blob: cb64119f9726cc57bd2c81086e064a5fcd594e5d [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Driver for Atmel QSPI Controller
*
* Copyright (C) 2015 Atmel Corporation
* Copyright (C) 2018 Cryptera A/S
*
* Author: Cyrille Pitchen <cyrille.pitchen@atmel.com>
* Author: Piotr Bugalski <bugalski.piotr@gmail.com>
*/
#include <malloc.h>
#include <asm/io.h>
#include <clk.h>
#include <common.h>
#include <dm.h>
#include <errno.h>
#include <fdtdec.h>
#include <dm/device_compat.h>
#include <linux/bitfield.h>
#include <linux/bitops.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/ioport.h>
#include <mach/clk.h>
#include <spi.h>
#include <spi-mem.h>
/* QSPI register offsets */
#define QSPI_CR 0x0000 /* Control Register */
#define QSPI_MR 0x0004 /* Mode Register */
#define QSPI_RD 0x0008 /* Receive Data Register */
#define QSPI_TD 0x000c /* Transmit Data Register */
#define QSPI_SR 0x0010 /* Status Register */
#define QSPI_SR2 0x0024 /* SAMA7G5 Status Register */
#define QSPI_IER 0x0014 /* Interrupt Enable Register */
#define QSPI_IDR 0x0018 /* Interrupt Disable Register */
#define QSPI_IMR 0x001c /* Interrupt Mask Register */
#define QSPI_SCR 0x0020 /* Serial Clock Register */
#define QSPI_IAR 0x0030 /* Instruction Address Register */
#define QSPI_ICR 0x0034 /* Instruction Code Register */
#define QSPI_WICR 0x0034 /* Write Instruction Code Register */
#define QSPI_IFR 0x0038 /* Instruction Frame Register */
#define QSPI_RICR 0x003C /* Read Instruction Code Register */
#define QSPI_SMR 0x0040 /* Scrambling Mode Register */
#define QSPI_SKR 0x0044 /* Scrambling Key Register */
#define QSPI_REFRESH 0x0050 /* Refresh Register */
#define QSPI_WRACNT 0x0054 /* Write Access Counter Register */
#define QSPI_DLLCFG 0x0058 /* DLL Configuration Register */
#define QSPI_PCALCFG 0x005C /* Pad Calibration Configuration Register */
#define QSPI_PCALBP 0x0060 /* Pad Calibration Bypass Register */
#define QSPI_TOUT 0x0064 /* Timeout Register */
#define QSPI_WPMR 0x00E4 /* Write Protection Mode Register */
#define QSPI_WPSR 0x00E8 /* Write Protection Status Register */
#define QSPI_VERSION 0x00FC /* Version Register */
/* Bitfields in QSPI_CR (Control Register) */
#define QSPI_CR_QSPIEN BIT(0)
#define QSPI_CR_QSPIDIS BIT(1)
#define QSPI_CR_DLLON BIT(2)
#define QSPI_CR_DLLOFF BIT(3)
#define QSPI_CR_STPCAL BIT(4)
#define QSPI_CR_SRFRSH BIT(5)
#define QSPI_CR_SWRST BIT(7)
#define QSPI_CR_UPDCFG BIT(8)
#define QSPI_CR_STTFR BIT(9)
#define QSPI_CR_RTOUT BIT(10)
#define QSPI_CR_LASTXFER BIT(24)
/* Bitfields in QSPI_MR (Mode Register) */
#define QSPI_MR_SMM BIT(0)
#define QSPI_MR_LLB BIT(1)
#define QSPI_MR_WDRBT BIT(2)
#define QSPI_MR_SMRM BIT(3)
#define QSPI_MR_DQSDLYEN BIT(3)
#define QSPI_MR_CSMODE_MASK GENMASK(5, 4)
#define QSPI_MR_CSMODE_NOT_RELOADED (0 << 4)
#define QSPI_MR_CSMODE_LASTXFER (1 << 4)
#define QSPI_MR_CSMODE_SYSTEMATICALLY (2 << 4)
#define QSPI_MR_NBBITS_MASK GENMASK(11, 8)
#define QSPI_MR_NBBITS(n) ((((n) - 8) << 8) & QSPI_MR_NBBITS_MASK)
#define QSPI_MR_OENSD BIT(15)
#define QSPI_MR_DLYBCT_MASK GENMASK(23, 16)
#define QSPI_MR_DLYBCT(n) (((n) << 16) & QSPI_MR_DLYBCT_MASK)
#define QSPI_MR_DLYCS_MASK GENMASK(31, 24)
#define QSPI_MR_DLYCS(n) (((n) << 24) & QSPI_MR_DLYCS_MASK)
/* Bitfields in QSPI_SR/QSPI_IER/QSPI_IDR/QSPI_IMR */
#define QSPI_SR_RDRF BIT(0)
#define QSPI_SR_TDRE BIT(1)
#define QSPI_SR_TXEMPTY BIT(2)
#define QSPI_SR_OVRES BIT(3)
#define QSPI_SR_CSR BIT(8)
#define QSPI_SR_CSS BIT(9)
#define QSPI_SR_INSTRE BIT(10)
