsz += opt_hdr_v1_size(ohdr); |
| } |
| |
| data = (uint8_t *)img + srcaddr; |
| datasz = *size - srcaddr; |
| |
| /* only move data if there is not enough space */ |
| if (hdrsz + grow > srcaddr) { |
| size_t need = hdrsz + grow - srcaddr; |
| |
| /* move data by enough bytes */ |
| memmove(data + need, data, datasz); |
| |
| hdr->srcaddr = cpu_to_le32(srcaddr + need); |
| *size += need; |
| } |
| |
| if (kwbimage_version(img) == 1) { |
| hdrsz += grow; |
| if (hdrsz > kwbheader_size(img)) { |
| hdr->headersz_msb = hdrsz >> 16; |
| hdr->headersz_lsb = cpu_to_le16(hdrsz & 0xffff); |
| } |
| } |
| } |
| |
| static void * |
| kwboot_add_bin_ohdr_v1(void *img, size_t *size, uint32_t binsz) |
| { |
| struct main_hdr_v1 *hdr = img; |
| struct opt_hdr_v1 *ohdr; |
| uint32_t num_args; |
| uint32_t offset; |
| uint32_t ohdrsz; |
| uint8_t *prev_ext; |
| |
| if (hdr->ext) { |
| for_each_opt_hdr_v1 (ohdr, img) |
| if (opt_hdr_v1_next(ohdr) == NULL) |
| break; |
| |
| prev_ext = opt_hdr_v1_ext(ohdr); |
| ohdr = _opt_hdr_v1_next(ohdr); |
| } else { |
| ohdr = (void *)(hdr + 1); |
| prev_ext = &hdr->ext; |
| } |
| |
| /* |
| * ARM executable code inside the BIN header on some mvebu platforms |
| * (e.g. A370, AXP) must always be aligned with the 128-bit boundary. |
| * This requirement can be met by inserting dummy arguments into |
| * BIN header, if needed. |
| */ |
| offset = &ohdr->data[4] - (char *)img; |
| num_args = ((16 - offset % 16) % 16) / sizeof(uint32_t); |
| |
| ohdrsz = sizeof(*ohdr) + 4 + 4 * num_args + binsz + 4; |
| kwboot_img_grow_hdr(hdr, size, ohdrsz); |
| |
| *prev_ext = 1; |
| |
| ohdr->headertype = OPT_HDR_V1_BINARY_TYPE; |
| ohdr->headersz_msb = ohdrsz >> 16; |
| ohdr->headersz_lsb = cpu_to_le16(ohdrsz & 0xffff); |
| |
| memset(&ohdr->data[0], 0, ohdrsz - sizeof(*ohdr)); |
| *(uint32_t *)&ohdr->data[0] = cpu_to_le32(num_args); |
| |
| return &ohdr->data[4 + 4 * num_args]; |
| } |
| |
| static void |
| _inject_baudrate_change_code(void *img, size_t *size, int for_data, |
| int old_baud, int new_baud) |
| { |
| struct main_hdr_v1 *hdr = img; |
| uint32_t orig_datasz; |
| uint32_t codesz; |
| uint8_t *code; |
| |
| if (for_data) { |
| orig_datasz = le32_to_cpu(hdr->blocksize) - sizeof(uint32_t); |
| |
| codesz = sizeof(kwboot_baud_code) + |
| sizeof(kwboot_baud_code_data_jump); |
| code = kwboot_img_grow_data_right(img, size, codesz); |
| } else { |
| codesz = sizeof(kwboot_baud_code_binhdr_pre) + |
| sizeof(kwboot_baud_code) + |
| sizeof(kwboot_baud_code_binhdr_post); |
| code = kwboot_add_bin_ohdr_v1(img, size, codesz); |
| |
| codesz = sizeof(kwboot_baud_code_binhdr_pre); |
| memcpy(code, kwboot_baud_code_binhdr_pre, codesz); |
| code += codesz; |
| } |
| |
| codesz = sizeof(kwboot_baud_code) - 2 * sizeof(uint32_t); |
| memcpy(code, kwboot_baud_code, codesz); |
| code += codesz; |
| *(uint32_t *)code = cpu_to_le32(old_baud); |
| code += sizeof(uint32_t); |
| *(uint32_t *)code = cpu_to_le32(new_baud); |
| code += sizeof(uint32_t); |
| |
| if (for_data) { |
| codesz = sizeof(kwboot_baud_code_data_jump) - sizeof(uint32_t); |
| memcpy(code, kwboot_baud_code_data_jump, codesz); |
| code += codesz; |
| *(uint32_t *)code = hdr->execaddr; |
| code += sizeof(uint32_t); |
| hdr->execaddr = cpu_to_le32(le32_to_cpu(hdr->destaddr) + orig_datasz); |
