| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * (C) Copyright 2018 Simon Goldschmidt |
| */ |
| |
| #include <common.h> |
| #include <dm.h> |
| #include <lmb.h> |
| #include <log.h> |
| #include <malloc.h> |
| #include <dm/test.h> |
| #include <test/lib.h> |
| #include <test/test.h> |
| #include <test/ut.h> |
| |
| static inline bool lmb_is_nomap(struct lmb_property *m) |
| { |
| return m->flags & LMB_NOMAP; |
| } |
| |
| static int check_lmb(struct unit_test_state *uts, struct lmb *lmb, |
| phys_addr_t ram_base, phys_size_t ram_size, |
| unsigned long num_reserved, |
| phys_addr_t base1, phys_size_t size1, |
| phys_addr_t base2, phys_size_t size2, |
| phys_addr_t base3, phys_size_t size3) |
| { |
| if (ram_size) { |
| ut_asserteq(lmb->memory.cnt, 1); |
| ut_asserteq(lmb->memory.region[0].base, ram_base); |
| ut_asserteq(lmb->memory.region[0].size, ram_size); |
| } |
| |
| ut_asserteq(lmb->reserved.cnt, num_reserved); |
| if (num_reserved > 0) { |
| ut_asserteq(lmb->reserved.region[0].base, base1); |
| ut_asserteq(lmb->reserved.region[0].size, size1); |
| } |
| if (num_reserved > 1) { |
| ut_asserteq(lmb->reserved.region[1].base, base2); |
| ut_asserteq(lmb->reserved.region[1].size, size2); |
| } |
| if (num_reserved > 2) { |
| ut_asserteq(lmb->reserved.region[2].base, base3); |
| ut_asserteq(lmb->reserved.region[2].size, size3); |
| } |
| return 0; |
| } |
| |
| #define ASSERT_LMB(lmb, ram_base, ram_size, num_reserved, base1, size1, \ |
| base2, size2, base3, size3) \ |
| ut_assert(!check_lmb(uts, lmb, ram_base, ram_size, \ |
| num_reserved, base1, size1, base2, size2, base3, \ |
| size3)) |
| |
| /* |
| * Test helper function that reserves 64 KiB somewhere in the simulated RAM and |
| * then does some alloc + free tests. |
| */ |
| static int test_multi_alloc(struct unit_test_state *uts, const phys_addr_t ram, |
| const phys_size_t ram_size, const phys_addr_t ram0, |
| const phys_size_t ram0_size, |
| const phys_addr_t alloc_64k_addr) |
| { |
| const phys_addr_t ram_end = ram + ram_size; |
| const phys_addr_t alloc_64k_end = alloc_64k_addr + 0x10000; |
| |
| struct lmb lmb; |
| long ret; |
| phys_addr_t a, a2, b, b2, c, d; |
| |
| /* check for overflow */ |
| ut_assert(ram_end == 0 || ram_end > ram); |
| ut_assert(alloc_64k_end > alloc_64k_addr); |
| /* check input addresses + size */ |
| ut_assert(alloc_64k_addr >= ram + 8); |
| ut_assert(alloc_64k_end <= ram_end - 8); |
| |
| lmb_init(&lmb); |
| |
| if (ram0_size) { |
| ret = lmb_add(&lmb, ram0, ram0_size); |
| ut_asserteq(ret, 0); |
| } |
| |
| ret = lmb_add(&lmb, ram, ram_size); |
| ut_asserteq(ret, 0); |
| |
| if (ram0_size) { |
| ut_asserteq(lmb.memory.cnt, 2); |
| ut_asserteq(lmb.memory.region[0].base, ram0); |
| ut_asserteq(lmb.memory.region[0].size, ram0_size); |
| ut_asserteq(lmb.memory.region[1].base, ram); |
| ut_asserteq(lmb.memory.region[1].size, ram_size); |
| } else { |
| ut_asserteq(lmb.memory.cnt, 1); |
| ut_asserteq(lmb.memory.region[0].base, ram); |
| ut_asserteq(lmb.memory.region[0].size, ram_size); |
| } |
| |
| /* reserve 64KiB somewhere */ |
| ret = lmb_reserve(&lmb, alloc_64k_addr, 0x10000); |
| ut_asserteq(ret, 0); |
| ASSERT_LMB(&lmb, 0, 0, 1, alloc_64k_addr, 0x10000, |
| 0, 0, 0, 0); |
| |
| /* allocate somewhere, should be at the end of RAM */ |
| a = lmb_alloc(&lmb, 4, 1); |
| ut_asserteq(a, ram_end - 4); |