#define QSPI_SR_LWRA BIT(11)
#define QSPI_SR_QITF BIT(12)
#define QSPI_SR_QITR BIT(13)
#define QSPI_SR_CSFA BIT(14)
#define QSPI_SR_CSRA BIT(15)
#define QSPI_SR_RFRSHD BIT(16)
#define QSPI_SR_TOUT BIT(17)
#define QSPI_SR_QSPIENS BIT(24)
#define QSPI_SR_CMD_COMPLETED (QSPI_SR_INSTRE | QSPI_SR_CSR)
/* Bitfields in QSPI_SCR (Serial Clock Register) */
#define QSPI_SCR_CPOL BIT(0)
#define QSPI_SCR_CPHA BIT(1)
#define QSPI_SCR_SCBR_MASK GENMASK(15, 8)
#define QSPI_SCR_SCBR(n) (((n) << 8) & QSPI_SCR_SCBR_MASK)
#define QSPI_SCR_DLYBS_MASK GENMASK(23, 16)
#define QSPI_SCR_DLYBS(n) (((n) << 16) & QSPI_SCR_DLYBS_MASK)
/* Bitfields in QSPI_SR2 (SAMA7G5 Status Register) */
#define QSPI_SR2_SYNCBSY BIT(0)
#define QSPI_SR2_QSPIENS BIT(1)
#define QSPI_SR2_CSS BIT(2)
#define QSPI_SR2_RBUSY BIT(3)
#define QSPI_SR2_HIDLE BIT(4)
#define QSPI_SR2_DLOCK BIT(5)
#define QSPI_SR2_CALBSY BIT(6)
/* Bitfields in QSPI_IAR (Instruction Address Register) */
#define QSPI_IAR_ADDR GENMASK(31, 0)
/* Bitfields in QSPI_ICR (Read/Write Instruction Code Register) */
#define QSPI_ICR_INST_MASK GENMASK(7, 0)
#define QSPI_ICR_INST(inst) (((inst) << 0) & QSPI_ICR_INST_MASK)
#define QSPI_ICR_INST_MASK_SAMA7G5 GENMASK(15, 0)
#define QSPI_ICR_OPT_MASK GENMASK(23, 16)
#define QSPI_ICR_OPT(opt) (((opt) << 16) & QSPI_ICR_OPT_MASK)
/* Bitfields in QSPI_IFR (Instruction Frame Register) */
#define QSPI_IFR_WIDTH_MASK GENMASK(2, 0)
#define QSPI_IFR_WIDTH_SINGLE_BIT_SPI (0 << 0)
#define QSPI_IFR_WIDTH_DUAL_OUTPUT (1 << 0)
#define QSPI_IFR_WIDTH_QUAD_OUTPUT (2 << 0)
#define QSPI_IFR_WIDTH_DUAL_IO (3 << 0)
#define QSPI_IFR_WIDTH_QUAD_IO (4 << 0)
#define QSPI_IFR_WIDTH_DUAL_CMD (5 << 0)
#define QSPI_IFR_WIDTH_QUAD_CMD (6 << 0)
#define QSPI_IFR_WIDTH_OCT_OUTPUT (7 << 0)
#define QSPI_IFR_WIDTH_OCT_IO (8 << 0)
#define QSPI_IFR_WIDTH_OCT_CMD (9 << 0)
#define QSPI_IFR_INSTEN BIT(4)
#define QSPI_IFR_ADDREN BIT(5)
#define QSPI_IFR_OPTEN BIT(6)
#define QSPI_IFR_DATAEN BIT(7)
#define QSPI_IFR_OPTL_MASK GENMASK(9, 8)
#define QSPI_IFR_OPTL_1BIT (0 << 8)
#define QSPI_IFR_OPTL_2BIT (1 << 8)
#define QSPI_IFR_OPTL_4BIT (2 << 8)
#define QSPI_IFR_OPTL_8BIT (3 << 8)
#define QSPI_IFR_ADDRL BIT(10)
#define QSPI_IFR_ADDRL_SAMA7G5 GENMASK(11, 10)
#define QSPI_IFR_TFRTYP_MEM BIT(12)
#define QSPI_IFR_SAMA5D2_WRITE_TRSFR BIT(13)
#define QSPI_IFR_CRM BIT(14)
#define QSPI_IFR_DDREN BIT(15)
#define QSPI_IFR_NBDUM_MASK GENMASK(20, 16)
#define QSPI_IFR_NBDUM(n) (((n) << 16) & QSPI_IFR_NBDUM_MASK)
#define QSPI_IFR_END BIT(22)
#define QSPI_IFR_SMRM BIT(23)
#define QSPI_IFR_APBTFRTYP_READ BIT(24) /* Defined in SAM9X60 */
#define QSPI_IFR_DQSEN BIT(25)
#define QSPI_IFR_DDRCMDEN BIT(26)
#define QSPI_IFR_HFWBEN BIT(27)
#define QSPI_IFR_PROTTYP GENMASK(29, 28)
#define QSPI_IFR_PROTTYP_STD_SPI 0
#define QSPI_IFR_PROTTYP_TWIN_QUAD 1
#define QSPI_IFR_PROTTYP_OCTAFLASH 2
#define QSPI_IFR_PROTTYP_HYPERFLASH 3
/* Bitfields in QSPI_SMR (Scrambling Mode Register) */
#define QSPI_SMR_SCREN BIT(0)
#define QSPI_SMR_RVDIS BIT(1)
#define QSPI_SMR_SCRKL BIT(2)
/* Bitfields in QSPI_REFRESH (Refresh Register) */
#define QSPI_REFRESH_DELAY_COUNTER GENMASK(31, 0)
/* Bitfields in QSPI_WRACNT (Write Access Counter Register) */
#define QSPI_WRACNT_NBWRA GENMASK(31, 0)
/* Bitfields in QSPI_DLLCFG (DLL Configuration Register) */
#define QSPI_DLLCFG_RANGE BIT(0)
/* Bitfields in QSPI_PCALCFG (DLL Pad Calibration Configuration Register) */
#define QSPI_PCALCFG_AAON BIT(0)
#define QSPI_PCALCFG_DAPCAL BIT(1)
