blob: 5528bcd7ccead2a302505f5c2b1f6daade354259 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2022 MediaTek Inc. All Rights Reserved.
*
* Author: Mingming Lee <Mingming.Lee@mediatek.com>
*
* MediaTek I2C Interface driver
*/
#include <clk.h>
#include <cpu_func.h>
#include <dm.h>
#include <i2c.h>
#include <log.h>
#include <asm/cache.h>
#include <asm/io.h>
#include <linux/delay.h>
#include <linux/errno.h>
#define I2C_RS_TRANSFER BIT(4)
#define I2C_HS_NACKERR BIT(2)
#define I2C_ACKERR BIT(1)
#define I2C_TRANSAC_COMP BIT(0)
#define I2C_TRANSAC_START BIT(0)
#define I2C_RS_MUL_CNFG BIT(15)
#define I2C_RS_MUL_TRIG BIT(14)
#define I2C_DCM_DISABLE 0x0000
#define I2C_IO_CONFIG_OPEN_DRAIN 0x0003
#define I2C_IO_CONFIG_PUSH_PULL 0x0000
#define I2C_SOFT_RST 0x0001
#define I2C_FIFO_ADDR_CLR 0x0001
#define I2C_DELAY_LEN 0x0002
#define I2C_ST_START_CON 0x8001
#define I2C_FS_START_CON 0x1800
#define I2C_TIME_CLR_VALUE 0x0000
#define I2C_TIME_DEFAULT_VALUE 0x0003
#define I2C_WRRD_TRANAC_VALUE 0x0002
#define I2C_RD_TRANAC_VALUE 0x0001
#define I2C_DMA_CON_TX 0x0000
#define I2C_DMA_CON_RX 0x0001
#define I2C_DMA_START_EN 0x0001
#define I2C_DMA_INT_FLAG_NONE 0x0000
#define I2C_DMA_CLR_FLAG 0x0000
#define I2C_DMA_TX_RX 0x0000
#define I2C_DMA_HARD_RST 0x0002
#define MAX_ST_MODE_SPEED 100000
#define MAX_FS_MODE_SPEED 400000
#define MAX_HS_MODE_SPEED 3400000
#define MAX_SAMPLE_CNT_DIV 8
#define MAX_STEP_CNT_DIV 64
#define MAX_HS_STEP_CNT_DIV 8
#define I2C_DEFAULT_CLK_DIV 4
#define MAX_I2C_ADDR 0x7f
#define MAX_I2C_LEN 0xff
#define TRANS_ADDR_ONLY BIT(8)
#define TRANSFER_TIMEOUT 50000 /* us */
#define I2C_FIFO_STAT1_MASK 0x001f
#define TIMING_SAMPLE_OFFSET 8
#define HS_SAMPLE_OFFSET 12
#define HS_STEP_OFFSET 8
#define I2C_CONTROL_WRAPPER BIT(0)
#define I2C_CONTROL_RS BIT(1)
#define I2C_CONTROL_DMA_EN BIT(2)
#define I2C_CONTROL_CLK_EXT_EN BIT(3)
#define I2C_CONTROL_DIR_CHANGE BIT(4)
#define I2C_CONTROL_ACKERR_DET_EN BIT(5)
#define I2C_CONTROL_TRANSFER_LEN_CHANGE BIT(6)
#define I2C_CONTROL_DMAACK BIT(8)
#define I2C_CONTROL_ASYNC BIT(9)
#define I2C_MASTER_WR BIT(0)
#define I2C_MASTER_RD BIT(1)
#define I2C_MASTER_WRRD (I2C_MASTER_WR | I2C_MASTER_RD)
enum I2C_REGS_OFFSET {
REG_PORT,
REG_SLAVE_ADDR,
REG_INTR_MASK,
REG_INTR_STAT,
REG_CONTROL,
REG_TRANSFER_LEN,
REG_TRANSAC_LEN,
REG_DELAY_LEN,
REG_TIMING,
REG_START,
REG_EXT_CONF,
REG_FIFO_STAT1,
REG_LTIMING,
REG_FIFO_STAT,
REG_FIFO_THRESH,
REG_FIFO_ADDR_CLR,
REG_IO_CONFIG,
REG_RSV_DEBUG,
REG_HS,
REG_SOFTRESET,
REG_DCM_EN,
REG_PATH_DIR,
REG_DEBUGSTAT,
REG_DEBUGCTRL,
REG_TRANSFER_LEN_AUX,
REG_CLOCK_DIV,
REG_SCL_HL_RATIO,
REG_SCL_HS_HL_RATIO,
REG_SCL_MIS_COMP_POINT,
REG_STA_STOP_AC_TIME,
REG_HS_STA_STOP_AC_TIME,
REG_DATA_TIME,
};
enum DMA_REGS_OFFSET {
REG_INT_FLAG = 0x0,
REG_INT_EN = 0x04,
REG_EN = 0x08,
REG_RST = 0x0c,
REG_CON = 0x18,
REG_TX_MEM_ADDR = 0x1c,
REG_RX_MEM_ADDR = 0x20,
REG_TX_LEN = 0x24,
REG_RX_LEN = 0x28,
};