| ASSERT_LMB(&lmb, 0, 0, 2, alloc_64k_addr, 0x10000, |
| ram_end - 4, 4, 0, 0); |
| /* alloc below end of reserved region -> below reserved region */ |
| b = lmb_alloc_base(&lmb, 4, 1, alloc_64k_end); |
| ut_asserteq(b, alloc_64k_addr - 4); |
| ASSERT_LMB(&lmb, 0, 0, 2, |
| alloc_64k_addr - 4, 0x10000 + 4, ram_end - 4, 4, 0, 0); |
| |
| /* 2nd time */ |
| c = lmb_alloc(&lmb, 4, 1); |
| ut_asserteq(c, ram_end - 8); |
| ASSERT_LMB(&lmb, 0, 0, 2, |
| alloc_64k_addr - 4, 0x10000 + 4, ram_end - 8, 8, 0, 0); |
| d = lmb_alloc_base(&lmb, 4, 1, alloc_64k_end); |
| ut_asserteq(d, alloc_64k_addr - 8); |
| ASSERT_LMB(&lmb, 0, 0, 2, |
| alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 8, 0, 0); |
| |
| ret = lmb_free(&lmb, a, 4); |
| ut_asserteq(ret, 0); |
| ASSERT_LMB(&lmb, 0, 0, 2, |
| alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 4, 0, 0); |
| /* allocate again to ensure we get the same address */ |
| a2 = lmb_alloc(&lmb, 4, 1); |
| ut_asserteq(a, a2); |
| ASSERT_LMB(&lmb, 0, 0, 2, |
| alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 8, 0, 0); |
| ret = lmb_free(&lmb, a2, 4); |
| ut_asserteq(ret, 0); |
| ASSERT_LMB(&lmb, 0, 0, 2, |
| alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 4, 0, 0); |
| |
| ret = lmb_free(&lmb, b, 4); |
| ut_asserteq(ret, 0); |
| ASSERT_LMB(&lmb, 0, 0, 3, |
| alloc_64k_addr - 8, 4, alloc_64k_addr, 0x10000, |
| ram_end - 8, 4); |
| /* allocate again to ensure we get the same address */ |
| b2 = lmb_alloc_base(&lmb, 4, 1, alloc_64k_end); |
| ut_asserteq(b, b2); |
| ASSERT_LMB(&lmb, 0, 0, 2, |
| alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 4, 0, 0); |
| ret = lmb_free(&lmb, b2, 4); |
| ut_asserteq(ret, 0); |
| ASSERT_LMB(&lmb, 0, 0, 3, |
| alloc_64k_addr - 8, 4, alloc_64k_addr, 0x10000, |
| ram_end - 8, 4); |
| |
| ret = lmb_free(&lmb, c, 4); |
| ut_asserteq(ret, 0); |
| ASSERT_LMB(&lmb, 0, 0, 2, |
| alloc_64k_addr - 8, 4, alloc_64k_addr, 0x10000, 0, 0); |
| ret = lmb_free(&lmb, d, 4); |
| ut_asserteq(ret, 0); |
| ASSERT_LMB(&lmb, 0, 0, 1, alloc_64k_addr, 0x10000, |
| 0, 0, 0, 0); |
| |
| if (ram0_size) { |
| ut_asserteq(lmb.memory.cnt, 2); |
| ut_asserteq(lmb.memory.region[0].base, ram0); |
| ut_asserteq(lmb.memory.region[0].size, ram0_size); |
| ut_asserteq(lmb.memory.region[1].base, ram); |
| ut_asserteq(lmb.memory.region[1].size, ram_size); |
| } else { |
| ut_asserteq(lmb.memory.cnt, 1); |
| ut_asserteq(lmb.memory.region[0].base, ram); |
| ut_asserteq(lmb.memory.region[0].size, ram_size); |
| } |
| |
| return 0; |
| } |
| |
| static int test_multi_alloc_512mb(struct unit_test_state *uts, |
| const phys_addr_t ram) |
| { |
| return test_multi_alloc(uts, ram, 0x20000000, 0, 0, ram + 0x10000000); |
| } |
| |
| static int test_multi_alloc_512mb_x2(struct unit_test_state *uts, |
| const phys_addr_t ram, |
| const phys_addr_t ram0) |
| { |
| return test_multi_alloc(uts, ram, 0x20000000, ram0, 0x20000000, |
| ram + 0x10000000); |
| } |
| |
| /* Create a memory region with one reserved region and allocate */ |
| static int lib_test_lmb_simple(struct unit_test_state *uts) |
| { |
| int ret; |
| |
| /* simulate 512 MiB RAM beginning at 1GiB */ |
| ret = test_multi_alloc_512mb(uts, 0x40000000); |
| if (ret) |
| return ret; |
| |
| /* simulate 512 MiB RAM beginning at 1.5GiB */ |
| return test_multi_alloc_512mb(uts, 0xE0000000); |
| } |
| LIB_TEST(lib_test_lmb_simple, 0); |
