blob: a08a6cf22288bf3ecf56039848a144f48ff29a02 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2018-2022 Marvell International Ltd.
*/
#include <errno.h>
#include <i2c.h>
#include <log.h>
#include <malloc.h>
#include <linux/delay.h>
#include <display_options.h>
#include <mach/cvmx-regs.h>
#include <mach/cvmx-csr.h>
#include <mach/cvmx-bootmem.h>
#include <mach/octeon-model.h>
#include <mach/cvmx-fuse.h>
#include <mach/octeon-feature.h>
#include <mach/cvmx-qlm.h>
#include <mach/octeon_qlm.h>
#include <mach/cvmx-pcie.h>
#include <mach/cvmx-coremask.h>
#include <mach/cvmx-helper.h>
#include <mach/cvmx-helper-board.h>
#include <mach/cvmx-helper-fdt.h>
#include <mach/cvmx-helper-cfg.h>
#include <mach/cvmx-helper-gpio.h>
#include <mach/cvmx-helper-util.h>
extern void octeon_i2c_unblock(int bus);
static struct cvmx_fdt_sfp_info *sfp_list;
/**
* Local allocator to handle both SE and U-Boot that also zeroes out memory
*
* @param size number of bytes to allocate
*
* @return pointer to allocated memory or NULL if out of memory.
* Alignment is set to 8-bytes.
*/
static void *cvm_sfp_alloc(size_t size)
{
return calloc(size, 1);
}
/**
* Free allocated memory.
*
* @param ptr pointer to memory to free
*
* NOTE: This only works in U-Boot since SE does not really have a freeing
* mechanism. In SE the memory is zeroed out and not freed so this
* is a memory leak if errors occur.
*/
static inline void cvm_sfp_free(void *ptr, size_t size)
{
free(ptr);
}
/**
* Select a QSFP device before accessing the EEPROM
*
* @param sfp handle for sfp/qsfp connector
* @param enable Set true to select, false to deselect
*
* @return 0 on success or if SFP or no select GPIO, -1 on GPIO error
*/
static int cvmx_qsfp_select(const struct cvmx_fdt_sfp_info *sfp, bool enable)
{
/* Select is only needed for QSFP modules */
if (!sfp->is_qsfp) {
debug("%s(%s, %d): not QSFP\n", __func__, sfp->name, enable);
return 0;
}
if (dm_gpio_is_valid(&sfp->select)) {
/* Note that select is active low */
return dm_gpio_set_value(&sfp->select, !enable);
}
debug("%s: select GPIO unknown\n", __func__);
return 0;
}
static int cvmx_sfp_parse_sfp_buffer(struct cvmx_sfp_mod_info *sfp_info,
const uint8_t *buffer)
{
u8 csum = 0;
bool csum_good = false;
int i;
/* Validate the checksum */
for (i = 0; i < 0x3f; i++)
csum += buffer[i];
csum_good = csum == buffer[0x3f];
debug("%s: Lower checksum: 0x%02x, expected: 0x%02x\n", __func__, csum,
buffer[0x3f]);
csum = 0;
for (i = 0x40; i < 0x5f; i++)
csum += buffer[i];
debug("%s: Upper checksum: 0x%02x, expected: 0x%02x\n", __func__, csum,
buffer[0x5f]);
if (csum != buffer[0x5f] || !csum_good) {
debug("Error: SFP EEPROM checksum information is incorrect\n");
return -1;
}
sfp_info->conn_type = buffer[0];
if (buffer[1] < 1 || buffer[1] > 7) { /* Extended ID */
debug("Error: Unknown SFP extended identifier 0x%x\n",
buffer[1]);
return -1;
}
if (buffer[1] != 4) {
debug("Module is not SFP/SFP+/SFP28/QSFP+\n");
return -1;
}
sfp_info->mod_type = buffer[2];
sfp_info->eth_comp = buffer[3] & 0xf0;
sfp_info->cable_comp = buffer[0x24];
/* There are several ways a cable can be marked as active or
* passive. 8.[2-3] specify the SFP+ cable technology. Some
* modules also use 3.[0-1] for Infiniband, though it's
* redundant.
*/
if ((buffer[8] & 0x0C) == 0x08) {
sfp_info->limiting = true;
sfp_info->active_cable = true;
} else if ((buffer[8] & 0xC) == 0x4) {
sfp_info->limiting = false;
sfp_info->active_cable = false;
}
if ((buffer[3] & 3) == 2) {
sfp_info->active_cable = true;
sfp_info->limiting = true;
}
switch (sfp_info->mod_type) {
case CVMX_SFP_MOD_OPTICAL_LC:
case CVMX_SFP_MOD_OPTICAL_PIGTAIL:
sfp_info->copper_cable = false;
break;
case CVMX_SFP_MOD_COPPER_PIGTAIL:
sfp_info->copper_cable = true;
break;
case CVMX_SFP_MOD_NO_SEP_CONN:
switch (sfp_info->cable_comp) {
case CVMX_SFP_CABLE_100G_25GAUI_C2M_AOC_HIGH_BER:
case CVMX_SFP_CABLE_100G_25GAUI_C2M_AOC_LOW_BER:
case CVMX_SFP_CABLE_100G_25GAUI_C2M_ACC_LOW_BER:
sfp_info->copper_cable = false;
sfp_info->limiting = true;
sfp_info->active_cable = true;
break;
case CVMX_SFP_CABLE_100G_SR4_25G_SR:
case CVMX_SFP_CABLE_100G_LR4_25G_LR:
case CVMX_SFP_CABLE_100G_ER4_25G_ER:
case CVMX_SFP_CABLE_100G_SR10:
case CVMX_SFP_CABLE_100G_CWDM4_MSA:
case CVMX_SFP_CABLE_100G_PSM4:
case CVMX_SFP_CABLE_100G_CWDM4:
case CVMX_SFP_CABLE_40G_ER4:
case CVMX_SFP_CABLE_4X10G_SR:
case CVMX_SFP_CABLE_G959_1_P1I1_2D1:
case CVMX_SFP_CABLE_G959_1_P1S1_2D2:
case CVMX_SFP_CABLE_G959_1_P1L1_2D2:
case CVMX_SFP_CABLE_100G_CLR4:
case CVMX_SFP_CABLE_100G_2_LAMBDA_DWDM:
case CVMX_SFP_CABLE_40G_SWDM4:
case CVMX_SFP_CABLE_100G_SWDM4:
case CVMX_SFP_CABLE_100G_PAM4_BIDI:
sfp_info->copper_cable = false;
break;
case CVMX_SFP_CABLE_100G_25GAUI_C2M_ACC_HIGH_BER:
case CVMX_SFP_CABLE_10GBASE_T:
case CVMX_SFP_CABLE_10GBASE_T_SR:
case CVMX_SFP_CABLE_5GBASE_T:
case CVMX_SFP_CABLE_2_5GBASE_T:
sfp_info->copper_cable = true;
sfp_info->limiting = true;
sfp_info->active_cable = true;
break;
case CVMX_SFP_CABLE_100G_CR4_25G_CR_CA_L:
case CVMX_SFP_CABLE_25G_CR_CA_S:
case CVMX_SFP_CABLE_25G_CR_CA_N:
case CVMX_SFP_CABLE_40G_PSM4:
sfp_info->copper_cable = true;
break;
default:
switch (sfp_info->eth_comp) {
case CVMX_SFP_CABLE_10GBASE_ER:
case CVMX_SFP_CABLE_10GBASE_LRM:
case CVMX_SFP_CABLE_10GBASE_LR:
case CVMX_SFP_CABLE_10GBASE_SR:
sfp_info->copper_cable = false;
break;
}
break;
}
break;
case CVMX_SFP_MOD_RJ45:
debug("%s: RJ45 adapter\n", __func__);
sfp_info->copper_cable = true;
sfp_info->active_cable = true;
sfp_info->limiting = true;
break;
case CVMX_SFP_MOD_UNKNOWN:
/* The Avago 1000Base-X to 1000Base-T module reports that it
* is an unknown module type but the Ethernet compliance code
* says it is 1000Base-T. We'll change the reporting to RJ45.
*/
if (buffer[6] & 8) {
debug("RJ45 gigabit module detected\n");
sfp_info->mod_type = CVMX_SFP_MOD_RJ45;
sfp_info->copper_cable = false;
sfp_info->limiting = true;
sfp_info->active_cable = true;
sfp_info->max_copper_cable_len = buffer[0x12];
sfp_info->rate = CVMX_SFP_RATE_1G;
} else {
debug("Unknown module type 0x%x\n", sfp_info->mod_type);
}
sfp_info->limiting = true;
break;
case CVMX_SFP_MOD_MXC_2X16:
debug("%s: MXC 2X16\n", __func__);
break;
default:
sfp_info->limiting = true;
break;
}
if (sfp_info->copper_cable)
sfp_info->max_copper_cable_len = buffer[0x12];
else
sfp_info->max_50um_om4_cable_length = buffer[0x12] * 10;
if (buffer[0xe])
sfp_info->max_single_mode_cable_length = buffer[0xe] * 1000;
else
sfp_info->max_single_mode_cable_length = buffer[0xf] * 100000;
sfp_info->max_50um_om2_cable_length = buffer[0x10] * 10;
sfp_info->max_62_5um_om1_cable_length = buffer[0x11] * 10;
sfp_info->max_50um_om3_cable_length = buffer[0x13] * 10;
if (buffer[0xc] == 0xff) {
if (buffer[0x42] >= 255)
sfp_info->rate = CVMX_SFP_RATE_100G;
else if (buffer[0x42] >= 160)
sfp_info->rate = CVMX_SFP_RATE_40G;
else if (buffer[0x42] >= 100)
sfp_info->rate = CVMX_SFP_RATE_25G;
else
sfp_info->rate = CVMX_SFP_RATE_UNKNOWN;
} else if (buffer[0xc] >= 100) {
sfp_info->rate = CVMX_SFP_RATE_10G;
} else if (buffer[0xc] >= 10) {
sfp_info->rate = CVMX_SFP_RATE_1G;
} else {
sfp_info->rate = CVMX_SFP_RATE_UNKNOWN;
}
if (sfp_info->rate == CVMX_SFP_RATE_UNKNOWN) {
switch (sfp_info->cable_comp) {
case CVMX_SFP_CABLE_100G_SR10:
case CVMX_SFP_CABLE_100G_CWDM4_MSA:
case CVMX_SFP_CABLE_100G_PSM4:
case CVMX_SFP_CABLE_100G_CWDM4:
case CVMX_SFP_CABLE_100G_CLR4:
case CVMX_SFP_CABLE_100G_2_LAMBDA_DWDM:
case CVMX_SFP_CABLE_100G_SWDM4:
case CVMX_SFP_CABLE_100G_PAM4_BIDI:
sfp_info->rate = CVMX_SFP_RATE_100G;
break;
case CVMX_SFP_CABLE_100G_25GAUI_C2M_AOC_HIGH_BER:
case CVMX_SFP_CABLE_100G_SR4_25G_SR:
case CVMX_SFP_CABLE_100G_LR4_25G_LR:
case CVMX_SFP_CABLE_100G_ER4_25G_ER:
case CVMX_SFP_CABLE_100G_25GAUI_C2M_ACC_HIGH_BER:
case CVMX_SFP_CABLE_100G_CR4_25G_CR_CA_L:
case CVMX_SFP_CABLE_25G_CR_CA_S:
case CVMX_SFP_CABLE_25G_CR_CA_N:
case CVMX_SFP_CABLE_100G_25GAUI_C2M_AOC_LOW_BER:
case CVMX_SFP_CABLE_100G_25GAUI_C2M_ACC_LOW_BER:
sfp_info->rate = CVMX_SFP_RATE_25G;
break;
case CVMX_SFP_CABLE_40G_ER4:
case CVMX_SFP_CABLE_4X10G_SR:
case CVMX_SFP_CABLE_40G_PSM4:
case CVMX_SFP_CABLE_40G_SWDM4:
sfp_info->rate = CVMX_SFP_RATE_40G;
break;
case CVMX_SFP_CABLE_G959_1_P1I1_2D1:
case CVMX_SFP_CABLE_G959_1_P1S1_2D2:
case CVMX_SFP_CABLE_G959_1_P1L1_2D2:
case CVMX_SFP_CABLE_10GBASE_T:
case CVMX_SFP_CABLE_10GBASE_T_SR:
case CVMX_SFP_CABLE_5GBASE_T:
case CVMX_SFP_CABLE_2_5GBASE_T:
sfp_info->rate = CVMX_SFP_RATE_10G;
break;
default:
switch (sfp_info->eth_comp) {
case CVMX_SFP_CABLE_10GBASE_ER:
case CVMX_SFP_CABLE_10GBASE_LRM:
case CVMX_SFP_CABLE_10GBASE_LR:
case CVMX_SFP_CABLE_10GBASE_SR:
sfp_info->rate = CVMX_SFP_RATE_10G;
break;
default:
sfp_info->rate = CVMX_SFP_RATE_UNKNOWN;
break;
}
break;
}
}
if (buffer[0xc] < 0xff)
sfp_info->bitrate_max = buffer[0xc] * 100;
else
sfp_info->bitrate_max = buffer[0x42] * 250;
if ((buffer[8] & 0xc) == 8) {
if (buffer[0x3c] & 0x4)
sfp_info->limiting = true;
}
/* Currently we only set this for 25G. FEC is required for CA-S cables
* and for cable lengths >= 5M as of this writing.