| } else { |
| codesz = sizeof(kwboot_baud_code_binhdr_post); |
| memcpy(code, kwboot_baud_code_binhdr_post, codesz); |
| code += codesz; |
| } |
| } |
| |
| static int |
| kwboot_img_guess_sata_blksz(void *img, uint32_t blkoff, uint32_t data_size, size_t total_size) |
| { |
| uint32_t sum, *ptr, *end; |
| int blksz; |
| |
| /* |
| * Try all possible sector sizes which are power of two, |
| * at least 512 bytes and up to the 32 kB. |
| */ |
| for (blksz = 512; blksz < 0x10000; blksz *= 2) { |
| if (blkoff * blksz > total_size || |
| blkoff * blksz + data_size > total_size || |
| data_size % 4) |
| break; |
| |
| /* |
| * Calculate data checksum and if it matches |
| * then tried blksz should be correct. |
| */ |
| ptr = img + blkoff * blksz; |
| end = (void *)ptr + data_size - 4; |
| for (sum = 0; ptr < end; ptr++) |
| sum += *ptr; |
| |
| if (sum == *end) |
| return blksz; |
| } |
| |
| /* Fallback to 512 bytes */ |
| return 512; |
| } |
| |
| static const char * |
| kwboot_img_type(uint8_t blockid) |
| { |
| switch (blockid) { |
| case IBR_HDR_I2C_ID: return "I2C"; |
| case IBR_HDR_SPI_ID: return "SPI"; |
| case IBR_HDR_NAND_ID: return "NAND"; |
| case IBR_HDR_SATA_ID: return "SATA"; |
| case IBR_HDR_PEX_ID: return "PEX"; |
| case IBR_HDR_UART_ID: return "UART"; |
| case IBR_HDR_SDIO_ID: return "SDIO"; |
| default: return "unknown"; |
| } |
| } |
| |
| static int |
| kwboot_img_patch(void *img, size_t *size, int baudrate) |
| { |
| struct main_hdr_v1 *hdr; |
| struct opt_hdr_v1 *ohdr; |
| uint32_t srcaddr; |
| uint8_t csum; |
| size_t hdrsz; |
| int image_ver; |
| int is_secure; |
| |
| hdr = img; |
| |
| if (*size < sizeof(struct main_hdr_v1)) { |
| fprintf(stderr, "Invalid image header size\n"); |
| goto err; |
| } |
| |
| image_ver = kwbimage_version(img); |
| if (image_ver != 0 && image_ver != 1) { |
| fprintf(stderr, "Invalid image header version\n"); |
| goto err; |
| } |
| |
| hdrsz = kwbheader_size(hdr); |
| |
| if (*size < hdrsz) { |
| fprintf(stderr, "Invalid image header size\n"); |
| goto err; |
| } |
| |
| kwboot_printv("Detected kwbimage v%d with %s boot signature\n", image_ver, kwboot_img_type(hdr->blockid)); |
| |
| csum = kwboot_hdr_csum8(hdr) - hdr->checksum; |
| if (csum != hdr->checksum) { |
| fprintf(stderr, "Image has invalid header checksum stored in image header\n"); |
| goto err; |
| } |
| |
| srcaddr = le32_to_cpu(hdr->srcaddr); |
| |
| switch (hdr->blockid) { |
| case IBR_HDR_SATA_ID: |
| hdr->srcaddr = cpu_to_le32(srcaddr * kwboot_img_guess_sata_blksz(img, srcaddr, le32_to_cpu(hdr->blocksize), *size)); |
| break; |
| |
| case IBR_HDR_PEX_ID: |
| if (srcaddr == 0xFFFFFFFF) |
| hdr->srcaddr = cpu_to_le32(hdrsz); |
| break; |
| |
| case IBR_HDR_SPI_ID: |
| if (hdr->destaddr == cpu_to_le32(0xFFFFFFFF)) { |
| kwboot_printv("Patching destination and execution addresses from SPI/NOR XIP area to DDR area 0x00800000\n"); |
| hdr->destaddr = cpu_to_le32(0x00800000 + le32_to_cpu(hdr->srcaddr)); |
| hdr->execaddr = cpu_to_le32(0x00800000 + le32_to_cpu(hdr->execaddr)); |
| } |
| break; |
| } |
| |
| if (hdrsz > le32_to_cpu(hdr->srcaddr)) { |
| fprintf(stderr, "Image has invalid data offset stored in image header\n"); |
| goto err; |
| } |
| |
| if (*size < le32_to_cpu(hdr->srcaddr) + le32_to_cpu(hdr->blocksize)) { |
