| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * sunxi DRAM controller initialization |
| * (C) Copyright 2012 Henrik Nordstrom <henrik@henriknordstrom.net> |
| * (C) Copyright 2013 Luke Kenneth Casson Leighton <lkcl@lkcl.net> |
| * |
| * Based on sun4i Linux kernel sources mach-sunxi/pm/standby/dram*.c |
| * and earlier U-Boot Allwinner A10 SPL work |
| * |
| * (C) Copyright 2007-2012 |
| * Allwinner Technology Co., Ltd. <www.allwinnertech.com> |
| * Berg Xing <bergxing@allwinnertech.com> |
| * Tom Cubie <tangliang@allwinnertech.com> |
| */ |
| |
| /* |
| * Unfortunately the only documentation we have on the sun7i DRAM |
| * controller is Allwinner boot0 + boot1 code, and that code uses |
| * magic numbers & shifts with no explanations. Hence this code is |
| * rather undocumented and full of magic. |
| */ |
| |
| #include <init.h> |
| #include <asm/io.h> |
| #include <asm/arch/clock.h> |
| #include <asm/arch/dram.h> |
| #include <asm/arch/timer.h> |
| #include <asm/arch/sys_proto.h> |
| #include <linux/delay.h> |
| |
| #define CPU_CFG_CHIP_VER(n) ((n) << 6) |
| #define CPU_CFG_CHIP_VER_MASK CPU_CFG_CHIP_VER(0x3) |
| #define CPU_CFG_CHIP_REV_A 0x0 |
| #define CPU_CFG_CHIP_REV_C1 0x1 |
| #define CPU_CFG_CHIP_REV_C2 0x2 |
| #define CPU_CFG_CHIP_REV_B 0x3 |
| |
| /* |
| * Wait up to 1s for mask to be clear in given reg. |
| */ |
| static inline void await_bits_clear(u32 *reg, u32 mask) |
| { |
| mctl_await_completion(reg, mask, 0); |
| } |
| |
| /* |
| * Wait up to 1s for mask to be set in given reg. |
| */ |
| static inline void await_bits_set(u32 *reg, u32 mask) |
| { |
| mctl_await_completion(reg, mask, mask); |
| } |
| |
| /* |
| * This performs the external DRAM reset by driving the RESET pin low and |
| * then high again. According to the DDR3 spec, the RESET pin needs to be |
| * kept low for at least 200 us. |
| */ |
| static void mctl_ddr3_reset(void) |
| { |
| struct sunxi_dram_reg *dram = |
| (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE; |
| |
| #ifdef CONFIG_MACH_SUN4I |
| struct sunxi_timer_reg *timer = |
| (struct sunxi_timer_reg *)SUNXI_TIMER_BASE; |
| u32 reg_val; |
| |
| writel(0, &timer->cpu_cfg); |
| reg_val = readl(&timer->cpu_cfg); |
| |
| if ((reg_val & CPU_CFG_CHIP_VER_MASK) != |
| CPU_CFG_CHIP_VER(CPU_CFG_CHIP_REV_A)) { |
| setbits_le32(&dram->mcr, DRAM_MCR_RESET); |
| udelay(200); |
| clrbits_le32(&dram->mcr, DRAM_MCR_RESET); |
| } else |
| #endif |
| { |
| clrbits_le32(&dram->mcr, DRAM_MCR_RESET); |
| udelay(200); |
| setbits_le32(&dram->mcr, DRAM_MCR_RESET); |
| } |
| /* After the RESET pin is de-asserted, the DDR3 spec requires to wait |
| * for additional 500 us before driving the CKE pin (Clock Enable) |
| * high. The duration of this delay can be configured in the SDR_IDCR |
| * (Initialization Delay Configuration Register) and applied |
| * automatically by the DRAM controller during the DDR3 initialization |
| * step. But SDR_IDCR has limited range on sun4i/sun5i hardware and |
| * can't provide sufficient delay at DRAM clock frequencies higher than |