*/
if ((sfp_info->rate == CVMX_SFP_RATE_25G &&
sfp_info->copper_cable) &&
(sfp_info->cable_comp == CVMX_SFP_CABLE_25G_CR_CA_S ||
sfp_info->max_copper_cable_len >= 5))
sfp_info->fec_required = true;
/* copy strings and vendor info, strings will be automatically NUL
* terminated.
*/
memcpy(sfp_info->vendor_name, &buffer[0x14], 16);
memcpy(sfp_info->vendor_oui, &buffer[0x25], 3);
memcpy(sfp_info->vendor_pn, &buffer[0x28], 16);
memcpy(sfp_info->vendor_rev, &buffer[0x38], 4);
memcpy(sfp_info->vendor_sn, &buffer[0x44], 16);
memcpy(sfp_info->date_code, &buffer[0x54], 8);
sfp_info->cooled_laser = !!(buffer[0x40] & 4);
sfp_info->internal_cdr = !!(buffer[0x40] & 8);
if (buffer[0x40] & 0x20)
sfp_info->power_level = 3;
else
sfp_info->power_level = (buffer[0x40] & 2) ? 2 : 1;
sfp_info->diag_paging = !!(buffer[0x40] & 0x10);
sfp_info->linear_rx_output = !(buffer[0x40] & 1);
sfp_info->los_implemented = !!(buffer[0x41] & 2);
sfp_info->los_inverted = !!(buffer[0x41] & 4);
sfp_info->tx_fault_implemented = !!(buffer[0x41] & 8);
sfp_info->tx_disable_implemented = !!(buffer[0x41] & 0x10);
sfp_info->rate_select_implemented = !!(buffer[0x41] & 0x20);
sfp_info->tuneable_transmitter = !!(buffer[0x41] & 0x40);
sfp_info->rx_decision_threshold_implemented = !!(buffer[0x41] & 0x80);
sfp_info->diag_monitoring = !!(buffer[0x5c] & 0x40);
sfp_info->diag_rx_power_averaged = !!(buffer[0x5c] & 0x8);
sfp_info->diag_externally_calibrated = !!(buffer[0x5c] & 0x10);
sfp_info->diag_internally_calibrated = !!(buffer[0x5c] & 0x20);
sfp_info->diag_addr_change_required = !!(buffer[0x5c] & 0x4);
sfp_info->diag_soft_rate_select_control = !!(buffer[0x5d] & 2);
sfp_info->diag_app_select_control = !!(buffer[0x5d] & 4);
sfp_info->diag_soft_rate_select_control = !!(buffer[0x5d] & 8);
sfp_info->diag_soft_rx_los_implemented = !!(buffer[0x5d] & 0x10);
sfp_info->diag_soft_tx_fault_implemented = !!(buffer[0x5d] & 0x20);
sfp_info->diag_soft_tx_disable_implemented = !!(buffer[0x5d] & 0x40);
sfp_info->diag_alarm_warning_flags_implemented =
!!(buffer[0x5d] & 0x80);
sfp_info->diag_rev = buffer[0x5e];
return 0;
}
static int cvmx_sfp_parse_qsfp_buffer(struct cvmx_sfp_mod_info *sfp_info,
const uint8_t *buffer)
{
u8 csum = 0;
bool csum_good = false;
int i;
/* Validate the checksum */
for (i = 0x80; i < 0xbf; i++)
csum += buffer[i];
csum_good = csum == buffer[0xbf];
debug("%s: Lower checksum: 0x%02x, expected: 0x%02x\n", __func__, csum,
buffer[0xbf]);
csum = 0;
for (i = 0xc0; i < 0xdf; i++)
csum += buffer[i];
debug("%s: Upper checksum: 0x%02x, expected: 0x%02x\n", __func__, csum,
buffer[0xdf]);
if (csum != buffer[0xdf] || !csum_good) {
debug("Error: SFP EEPROM checksum information is incorrect\n");
return -1;
}
sfp_info->conn_type = buffer[0x80];
sfp_info->mod_type = buffer[0x82];
sfp_info->eth_comp = buffer[0x83] & 0xf0;
sfp_info->cable_comp = buffer[0xa4];
switch (sfp_info->mod_type) {
case CVMX_SFP_MOD_COPPER_PIGTAIL:
case CVMX_SFP_MOD_NO_SEP_CONN:
debug("%s: copper pigtail or no separable cable\n", __func__);
/* There are several ways a cable can be marked as active or
* passive. 8.[2-3] specify the SFP+ cable technology. Some
* modules also use 3.[0-1] for Infiniband, though it's
* redundant.
