blob: b6deaebc0edb3fd6040b2e3ff222e23b51fe3859 [file] [log] [blame]
// SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
/*
* PHB4: PCI Host Bridge 4, in POWER9
*
* Copyright 2013-2019 IBM Corp.
* Copyright 2018 Raptor Engineering, LLC
*/
/*
*
* FIXME:
* More stuff for EEH support:
* - PBCQ error reporting interrupt
* - I2C-based power management (replacing SHPC)
* - Directly detect fenced PHB through one dedicated HW reg
*/
/*
* This is a simplified view of the PHB4 reset and link training steps
*
* Step 1:
* - Check for hotplug status:
* o PHB_PCIE_HOTPLUG_STATUS bit PHB_PCIE_HPSTAT_PRESENCE
* o If not set -> Bail out (Slot is empty)
*
* Step 2:
* - Do complete PHB reset:
* o PHB/ETU reset procedure
*
* Step 3:
* - Drive PERST active (skip if already asserted. ie. after cold reboot)
* - Wait 250ms (for cards to reset)
* o powervm have used 250ms for a long time without any problems
*
* Step 4:
* - Drive PERST inactive
*
* Step 5:
* - Look for inband presence:
* o From PERST we have two stages to get inband presence detected
* 1) Devices must enter Detect state within 20 ms of the end of
* Fundamental Reset
* 2) Receiver detect pulse are every 12ms
* - Hence minimum wait time 20 + 12 = 32ms
* o Unfortunatey, we've seen cards take 440ms
* o Hence we are conservative and poll here for 1000ms (> 440ms)
* - If no inband presence after 100ms -> Bail out (Slot is broken)
* o PHB_PCIE_DLP_TRAIN_CTL bit PHB_PCIE_DLP_INBAND_PRESENCE
*
* Step 6:
* - Look for link training done:
* o PHB_PCIE_DLP_TRAIN_CTL bit PHB_PCIE_DLP_TL_LINKACT
* - If not set after 2000ms, Retry (3 times) -> Goto Step 2
* o phy lockup could link training failure, hence going back to a
* complete PHB reset on retry
* o not expect to happen very often
*
* Step 7:
* - Wait for 1 sec (before touching device config space):
* - From PCIe spec:
* Root Complex and/or system software must allow at least 1.0 s after
* a Conventional Reset of a device, before it may determine that a
* device which fails to return a Successful Completion status for a
* valid Configuration Request is a broken device.
*
* Step 8:
* - Sanity check for fence and link still up:
* o If fenced or link down, Retry (3 times) -> Goto Step 2
* o This is not nessary but takes no time and can be useful
* o Once we leave here, much harder to recover from errors
*
* Step 9:
* - Check for optimised link for directly attached devices:
* o Wait for CRS (so we can read device config space)
* o Check chip and device are in whitelist. if not, Goto Step 10
* o If trained link speed is degraded, retry -> Goto Step 2
* o If trained link width is degraded, retry -> Goto Step 2
* o If still degraded after 3 retries. Give up, Goto Step 10.
*
* Step 10:
* - PHB good, start probing config space.
* o core/pci.c: pci_reset_phb() -> pci_scan_phb()
*/
#undef NO_ASB
#undef LOG_CFG
#include <skiboot.h>
#include <io.h>
#include <timebase.h>
#include <pci.h>
#include <pci-cfg.h>
#include <pci-slot.h>
#include <vpd.h>
#include <interrupts.h>
#include <opal.h>
#include <cpu.h>
#include <device.h>
#include <ccan/str/str.h>
#include <ccan/array_size/array_size.h>
#include <xscom.h>
#include <affinity.h>
#include <phb4.h>
#include <phb4-regs.h>
#include <phb4-capp.h>
#include <capp.h>
#include <fsp.h>
#include <chip.h>
#include <chiptod.h>
#include <xive.h>
#include <xscom-p9-regs.h>
#include <phys-map.h>
#include <nvram.h>
/* Enable this to disable error interrupts for debug purposes */
#undef DISABLE_ERR_INTS
static void phb4_init_hw(struct phb4 *p);
#define PHBDBG(p, fmt, a...) prlog(PR_DEBUG, "PHB#%04x[%d:%d]: " fmt, \
(p)->phb.opal_id, (p)->chip_id, \
(p)->index, ## a)
#define PHBINF(p, fmt, a...) prlog(PR_INFO, "PHB#%04x[%d:%d]: " fmt, \
(p)->phb.opal_id, (p)->chip_id, \
(p)->index, ## a)
#define PHBNOTICE(p, fmt, a...) prlog(PR_NOTICE, "PHB#%04x[%d:%d]: " fmt, \
(p)->phb.opal_id, (p)->chip_id, \
(p)->index, ## a)
#define PHBERR(p, fmt, a...) prlog(PR_ERR, "PHB#%04x[%d:%d]: " fmt, \
(p)->phb.opal_id, (p)->chip_id, \
(p)->index, ## a)
#ifdef LOG_CFG
#define PHBLOGCFG(p, fmt, a...) PHBDBG(p, fmt, ## a)
#else
#define PHBLOGCFG(p, fmt, a...) do {} while (0)
#endif
#define PHB4_CAN_STORE_EOI(p) XIVE_STORE_EOI_ENABLED
static bool pci_eeh_mmio;
static bool pci_retry_all;
static int rx_err_max = PHB4_RX_ERR_MAX;
/* Note: The "ASB" name is historical, practically this means access via
* the XSCOM backdoor
*/
static inline uint64_t phb4_read_reg_asb(struct phb4 *p, uint32_t offset)
{
#ifdef NO_ASB
return in_be64(p->regs + offset);
#else
int64_t rc;
uint64_t addr, val;
/* Address register: must use 4 bytes for built-in config space.
*
* This path isn't usable for outbound configuration space
*/
if (((offset & 0xfffffffc) == PHB_CONFIG_DATA) && (offset & 3)) {
PHBERR(p, "XSCOM unaligned access to CONFIG_DATA unsupported\n");
return -1ull;
}
addr = XETU_HV_IND_ADDR_VALID | offset;
if ((offset >= 0x1000 && offset < 0x1800) || (offset == PHB_CONFIG_DATA))
addr |= XETU_HV_IND_ADDR_4B;
rc = xscom_write(p->chip_id, p->etu_xscom + XETU_HV_IND_ADDRESS, addr);
if (rc != 0) {
PHBERR(p, "XSCOM error addressing register 0x%x\n", offset);
return -1ull;
}
rc = xscom_read(p->chip_id, p->etu_xscom + XETU_HV_IND_DATA, &val);
if (rc != 0) {
PHBERR(p, "XSCOM error reading register 0x%x\n", offset);
return -1ull;
}
return val;
#endif
}
static inline void phb4_write_reg_asb(struct phb4 *p,
uint32_t offset, uint64_t val)
{
#ifdef NO_ASB
out_be64(p->regs + offset, val);
#else
int64_t rc;
uint64_t addr;
/* Address register: must use 4 bytes for built-in config space.
*
* This path isn't usable for outbound configuration space
*/
if (((offset & 0xfffffffc) == PHB_CONFIG_DATA) && (offset & 3)) {
PHBERR(p, "XSCOM access to CONFIG_DATA unsupported\n");
return;
}
addr = XETU_HV_IND_ADDR_VALID | offset;
if ((offset >= 0x1000 && offset < 0x1800) || (offset == PHB_CONFIG_DATA))
addr |= XETU_HV_IND_ADDR_4B;
rc = xscom_write(p->chip_id, p->etu_xscom + XETU_HV_IND_ADDRESS, addr);
if (rc != 0) {
PHBERR(p, "XSCOM error addressing register 0x%x\n", offset);
return;
}
rc = xscom_write(p->chip_id, p->etu_xscom + XETU_HV_IND_DATA, val);
if (rc != 0) {
PHBERR(p, "XSCOM error writing register 0x%x\n", offset);
return;
}
#endif
}
static uint64_t phb4_read_reg(struct phb4 *p, uint32_t offset)
{
/* No register accesses are permitted while in reset */
if (p->flags & PHB4_ETU_IN_RESET)
return -1ull;
if (p->flags & PHB4_CFG_USE_ASB)
return phb4_read_reg_asb(p, offset);
else
return in_be64(p->regs + offset);
}
static void phb4_write_reg(struct phb4 *p, uint32_t offset, uint64_t val)
{
/* No register accesses are permitted while in reset */
if (p->flags & PHB4_ETU_IN_RESET)
return;
if (p->flags & PHB4_CFG_USE_ASB)
phb4_write_reg_asb(p, offset, val);
else
return out_be64(p->regs + offset, val);
}
/* Helper to select an IODA table entry */
static inline void phb4_ioda_sel(struct phb4 *p, uint32_t table,
uint32_t addr, bool autoinc)
{
phb4_write_reg(p, PHB_IODA_ADDR,
(autoinc ? PHB_IODA_AD_AUTOINC : 0) |
SETFIELD(PHB_IODA_AD_TSEL, 0ul, table) |
SETFIELD(PHB_IODA_AD_TADR, 0ul, addr));
}
/*
* Configuration space access
*
* The PHB lock is assumed to be already held
*/
static int64_t phb4_pcicfg_check(struct phb4 *p, uint32_t bdfn,
uint32_t offset, uint32_t size,
uint16_t *pe)
{
uint32_t sm = size - 1;
if (offset > 0xfff || bdfn > 0xffff)
return OPAL_PARAMETER;
if (offset & sm)
return OPAL_PARAMETER;
/* The root bus only has a device at 0 and we get into an
* error state if we try to probe beyond that, so let's
* avoid that and just return an error to Linux
*/
if (PCI_BUS_NUM(bdfn) == 0 && (bdfn & 0xff))
return OPAL_HARDWARE;
/* Check PHB state */
if (p->broken)
return OPAL_HARDWARE;
/* Fetch the PE# from cache */
*pe = be16_to_cpu(p->tbl_rtt[bdfn]);
return OPAL_SUCCESS;
}
static int64_t phb4_rc_read(struct phb4 *p, uint32_t offset, uint8_t sz,
void *data, bool use_asb)
{
uint32_t reg = offset & ~3;
uint32_t oval;
/* Some registers are handled locally */
switch (reg) {
/* Bridge base/limit registers are cached here as HW
* doesn't implement them (it hard codes values that
* will confuse a proper PCI implementation).
*/
case PCI_CFG_MEM_BASE: /* Includes PCI_CFG_MEM_LIMIT */
oval = p->rc_cache[(reg - 0x20) >> 2] & 0xfff0fff0;
break;
case PCI_CFG_PREF_MEM_BASE: /* Includes PCI_CFG_PREF_MEM_LIMIT */
oval = p->rc_cache[(reg - 0x20) >> 2] & 0xfff0fff0;
oval |= 0x00010001;
break;
case PCI_CFG_IO_BASE_U16: /* Includes PCI_CFG_IO_LIMIT_U16 */
oval = 0;
break;
case PCI_CFG_PREF_MEM_BASE_U32:
case PCI_CFG_PREF_MEM_LIMIT_U32:
oval = p->rc_cache[(reg - 0x20) >> 2];
break;
default:
oval = 0xffffffff; /* default if offset too big */
if (reg < PHB_RC_CONFIG_SIZE) {
if (use_asb)
oval = bswap_32(phb4_read_reg_asb(p, PHB_RC_CONFIG_BASE
+ reg));
else
oval = in_le32(p->regs + PHB_RC_CONFIG_BASE + reg);
}
}
/* Apply any post-read fixups */
switch (reg) {
case PCI_CFG_IO_BASE:
oval |= 0x01f1; /* Set IO base < limit to disable the window */
break;
}
switch (sz) {
case 1:
offset &= 3;
*((uint8_t *)data) = (oval >> (offset << 3)) & 0xff;
PHBLOGCFG(p, "000 CFG08 Rd %02x=%02x\n",
offset, *((uint8_t *)data));
break;
case 2:
offset &= 2;
*((uint16_t *)data) = (oval >> (offset << 3)) & 0xffff;
PHBLOGCFG(p, "000 CFG16 Rd %02x=%04x\n",
offset, *((uint16_t *)data));
break;
case 4:
*((uint32_t *)data) = oval;
PHBLOGCFG(p, "000 CFG32 Rd %02x=%08x\n",
offset, *((uint32_t *)data));
break;
default:
assert(false);
}
return OPAL_SUCCESS;
}
static int64_t phb4_rc_write(struct phb4 *p, uint32_t offset, uint8_t sz,
uint32_t val, bool use_asb)
{
uint32_t reg = offset & ~3;
uint32_t old, mask, shift, oldold;
int64_t rc;
if (reg > PHB_RC_CONFIG_SIZE)
return OPAL_SUCCESS;
/* If size isn't 4-bytes, do a RMW cycle */
if (sz < 4) {
rc = phb4_rc_read(p, reg, 4, &old, use_asb);
if (rc != OPAL_SUCCESS)
return rc;
/*
* Since we have to Read-Modify-Write here, we need to filter
* out registers that have write-1-to-clear bits to prevent
* clearing stuff we shouldn't be. So for any register this
* applies to, mask out those bits.