static const uint mt_i2c_regs_v1[] = {
[REG_PORT] = 0x0,
[REG_SLAVE_ADDR] = 0x4,
[REG_INTR_MASK] = 0x8,
[REG_INTR_STAT] = 0xc,
[REG_CONTROL] = 0x10,
[REG_TRANSFER_LEN] = 0x14,
[REG_TRANSAC_LEN] = 0x18,
[REG_DELAY_LEN] = 0x1c,
[REG_TIMING] = 0x20,
[REG_START] = 0x24,
[REG_EXT_CONF] = 0x28,
[REG_FIFO_STAT1] = 0x2c,
[REG_FIFO_STAT] = 0x30,
[REG_FIFO_THRESH] = 0x34,
[REG_FIFO_ADDR_CLR] = 0x38,
[REG_IO_CONFIG] = 0x40,
[REG_RSV_DEBUG] = 0x44,
[REG_HS] = 0x48,
[REG_SOFTRESET] = 0x50,
[REG_SOFTRESET] = 0x50,
[REG_DCM_EN] = 0x54,
[REG_DEBUGSTAT] = 0x64,
[REG_DEBUGCTRL] = 0x68,
[REG_TRANSFER_LEN_AUX] = 0x6c,
[REG_CLOCK_DIV] = 0x70,
[REG_SCL_HL_RATIO] = 0x74,
[REG_SCL_HS_HL_RATIO] = 0x78,
[REG_SCL_MIS_COMP_POINT] = 0x7c,
[REG_STA_STOP_AC_TIME] = 0x80,
[REG_HS_STA_STOP_AC_TIME] = 0x84,
[REG_DATA_TIME] = 0x88,
};
static const uint mt_i2c_regs_v2[] = {
[REG_PORT] = 0x0,
[REG_SLAVE_ADDR] = 0x4,
[REG_INTR_MASK] = 0x8,
[REG_INTR_STAT] = 0xc,
[REG_CONTROL] = 0x10,
[REG_TRANSFER_LEN] = 0x14,
[REG_TRANSAC_LEN] = 0x18,
[REG_DELAY_LEN] = 0x1c,
[REG_TIMING] = 0x20,
[REG_START] = 0x24,
[REG_EXT_CONF] = 0x28,
[REG_LTIMING] = 0x2c,
[REG_HS] = 0x30,
[REG_IO_CONFIG] = 0x34,
[REG_FIFO_ADDR_CLR] = 0x38,
[REG_TRANSFER_LEN_AUX] = 0x44,
[REG_CLOCK_DIV] = 0x48,
[REG_SOFTRESET] = 0x50,
[REG_DEBUGSTAT] = 0xe0,
[REG_DEBUGCTRL] = 0xe8,
[REG_FIFO_STAT] = 0xf4,
[REG_FIFO_THRESH] = 0xf8,
[REG_DCM_EN] = 0xf88,
};
struct mtk_i2c_soc_data {
const uint *regs;
uint dma_sync: 1;
};
struct mtk_i2c_priv {
/* set in i2c probe */
void __iomem *base; /* i2c base addr */
void __iomem *pdmabase; /* dma base address*/
struct clk clk_main; /* main clock for i2c bus */
struct clk clk_dma; /* DMA clock for i2c via DMA */
const struct mtk_i2c_soc_data *soc_data; /* Compatible data for different IC */
int op; /* operation mode */
bool zero_len; /* Only transfer slave address, no data */
bool pushpull; /* push pull mode or open drain mode */
bool filter_msg; /* filter msg error log */
bool auto_restart; /* restart mode */
bool ignore_restart_irq; /* ignore restart IRQ */
uint speed; /* i2c speed, unit: hz */
};
static inline void i2c_writel(struct mtk_i2c_priv *priv, uint reg, uint value)
{
u32 offset = priv->soc_data->regs[reg];
writel(value, priv->base + offset);
}
static inline uint i2c_readl(struct mtk_i2c_priv *priv, uint offset)
{
return readl(priv->base + priv->soc_data->regs[offset]);
}
static int mtk_i2c_clk_enable(struct mtk_i2c_priv *priv)
{
int ret;
ret = clk_enable(&priv->clk_main);
if (ret)
return log_msg_ret("enable clk_main", ret);
ret = clk_enable(&priv->clk_dma);
if (ret)
return log_msg_ret("enable clk_dma", ret);
return 0;
}
static int mtk_i2c_clk_disable(struct mtk_i2c_priv *priv)
{
int ret;
ret = clk_disable(&priv->clk_dma);
if (ret)
return log_msg_ret("disable clk_dma", ret);
ret = clk_disable(&priv->clk_main);
if (ret)
return log_msg_ret("disable clk_main", ret);
return 0;
}