| * 524 MHz (while Allwinner A13 supports DRAM clock frequency up to |
| * 533 MHz according to the datasheet). Additionally, there is no |
| * official documentation for the SDR_IDCR register anywhere, and |
| * there is always a chance that we are interpreting it wrong. |
| * Better be safe than sorry, so add an explicit delay here. */ |
| udelay(500); |
| } |
| |
| static void mctl_set_drive(void) |
| { |
| struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE; |
| |
| #ifdef CONFIG_MACH_SUN7I |
| clrsetbits_le32(&dram->mcr, DRAM_MCR_MODE_NORM(0x3) | (0x3 << 28), |
| #else |
| clrsetbits_le32(&dram->mcr, DRAM_MCR_MODE_NORM(0x3), |
| #endif |
| DRAM_MCR_MODE_EN(0x3) | |
| 0xffc); |
| } |
| |
| static void mctl_itm_disable(void) |
| { |
| struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE; |
| |
| clrsetbits_le32(&dram->ccr, DRAM_CCR_INIT, DRAM_CCR_ITM_OFF); |
| } |
| |
| static void mctl_itm_enable(void) |
| { |
| struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE; |
| |
| clrbits_le32(&dram->ccr, DRAM_CCR_ITM_OFF); |
| } |
| |
| static void mctl_itm_reset(void) |
| { |
| mctl_itm_disable(); |
| udelay(1); /* ITM reset needs a bit of delay */ |
| mctl_itm_enable(); |
| udelay(1); |
| } |
| |
| static void mctl_enable_dll0(u32 phase) |
| { |
| struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE; |
| |
| clrsetbits_le32(&dram->dllcr[0], 0x3f << 6, |
| ((phase >> 16) & 0x3f) << 6); |
| clrsetbits_le32(&dram->dllcr[0], DRAM_DLLCR_NRESET, DRAM_DLLCR_DISABLE); |
| udelay(2); |
| |
| clrbits_le32(&dram->dllcr[0], DRAM_DLLCR_NRESET | DRAM_DLLCR_DISABLE); |
| udelay(22); |
| |
| clrsetbits_le32(&dram->dllcr[0], DRAM_DLLCR_DISABLE, DRAM_DLLCR_NRESET); |
| udelay(22); |
| } |
| |
| /* Get the number of DDR byte lanes */ |
| static u32 mctl_get_number_of_lanes(void) |
| { |
| struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE; |
| if ((readl(&dram->dcr) & DRAM_DCR_BUS_WIDTH_MASK) == |
| DRAM_DCR_BUS_WIDTH(DRAM_DCR_BUS_WIDTH_32BIT)) |
| return 4; |
| else |
| return 2; |
| } |
| |
| /* |
| * Note: This differs from pm/standby in that it checks the bus width |
| */ |
| static void mctl_enable_dllx(u32 phase) |
| { |
| struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE; |
| u32 i, number_of_lanes; |
| |
| number_of_lanes = mctl_get_number_of_lanes(); |
| |
| for (i = 1; i <= number_of_lanes; i++) { |
| clrsetbits_le32(&dram->dllcr[i], 0xf << 14, |
| (phase & 0xf) << 14); |
| clrsetbits_le32(&dram->dllcr[i], DRAM_DLLCR_NRESET, |
| DRAM_DLLCR_DISABLE); |
| phase >>= 4; |
| } |
| udelay(2); |
| |
| for (i = 1; i <= number_of_lanes; i++) |
| clrbits_le32(&dram->dllcr[i], DRAM_DLLCR_NRESET | |
| DRAM_DLLCR_DISABLE); |
| udelay(22); |
| |
| for (i = 1; i <= number_of_lanes; i++) |
| clrsetbits_le32(&dram->dllcr[i], DRAM_DLLCR_DISABLE, |
| DRAM_DLLCR_NRESET); |
| udelay(22); |
| } |
| |
| static u32 hpcr_value[32] = { |
| #ifdef CONFIG_MACH_SUN5I |
| 0, 0, 0, 0, |
| 0, 0, 0, 0, |
| 0, 0, 0, 0, |
| 0, 0, 0, 0, |
| 0x1031, 0x1031, 0x0735, 0x1035, |
| 0x1035, 0x0731, 0x1031, 0, |
| 0x0301, 0x0301, 0x0301, 0x0301, |
| 0x0301, 0x0301, 0x0301, 0 |