*/
oldold = old;
switch(reg) {
case 0x1C: /* Secondary status */
old &= 0x00ffffff; /* mask out 24-31 */
break;
case 0x50: /* EC - Device status */
old &= 0xfff0ffff; /* mask out 16-19 */
break;
case 0x58: /* EC - Link status */
old &= 0x3fffffff; /* mask out 30-31 */
break;
case 0x78: /* EC - Link status 2 */
old &= 0xf000ffff; /* mask out 16-27 */
break;
/* These registers *only* have write-1-to-clear bits */
case 0x104: /* AER - Uncorr. error status */
case 0x110: /* AER - Corr. error status */
case 0x130: /* AER - Root error status */
case 0x180: /* P16 - status */
case 0x184: /* P16 - LDPM status */
case 0x188: /* P16 - FRDPM status */
case 0x18C: /* P16 - SRDPM status */
old &= 0x00000000;
break;
}
if (old != oldold) {
PHBLOGCFG(p, "Rewrote %x to %x for reg %x for W1C\n",
oldold, old, reg);
}
if (sz == 1) {
shift = (offset & 3) << 3;
mask = 0xff << shift;
val = (old & ~mask) | ((val & 0xff) << shift);
} else {
shift = (offset & 2) << 3;
mask = 0xffff << shift;
val = (old & ~mask) | ((val & 0xffff) << shift);
}
}
/* Some registers are handled locally */
switch (reg) {
/* See comment in phb4_rc_read() */
case PCI_CFG_MEM_BASE: /* Includes PCI_CFG_MEM_LIMIT */
case PCI_CFG_PREF_MEM_BASE: /* Includes PCI_CFG_PREF_MEM_LIMIT */
case PCI_CFG_PREF_MEM_BASE_U32:
case PCI_CFG_PREF_MEM_LIMIT_U32:
p->rc_cache[(reg - 0x20) >> 2] = val;
break;
case PCI_CFG_IO_BASE_U16: /* Includes PCI_CFG_IO_LIMIT_U16 */
break;
default:
/* Workaround PHB config space enable */
PHBLOGCFG(p, "000 CFG%02d Wr %02x=%08x\n", 8 * sz, reg, val);
if (use_asb)
phb4_write_reg_asb(p, PHB_RC_CONFIG_BASE + reg, val);
else
out_le32(p->regs + PHB_RC_CONFIG_BASE + reg, val);
}
return OPAL_SUCCESS;
}
static int64_t phb4_pcicfg_read(struct phb4 *p, uint32_t bdfn,
uint32_t offset, uint32_t size,
void *data)
{
uint64_t addr, val64;
int64_t rc;
uint16_t pe;
bool use_asb = false;
rc = phb4_pcicfg_check(p, bdfn, offset, size, &pe);
if (rc)
return rc;
if (p->flags & PHB4_AIB_FENCED) {
if (!(p->flags & PHB4_CFG_USE_ASB))
return OPAL_HARDWARE;
if (bdfn != 0)
return OPAL_HARDWARE;
use_asb = true;
} else if ((p->flags & PHB4_CFG_BLOCKED) && bdfn != 0) {
return OPAL_HARDWARE;
}
/* Handle per-device filters */
rc = pci_handle_cfg_filters(&p->phb, bdfn, offset, size,
(uint32_t *)data, false);
if (rc != OPAL_PARTIAL)
return rc;
/* Handle root complex MMIO based config space */
if (bdfn == 0)
return phb4_rc_read(p, offset, size, data, use_asb);
addr = PHB_CA_ENABLE;
addr = SETFIELD(PHB_CA_BDFN, addr, bdfn);
addr = SETFIELD(PHB_CA_REG, addr, offset & ~3u);
addr = SETFIELD(PHB_CA_PE, addr, pe);
if (use_asb) {
phb4_write_reg_asb(p, PHB_CONFIG_ADDRESS, addr);
sync();
val64 = bswap_64(phb4_read_reg_asb(p, PHB_CONFIG_DATA));
switch(size) {
case 1:
*((uint8_t *)data) = val64 >> (8 * (offset & 3));
break;
case 2:
*((uint16_t *)data) = val64 >> (8 * (offset & 2));
break;
case 4:
*((uint32_t *)data) = val64;
break;
default:
return OPAL_PARAMETER;
}
} else {
out_be64(p->regs + PHB_CONFIG_ADDRESS, addr);
switch(size) {
case 1:
*((uint8_t *)data) =
in_8(p->regs + PHB_CONFIG_DATA + (offset & 3));
PHBLOGCFG(p, "%03x CFG08 Rd %02x=%02x\n",
bdfn, offset, *((uint8_t *)data));
break;
case 2:
*((uint16_t *)data) =
in_le16(p->regs + PHB_CONFIG_DATA + (offset & 2));
PHBLOGCFG(p, "%03x CFG16 Rd %02x=%04x\n",
bdfn, offset, *((uint16_t *)data));
break;
case 4:
*((uint32_t *)data) = in_le32(p->regs + PHB_CONFIG_DATA);
PHBLOGCFG(p, "%03x CFG32 Rd %02x=%08x\n",
bdfn, offset, *((uint32_t *)data));
break;
default:
return OPAL_PARAMETER;
}
}
return OPAL_SUCCESS;
}
#define PHB4_PCI_CFG_READ(size, type) \
static int64_t phb4_pcicfg_read##size(struct phb *phb, uint32_t bdfn, \
uint32_t offset, type *data) \
{ \
struct phb4 *p = phb_to_phb4(phb); \
\
/* Initialize data in case of error */ \
*data = (type)0xffffffff; \
return phb4_pcicfg_read(p, bdfn, offset, sizeof(type), data); \
}
static int64_t phb4_pcicfg_write(struct phb4 *p, uint32_t bdfn,
uint32_t offset, uint32_t size,
uint32_t data)
{
uint64_t addr;
int64_t rc;
uint16_t pe;
bool use_asb = false;
rc = phb4_pcicfg_check(p, bdfn, offset, size, &pe);
if (rc)
return rc;
if (p->flags & PHB4_AIB_FENCED) {
if (!(p->flags & PHB4_CFG_USE_ASB))
return OPAL_HARDWARE;
if (bdfn != 0)
return OPAL_HARDWARE;
use_asb = true;
} else if ((p->flags & PHB4_CFG_BLOCKED) && bdfn != 0) {
return OPAL_HARDWARE;
}
/* Handle per-device filters */
rc = pci_handle_cfg_filters(&p->phb, bdfn, offset, size,
(uint32_t *)&data, true);
if (rc != OPAL_PARTIAL)
return rc;
/* Handle root complex MMIO based config space */
if (bdfn == 0)
return phb4_rc_write(p, offset, size, data, use_asb);
addr = PHB_CA_ENABLE;
addr = SETFIELD(PHB_CA_BDFN, addr, bdfn);
addr = SETFIELD(PHB_CA_REG, addr, offset & ~3u);
addr = SETFIELD(PHB_CA_PE, addr, pe);
if (use_asb) {
/* We don't support ASB config space writes */
return OPAL_UNSUPPORTED;
} else {
out_be64(p->regs + PHB_CONFIG_ADDRESS, addr);
switch(size) {
case 1:
out_8(p->regs + PHB_CONFIG_DATA + (offset & 3), data);
break;
case 2:
out_le16(p->regs + PHB_CONFIG_DATA + (offset & 2), data);
break;
case 4:
out_le32(p->regs + PHB_CONFIG_DATA, data);
break;
default:
return OPAL_PARAMETER;
}
}
PHBLOGCFG(p, "%03x CFG%d Wr %02x=%08x\n", bdfn, 8 * size, offset, data);
return OPAL_SUCCESS;
}
#define PHB4_PCI_CFG_WRITE(size, type) \
static int64_t phb4_pcicfg_write##size(struct phb *phb, uint32_t bdfn, \
uint32_t offset, type data) \
{ \
struct phb4 *p = phb_to_phb4(phb); \
\
return phb4_pcicfg_write(p, bdfn, offset, sizeof(type), data); \
}
PHB4_PCI_CFG_READ(8, u8)
PHB4_PCI_CFG_READ(16, u16)
PHB4_PCI_CFG_READ(32, u32)
PHB4_PCI_CFG_WRITE(8, u8)
PHB4_PCI_CFG_WRITE(16, u16)
PHB4_PCI_CFG_WRITE(32, u32)
static int64_t phb4_get_reserved_pe_number(struct phb *phb)
{
struct phb4 *p = phb_to_phb4(phb);
return PHB4_RESERVED_PE_NUM(p);
}
static void phb4_root_port_init(struct phb *phb, struct pci_device *dev,
int ecap, int aercap)
{
struct phb4 *p = phb_to_phb4(phb);
struct pci_slot *slot = dev->slot;
uint16_t bdfn = dev->bdfn;
uint16_t val16;
uint32_t val32;
/*
* Use the PHB's callback so that UTL events will be masked or
* unmasked when the link is down or up.
*/
if (dev->slot && dev->slot->ops.prepare_link_change &&
phb->slot && phb->slot->ops.prepare_link_change)
dev->slot->ops.prepare_link_change =
phb->slot->ops.prepare_link_change;
// FIXME: check recommended init values for phb4
/*
* Enable the bridge slot capability in the root port's config
* space. This should probably be done *before* we start
* scanning config space, but we need a pci_device struct to
* exist before we do a slot lookup so *faaaaaaaaaaaaaart*
*/
if (slot && slot->pluggable && slot->power_limit) {
uint64_t val;
val = in_be64(p->regs + PHB_PCIE_SCR);
val |= PHB_PCIE_SCR_SLOT_CAP;
out_be64(p->regs + PHB_PCIE_SCR, val);
/* update the cached slotcap */
pci_cfg_read32(phb, bdfn, ecap + PCICAP_EXP_SLOTCAP,
&slot->slot_cap);
}
/* Enable SERR and parity checking */
pci_cfg_read16(phb, bdfn, PCI_CFG_CMD, &val16);
val16 |= (PCI_CFG_CMD_SERR_EN | PCI_CFG_CMD_PERR_RESP |
PCI_CFG_CMD_MEM_EN);
pci_cfg_write16(phb, bdfn, PCI_CFG_CMD, val16);
/* Enable reporting various errors */
if (!ecap) return;
pci_cfg_read16(phb, bdfn, ecap + PCICAP_EXP_DEVCTL, &val16);
val16 |= (PCICAP_EXP_DEVCTL_CE_REPORT |
PCICAP_EXP_DEVCTL_NFE_REPORT |
PCICAP_EXP_DEVCTL_FE_REPORT |
PCICAP_EXP_DEVCTL_UR_REPORT);
pci_cfg_write16(phb, bdfn, ecap + PCICAP_EXP_DEVCTL, val16);
if (!aercap) return;
/* Mask various unrecoverable errors */
pci_cfg_read32(phb, bdfn, aercap + PCIECAP_AER_UE_MASK, &val32);
val32 |= (PCIECAP_AER_UE_MASK_POISON_TLP |
PCIECAP_AER_UE_MASK_COMPL_TIMEOUT |
PCIECAP_AER_UE_MASK_COMPL_ABORT |
PCIECAP_AER_UE_MASK_ECRC);
pci_cfg_write32(phb, bdfn, aercap + PCIECAP_AER_UE_MASK, val32);
/* Report various unrecoverable errors as fatal errors */
pci_cfg_read32(phb, bdfn, aercap + PCIECAP_AER_UE_SEVERITY, &val32);
val32 |= (PCIECAP_AER_UE_SEVERITY_DLLP |
PCIECAP_AER_UE_SEVERITY_SURPRISE_DOWN |
PCIECAP_AER_UE_SEVERITY_FLOW_CTL_PROT |
PCIECAP_AER_UE_SEVERITY_UNEXP_COMPL |
PCIECAP_AER_UE_SEVERITY_RECV_OVFLOW |
PCIECAP_AER_UE_SEVERITY_MALFORMED_TLP);
pci_cfg_write32(phb, bdfn, aercap + PCIECAP_AER_UE_SEVERITY, val32);
/* Mask various recoverable errors */
pci_cfg_read32(phb, bdfn, aercap + PCIECAP_AER_CE_MASK, &val32);
val32 |= PCIECAP_AER_CE_MASK_ADV_NONFATAL;
pci_cfg_write32(phb, bdfn, aercap + PCIECAP_AER_CE_MASK, val32);
/* Enable ECRC check */
pci_cfg_read32(phb, bdfn, aercap + PCIECAP_AER_CAPCTL, &val32);
val32 |= (PCIECAP_AER_CAPCTL_ECRCG_EN |
PCIECAP_AER_CAPCTL_ECRCC_EN);
pci_cfg_write32(phb, bdfn, aercap + PCIECAP_AER_CAPCTL, val32);