static void mtk_i2c_init_hw(struct mtk_i2c_priv *priv)
{
uint control_reg;
writel(I2C_DMA_HARD_RST, priv->pdmabase + REG_RST);
writel(I2C_DMA_CLR_FLAG, priv->pdmabase + REG_RST);
i2c_writel(priv, REG_SOFTRESET, I2C_SOFT_RST);
/* set ioconfig */
if (priv->pushpull)
i2c_writel(priv, REG_IO_CONFIG, I2C_IO_CONFIG_PUSH_PULL);
else
i2c_writel(priv, REG_IO_CONFIG, I2C_IO_CONFIG_OPEN_DRAIN);
i2c_writel(priv, REG_DCM_EN, I2C_DCM_DISABLE);
control_reg = I2C_CONTROL_ACKERR_DET_EN | I2C_CONTROL_CLK_EXT_EN;
if (priv->soc_data->dma_sync)
control_reg |= I2C_CONTROL_DMAACK | I2C_CONTROL_ASYNC;
i2c_writel(priv, REG_CONTROL, control_reg);
i2c_writel(priv, REG_DELAY_LEN, I2C_DELAY_LEN);
}
/*
* Calculate i2c port speed
*
* Hardware design:
* i2c_bus_freq = parent_clk / (clock_div * 2 * sample_cnt * step_cnt)
* clock_div: fixed in hardware, but may be various in different SoCs
*
* The calculation want to pick the highest bus frequency that is still
* less than or equal to target_speed. The calculation try to get
* sample_cnt and step_cn
* @param[in]
* clk_src: i2c clock source
* @param[out]
* timing_step_cnt: step cnt calculate result
* @param[out]
* timing_sample_cnt: sample cnt calculate result
* @return
* 0, set speed successfully.
* -EINVAL, Unsupported speed.
*/
static int mtk_i2c_calculate_speed(uint clk_src,
uint target_speed,
uint *timing_step_cnt,
uint *timing_sample_cnt)
{
uint base_sample_cnt = MAX_SAMPLE_CNT_DIV;
uint base_step_cnt;
uint max_step_cnt;
uint sample_cnt;
uint step_cnt;
uint opt_div;
uint best_mul;
uint cnt_mul;
if (target_speed > MAX_HS_MODE_SPEED)
target_speed = MAX_HS_MODE_SPEED;
if (target_speed > MAX_FS_MODE_SPEED)
max_step_cnt = MAX_HS_STEP_CNT_DIV;
else
max_step_cnt = MAX_STEP_CNT_DIV;
base_step_cnt = max_step_cnt;
/* Find the best combination */
opt_div = DIV_ROUND_UP(clk_src >> 1, target_speed);
best_mul = MAX_SAMPLE_CNT_DIV * max_step_cnt;
/*
* Search for the best pair (sample_cnt, step_cnt) with
* 0 < sample_cnt < MAX_SAMPLE_CNT_DIV
* 0 < step_cnt < max_step_cnt
* sample_cnt * step_cnt >= opt_div
* optimizing for sample_cnt * step_cnt being minimal
*/
for (sample_cnt = 1; sample_cnt <= MAX_SAMPLE_CNT_DIV; sample_cnt++) {
step_cnt = DIV_ROUND_UP(opt_div, sample_cnt);
cnt_mul = step_cnt * sample_cnt;
if (step_cnt > max_step_cnt)
continue;
if (cnt_mul < best_mul) {
best_mul = cnt_mul;
base_sample_cnt = sample_cnt;
base_step_cnt = step_cnt;
if (best_mul == opt_div)
break;
}
}
sample_cnt = base_sample_cnt;
step_cnt = base_step_cnt;
if ((clk_src / (2 * sample_cnt * step_cnt)) > target_speed) {
/*
* In this case, hardware can't support such
* low i2c_bus_freq
*/
debug("Unsupported speed(%uhz)\n", target_speed);
return log_msg_ret("calculate speed", -EINVAL);
}
*timing_step_cnt = step_cnt - 1;
*timing_sample_cnt = sample_cnt - 1;
return 0;
}
/*
* mtk_i2c_set_speed
*
* @par Description
* Calculate i2c speed and write sample_cnt, step_cnt to TIMING register.