#define QSPI_PCALCFG_DIFFPM BIT(2)
#define QSPI_PCALCFG_CLKDIV GENMASK(6, 4)
#define QSPI_PCALCFG_CALCNT GENMASK(16, 8)
#define QSPI_PCALCFG_CALP GENMASK(27, 24)
#define QSPI_PCALCFG_CALN GENMASK(31, 28)
/* Bitfields in QSPI_PCALBP (DLL Pad Calibration Bypass Register) */
#define QSPI_PCALBP_BPEN BIT(0)
#define QSPI_PCALBP_CALPBP GENMASK(11, 8)
#define QSPI_PCALBP_CALNBP GENMASK(19, 16)
/* Bitfields in QSPI_TOUT (Timeout Register) */
#define QSPI_TOUT_TCNTM GENMASK(15, 0)
/* Bitfields in QSPI_WPMR (Write Protection Mode Register) */
#define QSPI_WPMR_WPEN BIT(0)
#define QSPI_WPMR_WPITEN BIT(1)
#define QSPI_WPMR_WPCREN BIT(2)
#define QSPI_WPMR_WPKEY_MASK GENMASK(31, 8)
#define QSPI_WPMR_WPKEY(wpkey) (((wpkey) << 8) & QSPI_WPMR_WPKEY_MASK)
/* Bitfields in QSPI_WPSR (Write Protection Status Register) */
#define QSPI_WPSR_WPVS BIT(0)
#define QSPI_WPSR_WPVSRC_MASK GENMASK(15, 8)
#define QSPI_WPSR_WPVSRC(src) (((src) << 8) & QSPI_WPSR_WPVSRC)
#define ATMEL_QSPI_TIMEOUT 1000000 /* us */
#define ATMEL_QSPI_SYNC_TIMEOUT 300000 /* us */
#define QSPI_DLLCFG_THRESHOLD_FREQ 90000000U
#define QSPI_TOUT_MAX 0xffff
/**
* struct atmel_qspi_pcal - Pad Calibration Clock Division
* @pclk_rate: peripheral clock rate.
* @pclkdiv: calibration clock division. The clock applied to the calibration
* cell is divided by pclkdiv + 1.
*/
struct atmel_qspi_pcal {
u32 pclk_rate;
u8 pclk_div;
};
#define ATMEL_QSPI_PCAL_ARRAY_SIZE 8
static const struct atmel_qspi_pcal pcal[ATMEL_QSPI_PCAL_ARRAY_SIZE] = {
{25000000, 0},
{50000000, 1},
{75000000, 2},
{100000000, 3},
{125000000, 4},
{150000000, 5},
{175000000, 6},
{200000000, 7},
};
struct atmel_qspi_caps {
bool has_qspick;
bool has_gclk;
bool has_ricr;
bool octal;
};
struct atmel_qspi_priv_ops;
struct atmel_qspi {
void __iomem *regs;
void __iomem *mem;
resource_size_t mmap_size;
const struct atmel_qspi_caps *caps;
const struct atmel_qspi_priv_ops *ops;
struct udevice *dev;
ulong bus_clk_rate;
u32 mr;
};
struct atmel_qspi_priv_ops {
int (*set_cfg)(struct atmel_qspi *aq, const struct spi_mem_op *op,
u32 *offset);
int (*transfer)(struct atmel_qspi *aq, const struct spi_mem_op *op,
u32 offset);
};
struct atmel_qspi_mode {
u8 cmd_buswidth;
u8 addr_buswidth;
u8 data_buswidth;
u32 config;
};
static const struct atmel_qspi_mode atmel_qspi_modes[] = {
{ 1, 1, 1, QSPI_IFR_WIDTH_SINGLE_BIT_SPI },
{ 1, 1, 2, QSPI_IFR_WIDTH_DUAL_OUTPUT },
{ 1, 1, 4, QSPI_IFR_WIDTH_QUAD_OUTPUT },
{ 1, 2, 2, QSPI_IFR_WIDTH_DUAL_IO },
{ 1, 4, 4, QSPI_IFR_WIDTH_QUAD_IO },
{ 2, 2, 2, QSPI_IFR_WIDTH_DUAL_CMD },
{ 4, 4, 4, QSPI_IFR_WIDTH_QUAD_CMD },
};
static const struct atmel_qspi_mode atmel_qspi_sama7g5_modes[] = {
{ 1, 1, 1, QSPI_IFR_WIDTH_SINGLE_BIT_SPI },
{ 1, 1, 2, QSPI_IFR_WIDTH_DUAL_OUTPUT },
{ 1, 1, 4, QSPI_IFR_WIDTH_QUAD_OUTPUT },
{ 1, 2, 2, QSPI_IFR_WIDTH_DUAL_IO },
{ 1, 4, 4, QSPI_IFR_WIDTH_QUAD_IO },
{ 2, 2, 2, QSPI_IFR_WIDTH_DUAL_CMD },
{ 4, 4, 4, QSPI_IFR_WIDTH_QUAD_CMD },
{ 1, 1, 8, QSPI_IFR_WIDTH_OCT_OUTPUT },
{ 1, 8, 8, QSPI_IFR_WIDTH_OCT_IO },
{ 8, 8, 8, QSPI_IFR_WIDTH_OCT_CMD },
};
#ifdef VERBOSE_DEBUG
static const char *atmel_qspi_reg_name(u32 offset, char *tmp, size_t sz)
{
switch (offset) {
case QSPI_CR:
return "CR";
case QSPI_MR:
return "MR";
case QSPI_RD:
return "RD";
case QSPI_TD:
return "TD";
case QSPI_SR:
return "SR";
case QSPI_IER:
return "IER";
case QSPI_IDR:
return "IDR";
case QSPI_IMR:
return "IMR";
case QSPI_SCR:
return "SCR";
case QSPI_SR2:
return "SR2";
case QSPI_IAR:
return "IAR";
case QSPI_ICR:
return "ICR/WICR";
case QSPI_IFR:
return "IFR";
case QSPI_RICR:
return "RICR";
case QSPI_SMR:
return "SMR";
case QSPI_SKR:
return "SKR";
case QSPI_REFRESH:
return "REFRESH";
case QSPI_WRACNT:
return "WRACNT";
case QSPI_DLLCFG:
return "DLLCFG";
case QSPI_PCALCFG:
return "PCALCFG";
case QSPI_PCALBP:
return "PCALBP";
case QSPI_TOUT:
return "TOUT";
case QSPI_WPMR:
return "WPMR";
case QSPI_WPSR:
return "WPSR";
case QSPI_VERSION:
return "VERSION";
default:
snprintf(tmp, sz, "0x%02x", offset);
break;
}
return tmp;
}
#endif /* VERBOSE_DEBUG */
static u32 atmel_qspi_read(struct atmel_qspi *aq, u32 offset)
{
u32 value = readl(aq->regs + offset);
#ifdef VERBOSE_DEBUG
char tmp[16];
dev_vdbg(aq->dev, "read 0x%08x from %s\n", value,
atmel_qspi_reg_name(offset, tmp, sizeof(tmp)));
#endif /* VERBOSE_DEBUG */
return value;
}
static void atmel_qspi_write(u32 value, struct atmel_qspi *aq, u32 offset)
{
#ifdef VERBOSE_DEBUG
char tmp[16];
dev_vdbg(aq->dev, "write 0x%08x into %s\n", value,
atmel_qspi_reg_name(offset, tmp, sizeof(tmp)));
#endif /* VERBOSE_DEBUG */
writel(value, aq->regs + offset);
}
static inline bool atmel_qspi_is_compatible(const struct spi_mem_op *op,
const struct atmel_qspi_mode *mode)
{
if (op->cmd.buswidth != mode->cmd_buswidth)
return false;
if (op->addr.nbytes && op->addr.buswidth != mode->addr_buswidth)
return false;
if (op->data.nbytes && op->data.buswidth != mode->data_buswidth)
return false;
return true;
}
static int atmel_qspi_find_mode(const struct spi_mem_op *op)
{
u32 i;
for (i = 0; i < ARRAY_SIZE(atmel_qspi_modes); i++)
if (atmel_qspi_is_compatible(op, &atmel_qspi_modes[i]))
return i;
return -ENOTSUPP;
}
static int atmel_qspi_sama7g5_find_mode(const struct spi_mem_op *op)
{
u32 i;
for (i = 0; i < ARRAY_SIZE(atmel_qspi_sama7g5_modes); i++)
if (atmel_qspi_is_compatible(op, &atmel_qspi_sama7g5_modes[i]))
return i;
return -EOPNOTSUPP;
}
static bool atmel_qspi_supports_op(struct spi_slave *slave,
const struct spi_mem_op *op)
{
struct atmel_qspi *aq = dev_get_priv(slave->dev->parent);
if (!spi_mem_default_supports_op(slave, op))
return false;
if (aq->caps->octal) {
if (atmel_qspi_sama7g5_find_mode(op) < 0)
return false;
else
return true;
}
if (atmel_qspi_find_mode(op) < 0)
return false;
/* special case not supported by hardware */
if (op->addr.nbytes == 2 && op->cmd.buswidth != op->addr.buswidth &&
op->dummy.nbytes == 0)
return false;
return true;
}
static int atmel_qspi_set_cfg(struct atmel_qspi *aq,
const struct spi_mem_op *op, u32 *offset)
{
u32 iar, icr, ifr;
u32 dummy_cycles = 0;
int mode;
iar = 0;
icr = QSPI_ICR_INST(op->cmd.opcode);
ifr = QSPI_IFR_INSTEN;
mode = atmel_qspi_find_mode(op);
if (mode < 0)
return mode;
ifr |= atmel_qspi_modes[mode].config;
if (op->dummy.buswidth && op->dummy.nbytes)
dummy_cycles = op->dummy.nbytes * 8 / op->dummy.buswidth;
/*
* The controller allows 24 and 32-bit addressing while NAND-flash
* requires 16-bit long. Handling 8-bit long addresses is done using
* the option field. For the 16-bit addresses, the workaround depends
* of the number of requested dummy bits. If there are 8 or more dummy
* cycles, the address is shifted and sent with the first dummy byte.
* Otherwise opcode is disabled and the first byte of the address
* contains the command opcode (works only if the opcode and address
* use the same buswidth). The limitation is when the 16-bit address is
* used without enough dummy cycles and the opcode is using a different
* buswidth than the address.