| fprintf(stderr, "Image has invalid data size stored in image header\n"); |
| goto err; |
| } |
| |
| for_each_opt_hdr_v1 (ohdr, hdr) { |
| if (!opt_hdr_v1_valid_size(ohdr, (const uint8_t *)hdr + hdrsz)) { |
| fprintf(stderr, "Invalid optional image header\n"); |
| goto err; |
| } |
| } |
| |
| /* |
| * The 32-bit data checksum is optional for UART image. If it is not |
| * present (checksum detected as invalid) then grow data part of the |
| * image for the checksum, so it can be inserted there. |
| */ |
| if (kwboot_img_csum32(img) != *kwboot_img_csum32_ptr(img)) { |
| if (hdr->blockid != IBR_HDR_UART_ID) { |
| fprintf(stderr, "Image has invalid data checksum\n"); |
| goto err; |
| } |
| kwboot_img_grow_data_right(img, size, sizeof(uint32_t)); |
| /* Update the 32-bit data checksum */ |
| *kwboot_img_csum32_ptr(img) = kwboot_img_csum32(img); |
| } |
| |
| if (!kwboot_img_has_ddr_init(img) && |
| (le32_to_cpu(hdr->destaddr) < 0x40000000 || |
| le32_to_cpu(hdr->destaddr) + le32_to_cpu(hdr->blocksize) > 0x40034000)) { |
| fprintf(stderr, "Image does not contain DDR init code needed for UART booting\n"); |
| goto err; |
| } |
| |
| is_secure = kwboot_img_is_secure(img); |
| |
| if (hdr->blockid != IBR_HDR_UART_ID) { |
| if (is_secure) { |
| fprintf(stderr, |
| "Image has secure header with signature for non-UART booting\n"); |
| goto err; |
| } |
| |
| kwboot_printv("Patching image boot signature to UART\n"); |
| hdr->blockid = IBR_HDR_UART_ID; |
| } |
| |
| if (!is_secure) { |
| if (image_ver == 1) { |
| /* |
| * Tell BootROM to send BootROM messages to UART port |
| * number 0 (used also for UART booting) with default |
| * baudrate (which should be 115200) and do not touch |
| * UART MPP configuration. |
| */ |
| hdr->flags |= 0x1; |
| hdr->options &= ~0x1F; |
| hdr->options |= MAIN_HDR_V1_OPT_BAUD_DEFAULT; |
| hdr->options |= 0 << 3; |
| } |
| if (image_ver == 0) |
| ((struct main_hdr_v0 *)img)->nandeccmode = IBR_HDR_ECC_DISABLED; |
| hdr->nandpagesize = 0; |
| } |
| |
| if (baudrate) { |
| if (image_ver == 0) { |
| fprintf(stderr, |
| "Cannot inject code for changing baudrate into v0 image header\n"); |
| goto err; |
| } |
| |
| if (is_secure) { |
| fprintf(stderr, |
| "Cannot inject code for changing baudrate into image with secure header\n"); |
| goto err; |
| } |
| |
| /* |
| * First inject code that changes the baudrate from the default |
| * value of 115200 Bd to requested value. This code is inserted |
| * as a new opt hdr, so it is executed by BootROM after the |
| * header part is received. |
| */ |
| kwboot_printv("Injecting binary header code for changing baudrate to %d Bd\n", |
| baudrate); |
| _inject_baudrate_change_code(img, size, 0, 115200, baudrate); |
| |
| /* |
| * Now inject code that changes the baudrate back to 115200 Bd. |
| * This code is appended after the data part of the image, and |
| * execaddr is changed so that it is executed before U-Boot |
| * proper. |
| */ |
| kwboot_printv("Injecting code for changing baudrate back\n"); |
| _inject_baudrate_change_code(img, size, 1, baudrate, 115200); |
| |
| /* Update the 32-bit data checksum */ |
| *kwboot_img_csum32_ptr(img) = kwboot_img_csum32(img); |
| |
| /* recompute header size */ |
| hdrsz = kwbheader_size(hdr); |