* @param[in]
* dev: udevice pointer, struct udevice contains i2c source clock,
* clock divide and speed.
* @return
* 0, set speed successfully.\n
* error code from mtk_i2c_calculate_speed().
*/
static int mtk_i2c_set_speed(struct udevice *dev, uint speed)
{
struct mtk_i2c_priv *priv = dev_get_priv(dev);
uint high_speed_reg;
uint sample_cnt;
uint timing_reg;
uint step_cnt;
uint clk_src;
int ret = 0;
priv->speed = speed;
if (mtk_i2c_clk_enable(priv))
return log_msg_ret("set_speed enable clk", -1);
clk_src = clk_get_rate(&priv->clk_main) / I2C_DEFAULT_CLK_DIV;
i2c_writel(priv, REG_CLOCK_DIV, (I2C_DEFAULT_CLK_DIV - 1));
if (priv->speed > MAX_FS_MODE_SPEED) {
/* Set master code speed register */
ret = mtk_i2c_calculate_speed(clk_src, MAX_FS_MODE_SPEED,
&step_cnt, &sample_cnt);
if (ret < 0)
goto exit;
timing_reg = (sample_cnt << TIMING_SAMPLE_OFFSET) | step_cnt;
i2c_writel(priv, REG_TIMING, timing_reg);
/* Set the high speed mode register */
ret = mtk_i2c_calculate_speed(clk_src, priv->speed,
&step_cnt, &sample_cnt);
if (ret < 0)
goto exit;
high_speed_reg = I2C_TIME_DEFAULT_VALUE |
(sample_cnt << HS_SAMPLE_OFFSET) |
(step_cnt << HS_STEP_OFFSET);
i2c_writel(priv, REG_HS, high_speed_reg);
} else {
ret = mtk_i2c_calculate_speed(clk_src, priv->speed,
&step_cnt, &sample_cnt);
if (ret < 0)
goto exit;
timing_reg = (sample_cnt << TIMING_SAMPLE_OFFSET) | step_cnt;
/* Disable the high speed transaction */
high_speed_reg = I2C_TIME_CLR_VALUE;
i2c_writel(priv, REG_TIMING, timing_reg);
i2c_writel(priv, REG_HS, high_speed_reg);
}
exit:
if (mtk_i2c_clk_disable(priv))
return log_msg_ret("set_speed disable clk", -1);
return ret;
}
/*
* mtk_i2c_do_transfer
*
* @par Description
* Configure i2c register and trigger transfer.
* @param[in]
* priv: mtk_i2cmtk_i2c_priv pointer, struct mtk_i2c_priv contains register base\n
* address, operation mode, interrupt status and i2c driver data.
* @param[in]
* msgs: i2c_msg pointer, struct i2c_msg contains slave\n
* address, operation mode, msg length and data buffer.
* @param[in]
* num: i2c_msg number.
* @param[in]
* left_num: left i2c_msg number.
* @return
* 0, i2c transfer successfully.\n
* -ETIMEDOUT, i2c transfer timeout.\n
* -EREMOTEIO, i2c transfer ack error.