| |
| /* Create two memory regions with one reserved region and allocate */ |
| static int lib_test_lmb_simple_x2(struct unit_test_state *uts) |
| { |
| int ret; |
| |
| /* simulate 512 MiB RAM beginning at 2GiB and 1 GiB */ |
| ret = test_multi_alloc_512mb_x2(uts, 0x80000000, 0x40000000); |
| if (ret) |
| return ret; |
| |
| /* simulate 512 MiB RAM beginning at 3.5GiB and 1 GiB */ |
| return test_multi_alloc_512mb_x2(uts, 0xE0000000, 0x40000000); |
| } |
| LIB_TEST(lib_test_lmb_simple_x2, 0); |
| |
| /* Simulate 512 MiB RAM, allocate some blocks that fit/don't fit */ |
| static int test_bigblock(struct unit_test_state *uts, const phys_addr_t ram) |
| { |
| const phys_size_t ram_size = 0x20000000; |
| const phys_size_t big_block_size = 0x10000000; |
| const phys_addr_t ram_end = ram + ram_size; |
| const phys_addr_t alloc_64k_addr = ram + 0x10000000; |
| struct lmb lmb; |
| long ret; |
| phys_addr_t a, b; |
| |
| /* check for overflow */ |
| ut_assert(ram_end == 0 || ram_end > ram); |
| |
| lmb_init(&lmb); |
| |
| ret = lmb_add(&lmb, ram, ram_size); |
| ut_asserteq(ret, 0); |
| |
| /* reserve 64KiB in the middle of RAM */ |
| ret = lmb_reserve(&lmb, alloc_64k_addr, 0x10000); |
| ut_asserteq(ret, 0); |
| ASSERT_LMB(&lmb, ram, ram_size, 1, alloc_64k_addr, 0x10000, |
| 0, 0, 0, 0); |
| |
| /* allocate a big block, should be below reserved */ |
| a = lmb_alloc(&lmb, big_block_size, 1); |
| ut_asserteq(a, ram); |
| ASSERT_LMB(&lmb, ram, ram_size, 1, a, |
| big_block_size + 0x10000, 0, 0, 0, 0); |
| /* allocate 2nd big block */ |
| /* This should fail, printing an error */ |
| b = lmb_alloc(&lmb, big_block_size, 1); |
| ut_asserteq(b, 0); |
| ASSERT_LMB(&lmb, ram, ram_size, 1, a, |
| big_block_size + 0x10000, 0, 0, 0, 0); |
| |
| ret = lmb_free(&lmb, a, big_block_size); |
| ut_asserteq(ret, 0); |
| ASSERT_LMB(&lmb, ram, ram_size, 1, alloc_64k_addr, 0x10000, |
| 0, 0, 0, 0); |
| |
| /* allocate too big block */ |
| /* This should fail, printing an error */ |
| a = lmb_alloc(&lmb, ram_size, 1); |
| ut_asserteq(a, 0); |
| ASSERT_LMB(&lmb, ram, ram_size, 1, alloc_64k_addr, 0x10000, |
| 0, 0, 0, 0); |
| |
| return 0; |
| } |
| |
| static int lib_test_lmb_big(struct unit_test_state *uts) |
| { |
| int ret; |
| |
| /* simulate 512 MiB RAM beginning at 1GiB */ |
| ret = test_bigblock(uts, 0x40000000); |
| if (ret) |
| return ret; |
| |
| /* simulate 512 MiB RAM beginning at 1.5GiB */ |
| return test_bigblock(uts, 0xE0000000); |
| } |
| LIB_TEST(lib_test_lmb_big, 0); |
| |
| /* Simulate 512 MiB RAM, allocate a block without previous reservation */ |
| static int test_noreserved(struct unit_test_state *uts, const phys_addr_t ram, |
| const phys_addr_t alloc_size, const ulong align) |
| { |
| const phys_size_t ram_size = 0x20000000; |
| const phys_addr_t ram_end = ram + ram_size; |
| struct lmb lmb; |
| long ret; |
| phys_addr_t a, b; |
| const phys_addr_t alloc_size_aligned = (alloc_size + align - 1) & |
| ~(align - 1); |
| |
| /* check for overflow */ |
| ut_assert(ram_end == 0 || ram_end > ram); |
| |
| lmb_init(&lmb); |
| |
| ret = lmb_add(&lmb, ram, ram_size); |
| ut_asserteq(ret, 0); |
| ASSERT_LMB(&lmb, ram, ram_size, 0, 0, 0, 0, 0, 0, 0); |
| |
| /* allocate a block */ |
| a = lmb_alloc(&lmb, alloc_size, align); |
| ut_assert(a != 0); |
| ASSERT_LMB(&lmb, ram, ram_size, 1, ram + ram_size - alloc_size_aligned, |