*/
sfp_info->copper_cable = true;
if ((buffer[0x88] & 0x0C) == 0x08) {
sfp_info->limiting = true;
sfp_info->active_cable = true;
} else if ((buffer[0x88] & 0xC) == 0x4) {
sfp_info->limiting = false;
sfp_info->active_cable = false;
}
if ((buffer[0x83] & 3) == 2) {
sfp_info->active_cable = true;
sfp_info->limiting = true;
}
break;
case CVMX_SFP_MOD_RJ45:
debug("%s: RJ45 adapter\n", __func__);
sfp_info->copper_cable = true;
sfp_info->active_cable = true;
sfp_info->limiting = true;
break;
case CVMX_SFP_MOD_UNKNOWN:
debug("Unknown module type\n");
/* The Avago 1000Base-X to 1000Base-T module reports that it
* is an unknown module type but the Ethernet compliance code
* says it is 1000Base-T. We'll change the reporting to RJ45.
*/
if (buffer[0x86] & 8) {
sfp_info->mod_type = CVMX_SFP_MOD_RJ45;
sfp_info->copper_cable = false;
sfp_info->limiting = true;
sfp_info->active_cable = true;
sfp_info->max_copper_cable_len = buffer[0x92];
sfp_info->rate = CVMX_SFP_RATE_1G;
}
fallthrough;
default:
sfp_info->limiting = true;
break;
}
if (sfp_info->copper_cable)
sfp_info->max_copper_cable_len = buffer[0x92];
else
sfp_info->max_50um_om4_cable_length = buffer[0x92] * 10;
debug("%s: copper cable: %d, max copper cable len: %d\n", __func__,
sfp_info->copper_cable, sfp_info->max_copper_cable_len);
if (buffer[0xe])
sfp_info->max_single_mode_cable_length = buffer[0x8e] * 1000;
else
sfp_info->max_single_mode_cable_length = buffer[0x8f] * 100000;
sfp_info->max_50um_om2_cable_length = buffer[0x90] * 10;
sfp_info->max_62_5um_om1_cable_length = buffer[0x91] * 10;
sfp_info->max_50um_om3_cable_length = buffer[0x93] * 10;
if (buffer[0x8c] == 12) {
sfp_info->rate = CVMX_SFP_RATE_1G;
} else if (buffer[0x8c] == 103) {
sfp_info->rate = CVMX_SFP_RATE_10G;
} else if (buffer[0x8c] == 0xff) {
if (buffer[0xc2] == 103)
sfp_info->rate = CVMX_SFP_RATE_100G;
}
if (buffer[0x8c] < 0xff)
sfp_info->bitrate_max = buffer[0x8c] * 100;
else
sfp_info->bitrate_max = buffer[0xc2] * 250;
if ((buffer[0x88] & 0xc) == 8) {
if (buffer[0xbc] & 0x4)
sfp_info->limiting = true;
}
/* Currently we only set this for 25G. FEC is required for CA-S cables
* and for cable lengths >= 5M as of this writing.
*/
/* copy strings and vendor info, strings will be automatically NUL
* terminated.
*/
memcpy(sfp_info->vendor_name, &buffer[0x94], 16);
memcpy(sfp_info->vendor_oui, &buffer[0xa5], 3);
memcpy(sfp_info->vendor_pn, &buffer[0xa8], 16);
memcpy(sfp_info->vendor_rev, &buffer[0xb8], 4);
memcpy(sfp_info->vendor_sn, &buffer[0xc4], 16);
memcpy(sfp_info->date_code, &buffer[0xd4], 8);
sfp_info->linear_rx_output = !!(buffer[0xc0] & 1);
sfp_info->cooled_laser = !!(buffer[0xc0] & 4);
sfp_info->internal_cdr = !!(buffer[0xc0] & 8);
if (buffer[0xc0] & 0x20)
sfp_info->power_level = 3;
else
sfp_info->power_level = (buffer[0xc0] & 2) ? 2 : 1;
sfp_info->diag_paging = !!(buffer[0xc0] & 0x10);
sfp_info->los_implemented = !!(buffer[0xc1] & 2);
sfp_info->los_inverted = !!(buffer[0xc1] & 4);
sfp_info->tx_fault_implemented = !!(buffer[0xc1] & 8);
sfp_info->tx_disable_implemented = !!(buffer[0xc1] & 0x10);
sfp_info->rate_select_implemented = !!(buffer[0xc1] & 0x20);
sfp_info->tuneable_transmitter = !!(buffer[0xc1] & 0x40);
sfp_info->rx_decision_threshold_implemented = !!(buffer[0xc1] & 0x80);
sfp_info->diag_monitoring = !!(buffer[0xdc] & 0x40);
sfp_info->diag_rx_power_averaged = !!(buffer[0xdc] & 0x8);
sfp_info->diag_externally_calibrated = !!(buffer[0xdc] & 0x10);
sfp_info->diag_internally_calibrated = !!(buffer[0xdc] & 0x20);
sfp_info->diag_addr_change_required = !!(buffer[0xdc] & 0x4);
sfp_info->diag_soft_rate_select_control = !!(buffer[0xdd] & 2);
sfp_info->diag_app_select_control = !!(buffer[0xdd] & 4);
sfp_info->diag_soft_rate_select_control = !!(buffer[0xdd] & 8);
sfp_info->diag_soft_rx_los_implemented = !!(buffer[0xdd] & 0x10);
sfp_info->diag_soft_tx_fault_implemented = !!(buffer[0xdd] & 0x20);
sfp_info->diag_soft_tx_disable_implemented = !!(buffer[0xdd] & 0x40);
sfp_info->diag_alarm_warning_flags_implemented =
!!(buffer[0xdd] & 0x80);
sfp_info->diag_rev = buffer[0xde];
return 0;
}
static bool sfp_verify_checksum(const uint8_t *buffer)
{
u8 csum = 0;
u8 offset;
bool csum_good = false;
int i;
switch (buffer[0]) {
case CVMX_SFP_CONN_QSFP:
case CVMX_SFP_CONN_QSFPP:
case CVMX_SFP_CONN_QSFP28:
case CVMX_SFP_CONN_MICRO_QSFP:
case CVMX_SFP_CONN_QSFP_DD:
offset = 0x80;
break;
default:
offset = 0;
break;
}
for (i = offset; i < offset + 0x3f; i++)
csum += buffer[i];
csum_good = csum == buffer[offset + 0x3f];
if (!csum_good) {
debug("%s: Lower checksum bad, got 0x%x, expected 0x%x\n",
__func__, csum, buffer[offset + 0x3f]);
return false;
}
csum = 0;
for (i = offset + 0x40; i < offset + 0x5f; i++)
csum += buffer[i];
if (csum != buffer[offset + 0x5f]) {
debug("%s: Upper checksum bad, got 0x%x, expected 0x%x\n",
__func__, csum, buffer[offset + 0x5f]);
return false;
}
return true;
}
/**
* Reads and parses SFP/QSFP EEPROM
*
* @param sfp sfp handle to read
*
* @return 0 for success, -1 on error.