*/
if (op->addr.buswidth) {
switch (op->addr.nbytes) {
case 0:
break;
case 1:
ifr |= QSPI_IFR_OPTEN | QSPI_IFR_OPTL_8BIT;
icr |= QSPI_ICR_OPT(op->addr.val & 0xff);
break;
case 2:
if (dummy_cycles < 8 / op->addr.buswidth) {
ifr &= ~QSPI_IFR_INSTEN;
ifr |= QSPI_IFR_ADDREN;
iar = (op->cmd.opcode << 16) |
(op->addr.val & 0xffff);
} else {
ifr |= QSPI_IFR_ADDREN;
iar = (op->addr.val << 8) & 0xffffff;
dummy_cycles -= 8 / op->addr.buswidth;
}
break;
case 3:
ifr |= QSPI_IFR_ADDREN;
iar = op->addr.val & 0xffffff;
break;
case 4:
ifr |= QSPI_IFR_ADDREN | QSPI_IFR_ADDRL;
iar = op->addr.val & 0x7ffffff;
break;
default:
return -ENOTSUPP;
}
}
/* offset of the data access in the QSPI memory space */
*offset = iar;
/* Set number of dummy cycles */
if (dummy_cycles)
ifr |= QSPI_IFR_NBDUM(dummy_cycles);
/* Set data enable */
if (op->data.nbytes)
ifr |= QSPI_IFR_DATAEN;
/*
* If the QSPI controller is set in regular SPI mode, set it in
* Serial Memory Mode (SMM).
*/
if (aq->mr != QSPI_MR_SMM) {
atmel_qspi_write(QSPI_MR_SMM, aq, QSPI_MR);
aq->mr = QSPI_MR_SMM;
}
/* Clear pending interrupts */
(void)atmel_qspi_read(aq, QSPI_SR);
if (aq->caps->has_ricr) {
if (!op->addr.nbytes && op->data.dir == SPI_MEM_DATA_IN)
ifr |= QSPI_IFR_APBTFRTYP_READ;
/* Set QSPI Instruction Frame registers */
atmel_qspi_write(iar, aq, QSPI_IAR);
if (op->data.dir == SPI_MEM_DATA_IN)
atmel_qspi_write(icr, aq, QSPI_RICR);
else
atmel_qspi_write(icr, aq, QSPI_WICR);
atmel_qspi_write(ifr, aq, QSPI_IFR);
} else {
if (op->data.dir == SPI_MEM_DATA_OUT)
ifr |= QSPI_IFR_SAMA5D2_WRITE_TRSFR;
/* Set QSPI Instruction Frame registers */
atmel_qspi_write(iar, aq, QSPI_IAR);
atmel_qspi_write(icr, aq, QSPI_ICR);
atmel_qspi_write(ifr, aq, QSPI_IFR);
}
return 0;
}
static int atmel_qspi_transfer(struct atmel_qspi *aq,
const struct spi_mem_op *op, u32 offset)
{
u32 sr, imr;
/* Skip to the final steps if there is no data */
if (op->data.nbytes) {
/* Dummy read of QSPI_IFR to synchronize APB and AHB accesses */
(void)atmel_qspi_read(aq, QSPI_IFR);
/* Send/Receive data */
if (op->data.dir == SPI_MEM_DATA_IN)
memcpy_fromio(op->data.buf.in, aq->mem + offset,
op->data.nbytes);
else
memcpy_toio(aq->mem + offset, op->data.buf.out,
op->data.nbytes);
/* Release the chip-select */
atmel_qspi_write(QSPI_CR_LASTXFER, aq, QSPI_CR);
}
/* Poll INSTruction End and Chip Select Rise flags. */
imr = QSPI_SR_INSTRE | QSPI_SR_CSR;
return readl_poll_timeout(aq->regs + QSPI_SR, sr, (sr & imr) == imr,
ATMEL_QSPI_TIMEOUT);
}
static int atmel_qspi_reg_sync(struct atmel_qspi *aq)
{
u32 val;
return readl_poll_timeout(aq->regs + QSPI_SR2, val,
!(val & QSPI_SR2_SYNCBSY),
ATMEL_QSPI_SYNC_TIMEOUT);
}
static int atmel_qspi_update_config(struct atmel_qspi *aq)
{
int ret;
ret = atmel_qspi_reg_sync(aq);
if (ret)
return ret;
atmel_qspi_write(QSPI_CR_UPDCFG, aq, QSPI_CR);
return atmel_qspi_reg_sync(aq);
}
static int atmel_qspi_sama7g5_set_cfg(struct atmel_qspi *aq,
const struct spi_mem_op *op, u32 *offset)
{
u32 iar, icr, ifr;
int mode, ret;
iar = 0;
icr = FIELD_PREP(QSPI_ICR_INST_MASK_SAMA7G5, op->cmd.opcode);
ifr = QSPI_IFR_INSTEN;
mode = atmel_qspi_sama7g5_find_mode(op);
if (mode < 0)
return mode;
ifr |= atmel_qspi_sama7g5_modes[mode].config;
if (op->dummy.buswidth && op->dummy.nbytes) {
if (op->addr.dtr && op->dummy.dtr && op->data.dtr)
ifr |= QSPI_IFR_NBDUM(op->dummy.nbytes * 8 /
(2 * op->dummy.buswidth));
else
ifr |= QSPI_IFR_NBDUM(op->dummy.nbytes * 8 /
op->dummy.buswidth);
}
if (op->addr.buswidth && op->addr.nbytes) {
ifr |= FIELD_PREP(QSPI_IFR_ADDRL_SAMA7G5, op->addr.nbytes - 1) |
QSPI_IFR_ADDREN;
iar = FIELD_PREP(QSPI_IAR_ADDR, op->addr.val);
}
if (op->addr.dtr && op->dummy.dtr && op->data.dtr) {
ifr |= QSPI_IFR_DDREN;
if (op->cmd.dtr)
ifr |= QSPI_IFR_DDRCMDEN;
ifr |= QSPI_IFR_DQSEN;
}
if (op->cmd.buswidth == 8 || op->addr.buswidth == 8 ||
op->data.buswidth == 8)
ifr |= FIELD_PREP(QSPI_IFR_PROTTYP, QSPI_IFR_PROTTYP_OCTAFLASH);
/* offset of the data access in the QSPI memory space */
*offset = iar;
/* Set data enable */
if (op->data.nbytes) {
ifr |= QSPI_IFR_DATAEN;
if (op->addr.nbytes)
ifr |= QSPI_IFR_TFRTYP_MEM;
}
/*
* If the QSPI controller is set in regular SPI mode, set it in
* Serial Memory Mode (SMM).