| alloc_size, 0, 0, 0, 0); |
| /* allocate another block */ |
| b = lmb_alloc(&lmb, alloc_size, align); |
| ut_assert(b != 0); |
| if (alloc_size == alloc_size_aligned) { |
| ASSERT_LMB(&lmb, ram, ram_size, 1, ram + ram_size - |
| (alloc_size_aligned * 2), alloc_size * 2, 0, 0, 0, |
| 0); |
| } else { |
| ASSERT_LMB(&lmb, ram, ram_size, 2, ram + ram_size - |
| (alloc_size_aligned * 2), alloc_size, ram + ram_size |
| - alloc_size_aligned, alloc_size, 0, 0); |
| } |
| /* and free them */ |
| ret = lmb_free(&lmb, b, alloc_size); |
| ut_asserteq(ret, 0); |
| ASSERT_LMB(&lmb, ram, ram_size, 1, ram + ram_size - alloc_size_aligned, |
| alloc_size, 0, 0, 0, 0); |
| ret = lmb_free(&lmb, a, alloc_size); |
| ut_asserteq(ret, 0); |
| ASSERT_LMB(&lmb, ram, ram_size, 0, 0, 0, 0, 0, 0, 0); |
| |
| /* allocate a block with base*/ |
| b = lmb_alloc_base(&lmb, alloc_size, align, ram_end); |
| ut_assert(a == b); |
| ASSERT_LMB(&lmb, ram, ram_size, 1, ram + ram_size - alloc_size_aligned, |
| alloc_size, 0, 0, 0, 0); |
| /* and free it */ |
| ret = lmb_free(&lmb, b, alloc_size); |
| ut_asserteq(ret, 0); |
| ASSERT_LMB(&lmb, ram, ram_size, 0, 0, 0, 0, 0, 0, 0); |
| |
| return 0; |
| } |
| |
| static int lib_test_lmb_noreserved(struct unit_test_state *uts) |
| { |
| int ret; |
| |
| /* simulate 512 MiB RAM beginning at 1GiB */ |
| ret = test_noreserved(uts, 0x40000000, 4, 1); |
| if (ret) |
| return ret; |
| |
| /* simulate 512 MiB RAM beginning at 1.5GiB */ |
| return test_noreserved(uts, 0xE0000000, 4, 1); |
| } |
| |
| LIB_TEST(lib_test_lmb_noreserved, 0); |
| |
| static int lib_test_lmb_unaligned_size(struct unit_test_state *uts) |
| { |
| int ret; |
| |
| /* simulate 512 MiB RAM beginning at 1GiB */ |
| ret = test_noreserved(uts, 0x40000000, 5, 8); |
| if (ret) |
| return ret; |
| |
| /* simulate 512 MiB RAM beginning at 1.5GiB */ |
| return test_noreserved(uts, 0xE0000000, 5, 8); |
| } |
| LIB_TEST(lib_test_lmb_unaligned_size, 0); |
| |
| /* |
| * Simulate a RAM that starts at 0 and allocate down to address 0, which must |
| * fail as '0' means failure for the lmb_alloc functions. |
| */ |
| static int lib_test_lmb_at_0(struct unit_test_state *uts) |
| { |
| const phys_addr_t ram = 0; |
| const phys_size_t ram_size = 0x20000000; |
| struct lmb lmb; |
| long ret; |
| phys_addr_t a, b; |
| |
| lmb_init(&lmb); |
| |
| ret = lmb_add(&lmb, ram, ram_size); |
| ut_asserteq(ret, 0); |
| |
| /* allocate nearly everything */ |
| a = lmb_alloc(&lmb, ram_size - 4, 1); |
| ut_asserteq(a, ram + 4); |
| ASSERT_LMB(&lmb, ram, ram_size, 1, a, ram_size - 4, |
| 0, 0, 0, 0); |
| /* allocate the rest */ |
| /* This should fail as the allocated address would be 0 */ |
| b = lmb_alloc(&lmb, 4, 1); |
| ut_asserteq(b, 0); |
| /* check that this was an error by checking lmb */ |
| ASSERT_LMB(&lmb, ram, ram_size, 1, a, ram_size - 4, |
| 0, 0, 0, 0); |
| /* check that this was an error by freeing b */ |
| ret = lmb_free(&lmb, b, 4); |
| ut_asserteq(ret, -1); |
| ASSERT_LMB(&lmb, ram, ram_size, 1, a, ram_size - 4, |
| 0, 0, 0, 0); |
| |
| ret = lmb_free(&lmb, a, ram_size - 4); |
| ut_asserteq(ret, 0); |
| ASSERT_LMB(&lmb, ram, ram_size, 0, 0, 0, 0, 0, 0, 0); |
| |
| return 0; |
| } |
| LIB_TEST(lib_test_lmb_at_0, 0); |
| |
| /* Check that calling lmb_reserve with overlapping regions fails. */ |