*/
int cvmx_sfp_read_i2c_eeprom(struct cvmx_fdt_sfp_info *sfp)
{
const struct cvmx_fdt_i2c_bus_info *bus = sfp->i2c_bus;
int oct_bus = cvmx_fdt_i2c_get_root_bus(bus);
struct udevice *dev;
u8 buffer[256];
bool is_qsfp;
int retry;
int err;
if (!bus) {
debug("%s(%s): Error: i2c bus undefined for eeprom\n", __func__,
sfp->name);
return -1;
}
is_qsfp = (sfp->sfp_info.conn_type == CVMX_SFP_CONN_QSFP ||
sfp->sfp_info.conn_type == CVMX_SFP_CONN_QSFPP ||
sfp->sfp_info.conn_type == CVMX_SFP_CONN_QSFP28 ||
sfp->sfp_info.conn_type == CVMX_SFP_CONN_MICRO_QSFP) ||
sfp->is_qsfp;
err = cvmx_qsfp_select(sfp, true);
if (err) {
debug("%s: Error selecting SFP/QSFP slot\n", __func__);
return err;
}
debug("%s: Reading eeprom from i2c address %d:0x%x\n", __func__,
oct_bus, sfp->i2c_eeprom_addr);
for (retry = 0; retry < 3; retry++) {
err = i2c_get_chip(bus->i2c_bus, sfp->i2c_eeprom_addr, 1, &dev);
if (err) {
debug("Cannot find I2C device: %d\n", err);
goto error;
}
err = dm_i2c_read(dev, 0, buffer, 256);
if (err || !sfp_verify_checksum(buffer)) {
debug("%s: Error %d reading eeprom at 0x%x, bus %d\n",
__func__, err, sfp->i2c_eeprom_addr, oct_bus);
debug("%s: Retry %d\n", __func__, retry + 1);
mdelay(1000);
} else {
break;
}
}
if (err) {
debug("%s: Error reading eeprom from SFP %s\n", __func__,
sfp->name);
return -1;
}
#ifdef DEBUG
print_buffer(0, buffer, 1, 256, 0);
#endif
memset(&sfp->sfp_info, 0, sizeof(struct cvmx_sfp_mod_info));
switch (buffer[0]) {
case CVMX_SFP_CONN_SFP:
err = cvmx_sfp_parse_sfp_buffer(&sfp->sfp_info, buffer);
break;
case CVMX_SFP_CONN_QSFP:
case CVMX_SFP_CONN_QSFPP:
case CVMX_SFP_CONN_QSFP28:
case CVMX_SFP_CONN_MICRO_QSFP:
err = cvmx_sfp_parse_qsfp_buffer(&sfp->sfp_info, buffer);
break;
default:
debug("%s: Unknown SFP transceiver type 0x%x\n", __func__,
buffer[0]);
err = -1;
break;
}
error:
if (is_qsfp)
err |= cvmx_qsfp_select(sfp, false);
if (!err) {
sfp->valid = true;
sfp->sfp_info.valid = true;
} else {
sfp->valid = false;
sfp->sfp_info.valid = false;
}
return err;
}
/**
* Function called to check and return the status of the mod_abs pin or
* mod_pres pin for QSFPs.
*
* @param sfp Handle to SFP information.
* @param data User-defined data passed to the function
*
* @return 0 if absent, 1 if present, -1 on error
*/
int cvmx_sfp_check_mod_abs(struct cvmx_fdt_sfp_info *sfp, void *data)
{
int val;
int err = 0;
int mode;
if (!dm_gpio_is_valid(&sfp->mod_abs)) {
debug("%s: Error: mod_abs not set for %s\n", __func__,
sfp->name);
return -1;
}
val = dm_gpio_get_value(&sfp->mod_abs);
debug("%s(%s, %p) mod_abs: %d\n", __func__, sfp->name, data, val);
if (val >= 0 && val != sfp->last_mod_abs && sfp->mod_abs_changed) {
err = 0;
if (!val) {
err = cvmx_sfp_read_i2c_eeprom(sfp);
if (err)
debug("%s: Error reading SFP %s EEPROM\n",
__func__, sfp->name);
}
err = sfp->mod_abs_changed(sfp, val, sfp->mod_abs_changed_data);
}
debug("%s(%s (%p)): Last mod_abs: %d, current: %d, changed: %p, rc: %d, next: %p, caller: %p\n",
__func__, sfp->name, sfp, sfp->last_mod_abs, val,
sfp->mod_abs_changed, err, sfp->next_iface_sfp,
__builtin_return_address(0));
if (err >= 0) {
sfp->last_mod_abs = val;
mode = cvmx_helper_interface_get_mode(sfp->xiface);
cvmx_sfp_validate_module(sfp, mode);
} else {
debug("%s: mod_abs_changed for %s returned error\n", __func__,
sfp->name);
}
return err < 0 ? err : val;
}
/**
* Reads the EEPROMs of all SFP modules.
*
* @return 0 for success
*/
int cvmx_sfp_read_all_modules(void)
{
struct cvmx_fdt_sfp_info *sfp;
int val;
bool error = false;
int rc;
for (sfp = sfp_list; sfp; sfp = sfp->next) {
if (dm_gpio_is_valid(&sfp->mod_abs)) {
/* Check if module absent */
val = dm_gpio_get_value(&sfp->mod_abs);
sfp->last_mod_abs = val;
if (val)
continue;
}
rc = cvmx_sfp_read_i2c_eeprom(sfp);
if (rc) {
debug("%s: Error reading eeprom from SFP %s\n",
__func__, sfp->name);
error = true;
}
}
return error ? -1 : 0;
}
/**
* Registers a function to be called whenever the mod_abs/mod_pres signal
* changes.