| #endif |
| #ifdef CONFIG_MACH_SUN4I |
| 0x0301, 0x0301, 0x0301, 0x0301, |
| 0x0301, 0x0301, 0, 0, |
| 0, 0, 0, 0, |
| 0, 0, 0, 0, |
| 0x1031, 0x1031, 0x0735, 0x5031, |
| 0x1035, 0x0731, 0x1031, 0x0735, |
| 0x1035, 0x1031, 0x0731, 0x1035, |
| 0x1031, 0x0301, 0x0301, 0x0731 |
| #endif |
| #ifdef CONFIG_MACH_SUN7I |
| 0x0301, 0x0301, 0x0301, 0x0301, |
| 0x0301, 0x0301, 0x0301, 0x0301, |
| 0, 0, 0, 0, |
| 0, 0, 0, 0, |
| 0x1031, 0x1031, 0x0735, 0x1035, |
| 0x1035, 0x0731, 0x1031, 0x0735, |
| 0x1035, 0x1031, 0x0731, 0x1035, |
| 0x0001, 0x1031, 0, 0x1031 |
| /* last row differs from boot0 source table |
| * 0x1031, 0x0301, 0x0301, 0x0731 |
| * but boot0 code skips #28 and #30, and sets #29 and #31 to the |
| * value from #28 entry (0x1031) |
| */ |
| #endif |
| }; |
| |
| static void mctl_configure_hostport(void) |
| { |
| struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE; |
| u32 i; |
| |
| for (i = 0; i < 32; i++) |
| writel(hpcr_value[i], &dram->hpcr[i]); |
| } |
| |
| static void mctl_setup_dram_clock(u32 clk, u32 mbus_clk) |
| { |
| u32 reg_val; |
| struct sunxi_ccm_reg *ccm = (struct sunxi_ccm_reg *)SUNXI_CCM_BASE; |
| u32 pll5p_clk, pll6x_clk; |
| u32 pll5p_div, pll6x_div; |
| u32 pll5p_rate, pll6x_rate; |
| |
| /* setup DRAM PLL */ |
| reg_val = readl(&ccm->pll5_cfg); |
| reg_val &= ~CCM_PLL5_CTRL_M_MASK; /* set M to 0 (x1) */ |
| reg_val &= ~CCM_PLL5_CTRL_K_MASK; /* set K to 0 (x1) */ |
| reg_val &= ~CCM_PLL5_CTRL_N_MASK; /* set N to 0 (x0) */ |
| reg_val &= ~CCM_PLL5_CTRL_P_MASK; /* set P to 0 (x1) */ |
| #ifdef CONFIG_OLD_SUNXI_KERNEL_COMPAT |
| /* Old kernels are hardcoded to P=1 (divide by 2) */ |
| reg_val |= CCM_PLL5_CTRL_P(1); |
| #endif |
| if (clk >= 540 && clk < 552) { |
| /* dram = 540MHz */ |
| reg_val |= CCM_PLL5_CTRL_M(CCM_PLL5_CTRL_M_X(2)); |
| reg_val |= CCM_PLL5_CTRL_K(CCM_PLL5_CTRL_K_X(3)); |
| reg_val |= CCM_PLL5_CTRL_N(CCM_PLL5_CTRL_N_X(15)); |
| } else if (clk >= 512 && clk < 528) { |
| /* dram = 512MHz */ |
| reg_val |= CCM_PLL5_CTRL_M(CCM_PLL5_CTRL_M_X(3)); |
| reg_val |= CCM_PLL5_CTRL_K(CCM_PLL5_CTRL_K_X(4)); |
| reg_val |= CCM_PLL5_CTRL_N(CCM_PLL5_CTRL_N_X(16)); |
| } else if (clk >= 496 && clk < 504) { |
| /* dram = 496MHz */ |
| reg_val |= CCM_PLL5_CTRL_M(CCM_PLL5_CTRL_M_X(3)); |
| reg_val |= CCM_PLL5_CTRL_K(CCM_PLL5_CTRL_K_X(2)); |
| reg_val |= CCM_PLL5_CTRL_N(CCM_PLL5_CTRL_N_X(31)); |
| } else if (clk >= 468 && clk < 480) { |
| /* dram = 468MHz */ |
| reg_val |= CCM_PLL5_CTRL_M(CCM_PLL5_CTRL_M_X(2)); |
| reg_val |= CCM_PLL5_CTRL_K(CCM_PLL5_CTRL_K_X(3)); |
| reg_val |= CCM_PLL5_CTRL_N(CCM_PLL5_CTRL_N_X(13)); |
| } else if (clk >= 396 && clk < 408) { |
| /* dram = 396MHz */ |
| reg_val |= CCM_PLL5_CTRL_M(CCM_PLL5_CTRL_M_X(2)); |
| reg_val |= CCM_PLL5_CTRL_K(CCM_PLL5_CTRL_K_X(3)); |
| reg_val |= CCM_PLL5_CTRL_N(CCM_PLL5_CTRL_N_X(11)); |
| } else { |
| /* any other frequency that is a multiple of 24 */ |
| reg_val |= CCM_PLL5_CTRL_M(CCM_PLL5_CTRL_M_X(2)); |
| reg_val |= CCM_PLL5_CTRL_K(CCM_PLL5_CTRL_K_X(2)); |
| reg_val |= CCM_PLL5_CTRL_N(CCM_PLL5_CTRL_N_X(clk / 24)); |
| } |