| static int lib_test_lmb_overlapping_reserve(struct unit_test_state *uts) |
| { |
| const phys_addr_t ram = 0x40000000; |
| const phys_size_t ram_size = 0x20000000; |
| struct lmb lmb; |
| long ret; |
| |
| lmb_init(&lmb); |
| |
| ret = lmb_add(&lmb, ram, ram_size); |
| ut_asserteq(ret, 0); |
| |
| ret = lmb_reserve(&lmb, 0x40010000, 0x10000); |
| ut_asserteq(ret, 0); |
| ASSERT_LMB(&lmb, ram, ram_size, 1, 0x40010000, 0x10000, |
| 0, 0, 0, 0); |
| /* allocate overlapping region should fail */ |
| ret = lmb_reserve(&lmb, 0x40011000, 0x10000); |
| ut_asserteq(ret, -1); |
| ASSERT_LMB(&lmb, ram, ram_size, 1, 0x40010000, 0x10000, |
| 0, 0, 0, 0); |
| /* allocate 3nd region */ |
| ret = lmb_reserve(&lmb, 0x40030000, 0x10000); |
| ut_asserteq(ret, 0); |
| ASSERT_LMB(&lmb, ram, ram_size, 2, 0x40010000, 0x10000, |
| 0x40030000, 0x10000, 0, 0); |
| /* allocate 2nd region , This should coalesced all region into one */ |
| ret = lmb_reserve(&lmb, 0x40020000, 0x10000); |
| ut_assert(ret >= 0); |
| ASSERT_LMB(&lmb, ram, ram_size, 1, 0x40010000, 0x30000, |
| 0, 0, 0, 0); |
| |
| /* allocate 2nd region, which should be added as first region */ |
| ret = lmb_reserve(&lmb, 0x40000000, 0x8000); |
| ut_assert(ret >= 0); |
| ASSERT_LMB(&lmb, ram, ram_size, 2, 0x40000000, 0x8000, |
| 0x40010000, 0x30000, 0, 0); |
| |
| /* allocate 3rd region, coalesce with first and overlap with second */ |
| ret = lmb_reserve(&lmb, 0x40008000, 0x10000); |
| ut_assert(ret >= 0); |
| ASSERT_LMB(&lmb, ram, ram_size, 1, 0x40000000, 0x40000, |
| 0, 0, 0, 0); |
| return 0; |
| } |
| LIB_TEST(lib_test_lmb_overlapping_reserve, 0); |
| |
| /* |
| * Simulate 512 MiB RAM, reserve 3 blocks, allocate addresses in between. |
| * Expect addresses outside the memory range to fail. |
| */ |
| static int test_alloc_addr(struct unit_test_state *uts, const phys_addr_t ram) |
| { |
| const phys_size_t ram_size = 0x20000000; |
| const phys_addr_t ram_end = ram + ram_size; |
| const phys_size_t alloc_addr_a = ram + 0x8000000; |
| const phys_size_t alloc_addr_b = ram + 0x8000000 * 2; |
| const phys_size_t alloc_addr_c = ram + 0x8000000 * 3; |
| struct lmb lmb; |
| long ret; |
| phys_addr_t a, b, c, d, e; |
| |
| /* check for overflow */ |
| ut_assert(ram_end == 0 || ram_end > ram); |
| |
| lmb_init(&lmb); |
| |
| ret = lmb_add(&lmb, ram, ram_size); |
| ut_asserteq(ret, 0); |
| |
| /* reserve 3 blocks */ |
| ret = lmb_reserve(&lmb, alloc_addr_a, 0x10000); |
| ut_asserteq(ret, 0); |
| ret = lmb_reserve(&lmb, alloc_addr_b, 0x10000); |
| ut_asserteq(ret, 0); |
| ret = lmb_reserve(&lmb, alloc_addr_c, 0x10000); |
| ut_asserteq(ret, 0); |
| ASSERT_LMB(&lmb, ram, ram_size, 3, alloc_addr_a, 0x10000, |
| alloc_addr_b, 0x10000, alloc_addr_c, 0x10000); |
| |
| /* allocate blocks */ |
| a = lmb_alloc_addr(&lmb, ram, alloc_addr_a - ram); |
| ut_asserteq(a, ram); |
| ASSERT_LMB(&lmb, ram, ram_size, 3, ram, 0x8010000, |
| alloc_addr_b, 0x10000, alloc_addr_c, 0x10000); |
| b = lmb_alloc_addr(&lmb, alloc_addr_a + 0x10000, |
| alloc_addr_b - alloc_addr_a - 0x10000); |
| ut_asserteq(b, alloc_addr_a + 0x10000); |
| ASSERT_LMB(&lmb, ram, ram_size, 2, ram, 0x10010000, |
| alloc_addr_c, 0x10000, 0, 0); |
| c = lmb_alloc_addr(&lmb, alloc_addr_b + 0x10000, |
| alloc_addr_c - alloc_addr_b - 0x10000); |
| ut_asserteq(c, alloc_addr_b + 0x10000); |
| ASSERT_LMB(&lmb, ram, ram_size, 1, ram, 0x18010000, |
| 0, 0, 0, 0); |