*
* @param sfp Handle to SFP data structure
* @param mod_abs_changed Function called whenever mod_abs is changed
* or NULL to remove.
* @param mod_abs_changed_data User-defined data passed to
* mod_abs_changed
*
* @return 0 for success
*
* @NOTE: If multiple SFP slots are linked together, all subsequent slots
* will also be registered for the same handler.
*/
int cvmx_sfp_register_mod_abs_changed(struct cvmx_fdt_sfp_info *sfp,
int (*mod_abs_changed)(struct cvmx_fdt_sfp_info *sfp,
int val, void *data),
void *mod_abs_changed_data)
{
sfp->mod_abs_changed = mod_abs_changed;
sfp->mod_abs_changed_data = mod_abs_changed_data;
sfp->last_mod_abs = -2; /* undefined */
return 0;
}
/**
* Parses a SFP slot from the device tree
*
* @param sfp SFP handle to store data in
* @param fdt_addr Address of flat device tree
* @param of_offset Node in device tree for SFP slot
*
* @return 0 on success, -1 on error
*/
static int cvmx_sfp_parse_sfp(struct cvmx_fdt_sfp_info *sfp, ofnode node)
{
struct ofnode_phandle_args phandle;
int err;
sfp->name = ofnode_get_name(node);
sfp->of_offset = ofnode_to_offset(node);
err = gpio_request_by_name_nodev(node, "tx_disable", 0,
&sfp->tx_disable, GPIOD_IS_OUT);
if (err) {
printf("%s: tx_disable not found in DT!\n", __func__);
return -ENODEV;
}
dm_gpio_set_value(&sfp->tx_disable, 0);
err = gpio_request_by_name_nodev(node, "mod_abs", 0,
&sfp->mod_abs, GPIOD_IS_IN);
if (err) {
printf("%s: mod_abs not found in DT!\n", __func__);
return -ENODEV;
}
err = gpio_request_by_name_nodev(node, "tx_error", 0,
&sfp->tx_error, GPIOD_IS_IN);
if (err) {
printf("%s: tx_error not found in DT!\n", __func__);
return -ENODEV;
}
err = gpio_request_by_name_nodev(node, "rx_los", 0,
&sfp->rx_los, GPIOD_IS_IN);
if (err) {
printf("%s: rx_los not found in DT!\n", __func__);
return -ENODEV;
}
err = ofnode_parse_phandle_with_args(node, "eeprom", NULL, 0, 0,
&phandle);
if (!err) {
sfp->i2c_eeprom_addr = ofnode_get_addr(phandle.node);
debug("%s: eeprom address: 0x%x\n", __func__,
sfp->i2c_eeprom_addr);
debug("%s: Getting eeprom i2c bus for %s\n", __func__,
sfp->name);
sfp->i2c_bus = cvmx_ofnode_get_i2c_bus(ofnode_get_parent(phandle.node));
}
err = ofnode_parse_phandle_with_args(node, "diag", NULL, 0, 0,
&phandle);
if (!err) {
sfp->i2c_diag_addr = ofnode_get_addr(phandle.node);
if (!sfp->i2c_bus)
sfp->i2c_bus = cvmx_ofnode_get_i2c_bus(ofnode_get_parent(phandle.node));
}
sfp->last_mod_abs = -2;
sfp->last_rx_los = -2;
if (!sfp->i2c_bus) {
debug("%s(%s): Error: could not get i2c bus from device tree\n",
__func__, sfp->name);
err = -1;
}
if (err) {
dm_gpio_free(sfp->tx_disable.dev, &sfp->tx_disable);
dm_gpio_free(sfp->mod_abs.dev, &sfp->mod_abs);
dm_gpio_free(sfp->tx_error.dev, &sfp->tx_error);
dm_gpio_free(sfp->rx_los.dev, &sfp->rx_los);
} else {
sfp->valid = true;
}
return err;
}
/**
* Parses a QSFP slot from the device tree
*
* @param sfp SFP handle to store data in
* @param fdt_addr Address of flat device tree
* @param of_offset Node in device tree for SFP slot
*
* @return 0 on success, -1 on error
*/
static int cvmx_sfp_parse_qsfp(struct cvmx_fdt_sfp_info *sfp, ofnode node)
{
struct ofnode_phandle_args phandle;
int err;
sfp->is_qsfp = true;
sfp->name = ofnode_get_name(node);
sfp->of_offset = ofnode_to_offset(node);
err = gpio_request_by_name_nodev(node, "lp_mode", 0,
&sfp->lp_mode, GPIOD_IS_OUT);
if (err) {
printf("%s: lp_mode not found in DT!\n", __func__);
return -ENODEV;
}
err = gpio_request_by_name_nodev(node, "mod_prs", 0,
&sfp->mod_abs, GPIOD_IS_IN);
if (err) {
printf("%s: mod_prs not found in DT!\n", __func__);
return -ENODEV;
}
err = gpio_request_by_name_nodev(node, "select", 0,
&sfp->select, GPIOD_IS_IN);
if (err) {
printf("%s: select not found in DT!\n", __func__);
return -ENODEV;
}
err = gpio_request_by_name_nodev(node, "reset", 0,
&sfp->reset, GPIOD_IS_OUT);
if (err) {
printf("%s: reset not found in DT!\n", __func__);
return -ENODEV;
}
err = gpio_request_by_name_nodev(node, "interrupt", 0,
&sfp->interrupt, GPIOD_IS_IN);
if (err) {
printf("%s: interrupt not found in DT!\n", __func__);
return -ENODEV;
}
err = ofnode_parse_phandle_with_args(node, "eeprom", NULL, 0, 0,
&phandle);
if (!err) {
sfp->i2c_eeprom_addr = ofnode_get_addr(phandle.node);
sfp->i2c_bus = cvmx_ofnode_get_i2c_bus(ofnode_get_parent(phandle.node));
}