*/
static int mtk_i2c_do_transfer(struct mtk_i2c_priv *priv,
struct i2c_msg *msgs,
int num, int left_num)
{
struct i2c_msg *msg_rx = NULL;
uint restart_flag = 0;
uint trans_error = 0;
uint irq_stat = 0;
uint tmo_poll = 0;
uint control_reg;
bool tmo = false;
uint start_reg;
uint addr_reg;
int ret = 0;
if (priv->auto_restart)
restart_flag = I2C_RS_TRANSFER;
control_reg = i2c_readl(priv, REG_CONTROL) &
~(I2C_CONTROL_DIR_CHANGE | I2C_CONTROL_RS);
if (priv->speed > MAX_FS_MODE_SPEED || num > 1)
control_reg |= I2C_CONTROL_RS;
if (priv->op == I2C_MASTER_WRRD)
control_reg |= I2C_CONTROL_DIR_CHANGE | I2C_CONTROL_RS;
control_reg |= I2C_CONTROL_DMA_EN;
i2c_writel(priv, REG_CONTROL, control_reg);
/* set start condition */
if (priv->speed <= MAX_ST_MODE_SPEED)
i2c_writel(priv, REG_EXT_CONF, I2C_ST_START_CON);
else
i2c_writel(priv, REG_EXT_CONF, I2C_FS_START_CON);
addr_reg = msgs->addr << 1;
if (priv->op == I2C_MASTER_RD)
addr_reg |= I2C_M_RD;
if (priv->zero_len)
i2c_writel(priv, REG_SLAVE_ADDR, addr_reg | TRANS_ADDR_ONLY);
else
i2c_writel(priv, REG_SLAVE_ADDR, addr_reg);
/* clear interrupt status */
i2c_writel(priv, REG_INTR_STAT, restart_flag | I2C_HS_NACKERR |
I2C_ACKERR | I2C_TRANSAC_COMP);
i2c_writel(priv, REG_FIFO_ADDR_CLR, I2C_FIFO_ADDR_CLR);
/* enable interrupt */
i2c_writel(priv, REG_INTR_MASK, restart_flag | I2C_HS_NACKERR |
I2C_ACKERR | I2C_TRANSAC_COMP);
/* set transfer and transaction len */
if (priv->op == I2C_MASTER_WRRD) {
i2c_writel(priv, REG_TRANSFER_LEN, msgs->len);
i2c_writel(priv, REG_TRANSFER_LEN_AUX, (msgs + 1)->len);
i2c_writel(priv, REG_TRANSAC_LEN, I2C_WRRD_TRANAC_VALUE);
} else {
i2c_writel(priv, REG_TRANSFER_LEN, msgs->len);
i2c_writel(priv, REG_TRANSAC_LEN, num);
}
/* Clear DMA interrupt flag */
writel(I2C_DMA_INT_FLAG_NONE, priv->pdmabase + REG_INT_FLAG);
/* Flush cache for first msg */
flush_cache((ulong)msgs->buf, msgs->len);
/*
* prepare buffer data to start transfer
* three cases here: read, write, write then read
*/
if (priv->op & I2C_MASTER_WR) {
/* Set DMA direction TX (w/ or w/o RX) */
writel(I2C_DMA_CON_TX, priv->pdmabase + REG_CON);
/* Write the tx buffer address to dma register */
writel((ulong)msgs->buf, priv->pdmabase + REG_TX_MEM_ADDR);
/* Write the tx length to dma register */
writel(msgs->len, priv->pdmabase + REG_TX_LEN);
if (priv->op & I2C_MASTER_RD) {
/* write then read */
msg_rx = msgs + 1;
/* Flush cache for second msg */
flush_cache((ulong)msg_rx->buf, msg_rx->len);
}
}
if (priv->op & I2C_MASTER_RD) {
if (!msg_rx) {
/* Set DMA direction RX */
writel(I2C_DMA_CON_RX, priv->pdmabase + REG_CON);
msg_rx = msgs;
}
/* Write the rx buffer address to dma register */
writel((ulong)msg_rx->buf, priv->pdmabase + REG_RX_MEM_ADDR);
/* Write the rx length to dma register */
writel(msg_rx->len, priv->pdmabase + REG_RX_LEN);
}
writel(I2C_DMA_START_EN, priv->pdmabase + REG_EN);
if (!priv->auto_restart) {