| d = lmb_alloc_addr(&lmb, alloc_addr_c + 0x10000, |
| ram_end - alloc_addr_c - 0x10000); |
| ut_asserteq(d, alloc_addr_c + 0x10000); |
| ASSERT_LMB(&lmb, ram, ram_size, 1, ram, ram_size, |
| 0, 0, 0, 0); |
| |
| /* allocating anything else should fail */ |
| e = lmb_alloc(&lmb, 1, 1); |
| ut_asserteq(e, 0); |
| ASSERT_LMB(&lmb, ram, ram_size, 1, ram, ram_size, |
| 0, 0, 0, 0); |
| |
| ret = lmb_free(&lmb, d, ram_end - alloc_addr_c - 0x10000); |
| ut_asserteq(ret, 0); |
| |
| /* allocate at 3 points in free range */ |
| |
| d = lmb_alloc_addr(&lmb, ram_end - 4, 4); |
| ut_asserteq(d, ram_end - 4); |
| ASSERT_LMB(&lmb, ram, ram_size, 2, ram, 0x18010000, |
| d, 4, 0, 0); |
| ret = lmb_free(&lmb, d, 4); |
| ut_asserteq(ret, 0); |
| ASSERT_LMB(&lmb, ram, ram_size, 1, ram, 0x18010000, |
| 0, 0, 0, 0); |
| |
| d = lmb_alloc_addr(&lmb, ram_end - 128, 4); |
| ut_asserteq(d, ram_end - 128); |
| ASSERT_LMB(&lmb, ram, ram_size, 2, ram, 0x18010000, |
| d, 4, 0, 0); |
| ret = lmb_free(&lmb, d, 4); |
| ut_asserteq(ret, 0); |
| ASSERT_LMB(&lmb, ram, ram_size, 1, ram, 0x18010000, |
| 0, 0, 0, 0); |
| |
| d = lmb_alloc_addr(&lmb, alloc_addr_c + 0x10000, 4); |
| ut_asserteq(d, alloc_addr_c + 0x10000); |
| ASSERT_LMB(&lmb, ram, ram_size, 1, ram, 0x18010004, |
| 0, 0, 0, 0); |
| ret = lmb_free(&lmb, d, 4); |
| ut_asserteq(ret, 0); |
| ASSERT_LMB(&lmb, ram, ram_size, 1, ram, 0x18010000, |
| 0, 0, 0, 0); |
| |
| /* allocate at the bottom */ |
| ret = lmb_free(&lmb, a, alloc_addr_a - ram); |
| ut_asserteq(ret, 0); |
| ASSERT_LMB(&lmb, ram, ram_size, 1, ram + 0x8000000, 0x10010000, |
| 0, 0, 0, 0); |
| d = lmb_alloc_addr(&lmb, ram, 4); |
| ut_asserteq(d, ram); |
| ASSERT_LMB(&lmb, ram, ram_size, 2, d, 4, |
| ram + 0x8000000, 0x10010000, 0, 0); |
| |
| /* check that allocating outside memory fails */ |
| if (ram_end != 0) { |
| ret = lmb_alloc_addr(&lmb, ram_end, 1); |
| ut_asserteq(ret, 0); |
| } |
| if (ram != 0) { |
| ret = lmb_alloc_addr(&lmb, ram - 1, 1); |
| ut_asserteq(ret, 0); |
| } |
| |
| return 0; |
| } |
| |
| static int lib_test_lmb_alloc_addr(struct unit_test_state *uts) |
| { |
| int ret; |
| |
| /* simulate 512 MiB RAM beginning at 1GiB */ |
| ret = test_alloc_addr(uts, 0x40000000); |
| if (ret) |
| return ret; |
| |
| /* simulate 512 MiB RAM beginning at 1.5GiB */ |
| return test_alloc_addr(uts, 0xE0000000); |
| } |
| LIB_TEST(lib_test_lmb_alloc_addr, 0); |
| |
| /* Simulate 512 MiB RAM, reserve 3 blocks, check addresses in between */ |
| static int test_get_unreserved_size(struct unit_test_state *uts, |
| const phys_addr_t ram) |
| { |
| const phys_size_t ram_size = 0x20000000; |
| const phys_addr_t ram_end = ram + ram_size; |
| const phys_size_t alloc_addr_a = ram + 0x8000000; |
| const phys_size_t alloc_addr_b = ram + 0x8000000 * 2; |
| const phys_size_t alloc_addr_c = ram + 0x8000000 * 3; |
| struct lmb lmb; |
| long ret; |
| phys_size_t s; |
| |
| /* check for overflow */ |
| ut_assert(ram_end == 0 || ram_end > ram); |
| |
| lmb_init(&lmb); |
| |
| ret = lmb_add(&lmb, ram, ram_size); |
| ut_asserteq(ret, 0); |
| |
| /* reserve 3 blocks */ |
| ret = lmb_reserve(&lmb, alloc_addr_a, 0x10000); |
| ut_asserteq(ret, 0); |
| ret = lmb_reserve(&lmb, alloc_addr_b, 0x10000); |
| ut_asserteq(ret, 0); |
| ret = lmb_reserve(&lmb, alloc_addr_c, 0x10000); |
| ut_asserteq(ret, 0); |
| ASSERT_LMB(&lmb, ram, ram_size, 3, alloc_addr_a, 0x10000, |