*/
if (aq->mr != QSPI_MR_SMM) {
atmel_qspi_write(QSPI_MR_SMM | QSPI_MR_DQSDLYEN, aq, QSPI_MR);
ret = atmel_qspi_update_config(aq);
if (ret)
return ret;
aq->mr = QSPI_MR_SMM;
}
/* Clear pending interrupts */
(void)atmel_qspi_read(aq, QSPI_SR);
/* Set QSPI Instruction Frame registers */
if (op->addr.nbytes && !op->data.nbytes)
atmel_qspi_write(iar, aq, QSPI_IAR);
if (op->data.dir == SPI_MEM_DATA_IN) {
atmel_qspi_write(icr, aq, QSPI_RICR);
} else {
atmel_qspi_write(icr, aq, QSPI_WICR);
if (op->data.nbytes)
atmel_qspi_write(FIELD_PREP(QSPI_WRACNT_NBWRA,
op->data.nbytes),
aq, QSPI_WRACNT);
}
atmel_qspi_write(ifr, aq, QSPI_IFR);
return atmel_qspi_update_config(aq);
}
static int atmel_qspi_sama7g5_transfer(struct atmel_qspi *aq,
const struct spi_mem_op *op, u32 offset)
{
int err;
u32 val;
if (!op->data.nbytes) {
/* Start the transfer. */
err = atmel_qspi_reg_sync(aq);
if (err)
return err;
atmel_qspi_write(QSPI_CR_STTFR, aq, QSPI_CR);
return readl_poll_timeout(aq->regs + QSPI_SR, val,
val & QSPI_SR_CSRA,
ATMEL_QSPI_TIMEOUT);
}
/* Send/Receive data. */
if (op->data.dir == SPI_MEM_DATA_IN) {
memcpy_fromio(op->data.buf.in, aq->mem + offset,
op->data.nbytes);
if (op->addr.nbytes) {
err = readl_poll_timeout(aq->regs + QSPI_SR2, val,
!(val & QSPI_SR2_RBUSY),
ATMEL_QSPI_SYNC_TIMEOUT);
if (err)
return err;
}
} else {
memcpy_toio(aq->mem + offset, op->data.buf.out,
op->data.nbytes);
err = readl_poll_timeout(aq->regs + QSPI_SR, val,
val & QSPI_SR_LWRA,
ATMEL_QSPI_TIMEOUT);
if (err)
return err;
}
/* Release the chip-select. */
err = atmel_qspi_reg_sync(aq);
if (err)
return err;
atmel_qspi_write(QSPI_CR_LASTXFER, aq, QSPI_CR);
return readl_poll_timeout(aq->regs + QSPI_SR, val, val & QSPI_SR_CSRA,
ATMEL_QSPI_TIMEOUT);
}
static int atmel_qspi_exec_op(struct spi_slave *slave,
const struct spi_mem_op *op)
{
struct atmel_qspi *aq = dev_get_priv(slave->dev->parent);
u32 offset;
int err;
/*
* Check if the address exceeds the MMIO window size. An improvement
* would be to add support for regular SPI mode and fall back to it
* when the flash memories overrun the controller's memory space.
*/
if (op->addr.val + op->data.nbytes > aq->mmap_size)
return -ENOTSUPP;
if (op->addr.nbytes > 4)
return -EOPNOTSUPP;
err = aq->ops->set_cfg(aq, op, &offset);
if (err)
return err;
return aq->ops->transfer(aq, op, offset);
}
static int atmel_qspi_set_pad_calibration(struct udevice *bus, uint hz)
{
struct atmel_qspi *aq = dev_get_priv(bus);
u32 status, val;
int i, ret;
u8 pclk_div = 0;
for (i = 0; i < ATMEL_QSPI_PCAL_ARRAY_SIZE; i++) {
if (aq->bus_clk_rate <= pcal[i].pclk_rate) {
pclk_div = pcal[i].pclk_div;
break;
}
}
/*
* Use the biggest divider in case the peripheral clock exceeds
* 200MHZ.
*/
if (aq->bus_clk_rate > pcal[ATMEL_QSPI_PCAL_ARRAY_SIZE - 1].pclk_rate)
pclk_div = pcal[ATMEL_QSPI_PCAL_ARRAY_SIZE - 1].pclk_div;
/* Disable QSPI while configuring the pad calibration. */
status = atmel_qspi_read(aq, QSPI_SR2);
if (status & QSPI_SR2_QSPIENS) {
ret = atmel_qspi_reg_sync(aq);
if (ret)
return ret;
atmel_qspi_write(QSPI_CR_QSPIDIS, aq, QSPI_CR);
}
/*
* The analog circuitry is not shut down at the end of the calibration
* and the start-up time is only required for the first calibration
* sequence, thus increasing performance. Set the delay between the Pad
* calibration analog circuitry and the calibration request to 2us.