err = ofnode_parse_phandle_with_args(node, "diag", NULL, 0, 0,
&phandle);
if (!err) {
sfp->i2c_diag_addr = ofnode_get_addr(phandle.node);
if (!sfp->i2c_bus)
sfp->i2c_bus = cvmx_ofnode_get_i2c_bus(ofnode_get_parent(phandle.node));
}
sfp->last_mod_abs = -2;
sfp->last_rx_los = -2;
if (!sfp->i2c_bus) {
cvmx_printf("%s(%s): Error: could not get i2c bus from device tree\n",
__func__, sfp->name);
err = -1;
}
if (err) {
dm_gpio_free(sfp->lp_mode.dev, &sfp->lp_mode);
dm_gpio_free(sfp->mod_abs.dev, &sfp->mod_abs);
dm_gpio_free(sfp->select.dev, &sfp->select);
dm_gpio_free(sfp->reset.dev, &sfp->reset);
dm_gpio_free(sfp->interrupt.dev, &sfp->interrupt);
} else {
sfp->valid = true;
}
return err;
}
/**
* Parses the device tree for SFP and QSFP slots
*
* @param fdt_addr Address of flat device-tree
*
* @return 0 for success, -1 on error
*/
int cvmx_sfp_parse_device_tree(const void *fdt_addr)
{
struct cvmx_fdt_sfp_info *sfp, *first_sfp = NULL, *last_sfp = NULL;
ofnode node;
int err = 0;
int reg;
static bool parsed;
debug("%s(%p): Parsing...\n", __func__, fdt_addr);
if (parsed) {
debug("%s(%p): Already parsed\n", __func__, fdt_addr);
return 0;
}
ofnode_for_each_compatible_node(node, "ethernet,sfp-slot") {
if (!ofnode_valid(node))
continue;
sfp = cvm_sfp_alloc(sizeof(*sfp));
if (!sfp)
return -1;
err = cvmx_sfp_parse_sfp(sfp, node);
if (!err) {
if (!sfp_list)
sfp_list = sfp;
if (last_sfp)
last_sfp->next = sfp;
sfp->prev = last_sfp;
last_sfp = sfp;
debug("%s: parsed %s\n", __func__, sfp->name);
} else {
debug("%s: Error parsing SFP at node %s\n",
__func__, ofnode_get_name(node));
return err;
}
}
ofnode_for_each_compatible_node(node, "ethernet,qsfp-slot") {
if (!ofnode_valid(node))
continue;
sfp = cvm_sfp_alloc(sizeof(*sfp));
if (!sfp)
return -1;
err = cvmx_sfp_parse_qsfp(sfp, node);
if (!err) {
if (!sfp_list)
sfp_list = sfp;
if (last_sfp)
last_sfp->next = sfp;
sfp->prev = last_sfp;
last_sfp = sfp;
debug("%s: parsed %s\n", __func__, sfp->name);
} else {
debug("%s: Error parsing QSFP at node %s\n",
__func__, ofnode_get_name(node));
return err;
}
}
if (!octeon_has_feature(OCTEON_FEATURE_BGX))
return 0;
err = 0;
ofnode_for_each_compatible_node(node, "cavium,octeon-7890-bgx-port") {
int sfp_nodes[4];
ofnode sfp_ofnodes[4];
int num_sfp_nodes;
u64 reg_addr;
struct cvmx_xiface xi;
int xiface, index;
cvmx_helper_interface_mode_t mode;
int i;
int rc;
if (!ofnode_valid(node))
break;
num_sfp_nodes = ARRAY_SIZE(sfp_nodes);
rc = cvmx_ofnode_lookup_phandles(node, "sfp-slot",
&num_sfp_nodes, sfp_ofnodes);
if (rc != 0 || num_sfp_nodes < 1)
rc = cvmx_ofnode_lookup_phandles(node, "qsfp-slot",
&num_sfp_nodes,
sfp_ofnodes);
/* If no SFP or QSFP slot found, go to next port */
if (rc < 0)
continue;
last_sfp = NULL;
for (i = 0; i < num_sfp_nodes; i++) {
sfp = cvmx_sfp_find_slot_by_fdt_node(ofnode_to_offset(sfp_ofnodes[i]));
debug("%s: Adding sfp %s (%p) to BGX port\n",
__func__, sfp->name, sfp);
if (last_sfp)
last_sfp->next_iface_sfp = sfp;
else
first_sfp = sfp;
last_sfp = sfp;
}
if (!first_sfp) {
debug("%s: Error: could not find SFP slot for BGX port %s\n",
__func__,
fdt_get_name(fdt_addr, sfp_nodes[0],
NULL));
err = -1;
break;
}
/* Get the port index */
reg = ofnode_get_addr(node);
if (reg < 0) {
debug("%s: Error: could not get BGX port reg value\n",
__func__);
err = -1;
break;
}
index = reg;
/* Get BGX node and address */
reg_addr = ofnode_get_addr(ofnode_get_parent(node));
/* Extrace node */
xi.node = cvmx_csr_addr_to_node(reg_addr);
/* Extract reg address */
reg_addr = cvmx_csr_addr_strip_node(reg_addr);
if ((reg_addr & 0xFFFFFFFFF0000000) !=
0x00011800E0000000) {
debug("%s: Invalid BGX address 0x%llx\n",
__func__, (unsigned long long)reg_addr);
xi.node = -1;
err = -1;
break;
}
/* Extract interface from address */
xi.interface = (reg_addr >> 24) & 0x0F;
/* Convert to xiface */
xiface = cvmx_helper_node_interface_to_xiface(xi.node,
xi.interface);
debug("%s: Parsed %d SFP slots for interface 0x%x, index %d\n",
__func__, num_sfp_nodes, xiface, index);
mode = cvmx_helper_interface_get_mode(xiface);
for (sfp = first_sfp; sfp; sfp = sfp->next_iface_sfp) {
sfp->xiface = xiface;
sfp->index = index;
/* Convert to IPD port */
sfp->ipd_port[0] =
cvmx_helper_get_ipd_port(xiface, index);
debug("%s: sfp %s (%p) xi: 0x%x, index: 0x%x, node: %d, mode: 0x%x, next: %p\n",
__func__, sfp->name, sfp, sfp->xiface,
sfp->index, xi.node, mode,