| alloc_addr_b, 0x10000, alloc_addr_c, 0x10000); |
| |
| /* check addresses in between blocks */ |
| s = lmb_get_free_size(&lmb, ram); |
| ut_asserteq(s, alloc_addr_a - ram); |
| s = lmb_get_free_size(&lmb, ram + 0x10000); |
| ut_asserteq(s, alloc_addr_a - ram - 0x10000); |
| s = lmb_get_free_size(&lmb, alloc_addr_a - 4); |
| ut_asserteq(s, 4); |
| |
| s = lmb_get_free_size(&lmb, alloc_addr_a + 0x10000); |
| ut_asserteq(s, alloc_addr_b - alloc_addr_a - 0x10000); |
| s = lmb_get_free_size(&lmb, alloc_addr_a + 0x20000); |
| ut_asserteq(s, alloc_addr_b - alloc_addr_a - 0x20000); |
| s = lmb_get_free_size(&lmb, alloc_addr_b - 4); |
| ut_asserteq(s, 4); |
| |
| s = lmb_get_free_size(&lmb, alloc_addr_c + 0x10000); |
| ut_asserteq(s, ram_end - alloc_addr_c - 0x10000); |
| s = lmb_get_free_size(&lmb, alloc_addr_c + 0x20000); |
| ut_asserteq(s, ram_end - alloc_addr_c - 0x20000); |
| s = lmb_get_free_size(&lmb, ram_end - 4); |
| ut_asserteq(s, 4); |
| |
| return 0; |
| } |
| |
| static int lib_test_lmb_get_free_size(struct unit_test_state *uts) |
| { |
| int ret; |
| |
| /* simulate 512 MiB RAM beginning at 1GiB */ |
| ret = test_get_unreserved_size(uts, 0x40000000); |
| if (ret) |
| return ret; |
| |
| /* simulate 512 MiB RAM beginning at 1.5GiB */ |
| return test_get_unreserved_size(uts, 0xE0000000); |
| } |
| LIB_TEST(lib_test_lmb_get_free_size, 0); |
| |
| #ifdef CONFIG_LMB_USE_MAX_REGIONS |
| static int lib_test_lmb_max_regions(struct unit_test_state *uts) |
| { |
| const phys_addr_t ram = 0x00000000; |
| /* |
| * All of 32bit memory space will contain regions for this test, so |
| * we need to scale ram_size (which in this case is the size of the lmb |
| * region) to match. |
| */ |
| const phys_size_t ram_size = ((0xFFFFFFFF >> CONFIG_LMB_MAX_REGIONS) |
| + 1) * CONFIG_LMB_MAX_REGIONS; |
| const phys_size_t blk_size = 0x10000; |
| phys_addr_t offset; |
| struct lmb lmb; |
| int ret, i; |
| |
| lmb_init(&lmb); |
| |
| ut_asserteq(lmb.memory.cnt, 0); |
| ut_asserteq(lmb.memory.max, CONFIG_LMB_MAX_REGIONS); |
| ut_asserteq(lmb.reserved.cnt, 0); |
| ut_asserteq(lmb.reserved.max, CONFIG_LMB_MAX_REGIONS); |
| |
| /* Add CONFIG_LMB_MAX_REGIONS memory regions */ |
| for (i = 0; i < CONFIG_LMB_MAX_REGIONS; i++) { |
| offset = ram + 2 * i * ram_size; |
| ret = lmb_add(&lmb, offset, ram_size); |
| ut_asserteq(ret, 0); |
| } |
| ut_asserteq(lmb.memory.cnt, CONFIG_LMB_MAX_REGIONS); |
| ut_asserteq(lmb.reserved.cnt, 0); |
| |
| /* error for the (CONFIG_LMB_MAX_REGIONS + 1) memory regions */ |
| offset = ram + 2 * (CONFIG_LMB_MAX_REGIONS + 1) * ram_size; |
| ret = lmb_add(&lmb, offset, ram_size); |
| ut_asserteq(ret, -1); |
| |
| ut_asserteq(lmb.memory.cnt, CONFIG_LMB_MAX_REGIONS); |
| ut_asserteq(lmb.reserved.cnt, 0); |
| |
| /* reserve CONFIG_LMB_MAX_REGIONS regions */ |
| for (i = 0; i < CONFIG_LMB_MAX_REGIONS; i++) { |
| offset = ram + 2 * i * blk_size; |
| ret = lmb_reserve(&lmb, offset, blk_size); |
| ut_asserteq(ret, 0); |
| } |
| |
| ut_asserteq(lmb.memory.cnt, CONFIG_LMB_MAX_REGIONS); |
| ut_asserteq(lmb.reserved.cnt, CONFIG_LMB_MAX_REGIONS); |
| |
| /* error for the 9th reserved blocks */ |
| offset = ram + 2 * (CONFIG_LMB_MAX_REGIONS + 1) * blk_size; |
| ret = lmb_reserve(&lmb, offset, blk_size); |
| ut_asserteq(ret, -1); |
| |
| ut_asserteq(lmb.memory.cnt, CONFIG_LMB_MAX_REGIONS); |