/* Enable all error reporting */
pci_cfg_read32(phb, bdfn, aercap + PCIECAP_AER_RERR_CMD, &val32);
val32 |= (PCIECAP_AER_RERR_CMD_FE |
PCIECAP_AER_RERR_CMD_NFE |
PCIECAP_AER_RERR_CMD_CE);
pci_cfg_write32(phb, bdfn, aercap + PCIECAP_AER_RERR_CMD, val32);
}
static void phb4_switch_port_init(struct phb *phb,
struct pci_device *dev,
int ecap, int aercap)
{
uint16_t bdfn = dev->bdfn;
uint16_t val16;
uint32_t val32;
// FIXME: update AER settings for phb4
/* Enable SERR and parity checking and disable INTx */
pci_cfg_read16(phb, bdfn, PCI_CFG_CMD, &val16);
val16 |= (PCI_CFG_CMD_PERR_RESP |
PCI_CFG_CMD_SERR_EN |
PCI_CFG_CMD_INTx_DIS);
pci_cfg_write16(phb, bdfn, PCI_CFG_CMD, val16);
/* Disable partity error and enable system error */
pci_cfg_read16(phb, bdfn, PCI_CFG_BRCTL, &val16);
val16 &= ~PCI_CFG_BRCTL_PERR_RESP_EN;
val16 |= PCI_CFG_BRCTL_SERR_EN;
pci_cfg_write16(phb, bdfn, PCI_CFG_BRCTL, val16);
/* Enable reporting various errors */
if (!ecap) return;
pci_cfg_read16(phb, bdfn, ecap + PCICAP_EXP_DEVCTL, &val16);
val16 |= (PCICAP_EXP_DEVCTL_CE_REPORT |
PCICAP_EXP_DEVCTL_NFE_REPORT |
PCICAP_EXP_DEVCTL_FE_REPORT);
/* HW279570 - Disable reporting of correctable errors */
val16 &= ~PCICAP_EXP_DEVCTL_CE_REPORT;
pci_cfg_write16(phb, bdfn, ecap + PCICAP_EXP_DEVCTL, val16);
/* Unmask all unrecoverable errors */
if (!aercap) return;
pci_cfg_write32(phb, bdfn, aercap + PCIECAP_AER_UE_MASK, 0x0);
/* Severity of unrecoverable errors */
if (dev->dev_type == PCIE_TYPE_SWITCH_UPPORT)
val32 = (PCIECAP_AER_UE_SEVERITY_DLLP |
PCIECAP_AER_UE_SEVERITY_SURPRISE_DOWN |
PCIECAP_AER_UE_SEVERITY_FLOW_CTL_PROT |
PCIECAP_AER_UE_SEVERITY_RECV_OVFLOW |
PCIECAP_AER_UE_SEVERITY_MALFORMED_TLP |
PCIECAP_AER_UE_SEVERITY_INTERNAL);
else
val32 = (PCIECAP_AER_UE_SEVERITY_FLOW_CTL_PROT |
PCIECAP_AER_UE_SEVERITY_INTERNAL);
pci_cfg_write32(phb, bdfn, aercap + PCIECAP_AER_UE_SEVERITY, val32);
/*
* Mask various correctable errors
*/
val32 = PCIECAP_AER_CE_MASK_ADV_NONFATAL;
pci_cfg_write32(phb, bdfn, aercap + PCIECAP_AER_CE_MASK, val32);
/* Enable ECRC generation and disable ECRC check */
pci_cfg_read32(phb, bdfn, aercap + PCIECAP_AER_CAPCTL, &val32);
val32 |= PCIECAP_AER_CAPCTL_ECRCG_EN;
val32 &= ~PCIECAP_AER_CAPCTL_ECRCC_EN;
pci_cfg_write32(phb, bdfn, aercap + PCIECAP_AER_CAPCTL, val32);
}
static void phb4_endpoint_init(struct phb *phb,
struct pci_device *dev,
int ecap, int aercap)
{
uint16_t bdfn = dev->bdfn;
uint16_t val16;
uint32_t val32;
/* Enable SERR and parity checking */
pci_cfg_read16(phb, bdfn, PCI_CFG_CMD, &val16);
val16 |= (PCI_CFG_CMD_PERR_RESP |
PCI_CFG_CMD_SERR_EN);
pci_cfg_write16(phb, bdfn, PCI_CFG_CMD, val16);
/* Enable reporting various errors */
if (!ecap) return;
pci_cfg_read16(phb, bdfn, ecap + PCICAP_EXP_DEVCTL, &val16);
val16 &= ~PCICAP_EXP_DEVCTL_CE_REPORT;
val16 |= (PCICAP_EXP_DEVCTL_NFE_REPORT |
PCICAP_EXP_DEVCTL_FE_REPORT |
PCICAP_EXP_DEVCTL_UR_REPORT);
pci_cfg_write16(phb, bdfn, ecap + PCICAP_EXP_DEVCTL, val16);
/* Enable ECRC generation and check */
if (!aercap)
return;
pci_cfg_read32(phb, bdfn, aercap + PCIECAP_AER_CAPCTL, &val32);
val32 |= (PCIECAP_AER_CAPCTL_ECRCG_EN |
PCIECAP_AER_CAPCTL_ECRCC_EN);
pci_cfg_write32(phb, bdfn, aercap + PCIECAP_AER_CAPCTL, val32);
}
static int64_t phb4_pcicfg_no_dstate(void *dev __unused,
struct pci_cfg_reg_filter *pcrf,
uint32_t offset, uint32_t len __unused,
uint32_t *data __unused, bool write)
{
uint32_t loff = offset - pcrf->start;
/* Disable D-state change on children of the PHB. For now we
* simply block all writes to the PM control/status
*/
if (write && loff >= 4 && loff < 6)
return OPAL_SUCCESS;
return OPAL_PARTIAL;
}
void phb4_pec2_dma_engine_realloc(struct phb4 *p)
{
uint64_t reg;
/*
* Allocate 16 extra dma read engines to stack 0, to boost dma
* performance for devices on stack 0 of PEC2, i.e PHB3.
* It comes at a price of reduced read engine allocation for
* devices on stack 1 and 2. The engine allocation becomes
* 48/8/8 instead of the default 32/16/16.
*
* The reallocation magic value should be 0xffff0000ff008000,
* but per the PCI designers, dma engine 32 (bit 0) has a
* quirk, and 0x7fff80007F008000 has the same effect (engine
* 32 goes to PHB4).
*/
if (p->index != 3) /* shared slot on PEC2 */
return;
PHBINF(p, "Allocating an extra 16 dma read engines on PEC2 stack0\n");
reg = 0x7fff80007F008000ULL;
xscom_write(p->chip_id,
p->pci_xscom + XPEC_PCI_PRDSTKOVR, reg);
xscom_write(p->chip_id,
p->pe_xscom + XPEC_NEST_READ_STACK_OVERRIDE, reg);
}
static void phb4_check_device_quirks(struct pci_device *dev)
{
/* Some special adapter tweaks for devices directly under the PHB */
if (dev->primary_bus != 1)
return;
/* PM quirk */
if (!pci_has_cap(dev, PCI_CFG_CAP_ID_PM, false))
return;
pci_add_cfg_reg_filter(dev,
pci_cap(dev, PCI_CFG_CAP_ID_PM, false), 8,
PCI_REG_FLAG_WRITE,
phb4_pcicfg_no_dstate);
}
static int phb4_device_init(struct phb *phb, struct pci_device *dev,
void *data __unused)
{
int ecap, aercap;
/* Setup special device quirks */
phb4_check_device_quirks(dev);
/* Common initialization for the device */
pci_device_init(phb, dev);
ecap = pci_cap(dev, PCI_CFG_CAP_ID_EXP, false);
aercap = pci_cap(dev, PCIECAP_ID_AER, true);
if (dev->dev_type == PCIE_TYPE_ROOT_PORT)
phb4_root_port_init(phb, dev, ecap, aercap);
else if (dev->dev_type == PCIE_TYPE_SWITCH_UPPORT ||
dev->dev_type == PCIE_TYPE_SWITCH_DNPORT)
phb4_switch_port_init(phb, dev, ecap, aercap);
else
phb4_endpoint_init(phb, dev, ecap, aercap);
return 0;
}
static int64_t phb4_pci_reinit(struct phb *phb, uint64_t scope, uint64_t data)
{
struct pci_device *pd;
uint16_t bdfn = data;
int ret;
if (scope != OPAL_REINIT_PCI_DEV)
return OPAL_PARAMETER;
pd = pci_find_dev(phb, bdfn);
if (!pd)
return OPAL_PARAMETER;
ret = phb4_device_init(phb, pd, NULL);
if (ret)
return OPAL_HARDWARE;
return OPAL_SUCCESS;
}
/* Default value for MBT0, see comments in init_ioda_cache() */
static uint64_t phb4_default_mbt0(struct phb4 *p, unsigned int bar_idx)
{
uint64_t mbt0;
switch (p->mbt_size - bar_idx - 1) {
case 0:
mbt0 = SETFIELD(IODA3_MBT0_MODE, 0ull, IODA3_MBT0_MODE_MDT);
mbt0 = SETFIELD(IODA3_MBT0_MDT_COLUMN, mbt0, 3);
break;
case 1:
mbt0 = SETFIELD(IODA3_MBT0_MODE, 0ull, IODA3_MBT0_MODE_MDT);
mbt0 = SETFIELD(IODA3_MBT0_MDT_COLUMN, mbt0, 2);
break;
case 2:
mbt0 = SETFIELD(IODA3_MBT0_MODE, 0ull, IODA3_MBT0_MODE_MDT);
mbt0 = SETFIELD(IODA3_MBT0_MDT_COLUMN, mbt0, 1);
break;
default:
mbt0 = SETFIELD(IODA3_MBT0_MODE, 0ull, IODA3_MBT0_MODE_PE_SEG);
}
return mbt0;
}
/*
* Clear the saved (cached) IODA state.
*
* The caches here are used to save the configuration of the IODA tables
* done by the OS. When the PHB is reset it loses all of its internal state
* so we need to keep a copy to restore from. This function re-initialises
* the saved state to sane defaults.
*/
static void phb4_init_ioda_cache(struct phb4 *p)
{
uint32_t i;
/*
* The RTT entries (RTE) are supposed to be initialised to
* 0xFF which indicates an invalid PE# for that RTT index
* (the bdfn). However, we set them to 0x00 since Linux
* needs to find the devices first by scanning config space
* and this occurs before PEs have been assigned.
*/
for (i = 0; i < RTT_TABLE_ENTRIES; i++)
p->tbl_rtt[i] = cpu_to_be16(PHB4_RESERVED_PE_NUM(p));
memset(p->tbl_peltv, 0x0, p->tbl_peltv_size);
memset(p->tve_cache, 0x0, sizeof(p->tve_cache));
/* XXX Should we mask them ? */
memset(p->mist_cache, 0x0, sizeof(p->mist_cache));
/* Configure MBT entries 1...N */
/* Column 0 is left 0 and will be used fo M32 and configured
* by the OS. We use MDT column 1..3 for the last 3 BARs, thus
* allowing Linux to remap those, and setup all the other ones
* for now in mode 00 (segment# == PE#). By default those
* columns are set to map the same way.
*/
for (i = 0; i < p->max_num_pes; i++) {
p->mdt_cache[i] = SETFIELD(IODA3_MDT_PE_B, 0ull, i);
p->mdt_cache[i] |= SETFIELD(IODA3_MDT_PE_C, 0ull, i);
p->mdt_cache[i] |= SETFIELD(IODA3_MDT_PE_D, 0ull, i);
}
/* Initialize MBT entries for BARs 1...N */
for (i = 1; i < p->mbt_size; i++) {
p->mbt_cache[i][0] = phb4_default_mbt0(p, i);
p->mbt_cache[i][1] = 0;
}
/* Initialize M32 bar using MBT entry 0, MDT colunm A */
p->mbt_cache[0][0] = SETFIELD(IODA3_MBT0_MODE, 0ull, IODA3_MBT0_MODE_MDT);
p->mbt_cache[0][0] |= SETFIELD(IODA3_MBT0_MDT_COLUMN, 0ull, 0);
p->mbt_cache[0][0] |= IODA3_MBT0_TYPE_M32 | (p->mm1_base & IODA3_MBT0_BASE_ADDR);
p->mbt_cache[0][1] = IODA3_MBT1_ENABLE | ((~(M32_PCI_SIZE - 1)) & IODA3_MBT1_MASK);
}
static int64_t phb4_wait_bit(struct phb4 *p, uint32_t reg,
uint64_t mask, uint64_t want_val)
{
uint64_t val;
/* Wait for all pending TCE kills to complete
*
* XXX Add timeout...