| reg_val &= ~CCM_PLL5_CTRL_VCO_GAIN; /* PLL VCO Gain off */ |
| reg_val |= CCM_PLL5_CTRL_EN; /* PLL On */ |
| writel(reg_val, &ccm->pll5_cfg); |
| udelay(5500); |
| |
| setbits_le32(&ccm->pll5_cfg, CCM_PLL5_CTRL_DDR_CLK); |
| |
| #if defined(CONFIG_MACH_SUN4I) || defined(CONFIG_MACH_SUN7I) |
| /* reset GPS */ |
| clrbits_le32(&ccm->gps_clk_cfg, CCM_GPS_CTRL_RESET | CCM_GPS_CTRL_GATE); |
| setbits_le32(&ccm->ahb_gate0, CCM_AHB_GATE_GPS); |
| udelay(1); |
| clrbits_le32(&ccm->ahb_gate0, CCM_AHB_GATE_GPS); |
| #endif |
| |
| /* setup MBUS clock */ |
| if (!mbus_clk) |
| mbus_clk = 300; |
| |
| /* PLL5P and PLL6 are the potential clock sources for MBUS */ |
| pll6x_clk = clock_get_pll6() / 1000000; |
| #ifdef CONFIG_MACH_SUN7I |
| pll6x_clk *= 2; /* sun7i uses PLL6*2, sun5i uses just PLL6 */ |
| #endif |
| pll5p_clk = clock_get_pll5p() / 1000000; |
| pll6x_div = DIV_ROUND_UP(pll6x_clk, mbus_clk); |
| pll5p_div = DIV_ROUND_UP(pll5p_clk, mbus_clk); |
| pll6x_rate = pll6x_clk / pll6x_div; |
| pll5p_rate = pll5p_clk / pll5p_div; |
| |
| if (pll6x_div <= 16 && pll6x_rate > pll5p_rate) { |
| /* use PLL6 as the MBUS clock source */ |
| reg_val = CCM_MBUS_CTRL_GATE | |
| CCM_MBUS_CTRL_CLK_SRC(CCM_MBUS_CTRL_CLK_SRC_PLL6) | |
| CCM_MBUS_CTRL_N(CCM_MBUS_CTRL_N_X(1)) | |
| CCM_MBUS_CTRL_M(CCM_MBUS_CTRL_M_X(pll6x_div)); |
| } else if (pll5p_div <= 16) { |
| /* use PLL5P as the MBUS clock source */ |
| reg_val = CCM_MBUS_CTRL_GATE | |
| CCM_MBUS_CTRL_CLK_SRC(CCM_MBUS_CTRL_CLK_SRC_PLL5) | |
| CCM_MBUS_CTRL_N(CCM_MBUS_CTRL_N_X(1)) | |
| CCM_MBUS_CTRL_M(CCM_MBUS_CTRL_M_X(pll5p_div)); |
| } else { |
| panic("Bad mbus_clk\n"); |
| } |
| writel(reg_val, &ccm->mbus_clk_cfg); |
| |
| /* |
| * open DRAMC AHB & DLL register clock |
| * close it first |
| */ |
| #if defined(CONFIG_MACH_SUN5I) || defined(CONFIG_MACH_SUN7I) |
| clrbits_le32(&ccm->ahb_gate0, CCM_AHB_GATE_SDRAM | CCM_AHB_GATE_DLL); |
| #else |
| clrbits_le32(&ccm->ahb_gate0, CCM_AHB_GATE_SDRAM); |
| #endif |
| udelay(22); |
| |
| /* then open it */ |
| #if defined(CONFIG_MACH_SUN5I) || defined(CONFIG_MACH_SUN7I) |
| setbits_le32(&ccm->ahb_gate0, CCM_AHB_GATE_SDRAM | CCM_AHB_GATE_DLL); |
| #else |
| setbits_le32(&ccm->ahb_gate0, CCM_AHB_GATE_SDRAM); |
| #endif |
| udelay(22); |
| } |
| |
| /* |
| * The data from rslrX and rdgrX registers (X=rank) is stored |
| * in a single 32-bit value using the following format: |
| * bits [31:26] - DQS gating system latency for byte lane 3 |
| * bits [25:24] - DQS gating phase select for byte lane 3 |
| * bits [23:18] - DQS gating system latency for byte lane 2 |
| * bits [17:16] - DQS gating phase select for byte lane 2 |
| * bits [15:10] - DQS gating system latency for byte lane 1 |
| * bits [ 9:8 ] - DQS gating phase select for byte lane 1 |
| * bits [ 7:2 ] - DQS gating system latency for byte lane 0 |
| * bits [ 1:0 ] - DQS gating phase select for byte lane 0 |
| */ |
| static void mctl_set_dqs_gating_delay(int rank, u32 dqs_gating_delay) |
| { |
| struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE; |
| u32 lane, number_of_lanes = mctl_get_number_of_lanes(); |