| } |
| |
| if (hdrsz % KWBOOT_XM_BLKSZ) { |
| size_t grow = KWBOOT_XM_BLKSZ - hdrsz % KWBOOT_XM_BLKSZ; |
| |
| if (is_secure) { |
| fprintf(stderr, "Cannot align image with secure header\n"); |
| goto err; |
| } |
| |
| kwboot_printv("Aligning image header to Xmodem block size\n"); |
| kwboot_img_grow_hdr(img, size, grow); |
| hdrsz += grow; |
| |
| /* |
| * kwbimage v1 contains header size field and for UART type it |
| * must be set to the aligned xmodem header size because BootROM |
| * rounds header size down to xmodem block size. |
| */ |
| if (kwbimage_version(img) == 1) { |
| hdr->headersz_msb = hdrsz >> 16; |
| hdr->headersz_lsb = cpu_to_le16(hdrsz & 0xffff); |
| } |
| } |
| |
| /* Header size and source address must be same for UART type due to A38x BootROM bug */ |
| if (hdrsz != le32_to_cpu(hdr->srcaddr)) { |
| if (is_secure) { |
| fprintf(stderr, "Cannot align image with secure header\n"); |
| goto err; |
| } |
| |
| kwboot_printv("Removing gap between image header and data\n"); |
| memmove(img + hdrsz, img + le32_to_cpu(hdr->srcaddr), le32_to_cpu(hdr->blocksize)); |
| hdr->srcaddr = cpu_to_le32(hdrsz); |
| } |
| |
| hdr->checksum = kwboot_hdr_csum8(hdr) - csum; |
| |
| *size = le32_to_cpu(hdr->srcaddr) + le32_to_cpu(hdr->blocksize); |
| return 0; |
| err: |
| errno = EINVAL; |
| return -1; |
| } |
| |
| static void |
| kwboot_usage(FILE *stream, char *progname) |
| { |
| fprintf(stream, |
| "Usage: %s [OPTIONS] [-b <image> | -D <image> | -b | -d ] [-B <baud> ] [-t] <TTY>\n", |
| progname); |
| fprintf(stream, "\n"); |
| fprintf(stream, |
| " -b <image>: boot <image> with preamble (Kirkwood, Avanta, Armada 370/XP/375/38x/39x)\n"); |
| fprintf(stream, |
| " -D <image>: boot <image> without preamble (Dove)\n"); |
| fprintf(stream, " -b: enter xmodem boot mode\n"); |
| fprintf(stream, " -d: enter console debug mode\n"); |
| fprintf(stream, " -a: use timings for Armada XP\n"); |
| fprintf(stream, " -s <resp-timeo>: use specific response-timeout\n"); |
| fprintf(stream, |
| " -o <block-timeo>: use specific xmodem block timeout\n"); |
| fprintf(stream, "\n"); |
| fprintf(stream, " -t: mini terminal\n"); |
| fprintf(stream, "\n"); |
| fprintf(stream, " -B <baud>: set baud rate\n"); |
| fprintf(stream, "\n"); |
| } |
| |
| int |
| main(int argc, char **argv) |
| { |
| const char *ttypath, *imgpath; |
| int rv, rc, tty, term; |
| int bootmsg; |
| int debugmsg; |
| void *img; |
| size_t size; |
| size_t after_img_rsv; |
| int baudrate; |
| int prev_optind; |
| int c; |
| |
| rv = 1; |
| tty = -1; |
| bootmsg = 0; |
| debugmsg = 0; |
| imgpath = NULL; |
| img = NULL; |
| term = 0; |
| size = 0; |
| after_img_rsv = KWBOOT_XM_BLKSZ; |
| baudrate = 115200; |
| |
| printf("kwboot version %s\n", PLAIN_VERSION); |
| |
| kwboot_verbose = isatty(STDOUT_FILENO); |
| |
| do { |
| prev_optind = optind; |
| c = getopt(argc, argv, "hbptaB:dD:q:s:o:"); |
| if (c < 0) |
| break; |
| |
| switch (c) { |
| case 'b': |
| if (imgpath || bootmsg || debugmsg) |
| goto usage; |
| bootmsg = 1; |
| if (prev_optind == optind) |
| goto usage; |
| /* Option -b could have optional argument which specify image path */ |
| if (optind < argc && argv[optind] && argv[optind][0] != '-') |
| imgpath = argv[optind++]; |
| break; |
| |
| case 'D': |