*/
/* XXX SIMICS is nasty... */
if ((reg == PHB_TCE_KILL || reg == PHB_DMARD_SYNC) &&
chip_quirk(QUIRK_SIMICS))
return OPAL_SUCCESS;
for (;;) {
val = in_be64(p->regs + reg);
if (val == 0xffffffffffffffffull) {
/* XXX Fenced ? */
return OPAL_HARDWARE;
}
if ((val & mask) == want_val)
break;
}
return OPAL_SUCCESS;
}
static int64_t phb4_tce_kill(struct phb *phb, uint32_t kill_type,
uint64_t pe_number, uint32_t tce_size,
uint64_t dma_addr, uint32_t npages)
{
struct phb4 *p = phb_to_phb4(phb);
uint64_t val;
int64_t rc;
sync();
switch(kill_type) {
case OPAL_PCI_TCE_KILL_PAGES:
while (npages--) {
/* Wait for a slot in the HW kill queue */
rc = phb4_wait_bit(p, PHB_TCE_KILL,
PHB_TCE_KILL_ALL |
PHB_TCE_KILL_PE |
PHB_TCE_KILL_ONE, 0);
if (rc)
return rc;
val = SETFIELD(PHB_TCE_KILL_PENUM, dma_addr, pe_number);
/* Set appropriate page size */
switch(tce_size) {
case 0x1000:
if (dma_addr & 0xf000000000000fffull)
return OPAL_PARAMETER;
break;
case 0x10000:
if (dma_addr & 0xf00000000000ffffull)
return OPAL_PARAMETER;
val |= PHB_TCE_KILL_PSEL | PHB_TCE_KILL_64K;
break;
case 0x200000:
if (dma_addr & 0xf0000000001fffffull)
return OPAL_PARAMETER;
val |= PHB_TCE_KILL_PSEL | PHB_TCE_KILL_2M;
break;
case 0x40000000:
if (dma_addr & 0xf00000003fffffffull)
return OPAL_PARAMETER;
val |= PHB_TCE_KILL_PSEL | PHB_TCE_KILL_1G;
break;
default:
return OPAL_PARAMETER;
}
/* Perform kill */
out_be64(p->regs + PHB_TCE_KILL, PHB_TCE_KILL_ONE | val);
/* Next page */
dma_addr += tce_size;
}
break;
case OPAL_PCI_TCE_KILL_PE:
/* Wait for a slot in the HW kill queue */
rc = phb4_wait_bit(p, PHB_TCE_KILL,
PHB_TCE_KILL_ALL |
PHB_TCE_KILL_PE |
PHB_TCE_KILL_ONE, 0);
if (rc)
return rc;
/* Perform kill */
out_be64(p->regs + PHB_TCE_KILL, PHB_TCE_KILL_PE |
SETFIELD(PHB_TCE_KILL_PENUM, 0ull, pe_number));
break;
case OPAL_PCI_TCE_KILL_ALL:
/* Wait for a slot in the HW kill queue */
rc = phb4_wait_bit(p, PHB_TCE_KILL,
PHB_TCE_KILL_ALL |
PHB_TCE_KILL_PE |
PHB_TCE_KILL_ONE, 0);
if (rc)
return rc;
/* Perform kill */
out_be64(p->regs + PHB_TCE_KILL, PHB_TCE_KILL_ALL);
break;
default:
return OPAL_PARAMETER;
}
/* Start DMA sync process */
out_be64(p->regs + PHB_DMARD_SYNC, PHB_DMARD_SYNC_START);
/* Wait for kill to complete */
rc = phb4_wait_bit(p, PHB_Q_DMA_R, PHB_Q_DMA_R_TCE_KILL_STATUS, 0);
if (rc)
return rc;
/* Wait for DMA sync to complete */
return phb4_wait_bit(p, PHB_DMARD_SYNC,
PHB_DMARD_SYNC_COMPLETE,
PHB_DMARD_SYNC_COMPLETE);
}
/* phb4_ioda_reset - Reset the IODA tables
*
* @purge: If true, the cache is cleared and the cleared values
* are applied to HW. If false, the cached values are
* applied to HW
*
* This reset the IODA tables in the PHB. It is called at
* initialization time, on PHB reset, and can be called
* explicitly from OPAL
*/
static int64_t phb4_ioda_reset(struct phb *phb, bool purge)
{
struct phb4 *p = phb_to_phb4(phb);
uint32_t i;
uint64_t val;
if (purge) {
PHBDBG(p, "Purging all IODA tables...\n");
if (phb->slot)
phb->slot->link_retries = PHB4_LINK_LINK_RETRIES;
phb4_init_ioda_cache(p);
}
/* Init_30..31 - Errata workaround, clear PESTA entry 0 */
phb4_ioda_sel(p, IODA3_TBL_PESTA, 0, false);
out_be64(p->regs + PHB_IODA_DATA0, 0);
/* Init_32..33 - MIST */
phb4_ioda_sel(p, IODA3_TBL_MIST, 0, true);
val = in_be64(p->regs + PHB_IODA_ADDR);
val = SETFIELD(PHB_IODA_AD_MIST_PWV, val, 0xf);
out_be64(p->regs + PHB_IODA_ADDR, val);
for (i = 0; i < (p->num_irqs/4); i++)
out_be64(p->regs + PHB_IODA_DATA0, p->mist_cache[i]);
/* Init_34..35 - MRT */
phb4_ioda_sel(p, IODA3_TBL_MRT, 0, true);
for (i = 0; i < p->mrt_size; i++)
out_be64(p->regs + PHB_IODA_DATA0, 0);
/* Init_36..37 - TVT */
phb4_ioda_sel(p, IODA3_TBL_TVT, 0, true);
for (i = 0; i < p->tvt_size; i++)
out_be64(p->regs + PHB_IODA_DATA0, p->tve_cache[i]);
/* Init_38..39 - MBT */
phb4_ioda_sel(p, IODA3_TBL_MBT, 0, true);
for (i = 0; i < p->mbt_size; i++) {
out_be64(p->regs + PHB_IODA_DATA0, p->mbt_cache[i][0]);
out_be64(p->regs + PHB_IODA_DATA0, p->mbt_cache[i][1]);
}
/* Init_40..41 - MDT */
phb4_ioda_sel(p, IODA3_TBL_MDT, 0, true);
for (i = 0; i < p->max_num_pes; i++)
out_be64(p->regs + PHB_IODA_DATA0, p->mdt_cache[i]);
/* Additional OPAL specific inits */
/* Clear PEST & PEEV */
for (i = 0; i < p->max_num_pes; i++) {
phb4_ioda_sel(p, IODA3_TBL_PESTA, i, false);
out_be64(p->regs + PHB_IODA_DATA0, 0);
phb4_ioda_sel(p, IODA3_TBL_PESTB, i, false);
out_be64(p->regs + PHB_IODA_DATA0, 0);
}
phb4_ioda_sel(p, IODA3_TBL_PEEV, 0, true);
for (i = 0; i < p->max_num_pes/64; i++)
out_be64(p->regs + PHB_IODA_DATA0, 0);
/* Invalidate RTE, TCE cache */
out_be64(p->regs + PHB_RTC_INVALIDATE, PHB_RTC_INVALIDATE_ALL);
return phb4_tce_kill(&p->phb, OPAL_PCI_TCE_KILL_ALL, 0, 0, 0, 0);
}
/*
* Clear anything we have in PAPR Error Injection registers. Though
* the spec says the PAPR error injection should be one-shot without
* the "sticky" bit. However, that's false according to the experiments
* I had. So we have to clear it at appropriate point in kernel to
* avoid endless frozen PE.
*/
static int64_t phb4_papr_errinjct_reset(struct phb *phb)
{
struct phb4 *p = phb_to_phb4(phb);
out_be64(p->regs + PHB_PAPR_ERR_INJ_CTL, 0x0ul);
out_be64(p->regs + PHB_PAPR_ERR_INJ_ADDR, 0x0ul);
out_be64(p->regs + PHB_PAPR_ERR_INJ_MASK, 0x0ul);
return OPAL_SUCCESS;
}
static int64_t phb4_set_phb_mem_window(struct phb *phb,
uint16_t window_type,
uint16_t window_num,
uint64_t addr,
uint64_t pci_addr __unused,
uint64_t size)
{
struct phb4 *p = phb_to_phb4(phb);
uint64_t mbt0, mbt1;
/*
* We have a unified MBT for all BARs on PHB4.
*
* So we use it as follow:
*
* - M32 is hard wired to be MBT[0] and uses MDT column 0
* for remapping.
*
* - MBT[1..n] are available to the OS, currently only as
* fully segmented or single PE (we don't yet expose the
* new segmentation modes).
*
* - We configure the 3 last BARs to columnt 1..3 initially
* set to segment# == PE#. We will need to provide some
* extensions to the existing APIs to enable remapping of
* segments on those BARs (and only those) as the current
* API forces single segment mode.
*/
switch (window_type) {
case OPAL_IO_WINDOW_TYPE:
case OPAL_M32_WINDOW_TYPE:
return OPAL_UNSUPPORTED;
case OPAL_M64_WINDOW_TYPE:
if (window_num == 0 || window_num >= p->mbt_size) {
PHBERR(p, "%s: Invalid window %d\n",
__func__, window_num);
return OPAL_PARAMETER;
}
mbt0 = p->mbt_cache[window_num][0];
mbt1 = p->mbt_cache[window_num][1];
/* XXX For now we assume the 4K minimum alignment,
* todo: check with the HW folks what the exact limits
* are based on the segmentation model.
*/
if ((addr & 0xFFFul) || (size & 0xFFFul)) {
PHBERR(p, "%s: Bad addr/size alignment %llx/%llx\n",
__func__, addr, size);
return OPAL_PARAMETER;
}
/* size should be 2^N */
if (!size || size & (size-1)) {
PHBERR(p, "%s: size not a power of 2: %llx\n",
__func__, size);
return OPAL_PARAMETER;
}
/* address should be size aligned */
if (addr & (size - 1)) {
PHBERR(p, "%s: addr not size aligned %llx/%llx\n",
__func__, addr, size);
return OPAL_PARAMETER;
}
break;
default:
return OPAL_PARAMETER;
}
/* The BAR shouldn't be enabled yet */
if (mbt0 & IODA3_MBT0_ENABLE)
return OPAL_PARTIAL;
/* Apply the settings */
mbt0 = SETFIELD(IODA3_MBT0_BASE_ADDR, mbt0, addr >> 12);
mbt1 = SETFIELD(IODA3_MBT1_MASK, mbt1, ~((size >> 12) -1));
p->mbt_cache[window_num][0] = mbt0;
p->mbt_cache[window_num][1] = mbt1;
return OPAL_SUCCESS;
}
/*
* For one specific M64 BAR, it can be shared by all PEs,
* or owned by single PE exclusively.
*/
static int64_t phb4_phb_mmio_enable(struct phb __unused *phb,
uint16_t window_type,
uint16_t window_num,
uint16_t enable)
{
struct phb4 *p = phb_to_phb4(phb);
uint64_t mbt0, mbt1, base, mask;
/*
* By design, PHB4 doesn't support IODT any more.
* Besides, we can't enable M32 BAR as well. So
* the function is used to do M64 mapping and each
* BAR is supposed to be shared by all PEs.
*
* TODO: Add support for some of the new PHB4 split modes
*/
switch (window_type) {
case OPAL_IO_WINDOW_TYPE:
case OPAL_M32_WINDOW_TYPE:
return OPAL_UNSUPPORTED;
case OPAL_M64_WINDOW_TYPE:
/* Window 0 is reserved for M32 */
if (window_num == 0 || window_num >= p->mbt_size ||
enable > OPAL_ENABLE_M64_NON_SPLIT) {
PHBDBG(p,
"phb4_phb_mmio_enable wrong args (window %d enable %d)\n",
window_num, enable);
return OPAL_PARAMETER;
}
break;
default:
return OPAL_PARAMETER;
}
/*
* We need check the base/mask while enabling
* the M64 BAR. Otherwise, invalid base/mask
* might cause fenced AIB unintentionally
*/
mbt0 = p->mbt_cache[window_num][0];
mbt1 = p->mbt_cache[window_num][1];
if (enable == OPAL_DISABLE_M64) {
/* Reset the window to disabled & default mode */
mbt0 = phb4_default_mbt0(p, window_num);
mbt1 = 0;
} else {
/* Verify that the mode is valid and consistent */
if (enable == OPAL_ENABLE_M64_SPLIT) {
uint64_t mode = GETFIELD(IODA3_MBT0_MODE, mbt0);
if (mode != IODA3_MBT0_MODE_PE_SEG &&
mode != IODA3_MBT0_MODE_MDT)
return OPAL_PARAMETER;
} else if (enable == OPAL_ENABLE_M64_NON_SPLIT) {
if (GETFIELD(IODA3_MBT0_MODE, mbt0) !=
IODA3_MBT0_MODE_SINGLE_PE)
return OPAL_PARAMETER;
} else
return OPAL_PARAMETER;
base = GETFIELD(IODA3_MBT0_BASE_ADDR, mbt0);
base = (base << 12);
mask = GETFIELD(IODA3_MBT1_MASK, mbt1);
if (base < p->mm0_base || !mask)
return OPAL_PARTIAL;
mbt0 |= IODA3_MBT0_ENABLE;
mbt1 |= IODA3_MBT1_ENABLE;
}
/* Update HW and cache */
p->mbt_cache[window_num][0] = mbt0;
p->mbt_cache[window_num][1] = mbt1;
phb4_ioda_sel(p, IODA3_TBL_MBT, window_num << 1, true);
out_be64(p->regs + PHB_IODA_DATA0, mbt0);
out_be64(p->regs + PHB_IODA_DATA0, mbt1);
return OPAL_SUCCESS;
}
static int64_t phb4_map_pe_mmio_window(struct phb *phb,
uint64_t pe_number,
uint16_t window_type,
uint16_t window_num,
uint16_t segment_num)
{
struct phb4 *p = phb_to_phb4(phb);
uint64_t mbt0, mbt1, mdt0;
if (pe_number >= p->num_pes)
return OPAL_PARAMETER;
/*
* We support a combined MDT that has 4 columns. We let the OS
* use kernel 0 for M32.