sfp->next_iface_sfp);
if (mode == CVMX_HELPER_INTERFACE_MODE_XLAUI ||
mode == CVMX_HELPER_INTERFACE_MODE_40G_KR4)
for (i = 1; i < 4; i++)
sfp->ipd_port[i] = -1;
else
for (i = 1; i < 4; i++)
sfp->ipd_port[i] =
cvmx_helper_get_ipd_port(
xiface, i);
}
cvmx_helper_cfg_set_sfp_info(xiface, index, first_sfp);
}
if (!err) {
parsed = true;
cvmx_sfp_read_all_modules();
}
return err;
}
/**
* Given a fdt node offset find the corresponding SFP or QSFP slot
*
* @param of_offset flat device tree node offset
*
* @return pointer to SFP data structure or NULL if not found
*/
struct cvmx_fdt_sfp_info *cvmx_sfp_find_slot_by_fdt_node(int of_offset)
{
struct cvmx_fdt_sfp_info *sfp = sfp_list;
while (sfp) {
if (sfp->of_offset == of_offset)
return sfp;
sfp = sfp->next;
}
return NULL;
}
static bool cvmx_sfp_validate_quad(struct cvmx_fdt_sfp_info *sfp,
struct cvmx_phy_gpio_leds *leds)
{
bool multi_led = leds && (leds->next);
bool error = false;
int mod_abs;
do {
/* Skip missing modules */
if (dm_gpio_is_valid(&sfp->mod_abs))
mod_abs = dm_gpio_get_value(&sfp->mod_abs);
else
mod_abs = 0;
if (!mod_abs) {
if (cvmx_sfp_read_i2c_eeprom(sfp)) {
debug("%s: Error reading eeprom for %s\n",
__func__, sfp->name);
}
if (sfp->sfp_info.rate < CVMX_SFP_RATE_10G) {
cvmx_helper_leds_show_error(leds, true);
error = true;
} else if (sfp->sfp_info.rate >= CVMX_SFP_RATE_10G) {
/* We don't support 10GBase-T modules in
* this mode.
*/
switch (sfp->sfp_info.cable_comp) {
case CVMX_SFP_CABLE_10GBASE_T:
case CVMX_SFP_CABLE_10GBASE_T_SR:
case CVMX_SFP_CABLE_5GBASE_T:
case CVMX_SFP_CABLE_2_5GBASE_T:
cvmx_helper_leds_show_error(leds, true);
error = true;
break;
default:
break;
}
}
} else if (multi_led) {
cvmx_helper_leds_show_error(leds, false);
}
if (multi_led && leds->next)
leds = leds->next;
sfp = sfp->next_iface_sfp;
} while (sfp);
if (!multi_led)
cvmx_helper_leds_show_error(leds, error);
return error;
}
/**
* Validates if the module is correct for the specified port
*
* @param[in] sfp SFP port to check
* @param xiface interface
* @param index port index
* @param speed link speed, -1 if unknown
* @param mode interface mode
*
* @return true if module is valid, false if invalid
* NOTE: This will also toggle the error LED, if present
*/
bool cvmx_sfp_validate_module(struct cvmx_fdt_sfp_info *sfp, int mode)
{
const struct cvmx_sfp_mod_info *mod_info = &sfp->sfp_info;
int xiface = sfp->xiface;
int index = sfp->index;
struct cvmx_phy_gpio_leds *leds;
bool error = false;
bool quad_mode = false;
debug("%s(%s, 0x%x, 0x%x, 0x%x)\n", __func__, sfp->name, xiface, index,
mode);
if (!sfp) {
debug("%s: Error: sfp is NULL\n", __func__);
return false;
}
/* No module is valid */
leds = cvmx_helper_get_port_phy_leds(xiface, index);
if (!leds)
debug("%s: No leds for 0x%x:0x%x\n", __func__, xiface, index);
if (mode != CVMX_HELPER_INTERFACE_MODE_XLAUI &&
mode != CVMX_HELPER_INTERFACE_MODE_40G_KR4 && !sfp->is_qsfp &&
sfp->last_mod_abs && leds) {
cvmx_helper_leds_show_error(leds, false);
debug("%s: %s: last_mod_abs: %d, no error\n", __func__,
sfp->name, sfp->last_mod_abs);
return true;
}
switch (mode) {
case CVMX_HELPER_INTERFACE_MODE_RGMII:
case CVMX_HELPER_INTERFACE_MODE_GMII:
case CVMX_HELPER_INTERFACE_MODE_SGMII:
case CVMX_HELPER_INTERFACE_MODE_QSGMII:
case CVMX_HELPER_INTERFACE_MODE_AGL:
case CVMX_HELPER_INTERFACE_MODE_SPI:
if ((mod_info->active_cable &&
mod_info->rate != CVMX_SFP_RATE_1G) ||
mod_info->rate < CVMX_SFP_RATE_1G)
error = true;
break;
case CVMX_HELPER_INTERFACE_MODE_RXAUI:
case CVMX_HELPER_INTERFACE_MODE_XAUI:
case CVMX_HELPER_INTERFACE_MODE_10G_KR:
case CVMX_HELPER_INTERFACE_MODE_XFI:
if ((mod_info->active_cable &&
mod_info->rate != CVMX_SFP_RATE_10G) ||
mod_info->rate < CVMX_SFP_RATE_10G)
error = true;
break;
case CVMX_HELPER_INTERFACE_MODE_XLAUI:
case CVMX_HELPER_INTERFACE_MODE_40G_KR4:
if (!sfp->is_qsfp) {
quad_mode = true;
error = cvmx_sfp_validate_quad(sfp, leds);
} else {
if ((mod_info->active_cable &&
mod_info->rate != CVMX_SFP_RATE_40G) ||
mod_info->rate < CVMX_SFP_RATE_25G)
error = true;
}
break;
default:
debug("%s: Unsupported interface mode %d on xiface 0x%x\n",
__func__, mode, xiface);
return false;
}
debug("%s: %s: error: %d\n", __func__, sfp->name, error);
if (leds && !quad_mode)
cvmx_helper_leds_show_error(leds, error);
return !error;
}