| ut_asserteq(lmb.reserved.cnt, CONFIG_LMB_MAX_REGIONS); |
| |
| /* check each regions */ |
| for (i = 0; i < CONFIG_LMB_MAX_REGIONS; i++) |
| ut_asserteq(lmb.memory.region[i].base, ram + 2 * i * ram_size); |
| |
| for (i = 0; i < CONFIG_LMB_MAX_REGIONS; i++) |
| ut_asserteq(lmb.reserved.region[i].base, ram + 2 * i * blk_size); |
| |
| return 0; |
| } |
| LIB_TEST(lib_test_lmb_max_regions, 0); |
| #endif |
| |
| static int lib_test_lmb_flags(struct unit_test_state *uts) |
| { |
| const phys_addr_t ram = 0x40000000; |
| const phys_size_t ram_size = 0x20000000; |
| struct lmb lmb; |
| long ret; |
| |
| lmb_init(&lmb); |
| |
| ret = lmb_add(&lmb, ram, ram_size); |
| ut_asserteq(ret, 0); |
| |
| /* reserve, same flag */ |
| ret = lmb_reserve_flags(&lmb, 0x40010000, 0x10000, LMB_NOMAP); |
| ut_asserteq(ret, 0); |
| ASSERT_LMB(&lmb, ram, ram_size, 1, 0x40010000, 0x10000, |
| 0, 0, 0, 0); |
| |
| /* reserve again, same flag */ |
| ret = lmb_reserve_flags(&lmb, 0x40010000, 0x10000, LMB_NOMAP); |
| ut_asserteq(ret, 0); |
| ASSERT_LMB(&lmb, ram, ram_size, 1, 0x40010000, 0x10000, |
| 0, 0, 0, 0); |
| |
| /* reserve again, new flag */ |
| ret = lmb_reserve_flags(&lmb, 0x40010000, 0x10000, LMB_NONE); |
| ut_asserteq(ret, -1); |
| ASSERT_LMB(&lmb, ram, ram_size, 1, 0x40010000, 0x10000, |
| 0, 0, 0, 0); |
| |
| ut_asserteq(lmb_is_nomap(&lmb.reserved.region[0]), 1); |
| |
| /* merge after */ |
| ret = lmb_reserve_flags(&lmb, 0x40020000, 0x10000, LMB_NOMAP); |
| ut_asserteq(ret, 1); |
| ASSERT_LMB(&lmb, ram, ram_size, 1, 0x40010000, 0x20000, |
| 0, 0, 0, 0); |
| |
| /* merge before */ |
| ret = lmb_reserve_flags(&lmb, 0x40000000, 0x10000, LMB_NOMAP); |
| ut_asserteq(ret, 1); |
| ASSERT_LMB(&lmb, ram, ram_size, 1, 0x40000000, 0x30000, |
| 0, 0, 0, 0); |
| |
| ut_asserteq(lmb_is_nomap(&lmb.reserved.region[0]), 1); |
| |
| ret = lmb_reserve_flags(&lmb, 0x40030000, 0x10000, LMB_NONE); |
| ut_asserteq(ret, 0); |
| ASSERT_LMB(&lmb, ram, ram_size, 2, 0x40000000, 0x30000, |
| 0x40030000, 0x10000, 0, 0); |
| |
| ut_asserteq(lmb_is_nomap(&lmb.reserved.region[0]), 1); |
| ut_asserteq(lmb_is_nomap(&lmb.reserved.region[1]), 0); |
| |
| /* test that old API use LMB_NONE */ |
| ret = lmb_reserve(&lmb, 0x40040000, 0x10000); |
| ut_asserteq(ret, 1); |
| ASSERT_LMB(&lmb, ram, ram_size, 2, 0x40000000, 0x30000, |
| 0x40030000, 0x20000, 0, 0); |
| |
| ut_asserteq(lmb_is_nomap(&lmb.reserved.region[0]), 1); |
| ut_asserteq(lmb_is_nomap(&lmb.reserved.region[1]), 0); |
| |
| ret = lmb_reserve_flags(&lmb, 0x40070000, 0x10000, LMB_NOMAP); |
| ut_asserteq(ret, 0); |
| ASSERT_LMB(&lmb, ram, ram_size, 3, 0x40000000, 0x30000, |
| 0x40030000, 0x20000, 0x40070000, 0x10000); |
| |
| ret = lmb_reserve_flags(&lmb, 0x40050000, 0x10000, LMB_NOMAP); |
| ut_asserteq(ret, 0); |
| ASSERT_LMB(&lmb, ram, ram_size, 4, 0x40000000, 0x30000, |
| 0x40030000, 0x20000, 0x40050000, 0x10000); |
| |
| /* merge with 2 adjacent regions */ |
| ret = lmb_reserve_flags(&lmb, 0x40060000, 0x10000, LMB_NOMAP); |
| ut_asserteq(ret, 2); |
| ASSERT_LMB(&lmb, ram, ram_size, 3, 0x40000000, 0x30000, |
| 0x40030000, 0x20000, 0x40050000, 0x30000); |
| |
| ut_asserteq(lmb_is_nomap(&lmb.reserved.region[0]), 1); |
| ut_asserteq(lmb_is_nomap(&lmb.reserved.region[1]), 0); |
| ut_asserteq(lmb_is_nomap(&lmb.reserved.region[2]), 1); |
| |
| return 0; |
| } |
| LIB_TEST(lib_test_lmb_flags, 0); |