*/
atmel_qspi_write(QSPI_PCALCFG_AAON |
FIELD_PREP(QSPI_PCALCFG_CLKDIV, pclk_div) |
FIELD_PREP(QSPI_PCALCFG_CALCNT,
2 * (aq->bus_clk_rate / 1000000)),
aq, QSPI_PCALCFG);
/* DLL On + start calibration. */
atmel_qspi_write(QSPI_CR_DLLON | QSPI_CR_STPCAL, aq, QSPI_CR);
ret = readl_poll_timeout(aq->regs + QSPI_SR2, val,
(val & QSPI_SR2_DLOCK) &&
!(val & QSPI_SR2_CALBSY),
ATMEL_QSPI_TIMEOUT);
/* Refresh analogic blocks every 1 ms.*/
atmel_qspi_write(FIELD_PREP(QSPI_REFRESH_DELAY_COUNTER, hz / 1000),
aq, QSPI_REFRESH);
return ret;
}
static int atmel_qspi_set_gclk(struct udevice *bus, uint hz)
{
struct atmel_qspi *aq = dev_get_priv(bus);
struct clk gclk;
u32 status, val;
int ret;
/* Disable DLL before setting GCLK */
status = atmel_qspi_read(aq, QSPI_SR2);
if (status & QSPI_SR2_DLOCK) {
atmel_qspi_write(QSPI_CR_DLLOFF, aq, QSPI_CR);
ret = readl_poll_timeout(aq->regs + QSPI_SR2, val,
!(val & QSPI_SR2_DLOCK),
ATMEL_QSPI_TIMEOUT);
if (ret)
return ret;
}
if (hz > QSPI_DLLCFG_THRESHOLD_FREQ)
atmel_qspi_write(QSPI_DLLCFG_RANGE, aq, QSPI_DLLCFG);
else
atmel_qspi_write(0, aq, QSPI_DLLCFG);
ret = clk_get_by_name(bus, "gclk", &gclk);
if (ret) {
dev_err(bus, "Missing QSPI generic clock\n");
return ret;
}
ret = clk_disable(&gclk);
if (ret)
dev_err(bus, "Failed to disable QSPI generic clock\n");
ret = clk_set_rate(&gclk, hz);
if (ret < 0) {
dev_err(bus, "Failed to set generic clock rate.\n");
return ret;
}
ret = clk_enable(&gclk);
if (ret)
dev_err(bus, "Failed to enable QSPI generic clock\n");
clk_free(&gclk);
return ret;
}
static int atmel_qspi_sama7g5_set_speed(struct udevice *bus, uint hz)
{
struct atmel_qspi *aq = dev_get_priv(bus);
u32 val;
int ret;
ret = atmel_qspi_set_gclk(bus, hz);
if (ret)
return ret;
if (aq->caps->octal) {
ret = atmel_qspi_set_pad_calibration(bus, hz);
if (ret)
return ret;
} else {
atmel_qspi_write(QSPI_CR_DLLON, aq, QSPI_CR);
ret = readl_poll_timeout(aq->regs + QSPI_SR2, val,
val & QSPI_SR2_DLOCK,
ATMEL_QSPI_TIMEOUT);
}
/* Set the QSPI controller by default in Serial Memory Mode */
atmel_qspi_write(QSPI_MR_SMM | QSPI_MR_DQSDLYEN, aq, QSPI_MR);
ret = atmel_qspi_update_config(aq);
if (ret)
return ret;
aq->mr = QSPI_MR_SMM;
/* Enable the QSPI controller. */
ret = atmel_qspi_reg_sync(aq);
if (ret)
return ret;
atmel_qspi_write(QSPI_CR_QSPIEN, aq, QSPI_CR);
ret = readl_poll_timeout(aq->regs + QSPI_SR2, val,
val & QSPI_SR2_QSPIENS,
ATMEL_QSPI_SYNC_TIMEOUT);
if (ret)
return ret;
if (aq->caps->octal)
ret = readl_poll_timeout(aq->regs + QSPI_SR, val,
val & QSPI_SR_RFRSHD,
ATMEL_QSPI_TIMEOUT);
atmel_qspi_write(FIELD_PREP(QSPI_TOUT_TCNTM, QSPI_TOUT_MAX),
aq, QSPI_TOUT);
return ret;
}
static int atmel_qspi_set_speed(struct udevice *bus, uint hz)
{
struct atmel_qspi *aq = dev_get_priv(bus);
u32 scr, scbr, mask, new_value;
if (aq->caps->has_gclk)
return atmel_qspi_sama7g5_set_speed(bus, hz);
/* Compute the QSPI baudrate */
scbr = DIV_ROUND_UP(aq->bus_clk_rate, hz);
if (scbr > 0)
scbr--;
new_value = QSPI_SCR_SCBR(scbr);
mask = QSPI_SCR_SCBR_MASK;
scr = atmel_qspi_read(aq, QSPI_SCR);
if ((scr & mask) == new_value)
return 0;
scr = (scr & ~mask) | new_value;
atmel_qspi_write(scr, aq, QSPI_SCR);
return 0;
}
static int atmel_qspi_set_mode(struct udevice *bus, uint mode)
{
struct atmel_qspi *aq = dev_get_priv(bus);
u32 scr, mask, new_value = 0;
if (mode & SPI_CPOL)
new_value = QSPI_SCR_CPOL;
if (mode & SPI_CPHA)
new_value = QSPI_SCR_CPHA;
mask = QSPI_SCR_CPOL | QSPI_SCR_CPHA;
scr = atmel_qspi_read(aq, QSPI_SCR);
if ((scr & mask) == new_value)
return 0;
scr = (scr & ~mask) | new_value;
atmel_qspi_write(scr, aq, QSPI_SCR);
if (aq->caps->has_gclk)
return atmel_qspi_update_config(aq);
return 0;
}
static int atmel_qspi_enable_clk(struct udevice *dev)
{
struct atmel_qspi *aq = dev_get_priv(dev);
struct clk pclk, qspick, gclk;
int ret;
ret = clk_get_by_name(dev, "pclk", &pclk);
if (ret)
ret = clk_get_by_index(dev, 0, &pclk);
if (ret) {