| /* rank0 gating system latency (3 bits per lane: cycles) */ |
| u32 slr = readl(rank == 0 ? &dram->rslr0 : &dram->rslr1); |
| /* rank0 gating phase select (2 bits per lane: 90, 180, 270, 360) */ |
| u32 dgr = readl(rank == 0 ? &dram->rdgr0 : &dram->rdgr1); |
| for (lane = 0; lane < number_of_lanes; lane++) { |
| u32 tmp = dqs_gating_delay >> (lane * 8); |
| slr &= ~(7 << (lane * 3)); |
| slr |= ((tmp >> 2) & 7) << (lane * 3); |
| dgr &= ~(3 << (lane * 2)); |
| dgr |= (tmp & 3) << (lane * 2); |
| } |
| writel(slr, rank == 0 ? &dram->rslr0 : &dram->rslr1); |
| writel(dgr, rank == 0 ? &dram->rdgr0 : &dram->rdgr1); |
| } |
| |
| static int dramc_scan_readpipe(void) |
| { |
| struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE; |
| u32 reg_val; |
| |
| /* data training trigger */ |
| clrbits_le32(&dram->csr, DRAM_CSR_FAILED); |
| setbits_le32(&dram->ccr, DRAM_CCR_DATA_TRAINING); |
| |
| /* check whether data training process has completed */ |
| await_bits_clear(&dram->ccr, DRAM_CCR_DATA_TRAINING); |
| |
| /* check data training result */ |
| reg_val = readl(&dram->csr); |
| if (reg_val & DRAM_CSR_FAILED) |
| return -1; |
| |
| return 0; |
| } |
| |
| static void dramc_clock_output_en(u32 on) |
| { |
| #if defined(CONFIG_MACH_SUN5I) || defined(CONFIG_MACH_SUN7I) |
| struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE; |
| |
| if (on) |
| setbits_le32(&dram->mcr, DRAM_MCR_DCLK_OUT); |
| else |
| clrbits_le32(&dram->mcr, DRAM_MCR_DCLK_OUT); |
| #endif |
| #ifdef CONFIG_MACH_SUN4I |
| struct sunxi_ccm_reg *ccm = (struct sunxi_ccm_reg *)SUNXI_CCM_BASE; |
| if (on) |
| setbits_le32(&ccm->dram_clk_gate, CCM_DRAM_CTRL_DCLK_OUT); |
| else |
| clrbits_le32(&ccm->dram_clk_gate, CCM_DRAM_CTRL_DCLK_OUT); |
| #endif |
| } |
| |
| /* tRFC in nanoseconds for different densities (from the DDR3 spec) */ |
| static const u16 tRFC_DDR3_table[6] = { |
| /* 256Mb 512Mb 1Gb 2Gb 4Gb 8Gb */ |
| 90, 90, 110, 160, 300, 350 |
| }; |
| |
| static void dramc_set_autorefresh_cycle(u32 clk, u32 density) |
| { |
| struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE; |
| u32 tRFC, tREFI; |
| |
| tRFC = (tRFC_DDR3_table[density] * clk + 999) / 1000; |
| tREFI = (7987 * clk) >> 10; /* <= 7.8us */ |
| |
| writel(DRAM_DRR_TREFI(tREFI) | DRAM_DRR_TRFC(tRFC), &dram->drr); |
| } |
| |
| /* Calculate the value for A11, A10, A9 bits in MR0 (write recovery) */ |
| static u32 ddr3_write_recovery(u32 clk) |
| { |
| u32 twr_ns = 15; /* DDR3 spec says that it is 15ns for all speed bins */ |
| u32 twr_ck = (twr_ns * clk + 999) / 1000; |
| if (twr_ck < 5) |
| return 1; |
| else if (twr_ck <= 8) |
| return twr_ck - 4; |
| else if (twr_ck <= 10) |
| return 5; |
| else |
| return 6; |
| } |
| |
| /* |
| * If the dram->ppwrsctl (SDR_DPCR) register has the lowest bit set to 1, this |
| * means that DRAM is currently in self-refresh mode and retaining the old |
| * data. Since we have no idea what to do in this situation yet, just set this |
| * register to 0 and initialize DRAM in the same way as on any normal reboot |
| * (discarding whatever was stored there). |
| * |