*
* We configure the 3 last BARs to map column 3..1 which by default
* are set to map segment# == pe#, but can be remapped here if we
* extend this function.
*
* The problem is that the current API was "hijacked" so that an
* attempt at remapping any segment of an M64 has the effect of
* turning it into a single-PE mode BAR. So if we want to support
* remapping we'll have to play around this for example by creating
* a new API or a new window type...
*/
switch(window_type) {
case OPAL_IO_WINDOW_TYPE:
return OPAL_UNSUPPORTED;
case OPAL_M32_WINDOW_TYPE:
if (window_num != 0 || segment_num >= p->num_pes)
return OPAL_PARAMETER;
mdt0 = p->mdt_cache[segment_num];
mdt0 = SETFIELD(IODA3_MDT_PE_A, mdt0, pe_number);
phb4_ioda_sel(p, IODA3_TBL_MDT, segment_num, false);
out_be64(p->regs + PHB_IODA_DATA0, mdt0);
break;
case OPAL_M64_WINDOW_TYPE:
if (window_num == 0 || window_num >= p->mbt_size)
return OPAL_PARAMETER;
mbt0 = p->mbt_cache[window_num][0];
mbt1 = p->mbt_cache[window_num][1];
/* The BAR shouldn't be enabled yet */
if (mbt0 & IODA3_MBT0_ENABLE)
return OPAL_PARTIAL;
/* Set to single PE mode and configure the PE */
mbt0 = SETFIELD(IODA3_MBT0_MODE, mbt0,
IODA3_MBT0_MODE_SINGLE_PE);
mbt1 = SETFIELD(IODA3_MBT1_SINGLE_PE_NUM, mbt1, pe_number);
p->mbt_cache[window_num][0] = mbt0;
p->mbt_cache[window_num][1] = mbt1;
break;
default:
return OPAL_PARAMETER;
}
return OPAL_SUCCESS;
}
static int64_t phb4_map_pe_dma_window(struct phb *phb,
uint64_t pe_number,
uint16_t window_id,
uint16_t tce_levels,
uint64_t tce_table_addr,
uint64_t tce_table_size,
uint64_t tce_page_size)
{
struct phb4 *p = phb_to_phb4(phb);
uint64_t tts_encoded;
uint64_t data64 = 0;
/*
* We configure the PHB in 2 TVE per PE mode to match phb3.
* Current Linux implementation *requires* the two windows per
* PE.
*
* Note: On DD2.0 this is the normal mode of operation.
*/
/*
* Sanity check. We currently only support "2 window per PE" mode
* ie, only bit 59 of the PCI address is used to select the window
*/
if (pe_number >= p->num_pes || (window_id >> 1) != pe_number)
return OPAL_PARAMETER;
/*
* tce_table_size == 0 is used to disable an entry, in this case
* we ignore other arguments
*/
if (tce_table_size == 0) {
phb4_ioda_sel(p, IODA3_TBL_TVT, window_id, false);
out_be64(p->regs + PHB_IODA_DATA0, 0);
p->tve_cache[window_id] = 0;
return OPAL_SUCCESS;
}
/* Additional arguments validation */
if (tce_levels < 1 || tce_levels > 5 ||
!is_pow2(tce_table_size) ||
tce_table_size < 0x1000)
return OPAL_PARAMETER;
/* Encode TCE table size */
data64 = SETFIELD(IODA3_TVT_TABLE_ADDR, 0ul, tce_table_addr >> 12);
tts_encoded = ilog2(tce_table_size) - 11;
if (tts_encoded > 31)
return OPAL_PARAMETER;
data64 = SETFIELD(IODA3_TVT_TCE_TABLE_SIZE, data64, tts_encoded);
/* Encode TCE page size */
switch (tce_page_size) {
case 0x1000: /* 4K */
data64 = SETFIELD(IODA3_TVT_IO_PSIZE, data64, 1);
break;
case 0x10000: /* 64K */
data64 = SETFIELD(IODA3_TVT_IO_PSIZE, data64, 5);
break;
case 0x200000: /* 2M */
data64 = SETFIELD(IODA3_TVT_IO_PSIZE, data64, 10);
break;
case 0x40000000: /* 1G */
data64 = SETFIELD(IODA3_TVT_IO_PSIZE, data64, 19);
break;
default:
return OPAL_PARAMETER;
}
/* Encode number of levels */
data64 = SETFIELD(IODA3_TVT_NUM_LEVELS, data64, tce_levels - 1);
phb4_ioda_sel(p, IODA3_TBL_TVT, window_id, false);
out_be64(p->regs + PHB_IODA_DATA0, data64);
p->tve_cache[window_id] = data64;
return OPAL_SUCCESS;
}
static int64_t phb4_map_pe_dma_window_real(struct phb *phb,
uint64_t pe_number,
uint16_t window_id,
uint64_t pci_start_addr,
uint64_t pci_mem_size)
{
struct phb4 *p = phb_to_phb4(phb);
uint64_t end = pci_start_addr + pci_mem_size;
uint64_t tve;
if (pe_number >= p->num_pes ||
(window_id >> 1) != pe_number)
return OPAL_PARAMETER;
if (pci_mem_size) {
/* Enable */
/*
* Check that the start address has the right TVE index,
* we only support the 1 bit mode where each PE has 2
* TVEs
*/
if ((pci_start_addr >> 59) != (window_id & 1))
return OPAL_PARAMETER;
pci_start_addr &= ((1ull << 59) - 1);
end = pci_start_addr + pci_mem_size;
/* We have to be 16M aligned */
if ((pci_start_addr & 0x00ffffff) ||
(pci_mem_size & 0x00ffffff))
return OPAL_PARAMETER;
/*
* It *looks* like this is the max we can support (we need
* to verify this. Also we are not checking for rollover,
* but then we aren't trying too hard to protect ourselves
* againt a completely broken OS.
*/
if (end > 0x0003ffffffffffffull)
return OPAL_PARAMETER;
/*
* Put start address bits 49:24 into TVE[52:53]||[0:23]
* and end address bits 49:24 into TVE[54:55]||[24:47]
* and set TVE[51]
*/
tve = (pci_start_addr << 16) & (0xffffffull << 40);
tve |= (pci_start_addr >> 38) & (3ull << 10);
tve |= (end >> 8) & (0xfffffful << 16);
tve |= (end >> 40) & (3ull << 8);
tve |= PPC_BIT(51) | IODA3_TVT_NON_TRANSLATE_50;
} else {
/* Disable */
tve = 0;
}
phb4_ioda_sel(p, IODA3_TBL_TVT, window_id, false);
out_be64(p->regs + PHB_IODA_DATA0, tve);
p->tve_cache[window_id] = tve;
return OPAL_SUCCESS;
}
static int64_t phb4_set_option(struct phb *phb, enum OpalPhbOption opt,
uint64_t setting)
{
struct phb4 *p = phb_to_phb4(phb);
uint64_t data64;
data64 = phb4_read_reg(p, PHB_CTRLR);
switch (opt) {
case OPAL_PHB_OPTION_TVE1_4GB:
if (setting > 1)
return OPAL_PARAMETER;
PHBDBG(p, "4GB bypass mode = %lld\n", setting);
if (setting)
data64 |= PPC_BIT(24);
else
data64 &= ~PPC_BIT(24);
break;
case OPAL_PHB_OPTION_MMIO_EEH_DISABLE:
if (setting > 1)
return OPAL_PARAMETER;
PHBDBG(p, "MMIO EEH Disable = %lld\n", setting);
if (setting)
data64 |= PPC_BIT(14);
else
data64 &= ~PPC_BIT(14);
break;
default:
return OPAL_UNSUPPORTED;
}
phb4_write_reg(p, PHB_CTRLR, data64);
return OPAL_SUCCESS;
}
static int64_t phb4_get_option(struct phb *phb, enum OpalPhbOption opt,
__be64 *setting)
{
struct phb4 *p = phb_to_phb4(phb);
uint64_t data64;
data64 = phb4_read_reg(p, PHB_CTRLR);
switch (opt) {
case OPAL_PHB_OPTION_TVE1_4GB:
*setting = cpu_to_be64((data64 & PPC_BIT(24)) ? 1 : 0);
break;
case OPAL_PHB_OPTION_MMIO_EEH_DISABLE:
*setting = cpu_to_be64((data64 & PPC_BIT(14)) ? 1 : 0);
break;
default:
return OPAL_UNSUPPORTED;
}
return OPAL_SUCCESS;
}
static int64_t phb4_set_ive_pe(struct phb *phb,
uint64_t pe_number,
uint32_t ive_num)
{
struct phb4 *p = phb_to_phb4(phb);
uint32_t mist_idx;
uint32_t mist_quad;
uint32_t mist_shift;
uint64_t val;
if (pe_number >= p->num_pes || ive_num >= (p->num_irqs - 8))
return OPAL_PARAMETER;
mist_idx = ive_num >> 2;
mist_quad = ive_num & 3;
mist_shift = (3 - mist_quad) << 4;
p->mist_cache[mist_idx] &= ~(0x0fffull << mist_shift);
p->mist_cache[mist_idx] |= ((uint64_t)pe_number) << mist_shift;
/* Note: This has the side effect of clearing P/Q, so this
* shouldn't be called while the interrupt is "hot"
*/
phb4_ioda_sel(p, IODA3_TBL_MIST, mist_idx, false);
/* We need to inject the appropriate MIST write enable bit
* in the IODA table address register
*/
val = in_be64(p->regs + PHB_IODA_ADDR);
val = SETFIELD(PHB_IODA_AD_MIST_PWV, val, 8 >> mist_quad);
out_be64(p->regs + PHB_IODA_ADDR, val);
/* Write entry */
out_be64(p->regs + PHB_IODA_DATA0, p->mist_cache[mist_idx]);
return OPAL_SUCCESS;
}
static int64_t phb4_get_msi_32(struct phb *phb,
uint64_t pe_number,
uint32_t ive_num,
uint8_t msi_range,
uint32_t *msi_address,
uint32_t *message_data)
{
struct phb4 *p = phb_to_phb4(phb);
/*
* Sanity check. We needn't check on mve_number (PE#)
* on PHB3 since the interrupt source is purely determined
* by its DMA address and data, but the check isn't
* harmful.
*/
if (pe_number >= p->num_pes ||
ive_num >= (p->num_irqs - 8) ||
msi_range != 1 || !msi_address|| !message_data)
return OPAL_PARAMETER;
/*
* DMA address and data will form the IVE index.
* For more details, please refer to IODA2 spec.
*/
*msi_address = 0xFFFF0000 | ((ive_num << 4) & 0xFFFFFE0F);
*message_data = ive_num & 0x1F;
return OPAL_SUCCESS;
}
static int64_t phb4_get_msi_64(struct phb *phb,
uint64_t pe_number,
uint32_t ive_num,
uint8_t msi_range,
uint64_t *msi_address,
uint32_t *message_data)
{
struct phb4 *p = phb_to_phb4(phb);
/* Sanity check */
if (pe_number >= p->num_pes ||
ive_num >= (p->num_irqs - 8) ||
msi_range != 1 || !msi_address || !message_data)
return OPAL_PARAMETER;
/*
* DMA address and data will form the IVE index.
* For more details, please refer to IODA2 spec.