dev_err(dev, "Missing QSPI peripheral clock\n");
return ret;
}
ret = clk_enable(&pclk);
if (ret) {
dev_err(dev, "Failed to enable QSPI peripheral clock\n");
goto free_pclk;
}
if (aq->caps->has_qspick) {
/* Get the QSPI system clock */
ret = clk_get_by_name(dev, "qspick", &qspick);
if (ret) {
dev_err(dev, "Missing QSPI peripheral clock\n");
goto free_pclk;
}
ret = clk_enable(&qspick);
if (ret)
dev_err(dev, "Failed to enable QSPI system clock\n");
clk_free(&qspick);
} else if (aq->caps->has_gclk) {
ret = clk_get_by_name(dev, "gclk", &gclk);
if (ret) {
dev_err(dev, "Missing QSPI generic clock\n");
goto free_pclk;
}
ret = clk_enable(&gclk);
if (ret)
dev_err(dev, "Failed to enable QSPI system clock\n");
clk_free(&gclk);
}
aq->bus_clk_rate = clk_get_rate(&pclk);
if (!aq->bus_clk_rate)
ret = -EINVAL;
free_pclk:
clk_free(&pclk);
return ret;
}
static int atmel_qspi_init(struct atmel_qspi *aq)
{
int ret;
if (aq->caps->has_gclk) {
ret = atmel_qspi_reg_sync(aq);
if (ret)
return ret;
atmel_qspi_write(QSPI_CR_SWRST, aq, QSPI_CR);
return 0;
}
/* Reset the QSPI controller */
atmel_qspi_write(QSPI_CR_SWRST, aq, QSPI_CR);
/* Set the QSPI controller by default in Serial Memory Mode */
atmel_qspi_write(QSPI_MR_SMM, aq, QSPI_MR);
aq->mr = QSPI_MR_SMM;
/* Enable the QSPI controller */
atmel_qspi_write(QSPI_CR_QSPIEN, aq, QSPI_CR);
return 0;
}
static const struct atmel_qspi_priv_ops atmel_qspi_priv_ops = {
.set_cfg = atmel_qspi_set_cfg,
.transfer = atmel_qspi_transfer,
};
static const struct atmel_qspi_priv_ops atmel_qspi_sama7g5_priv_ops = {
.set_cfg = atmel_qspi_sama7g5_set_cfg,
.transfer = atmel_qspi_sama7g5_transfer,
};
static int atmel_qspi_probe(struct udevice *dev)
{
struct atmel_qspi *aq = dev_get_priv(dev);
struct resource res;
int ret;
aq->caps = (struct atmel_qspi_caps *)dev_get_driver_data(dev);
if (!aq->caps) {
dev_err(dev, "Could not retrieve QSPI caps\n");
return -EINVAL;
};
if (aq->caps->has_gclk)
aq->ops = &atmel_qspi_sama7g5_priv_ops;
else
aq->ops = &atmel_qspi_priv_ops;
/* Map the registers */
ret = dev_read_resource_byname(dev, "qspi_base", &res);
if (ret) {
dev_err(dev, "missing registers\n");
return ret;
}
aq->regs = devm_ioremap(dev, res.start, resource_size(&res));
if (IS_ERR(aq->regs))
return PTR_ERR(aq->regs);
/* Map the AHB memory */
ret = dev_read_resource_byname(dev, "qspi_mmap", &res);
if (ret) {
dev_err(dev, "missing AHB memory\n");
return ret;
}
aq->mem = devm_ioremap(dev, res.start, resource_size(&res));
if (IS_ERR(aq->mem))
return PTR_ERR(aq->mem);
aq->mmap_size = resource_size(&res);
ret = atmel_qspi_enable_clk(dev);
if (ret)
return ret;
aq->dev = dev;
return atmel_qspi_init(aq);
}
static const struct spi_controller_mem_ops atmel_qspi_mem_ops = {
.supports_op = atmel_qspi_supports_op,
.exec_op = atmel_qspi_exec_op,
};
static const struct dm_spi_ops atmel_qspi_ops = {
.set_speed = atmel_qspi_set_speed,
.set_mode = atmel_qspi_set_mode,
.mem_ops = &atmel_qspi_mem_ops,
};
static const struct atmel_qspi_caps atmel_sama5d2_qspi_caps = {};
static const struct atmel_qspi_caps atmel_sam9x60_qspi_caps = {
.has_qspick = true,
.has_ricr = true,
};
static const struct atmel_qspi_caps atmel_sama7g5_ospi_caps = {
.has_gclk = true,
.octal = true,
};
static const struct atmel_qspi_caps atmel_sama7g5_qspi_caps = {
.has_gclk = true,
};
static const struct udevice_id atmel_qspi_ids[] = {
{
.compatible = "atmel,sama5d2-qspi",
.data = (ulong)&atmel_sama5d2_qspi_caps,
},
{
.compatible = "microchip,sam9x60-qspi",
.data = (ulong)&atmel_sam9x60_qspi_caps,
},
{
.compatible = "microchip,sama7g5-ospi",
.data = (ulong)&atmel_sama7g5_ospi_caps,
},
{
.compatible = "microchip,sama7g5-qspi",
.data = (ulong)&atmel_sama7g5_qspi_caps,
},
{ /* sentinel */ }
};
U_BOOT_DRIVER(atmel_qspi) = {
.name = "atmel_qspi",
.id = UCLASS_SPI,
.of_match = atmel_qspi_ids,
.ops = &atmel_qspi_ops,
.priv_auto = sizeof(struct atmel_qspi),
.probe = atmel_qspi_probe,
};