| * Note: on sun7i hardware, the highest 16 bits need to be set to 0x1651 magic |
| * value for this write operation to have any effect. On sun5i hadware this |
| * magic value is not necessary. And on sun4i hardware the writes to this |
| * register seem to have no effect at all. |
| */ |
| static void mctl_disable_power_save(void) |
| { |
| struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE; |
| writel(0x16510000, &dram->ppwrsctl); |
| } |
| |
| /* |
| * After the DRAM is powered up or reset, the DDR3 spec requires to wait at |
| * least 500 us before driving the CKE pin (Clock Enable) high. The dram->idct |
| * (SDR_IDCR) register appears to configure this delay, which gets applied |
| * right at the time when the DRAM initialization is activated in the |
| * 'mctl_ddr3_initialize' function. |
| */ |
| static void mctl_set_cke_delay(void) |
| { |
| struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE; |
| |
| /* The CKE delay is represented in DRAM clock cycles, multiplied by N |
| * (where N=2 for sun4i/sun5i and N=3 for sun7i). Here it is set to |
| * the maximum possible value 0x1ffff, just like in the Allwinner's |
| * boot0 bootloader. The resulting delay value is somewhere between |
| * ~0.4 ms (sun5i with 648 MHz DRAM clock speed) and ~1.1 ms (sun7i |
| * with 360 MHz DRAM clock speed). */ |
| setbits_le32(&dram->idcr, 0x1ffff); |
| } |
| |
| /* |
| * This triggers the DRAM initialization. It performs sending the mode registers |
| * to the DRAM among other things. Very likely the ZQCL command is also getting |
| * executed (to do the initial impedance calibration on the DRAM side of the |
| * wire). The memory controller and the PHY must be already configured before |
| * calling this function. |
| */ |
| static void mctl_ddr3_initialize(void) |
| { |
| struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE; |
| setbits_le32(&dram->ccr, DRAM_CCR_INIT); |
| await_bits_clear(&dram->ccr, DRAM_CCR_INIT); |
| } |
| |
| /* |
| * Perform impedance calibration on the DRAM controller side of the wire. |
| */ |
| static void mctl_set_impedance(u32 zq, bool odt_en) |
| { |
| struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE; |
| u32 reg_val; |
| u32 zprog = zq & 0xFF, zdata = (zq >> 8) & 0xFFFFF; |
| |
| #ifndef CONFIG_MACH_SUN7I |
| /* Appears that some kind of automatically initiated default |
| * ZQ calibration is already in progress at this point on sun4i/sun5i |
| * hardware, but not on sun7i. So it is reasonable to wait for its |
| * completion before doing anything else. */ |
| await_bits_set(&dram->zqsr, DRAM_ZQSR_ZDONE); |
| #endif |
| |
| /* ZQ calibration is not really useful unless ODT is enabled */ |
| if (!odt_en) |
| return; |
| |
| #ifdef CONFIG_MACH_SUN7I |
| /* Enabling ODT in SDR_IOCR on sun7i hardware results in a deadlock |
| * unless bit 24 is set in SDR_ZQCR1. Not much is known about the |
| * SDR_ZQCR1 register, but there are hints indicating that it might |
| * be related to periodic impedance re-calibration. This particular |
| * magic value is borrowed from the Allwinner boot0 bootloader, and |