start_reg = I2C_TRANSAC_START;
} else {
start_reg = I2C_TRANSAC_START | I2C_RS_MUL_TRIG;
if (left_num >= 1)
start_reg |= I2C_RS_MUL_CNFG;
}
i2c_writel(priv, REG_START, start_reg);
for (;;) {
irq_stat = i2c_readl(priv, REG_INTR_STAT);
/* ignore the first restart irq after the master code */
if (priv->ignore_restart_irq && (irq_stat & restart_flag)) {
priv->ignore_restart_irq = false;
irq_stat = 0;
i2c_writel(priv, REG_START, I2C_RS_MUL_CNFG |
I2C_RS_MUL_TRIG | I2C_TRANSAC_START);
}
if (irq_stat & (I2C_TRANSAC_COMP | restart_flag)) {
tmo = false;
if (irq_stat & (I2C_HS_NACKERR | I2C_ACKERR))
trans_error = 1;
break;
}
udelay(1);
if (tmo_poll++ >= TRANSFER_TIMEOUT) {
tmo = true;
break;
}
}
/* clear interrupt mask */
i2c_writel(priv, REG_INTR_MASK, ~(restart_flag | I2C_HS_NACKERR |
I2C_ACKERR | I2C_TRANSAC_COMP));
if (!tmo && trans_error != 0) {
if (tmo) {
ret = -ETIMEDOUT;
if (!priv->filter_msg)
debug("I2C timeout! addr: 0x%x,\n", msgs->addr);
} else {
ret = -EREMOTEIO;
if (!priv->filter_msg)
debug("I2C ACKERR! addr: 0x%x,IRQ:0x%x\n",
msgs->addr, irq_stat);
}
mtk_i2c_init_hw(priv);
}
return ret;
}
/*
* mtk_i2c_transfer
*
* @par Description
* Common i2c transfer API. Set i2c transfer mode according to i2c_msg\n
* information, then call mtk_i2c_do_transfer() to configure i2c register\n
* and trigger transfer.
* @param[in]
* dev: udevice pointer, struct udevice contains struct mtk_i2c_priv, \n
* struct mtk_i2c_priv contains register base\n
* address, operation mode, interrupt status and i2c driver data.
* @param[in]
* msgs: i2c_msg pointer, struct i2c_msg contains slave\n
* address, operation mode, msg length and data buffer.
* @param[in]
* num: i2c_msg number.
* @return
* i2c_msg number, i2c transfer successfully.\n
* -EINVAL, msg length is more than 16\n
* use DMA MODE or slave address more than 0x7f.\n
* error code from mtk_i2c_init_base().\n
* error code from mtk_i2c_set_speed().\n
* error code from mtk_i2c_do_transfer().
*/
static int mtk_i2c_transfer(struct udevice *dev, struct i2c_msg *msg,
int nmsgs)
{
struct mtk_i2c_priv *priv = dev_get_priv(dev);
int left_num;
uint num_cnt;
int ret;
priv->auto_restart = true;
left_num = nmsgs;
if (mtk_i2c_clk_enable(priv))
return log_msg_ret("transfer enable clk", -1);
for (num_cnt = 0; num_cnt < nmsgs; num_cnt++) {
if (((msg + num_cnt)->addr) > MAX_I2C_ADDR) {
ret = -EINVAL;
goto err_exit;
}
if ((msg + num_cnt)->len > MAX_I2C_LEN) {
ret = -EINVAL;
goto err_exit;
}
}
/* check if we can skip restart and optimize using WRRD mode */
if (priv->auto_restart && nmsgs == 2) {
if (!(msg[0].flags & I2C_M_RD) && (msg[1].flags & I2C_M_RD) &&
msg[0].addr == msg[1].addr) {
priv->auto_restart = false;
}
}
if (priv->auto_restart && nmsgs >= 2 && priv->speed > MAX_FS_MODE_SPEED)
/* ignore the first restart irq after the master code,
* otherwise the first transfer will be discarded.