*/
*msi_address = (0x1ul << 60) | ((ive_num << 4) & 0xFFFFFFFFFFFFFE0Ful);
*message_data = ive_num & 0x1F;
return OPAL_SUCCESS;
}
static void phb4_rc_err_clear(struct phb4 *p)
{
/* Init_47 - Clear errors */
phb4_pcicfg_write16(&p->phb, 0, PCI_CFG_SECONDARY_STATUS, 0xffff);
if (p->ecap <= 0)
return;
phb4_pcicfg_write16(&p->phb, 0, p->ecap + PCICAP_EXP_DEVSTAT,
PCICAP_EXP_DEVSTAT_CE |
PCICAP_EXP_DEVSTAT_NFE |
PCICAP_EXP_DEVSTAT_FE |
PCICAP_EXP_DEVSTAT_UE);
if (p->aercap <= 0)
return;
/* Clear all UE status */
phb4_pcicfg_write32(&p->phb, 0, p->aercap + PCIECAP_AER_UE_STATUS,
0xffffffff);
/* Clear all CE status */
phb4_pcicfg_write32(&p->phb, 0, p->aercap + PCIECAP_AER_CE_STATUS,
0xffffffff);
/* Clear root error status */
phb4_pcicfg_write32(&p->phb, 0, p->aercap + PCIECAP_AER_RERR_STA,
0xffffffff);
}
static void phb4_err_clear_regb(struct phb4 *p)
{
uint64_t val64;
val64 = phb4_read_reg(p, PHB_REGB_ERR_STATUS);
phb4_write_reg(p, PHB_REGB_ERR_STATUS, val64);
phb4_write_reg(p, PHB_REGB_ERR1_STATUS, 0x0ul);
phb4_write_reg(p, PHB_REGB_ERR_LOG_0, 0x0ul);
phb4_write_reg(p, PHB_REGB_ERR_LOG_1, 0x0ul);
}
/*
* The function can be called during error recovery for all classes of
* errors. This is new to PHB4; previous revisions had separate
* sequences for INF/ER/Fatal errors.
*
* "Rec #" in this function refer to "Recov_#" steps in the
* PHB4 INF recovery sequence.
*/
static void phb4_err_clear(struct phb4 *p)
{
uint64_t val64;
uint64_t fir = phb4_read_reg(p, PHB_LEM_FIR_ACCUM);
/* Rec 1: Acquire the PCI config lock (we don't need to do this) */
/* Rec 2...15: Clear error status in RC config space */
phb4_rc_err_clear(p);
/* Rec 16...23: Clear PBL errors */
val64 = phb4_read_reg(p, PHB_PBL_ERR_STATUS);
phb4_write_reg(p, PHB_PBL_ERR_STATUS, val64);
phb4_write_reg(p, PHB_PBL_ERR1_STATUS, 0x0ul);
phb4_write_reg(p, PHB_PBL_ERR_LOG_0, 0x0ul);
phb4_write_reg(p, PHB_PBL_ERR_LOG_1, 0x0ul);
/* Rec 24...31: Clear REGB errors */
phb4_err_clear_regb(p);
/* Rec 32...59: Clear PHB error trap */
val64 = phb4_read_reg(p, PHB_TXE_ERR_STATUS);
phb4_write_reg(p, PHB_TXE_ERR_STATUS, val64);
phb4_write_reg(p, PHB_TXE_ERR1_STATUS, 0x0ul);
phb4_write_reg(p, PHB_TXE_ERR_LOG_0, 0x0ul);
phb4_write_reg(p, PHB_TXE_ERR_LOG_1, 0x0ul);
val64 = phb4_read_reg(p, PHB_RXE_ARB_ERR_STATUS);
phb4_write_reg(p, PHB_RXE_ARB_ERR_STATUS, val64);
phb4_write_reg(p, PHB_RXE_ARB_ERR1_STATUS, 0x0ul);
phb4_write_reg(p, PHB_RXE_ARB_ERR_LOG_0, 0x0ul);
phb4_write_reg(p, PHB_RXE_ARB_ERR_LOG_1, 0x0ul);
val64 = phb4_read_reg(p, PHB_RXE_MRG_ERR_STATUS);
phb4_write_reg(p, PHB_RXE_MRG_ERR_STATUS, val64);
phb4_write_reg(p, PHB_RXE_MRG_ERR1_STATUS, 0x0ul);
phb4_write_reg(p, PHB_RXE_MRG_ERR_LOG_0, 0x0ul);
phb4_write_reg(p, PHB_RXE_MRG_ERR_LOG_1, 0x0ul);
val64 = phb4_read_reg(p, PHB_RXE_TCE_ERR_STATUS);
phb4_write_reg(p, PHB_RXE_TCE_ERR_STATUS, val64);
phb4_write_reg(p, PHB_RXE_TCE_ERR1_STATUS, 0x0ul);
phb4_write_reg(p, PHB_RXE_TCE_ERR_LOG_0, 0x0ul);
phb4_write_reg(p, PHB_RXE_TCE_ERR_LOG_1, 0x0ul);
val64 = phb4_read_reg(p, PHB_ERR_STATUS);
phb4_write_reg(p, PHB_ERR_STATUS, val64);
phb4_write_reg(p, PHB_ERR1_STATUS, 0x0ul);
phb4_write_reg(p, PHB_ERR_LOG_0, 0x0ul);
phb4_write_reg(p, PHB_ERR_LOG_1, 0x0ul);
/* Rec 61/62: Clear FIR/WOF */
phb4_write_reg(p, PHB_LEM_FIR_AND_MASK, ~fir);
phb4_write_reg(p, PHB_LEM_WOF, 0x0ul);
/* Rec 63: Update LEM mask to its initial value */
phb4_write_reg(p, PHB_LEM_ERROR_MASK, 0x0ul);
/* Rec 64: Clear the PCI config lock (we don't need to do this) */
}
static void phb4_read_phb_status(struct phb4 *p,
struct OpalIoPhb4ErrorData *stat)
{
uint32_t i;
__be64 *pPEST;
uint16_t __16;
uint32_t __32;
uint64_t __64;
memset(stat, 0, sizeof(struct OpalIoPhb4ErrorData));
/* Error data common part */
stat->common.version = cpu_to_be32(OPAL_PHB_ERROR_DATA_VERSION_1);
stat->common.ioType = cpu_to_be32(OPAL_PHB_ERROR_DATA_TYPE_PHB4);
stat->common.len = cpu_to_be32(sizeof(struct OpalIoPhb4ErrorData));
/* Use ASB for config space if the PHB is fenced */
if (p->flags & PHB4_AIB_FENCED)
p->flags |= PHB4_CFG_USE_ASB;
/* Grab RC bridge control, make it 32-bit */
phb4_pcicfg_read16(&p->phb, 0, PCI_CFG_BRCTL, &__16);
stat->brdgCtl = cpu_to_be32(__16);
/*
* Grab various RC PCIe capability registers. All device, slot
* and link status are 16-bit, so we grab the pair control+status
* for each of them
*/
phb4_pcicfg_read32(&p->phb, 0, p->ecap + PCICAP_EXP_DEVCTL, &__32);
stat->deviceStatus = cpu_to_be32(__32);
phb4_pcicfg_read32(&p->phb, 0, p->ecap + PCICAP_EXP_SLOTCTL, &__32);
stat->slotStatus = cpu_to_be32(__32);
phb4_pcicfg_read32(&p->phb, 0, p->ecap + PCICAP_EXP_LCTL, &__32);
stat->linkStatus = cpu_to_be32(__32);
/*
* I assume those are the standard config space header, cmd & status
* together makes 32-bit. Secondary status is 16-bit so I'll clear
* the top on that one
*/
phb4_pcicfg_read32(&p->phb, 0, PCI_CFG_CMD, &__32);
stat->devCmdStatus = cpu_to_be32(__32);
phb4_pcicfg_read16(&p->phb, 0, PCI_CFG_SECONDARY_STATUS, &__16);
stat->devSecStatus = cpu_to_be32(__32);
/* Grab a bunch of AER regs */
phb4_pcicfg_read32(&p->phb, 0, p->aercap + PCIECAP_AER_RERR_STA, &__32);
stat->rootErrorStatus = cpu_to_be32(__32);
phb4_pcicfg_read32(&p->phb, 0, p->aercap + PCIECAP_AER_UE_STATUS, &__32);
stat->uncorrErrorStatus = cpu_to_be32(__32);
phb4_pcicfg_read32(&p->phb, 0, p->aercap + PCIECAP_AER_CE_STATUS, &__32);
stat->corrErrorStatus = cpu_to_be32(__32);
phb4_pcicfg_read32(&p->phb, 0, p->aercap + PCIECAP_AER_HDR_LOG0, &__32);
stat->tlpHdr1 = cpu_to_be32(__32);
phb4_pcicfg_read32(&p->phb, 0, p->aercap + PCIECAP_AER_HDR_LOG1, &__32);
stat->tlpHdr2 = cpu_to_be32(__32);
phb4_pcicfg_read32(&p->phb, 0, p->aercap + PCIECAP_AER_HDR_LOG2, &__32);
stat->tlpHdr3 = cpu_to_be32(__32);
phb4_pcicfg_read32(&p->phb, 0, p->aercap + PCIECAP_AER_HDR_LOG3, &__32);
stat->tlpHdr4 = cpu_to_be32(__32);
phb4_pcicfg_read32(&p->phb, 0, p->aercap + PCIECAP_AER_SRCID, &__32);
stat->sourceId = cpu_to_be32(__32);
/* PEC NFIR, same as P8/PHB3 */
xscom_read(p->chip_id, p->pe_stk_xscom + 0x0, &__64);
stat->nFir = cpu_to_be64(__64);
xscom_read(p->chip_id, p->pe_stk_xscom + 0x3, &__64);
stat->nFirMask = cpu_to_be64(__64);
xscom_read(p->chip_id, p->pe_stk_xscom + 0x8, &__64);
stat->nFirWOF = cpu_to_be64(__64);
/* PHB4 inbound and outbound error Regs */
stat->phbPlssr = cpu_to_be64(phb4_read_reg_asb(p, PHB_CPU_LOADSTORE_STATUS));
stat->phbCsr = cpu_to_be64(phb4_read_reg_asb(p, PHB_DMA_CHAN_STATUS));
stat->lemFir = cpu_to_be64(phb4_read_reg_asb(p, PHB_LEM_FIR_ACCUM));
stat->lemErrorMask = cpu_to_be64(phb4_read_reg_asb(p, PHB_LEM_ERROR_MASK));
stat->lemWOF = cpu_to_be64(phb4_read_reg_asb(p, PHB_LEM_WOF));
stat->phbErrorStatus = cpu_to_be64(phb4_read_reg_asb(p, PHB_ERR_STATUS));
stat->phbFirstErrorStatus = cpu_to_be64(phb4_read_reg_asb(p, PHB_ERR1_STATUS));
stat->phbErrorLog0 = cpu_to_be64(phb4_read_reg_asb(p, PHB_ERR_LOG_0));
stat->phbErrorLog1 = cpu_to_be64(phb4_read_reg_asb(p, PHB_ERR_LOG_1));
stat->phbTxeErrorStatus = cpu_to_be64(phb4_read_reg_asb(p, PHB_TXE_ERR_STATUS));
stat->phbTxeFirstErrorStatus = cpu_to_be64(phb4_read_reg_asb(p, PHB_TXE_ERR1_STATUS));
stat->phbTxeErrorLog0 = cpu_to_be64(phb4_read_reg_asb(p, PHB_TXE_ERR_LOG_0));
stat->phbTxeErrorLog1 = cpu_to_be64(phb4_read_reg_asb(p, PHB_TXE_ERR_LOG_1));
stat->phbRxeArbErrorStatus = cpu_to_be64(phb4_read_reg_asb(p, PHB_RXE_ARB_ERR_STATUS));
stat->phbRxeArbFirstErrorStatus = cpu_to_be64(phb4_read_reg_asb(p, PHB_RXE_ARB_ERR1_STATUS));
stat->phbRxeArbErrorLog0 = cpu_to_be64(phb4_read_reg_asb(p, PHB_RXE_ARB_ERR_LOG_0));
stat->phbRxeArbErrorLog1 = cpu_to_be64(phb4_read_reg_asb(p, PHB_RXE_ARB_ERR_LOG_1));
stat->phbRxeMrgErrorStatus = cpu_to_be64(phb4_read_reg_asb(p, PHB_RXE_MRG_ERR_STATUS));
stat->phbRxeMrgFirstErrorStatus = cpu_to_be64(phb4_read_reg_asb(p, PHB_RXE_MRG_ERR1_STATUS));
stat->phbRxeMrgErrorLog0 = cpu_to_be64(phb4_read_reg_asb(p, PHB_RXE_MRG_ERR_LOG_0));
stat->phbRxeMrgErrorLog1 = cpu_to_be64(phb4_read_reg_asb(p, PHB_RXE_MRG_ERR_LOG_1));
stat->phbRxeTceErrorStatus = cpu_to_be64(phb4_read_reg_asb(p, PHB_RXE_TCE_ERR_STATUS));
stat->phbRxeTceFirstErrorStatus = cpu_to_be64(phb4_read_reg_asb(p, PHB_RXE_TCE_ERR1_STATUS));
stat->phbRxeTceErrorLog0 = cpu_to_be64(phb4_read_reg_asb(p, PHB_RXE_TCE_ERR_LOG_0));
stat->phbRxeTceErrorLog1 = cpu_to_be64(phb4_read_reg_asb(p, PHB_RXE_TCE_ERR_LOG_1));
/* PHB4 REGB error registers */
stat->phbPblErrorStatus = cpu_to_be64(phb4_read_reg_asb(p, PHB_PBL_ERR_STATUS));
stat->phbPblFirstErrorStatus = cpu_to_be64(phb4_read_reg_asb(p, PHB_PBL_ERR1_STATUS));
stat->phbPblErrorLog0 = cpu_to_be64(phb4_read_reg_asb(p, PHB_PBL_ERR_LOG_0));
stat->phbPblErrorLog1 = cpu_to_be64(phb4_read_reg_asb(p, PHB_PBL_ERR_LOG_1));
stat->phbPcieDlpErrorStatus = cpu_to_be64(phb4_read_reg_asb(p, PHB_PCIE_DLP_ERR_STATUS));
stat->phbPcieDlpErrorLog1 = cpu_to_be64(phb4_read_reg_asb(p, PHB_PCIE_DLP_ERRLOG1));
stat->phbPcieDlpErrorLog2 = cpu_to_be64(phb4_read_reg_asb(p, PHB_PCIE_DLP_ERRLOG2));
stat->phbRegbErrorStatus = cpu_to_be64(phb4_read_reg_asb(p, PHB_REGB_ERR_STATUS));
stat->phbRegbFirstErrorStatus = cpu_to_be64(phb4_read_reg_asb(p, PHB_REGB_ERR1_STATUS));
stat->phbRegbErrorLog0 = cpu_to_be64(phb4_read_reg_asb(p, PHB_REGB_ERR_LOG_0));
stat->phbRegbErrorLog1 = cpu_to_be64(phb4_read_reg_asb(p, PHB_REGB_ERR_LOG_1));
/*
* Grab PESTA & B content. The error bit (bit#0) should
* be fetched from IODA and the left content from memory
* resident tables.