| * using it helps to avoid troubles */ |
| writel((1 << 24) | (1 << 1), &dram->zqcr1); |
| #endif |
| |
| /* Needed at least for sun5i, because it does not self clear there */ |
| clrbits_le32(&dram->zqcr0, DRAM_ZQCR0_ZCAL); |
| |
| if (zdata) { |
| /* Set the user supplied impedance data */ |
| reg_val = DRAM_ZQCR0_ZDEN | zdata; |
| writel(reg_val, &dram->zqcr0); |
| /* no need to wait, this takes effect immediately */ |
| } else { |
| /* Do the calibration using the external resistor */ |
| reg_val = DRAM_ZQCR0_ZCAL | DRAM_ZQCR0_IMP_DIV(zprog); |
| writel(reg_val, &dram->zqcr0); |
| /* Wait for the new impedance configuration to settle */ |
| await_bits_set(&dram->zqsr, DRAM_ZQSR_ZDONE); |
| } |
| |
| /* Needed at least for sun5i, because it does not self clear there */ |
| clrbits_le32(&dram->zqcr0, DRAM_ZQCR0_ZCAL); |
| |
| /* Set I/O configure register */ |
| writel(DRAM_IOCR_ODT_EN, &dram->iocr); |
| } |
| |
| static unsigned long dramc_init_helper(struct dram_para *para) |
| { |
| struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE; |
| u32 reg_val; |
| u32 density; |
| int ret_val; |
| |
| /* |
| * only single rank DDR3 is supported by this code even though the |
| * hardware can theoretically support DDR2 and up to two ranks |
| */ |
| if (para->type != DRAM_MEMORY_TYPE_DDR3 || para->rank_num != 1) |
| return 0; |
| |
| /* setup DRAM relative clock */ |
| mctl_setup_dram_clock(para->clock, para->mbus_clock); |
| |
| /* Disable any pad power save control */ |
| mctl_disable_power_save(); |
| |
| mctl_set_drive(); |
| |
| /* dram clock off */ |
| dramc_clock_output_en(0); |
| |
| #ifdef CONFIG_MACH_SUN4I |
| /* select dram controller 1 */ |
| writel(DRAM_CSEL_MAGIC, &dram->csel); |
| #endif |
| |
| mctl_itm_disable(); |
| mctl_enable_dll0(para->tpr3); |
| |
| /* configure external DRAM */ |
| reg_val = DRAM_DCR_TYPE_DDR3; |
| reg_val |= DRAM_DCR_IO_WIDTH(para->io_width >> 3); |
| |
| if (para->density == 256) |
| density = DRAM_DCR_CHIP_DENSITY_256M; |
| else if (para->density == 512) |
| density = DRAM_DCR_CHIP_DENSITY_512M; |
| else if (para->density == 1024) |
| density = DRAM_DCR_CHIP_DENSITY_1024M; |
| else if (para->density == 2048) |
| density = DRAM_DCR_CHIP_DENSITY_2048M; |
| else if (para->density == 4096) |
| density = DRAM_DCR_CHIP_DENSITY_4096M; |
| else if (para->density == 8192) |
| density = DRAM_DCR_CHIP_DENSITY_8192M; |
| else |
| density = DRAM_DCR_CHIP_DENSITY_256M; |
| |
| reg_val |= DRAM_DCR_CHIP_DENSITY(density); |
| reg_val |= DRAM_DCR_BUS_WIDTH((para->bus_width >> 3) - 1); |
| reg_val |= DRAM_DCR_RANK_SEL(para->rank_num - 1); |
| reg_val |= DRAM_DCR_CMD_RANK_ALL; |
| reg_val |= DRAM_DCR_MODE(DRAM_DCR_MODE_INTERLEAVE); |
| writel(reg_val, &dram->dcr); |
| |
| dramc_clock_output_en(1); |
| |
| mctl_set_impedance(para->zq, para->odt_en); |
| |
| mctl_set_cke_delay(); |
| |
| mctl_ddr3_reset(); |
| |
| udelay(1); |
| |
| await_bits_clear(&dram->ccr, DRAM_CCR_INIT); |
| |
| mctl_enable_dllx(para->tpr3); |
| |
| /* set refresh period */ |
| dramc_set_autorefresh_cycle(para->clock, density); |