*/
priv->ignore_restart_irq = true;
else
priv->ignore_restart_irq = false;
while (left_num--) {
/* transfer slave address only to support devices detect */
if (!msg->buf)
priv->zero_len = true;
else
priv->zero_len = false;
if (msg->flags & I2C_M_RD)
priv->op = I2C_MASTER_RD;
else
priv->op = I2C_MASTER_WR;
if (!priv->auto_restart) {
if (nmsgs > 1) {
/* combined two messages into one transaction */
priv->op = I2C_MASTER_WRRD;
left_num--;
}
}
ret = mtk_i2c_do_transfer(priv, msg, nmsgs, left_num);
if (ret < 0)
goto err_exit;
msg++;
}
ret = 0;
err_exit:
if (mtk_i2c_clk_disable(priv))
return log_msg_ret("transfer disable clk", -1);
return ret;
}
static int mtk_i2c_of_to_plat(struct udevice *dev)
{
struct mtk_i2c_priv *priv = dev_get_priv(dev);
int ret;
priv->base = dev_remap_addr_index(dev, 0);
priv->pdmabase = dev_remap_addr_index(dev, 1);
ret = clk_get_by_index(dev, 0, &priv->clk_main);
if (ret)
return log_msg_ret("clk_get_by_index 0", ret);
ret = clk_get_by_index(dev, 1, &priv->clk_dma);
return ret;
}
static int mtk_i2c_probe(struct udevice *dev)
{
struct mtk_i2c_priv *priv = dev_get_priv(dev);
priv->soc_data = (struct mtk_i2c_soc_data *)dev_get_driver_data(dev);
if (mtk_i2c_clk_enable(priv))
return log_msg_ret("probe enable clk", -1);
mtk_i2c_init_hw(priv);
if (mtk_i2c_clk_disable(priv))
return log_msg_ret("probe disable clk", -1);
return 0;
}
static int mtk_i2c_deblock(struct udevice *dev)
{
struct mtk_i2c_priv *priv = dev_get_priv(dev);
if (mtk_i2c_clk_enable(priv))
return log_msg_ret("deblock enable clk", -1);
mtk_i2c_init_hw(priv);
if (mtk_i2c_clk_disable(priv))
return log_msg_ret("deblock disable clk", -1);
return 0;
}
static const struct mtk_i2c_soc_data mt76xx_soc_data = {
.regs = mt_i2c_regs_v1,
.dma_sync = 0,
};
static const struct mtk_i2c_soc_data mt7981_soc_data = {
.regs = mt_i2c_regs_v1,
.dma_sync = 1,
};
static const struct mtk_i2c_soc_data mt7986_soc_data = {
.regs = mt_i2c_regs_v1,
.dma_sync = 1,
};
static const struct mtk_i2c_soc_data mt8183_soc_data = {
.regs = mt_i2c_regs_v2,
.dma_sync = 1,
};
static const struct mtk_i2c_soc_data mt8518_soc_data = {
.regs = mt_i2c_regs_v1,
.dma_sync = 0,
};
static const struct mtk_i2c_soc_data mt8512_soc_data = {
.regs = mt_i2c_regs_v1,
.dma_sync = 1,
};
static const struct dm_i2c_ops mtk_i2c_ops = {
.xfer = mtk_i2c_transfer,
.set_bus_speed = mtk_i2c_set_speed,
.deblock = mtk_i2c_deblock,
};
static const struct udevice_id mtk_i2c_ids[] = {
{
.compatible = "mediatek,mt7622-i2c",
.data = (ulong)&mt76xx_soc_data,
}, {
.compatible = "mediatek,mt7623-i2c",
.data = (ulong)&mt76xx_soc_data,
}, {
.compatible = "mediatek,mt7629-i2c",
.data = (ulong)&mt76xx_soc_data,
}, {
.compatible = "mediatek,mt7981-i2c",
.data = (ulong)&mt7981_soc_data,
}, {
.compatible = "mediatek,mt7986-i2c",
.data = (ulong)&mt7986_soc_data,
}, {
.compatible = "mediatek,mt8183-i2c",
.data = (ulong)&mt8183_soc_data,
}, {
.compatible = "mediatek,mt8512-i2c",
.data = (ulong)&mt8512_soc_data,
}, {
.compatible = "mediatek,mt8518-i2c",
.data = (ulong)&mt8518_soc_data,
}
};
U_BOOT_DRIVER(mtk_i2c) = {
.name = "mtk_i2c",
.id = UCLASS_I2C,
.of_match = mtk_i2c_ids,
.of_to_plat = mtk_i2c_of_to_plat,
.probe = mtk_i2c_probe,
.priv_auto = sizeof(struct mtk_i2c_priv),
.ops = &mtk_i2c_ops,
};