*/
pPEST = (__be64 *)p->tbl_pest;
phb4_ioda_sel(p, IODA3_TBL_PESTA, 0, true);
for (i = 0; i < p->max_num_pes; i++) {
stat->pestA[i] = cpu_to_be64(phb4_read_reg_asb(p, PHB_IODA_DATA0));
stat->pestA[i] |= pPEST[2 * i];
}
phb4_ioda_sel(p, IODA3_TBL_PESTB, 0, true);
for (i = 0; i < p->max_num_pes; i++) {
stat->pestB[i] = cpu_to_be64(phb4_read_reg_asb(p, PHB_IODA_DATA0));
stat->pestB[i] |= pPEST[2 * i + 1];
}
}
static void __unused phb4_dump_peltv(struct phb4 *p)
{
int stride = p->max_num_pes / 64;
uint64_t *tbl = (void *) p->tbl_peltv;
unsigned int pe;
PHBERR(p, "PELT-V: base addr: %p size: %llx (%d PEs, stride = %d)\n",
tbl, p->tbl_peltv_size, p->max_num_pes, stride);
for (pe = 0; pe < p->max_num_pes; pe++) {
unsigned int i, j;
uint64_t sum = 0;
i = pe * stride;
/*
* Only print an entry if there's bits set in the PE's
* PELT-V entry. There's a few hundred possible PEs and
* generally only a handful will be in use.
*/
for (j = 0; j < stride; j++)
sum |= tbl[i + j];
if (!sum)
continue; /* unused PE, skip it */
if (p->max_num_pes == 512) {
PHBERR(p, "PELT-V[%03x] = "
"%016llx %016llx %016llx %016llx"
"%016llx %016llx %016llx %016llx\n", pe,
tbl[i + 0], tbl[i + 1], tbl[i + 2], tbl[i + 3],
tbl[i + 4], tbl[i + 5], tbl[i + 6], tbl[i + 7]);
} else if (p->max_num_pes == 256) {
PHBERR(p, "PELT-V[%03x] = "
"%016llx %016llx %016llx %016llx\n", pe,
tbl[i + 0], tbl[i + 1], tbl[i + 2], tbl[i + 3]);
}
}
}
static void __unused phb4_dump_ioda_table(struct phb4 *p, int table)
{
const char *name;
int entries, i;
switch (table) {
case IODA3_TBL_LIST:
name = "LIST";
entries = 8;
break;
case IODA3_TBL_MIST:
name = "MIST";
entries = 1024;
break;
case IODA3_TBL_RCAM:
name = "RCAM";
entries = 128;
break;
case IODA3_TBL_MRT:
name = "MRT";
entries = 16;
break;
case IODA3_TBL_PESTA:
name = "PESTA";
entries = 512;
break;
case IODA3_TBL_PESTB:
name = "PESTB";
entries = 512;
break;
case IODA3_TBL_TVT:
name = "TVT";
entries = 512;
break;
case IODA3_TBL_TCAM:
name = "TCAM";
entries = 1024;
break;
case IODA3_TBL_TDR:
name = "TDR";
entries = 1024;
break;
case IODA3_TBL_MBT: /* special case, see below */
name = "MBT";
entries = 64;
break;
case IODA3_TBL_MDT:
name = "MDT";
entries = 512;
break;
case IODA3_TBL_PEEV:
name = "PEEV";
entries = 8;
break;
default:
PHBERR(p, "Invalid IODA table %d!\n", table);
return;
}
PHBERR(p, "Start %s dump (only non-zero entries are printed):\n", name);
phb4_ioda_sel(p, table, 0, true);
/*
* Each entry in the MBT is 16 bytes. Every other table has 8 byte
* entries so we special case the MDT to keep the output readable.
*/
if (table == IODA3_TBL_MBT) {
for (i = 0; i < 32; i++) {
uint64_t v1 = phb4_read_reg_asb(p, PHB_IODA_DATA0);
uint64_t v2 = phb4_read_reg_asb(p, PHB_IODA_DATA0);
if (!v1 && !v2)
continue;
PHBERR(p, "MBT[%03x] = %016llx %016llx\n", i, v1, v2);
}
} else {
for (i = 0; i < entries; i++) {
uint64_t v = phb4_read_reg_asb(p, PHB_IODA_DATA0);
if (!v)
continue;
PHBERR(p, "%s[%03x] = %016llx\n", name, i, v);
}
}
PHBERR(p, "End %s dump\n", name);
}
static void phb4_eeh_dump_regs(struct phb4 *p)
{
struct OpalIoPhb4ErrorData *s;
uint16_t reg;
unsigned int i;
if (!verbose_eeh)
return;
s = zalloc(sizeof(struct OpalIoPhb4ErrorData));
if (!s) {
PHBERR(p, "Failed to allocate error info !\n");
return;
}
phb4_read_phb_status(p, s);
PHBERR(p, " brdgCtl = %08x\n", be32_to_cpu(s->brdgCtl));
/* PHB4 cfg regs */
PHBERR(p, " deviceStatus = %08x\n", be32_to_cpu(s->deviceStatus));
PHBERR(p, " slotStatus = %08x\n", be32_to_cpu(s->slotStatus));
PHBERR(p, " linkStatus = %08x\n", be32_to_cpu(s->linkStatus));
PHBERR(p, " devCmdStatus = %08x\n", be32_to_cpu(s->devCmdStatus));
PHBERR(p, " devSecStatus = %08x\n", be32_to_cpu(s->devSecStatus));
PHBERR(p, " rootErrorStatus = %08x\n", be32_to_cpu(s->rootErrorStatus));
PHBERR(p, " corrErrorStatus = %08x\n", be32_to_cpu(s->corrErrorStatus));
PHBERR(p, " uncorrErrorStatus = %08x\n", be32_to_cpu(s->uncorrErrorStatus));
/* Two non OPAL API registers that are useful */
phb4_pcicfg_read16(&p->phb, 0, p->ecap + PCICAP_EXP_DEVCTL, &reg);
PHBERR(p, " devctl = %08x\n", reg);
phb4_pcicfg_read16(&p->phb, 0, p->ecap + PCICAP_EXP_DEVSTAT,
&reg);
PHBERR(p, " devStat = %08x\n", reg);
/* Byte swap TLP headers so they are the same as the PCIe spec */
PHBERR(p, " tlpHdr1 = %08x\n", cpu_to_le32(be32_to_cpu(s->tlpHdr1)));
PHBERR(p, " tlpHdr2 = %08x\n", cpu_to_le32(be32_to_cpu(s->tlpHdr2)));
PHBERR(p, " tlpHdr3 = %08x\n", cpu_to_le32(be32_to_cpu(s->tlpHdr3)));
PHBERR(p, " tlpHdr4 = %08x\n", cpu_to_le32(be32_to_cpu(s->tlpHdr4)));
PHBERR(p, " sourceId = %08x\n", be32_to_cpu(s->sourceId));
PHBERR(p, " nFir = %016llx\n", be64_to_cpu(s->nFir));
PHBERR(p, " nFirMask = %016llx\n", be64_to_cpu(s->nFirMask));
PHBERR(p, " nFirWOF = %016llx\n", be64_to_cpu(s->nFirWOF));
PHBERR(p, " phbPlssr = %016llx\n", be64_to_cpu(s->phbPlssr));
PHBERR(p, " phbCsr = %016llx\n", be64_to_cpu(s->phbCsr));
PHBERR(p, " lemFir = %016llx\n", be64_to_cpu(s->lemFir));
PHBERR(p, " lemErrorMask = %016llx\n", be64_to_cpu(s->lemErrorMask));
PHBERR(p, " lemWOF = %016llx\n", be64_to_cpu(s->lemWOF));
PHBERR(p, " phbErrorStatus = %016llx\n", be64_to_cpu(s->phbErrorStatus));
PHBERR(p, " phbFirstErrorStatus = %016llx\n", be64_to_cpu(s->phbFirstErrorStatus));
PHBERR(p, " phbErrorLog0 = %016llx\n", be64_to_cpu(s->phbErrorLog0));
PHBERR(p, " phbErrorLog1 = %016llx\n", be64_to_cpu(s->phbErrorLog1));
PHBERR(p, " phbTxeErrorStatus = %016llx\n", be64_to_cpu(s->phbTxeErrorStatus));
PHBERR(p, " phbTxeFirstErrorStatus = %016llx\n", be64_to_cpu(s->phbTxeFirstErrorStatus));
PHBERR(p, " phbTxeErrorLog0 = %016llx\n", be64_to_cpu(s->phbTxeErrorLog0));
PHBERR(p, " phbTxeErrorLog1 = %016llx\n", be64_to_cpu(s->phbTxeErrorLog1));
PHBERR(p, " phbRxeArbErrorStatus = %016llx\n", be64_to_cpu(s->phbRxeArbErrorStatus));
PHBERR(p, "phbRxeArbFrstErrorStatus = %016llx\n", be64_to_cpu(s->phbRxeArbFirstErrorStatus));
PHBERR(p, " phbRxeArbErrorLog0 = %016llx\n", be64_to_cpu(s->phbRxeArbErrorLog0));
PHBERR(p, " phbRxeArbErrorLog1 = %016llx\n", be64_to_cpu(s->phbRxeArbErrorLog1));
PHBERR(p, " phbRxeMrgErrorStatus = %016llx\n", be64_to_cpu(s->phbRxeMrgErrorStatus));
PHBERR(p, "phbRxeMrgFrstErrorStatus = %016llx\n", be64_to_cpu(s->phbRxeMrgFirstErrorStatus));
PHBERR(p, " phbRxeMrgErrorLog0 = %016llx\n", be64_to_cpu(s->phbRxeMrgErrorLog0));
PHBERR(p, " phbRxeMrgErrorLog1 = %016llx\n", be64_to_cpu(s->phbRxeMrgErrorLog1));
PHBERR(p, " phbRxeTceErrorStatus = %016llx\n", be64_to_cpu(s->phbRxeTceErrorStatus));
PHBERR(p, "phbRxeTceFrstErrorStatus = %016llx\n", be64_to_cpu(s->phbRxeTceFirstErrorStatus));
PHBERR(p, " phbRxeTceErrorLog0 = %016llx\n", be64_to_cpu(s->phbRxeTceErrorLog0));
PHBERR(p, " phbRxeTceErrorLog1 = %016llx\n", be64_to_cpu(s->phbRxeTceErrorLog1));
PHBERR(p, " phbPblErrorStatus = %016llx\n", be64_to_cpu(s->phbPblErrorStatus));
PHBERR(p, " phbPblFirstErrorStatus = %016llx\n", be64_to_cpu(s->phbPblFirstErrorStatus));
PHBERR(p, " phbPblErrorLog0 = %016llx\n", be64_to_cpu(s->phbPblErrorLog0));
PHBERR(p, " phbPblErrorLog1 = %016llx\n", be64_to_cpu(s->phbPblErrorLog1));
PHBERR(p, " phbPcieDlpErrorLog1 = %016llx\n", be64_to_cpu(s->phbPcieDlpErrorLog1));
PHBERR(p, " phbPcieDlpErrorLog2 = %016llx\n", be64_to_cpu(s->phbPcieDlpErrorLog2));
PHBERR(p, " phbPcieDlpErrorStatus = %016llx\n", be64_to_cpu(s->phbPcieDlpErrorStatus));
PHBERR(p, " phbRegbErrorStatus = %016llx\n", be64_to_cpu(s->phbRegbErrorStatus));
PHBERR(p, " phbRegbFirstErrorStatus = %016llx\n", be64_to_cpu(s->phbRegbFirstErrorStatus));
PHBERR(p, " phbRegbErrorLog0 = %016llx\n", be64_to_cpu(s->phbRegbErrorLog0));
PHBERR(p, " phbRegbErrorLog1 = %016llx\n", be64_to_cpu(s->phbRegbErrorLog1));
for (i = 0; i < p->max_num_pes; i++) {
if (!s->pestA[i] && !s->pestB[i])
continue;
PHBERR(p, " PEST[%03x] = %016llx %016llx\n",
i, be64_to_cpu(s->pestA[i]), be64_to_cpu(s->pestB[i]));
}
free(s);
}
static int64_t phb4_set_pe(struct phb *phb,
uint64_t pe_number,
uint64_t bdfn,
uint8_t bcompare,
uint8_t dcompare,
uint8_t fcompare,
uint8_t action)
{