| |
| /* set timing parameters */ |
| writel(para->tpr0, &dram->tpr0); |
| writel(para->tpr1, &dram->tpr1); |
| writel(para->tpr2, &dram->tpr2); |
| |
| reg_val = DRAM_MR_BURST_LENGTH(0x0); |
| #if (defined(CONFIG_MACH_SUN5I) || defined(CONFIG_MACH_SUN7I)) |
| reg_val |= DRAM_MR_POWER_DOWN; |
| #endif |
| reg_val |= DRAM_MR_CAS_LAT(para->cas - 4); |
| reg_val |= DRAM_MR_WRITE_RECOVERY(ddr3_write_recovery(para->clock)); |
| writel(reg_val, &dram->mr); |
| |
| writel(para->emr1, &dram->emr); |
| writel(para->emr2, &dram->emr2); |
| writel(para->emr3, &dram->emr3); |
| |
| /* disable drift compensation and set passive DQS window mode */ |
| clrsetbits_le32(&dram->ccr, DRAM_CCR_DQS_DRIFT_COMP, DRAM_CCR_DQS_GATE); |
| |
| #ifdef CONFIG_MACH_SUN7I |
| /* Command rate timing mode 2T & 1T */ |
| if (para->tpr4 & 0x1) |
| setbits_le32(&dram->ccr, DRAM_CCR_COMMAND_RATE_1T); |
| #endif |
| /* initialize external DRAM */ |
| mctl_ddr3_initialize(); |
| |
| /* scan read pipe value */ |
| mctl_itm_enable(); |
| |
| /* Hardware DQS gate training */ |
| ret_val = dramc_scan_readpipe(); |
| |
| if (ret_val < 0) |
| return 0; |
| |
| /* allow to override the DQS training results with a custom delay */ |
| if (para->dqs_gating_delay) |
| mctl_set_dqs_gating_delay(0, para->dqs_gating_delay); |
| |
| /* set the DQS gating window type */ |
| if (para->active_windowing) |
| clrbits_le32(&dram->ccr, DRAM_CCR_DQS_GATE); |
| else |
| setbits_le32(&dram->ccr, DRAM_CCR_DQS_GATE); |
| |
| mctl_itm_reset(); |
| |
| /* configure all host port */ |
| mctl_configure_hostport(); |
| |
| return get_ram_size((long *)PHYS_SDRAM_0, PHYS_SDRAM_0_SIZE); |
| } |
| |
| unsigned long dramc_init(struct dram_para *para) |
| { |
| unsigned long dram_size, actual_density; |
| |
| /* If the dram configuration is not provided, use a default */ |
| if (!para) |
| return 0; |
| |
| /* if everything is known, then autodetection is not necessary */ |
| if (para->io_width && para->bus_width && para->density) |
| return dramc_init_helper(para); |
| |
| /* try to autodetect the DRAM bus width and density */ |
| para->io_width = 16; |
| para->bus_width = 32; |
| #if defined(CONFIG_MACH_SUN4I) || defined(CONFIG_MACH_SUN5I) |
| /* only A0-A14 address lines on A10/A13, limiting max density to 4096 */ |
| para->density = 4096; |
| #else |
| /* all A0-A15 address lines on A20, which allow density 8192 */ |
| para->density = 8192; |
| #endif |
| |
| dram_size = dramc_init_helper(para); |
| if (!dram_size) { |
| /* if 32-bit bus width failed, try 16-bit bus width instead */ |
| para->bus_width = 16; |
| dram_size = dramc_init_helper(para); |
| if (!dram_size) { |
| /* if 16-bit bus width also failed, then bail out */ |
| return dram_size; |
| } |
| } |
| |
| /* check if we need to adjust the density */ |
| actual_density = (dram_size >> 17) * para->io_width / para->bus_width; |
| |
| if (actual_density != para->density) { |
| /* update the density and re-initialize DRAM again */ |
| para->density = actual_density; |
| dram_size = dramc_init_helper(para); |
| } |
| |
| return dram_size; |
| } |