| if (imgpath || bootmsg || debugmsg) |
| goto usage; |
| bootmsg = 0; |
| imgpath = optarg; |
| break; |
| |
| case 'd': |
| if (imgpath || bootmsg || debugmsg) |
| goto usage; |
| debugmsg = 1; |
| break; |
| |
| case 'p': |
| /* nop, for backward compatibility */ |
| break; |
| |
| case 't': |
| term = 1; |
| break; |
| |
| case 'a': |
| msg_rsp_timeo = KWBOOT_MSG_RSP_TIMEO_AXP; |
| break; |
| |
| case 'q': |
| /* nop, for backward compatibility */ |
| break; |
| |
| case 's': |
| msg_rsp_timeo = atoi(optarg); |
| break; |
| |
| case 'o': |
| blk_rsp_timeo = atoi(optarg); |
| break; |
| |
| case 'B': |
| baudrate = atoi(optarg); |
| break; |
| |
| case 'h': |
| rv = 0; |
| default: |
| goto usage; |
| } |
| } while (1); |
| |
| if (!bootmsg && !term && !debugmsg && !imgpath) |
| goto usage; |
| |
| /* |
| * If there is no remaining argument but optional imgpath was parsed |
| * then it means that optional imgpath was eaten by getopt parser. |
| * Reassing imgpath to required ttypath argument. |
| */ |
| if (optind == argc && imgpath) { |
| ttypath = imgpath; |
| imgpath = NULL; |
| } else if (optind + 1 == argc) { |
| ttypath = argv[optind]; |
| } else { |
| goto usage; |
| } |
| |
| /* boot and debug message use baudrate 115200 */ |
| if (((bootmsg && !imgpath) || debugmsg) && baudrate != 115200) { |
| fprintf(stderr, "Baudrate other than 115200 cannot be used for this operation.\n"); |
| goto usage; |
| } |
| |
| tty = kwboot_open_tty(ttypath, baudrate); |
| if (tty < 0) { |
| perror(ttypath); |
| goto out; |
| } |
| |
| /* |
| * initial baudrate for image transfer is always 115200, |
| * the change to different baudrate is done only after the header is sent |
| */ |
| if (imgpath && baudrate != 115200) { |
| rc = kwboot_tty_change_baudrate(tty, 115200); |
| if (rc) { |
| perror(ttypath); |
| goto out; |
| } |
| } |
| |
| if (baudrate == 115200) |
| /* do not change baudrate during Xmodem to the same value */ |
| baudrate = 0; |
| else |
| /* ensure we have enough space for baudrate change code */ |
| after_img_rsv += sizeof(struct opt_hdr_v1) + 8 + 16 + |
| sizeof(kwboot_baud_code_binhdr_pre) + |
| sizeof(kwboot_baud_code) + |
| sizeof(kwboot_baud_code_binhdr_post) + |
| KWBOOT_XM_BLKSZ + |
| sizeof(kwboot_baud_code) + |
| sizeof(kwboot_baud_code_data_jump) + |
| sizeof(uint32_t) + |
| KWBOOT_XM_BLKSZ; |
| |
| if (imgpath) { |
| img = kwboot_read_image(imgpath, &size, after_img_rsv); |
| if (!img) { |
| perror(imgpath); |
| goto out; |
| } |
| |
| rc = kwboot_img_patch(img, &size, baudrate); |
| if (rc) { |
| fprintf(stderr, "%s: Invalid image.\n", imgpath); |
| goto out; |
| } |
| } |
| |
| if (debugmsg) { |
| rc = kwboot_debugmsg(tty); |
| if (rc) |
| goto out; |
| } else if (bootmsg) { |
| rc = kwboot_bootmsg(tty); |
| if (rc) |
| goto out; |
| } |
| |
| if (img) { |
| rc = kwboot_xmodem(tty, img, size, baudrate); |
| if (rc) { |
| perror("xmodem"); |
| goto out; |
| } |
| } |
| |
| if (term) { |
| rc = kwboot_terminal(tty); |
| if (rc && !(errno == EINTR)) { |
| perror("terminal"); |
| goto out; |
| } |
| } |
| |
| rv = 0; |
| out: |
| if (tty >= 0) |
| close(tty); |
| |
| if (img) |
| free(img); |
| |
| return rv; |
| |
| usage: |
| kwboot_usage(rv ? stderr : stdout, basename(argv[0])); |
| goto out; |
| } |