struct phb4 *p = phb_to_phb4(phb);
uint64_t mask, idx;
/* Sanity check */
if (action != OPAL_MAP_PE && action != OPAL_UNMAP_PE)
return OPAL_PARAMETER;
if (pe_number >= p->num_pes || bdfn > 0xffff ||
bcompare > OpalPciBusAll ||
dcompare > OPAL_COMPARE_RID_DEVICE_NUMBER ||
fcompare > OPAL_COMPARE_RID_FUNCTION_NUMBER)
return OPAL_PARAMETER;
/* match everything by default */
mask = 0;
/* Figure out the RID range */
if (bcompare != OpalPciBusAny)
mask = ((0x1 << (bcompare + 1)) - 1) << (15 - bcompare);
if (dcompare == OPAL_COMPARE_RID_DEVICE_NUMBER)
mask |= 0xf8;
if (fcompare == OPAL_COMPARE_RID_FUNCTION_NUMBER)
mask |= 0x7;
if (action == OPAL_UNMAP_PE)
pe_number = PHB4_RESERVED_PE_NUM(p);
/* Map or unmap the RTT range */
for (idx = 0; idx < RTT_TABLE_ENTRIES; idx++)
if ((idx & mask) == (bdfn & mask))
p->tbl_rtt[idx] = cpu_to_be16(pe_number);
/* Invalidate the RID Translation Cache (RTC) inside the PHB */
out_be64(p->regs + PHB_RTC_INVALIDATE, PHB_RTC_INVALIDATE_ALL);
return OPAL_SUCCESS;
}
static int64_t phb4_set_peltv(struct phb *phb,
uint32_t parent_pe,
uint32_t child_pe,
uint8_t state)
{
struct phb4 *p = phb_to_phb4(phb);
uint32_t idx, mask;
/* Sanity check */
if (parent_pe >= p->num_pes || child_pe >= p->num_pes)
return OPAL_PARAMETER;
/* Find index for parent PE */
idx = parent_pe * (p->max_num_pes / 8);
idx += (child_pe / 8);
mask = 0x1 << (7 - (child_pe % 8));
if (state)
p->tbl_peltv[idx] |= mask;
else
p->tbl_peltv[idx] &= ~mask;
return OPAL_SUCCESS;
}
static void phb4_prepare_link_change(struct pci_slot *slot, bool is_up)
{
struct phb4 *p = phb_to_phb4(slot->phb);
uint32_t reg32;
p->has_link = is_up;
if (is_up) {
/* Clear AER receiver error status */
phb4_pcicfg_write32(&p->phb, 0, p->aercap +
PCIECAP_AER_CE_STATUS,
PCIECAP_AER_CE_RECVR_ERR);
/* Unmask receiver error status in AER */
phb4_pcicfg_read32(&p->phb, 0, p->aercap +
PCIECAP_AER_CE_MASK, &reg32);
reg32 &= ~PCIECAP_AER_CE_RECVR_ERR;
phb4_pcicfg_write32(&p->phb, 0, p->aercap +
PCIECAP_AER_CE_MASK, reg32);
/* Don't block PCI-CFG */
p->flags &= ~PHB4_CFG_BLOCKED;
/* Re-enable link down errors */
out_be64(p->regs + PHB_PCIE_MISC_STRAP,
0x0000060000000000ull);
/* Re-enable error status indicators that trigger irqs */
out_be64(p->regs + PHB_REGB_ERR_INF_ENABLE,
0x2130006efca8bc00ull);
out_be64(p->regs + PHB_REGB_ERR_ERC_ENABLE,
0x0080000000000000ull);
out_be64(p->regs + PHB_REGB_ERR_FAT_ENABLE,
0xde0fff91035743ffull);
} else {
/* Mask AER receiver error */
phb4_pcicfg_read32(&p->phb, 0, p->aercap +
PCIECAP_AER_CE_MASK, &reg32);
reg32 |= PCIECAP_AER_CE_RECVR_ERR;
phb4_pcicfg_write32(&p->phb, 0, p->aercap +
PCIECAP_AER_CE_MASK, reg32);
/* Clear error link enable & error link down kill enable */
out_be64(p->regs + PHB_PCIE_MISC_STRAP, 0);
/* Disable all error status indicators that trigger irqs */
out_be64(p->regs + PHB_REGB_ERR_INF_ENABLE, 0);
out_be64(p->regs + PHB_REGB_ERR_ERC_ENABLE, 0);
out_be64(p->regs + PHB_REGB_ERR_FAT_ENABLE, 0);
/* Block PCI-CFG access */
p->flags |= PHB4_CFG_BLOCKED;
}
}
static int64_t phb4_get_presence_state(struct pci_slot *slot, uint8_t *val)
{
struct phb4 *p = phb_to_phb4(slot->phb);
uint64_t hps, dtctl;
/* Test for PHB in error state ? */
if (p->broken)
return OPAL_HARDWARE;
/* Check hotplug status */
hps = in_be64(p->regs + PHB_PCIE_HOTPLUG_STATUS);
if (!(hps & PHB_PCIE_HPSTAT_PRESENCE)) {
*val = OPAL_PCI_SLOT_PRESENT;
} else {
/*
* If it says not present but link is up, then we assume
* we are on a broken simulation environment and still
* return a valid presence. Otherwise, not present.
*/
dtctl = in_be64(p->regs + PHB_PCIE_DLP_TRAIN_CTL);
if (dtctl & PHB_PCIE_DLP_TL_LINKACT) {
PHBERR(p, "Presence detect 0 but link set !\n");
*val = OPAL_PCI_SLOT_PRESENT;
} else {
*val = OPAL_PCI_SLOT_EMPTY;
}
}
return OPAL_SUCCESS;
}
static int64_t phb4_get_link_info(struct pci_slot *slot, uint8_t *speed,
uint8_t *width)
{
struct phb4 *p = phb_to_phb4(slot->phb);
uint64_t reg;
uint16_t state;
int64_t rc;
uint8_t s;
/* Link is up, let's find the actual speed */
reg = in_be64(p->regs + PHB_PCIE_DLP_TRAIN_CTL);
if (!(reg & PHB_PCIE_DLP_TL_LINKACT)) {
*width = 0;
if (speed)
*speed = 0;
return OPAL_SUCCESS;
}
rc = phb4_pcicfg_read16(&p->phb, 0,
p->ecap + PCICAP_EXP_LSTAT, &state);
if (rc != OPAL_SUCCESS) {
PHBERR(p, "%s: Error %lld getting link state\n", __func__, rc);
return OPAL_HARDWARE;
}
if (state & PCICAP_EXP_LSTAT_DLLL_ACT) {
*width = ((state & PCICAP_EXP_LSTAT_WIDTH) >> 4);
s = state & PCICAP_EXP_LSTAT_SPEED;
} else {
*width = 0;
s = 0;
}
if (speed)
*speed = s;
return OPAL_SUCCESS;
}
static int64_t phb4_get_link_state(struct pci_slot *slot, uint8_t *val)
{
return phb4_get_link_info(slot, NULL, val);
}
static int64_t phb4_retry_state(struct pci_slot *slot)
{
struct phb4 *p = phb_to_phb4(slot->phb);
/* Mark link as down */
phb4_prepare_link_change(slot, false);
/* Last attempt to activate link */
if (slot->link_retries == 1) {
if (slot->state == PHB4_SLOT_LINK_WAIT) {
PHBERR(p, "Falling back to GEN1 training\n");
p->max_link_speed = 1;
}
}
if (!slot->link_retries--) {
switch (slot->state) {
case PHB4_SLOT_LINK_WAIT_ELECTRICAL:
PHBERR(p, "Presence detected but no electrical link\n");
break;
case PHB4_SLOT_LINK_WAIT:
PHBERR(p, "Electrical link detected but won't train\n");
break;
case PHB4_SLOT_LINK_STABLE:
PHBERR(p, "Linked trained but was degraded or unstable\n");
break;
default:
PHBERR(p, "Unknown link issue\n");
}
return OPAL_HARDWARE;
}
pci_slot_set_state(slot, PHB4_SLOT_CRESET_START);
return pci_slot_set_sm_timeout(slot, msecs_to_tb(1));
}
static uint64_t phb4_train_info(struct phb4 *p, uint64_t reg, unsigned long dt)
{
uint64_t ltssm_state = GETFIELD(PHB_PCIE_DLP_LTSSM_TRC, reg);
char s[80];
snprintf(s, sizeof(s), "TRACE:0x%016llx % 2lims",
reg, tb_to_msecs(dt));
if (reg & PHB_PCIE_DLP_TL_LINKACT)
snprintf(s, sizeof(s), "%s trained ", s);
else if (reg & PHB_PCIE_DLP_TRAINING)
snprintf(s, sizeof(s), "%s training", s);
else if (reg & PHB_PCIE_DLP_INBAND_PRESENCE)
snprintf(s, sizeof(s), "%s presence", s);
else
snprintf(s, sizeof(s), "%s ", s);
snprintf(s, sizeof(s), "%s GEN%lli:x%02lli:", s,
GETFIELD(PHB_PCIE_DLP_LINK_SPEED, reg),
GETFIELD(PHB_PCIE_DLP_LINK_WIDTH, reg));
switch (ltssm_state) {
case PHB_PCIE_DLP_LTSSM_RESET:
snprintf(s, sizeof(s), "%sreset", s);
break;
case PHB_PCIE_DLP_LTSSM_DETECT:
snprintf(s, sizeof(s), "%sdetect", s);
break;
case PHB_PCIE_DLP_LTSSM_POLLING:
snprintf(s, sizeof(s), "%spolling", s);
break;
case PHB_PCIE_DLP_LTSSM_CONFIG:
snprintf(s, sizeof(s), "%sconfig", s);
break;
case PHB_PCIE_DLP_LTSSM_L0:
snprintf(s, sizeof(s), "%sL0", s);
break;
case PHB_PCIE_DLP_LTSSM_REC:
snprintf(s, sizeof(s), "%srecovery", s);
break;
case PHB_PCIE_DLP_LTSSM_L1:
snprintf(s, sizeof(s), "%sL1", s);
break;
case PHB_PCIE_DLP_LTSSM_L2:
snprintf(s, sizeof(s), "%sL2", s);
break;
case PHB_PCIE_DLP_LTSSM_HOTRESET:
snprintf(s, sizeof(s), "%shotreset", s);
break;
case PHB_PCIE_DLP_LTSSM_DISABLED:
snprintf(s, sizeof(s), "%sdisabled", s);
break;
case PHB_PCIE_DLP_LTSSM_LOOPBACK:
snprintf(s, sizeof(s), "%sloopback", s);
break;
default:
snprintf(s, sizeof(s), "%sunvalid", s);
}
PHBNOTICE(p, "%s\n", s);
return ltssm_state;
}
static void phb4_dump_pec_err_regs(struct phb4 *p)
{
uint64_t nfir_p_wof, nfir_n_wof, err_aib;
uint64_t err_rpt0, err_rpt1;
/* Read the PCI and NEST FIRs and dump them. Also cache PCI/NEST FIRs */
xscom_read(p->chip_id,
p->pci_stk_xscom + XPEC_PCI_STK_PCI_FIR, &p->pfir_cache);
xscom_read(p->chip_id,
p->pci_stk_xscom + XPEC_PCI_STK_PCI_FIR_WOF, &nfir_p_wof);
xscom_read(p->chip_id,
p->pe_stk_xscom + XPEC_NEST_STK_PCI_NFIR, &p->nfir_cache);
xscom_read(p->chip_id,
p->pe_stk_xscom + XPEC_NEST_STK_PCI_NFIR_WOF, &nfir_n_wof);
xscom_read(p->chip_id,
p->pe_stk_xscom + XPEC_NEST_STK_ERR_RPT0, &err_rpt0);
xscom_read(p->chip_id,
p->pe_stk_xscom + XPEC_NEST_STK_ERR_RPT1, &err_rpt1);
xscom_read(p->chip_id,
p->pci_stk_xscom + XPEC_PCI_STK_PBAIB_ERR_REPORT, &err_aib);
PHBERR(p, " PCI FIR=%016llx\n", p->pfir_cache);
PHBERR(p, " PCI FIR WOF=%016llx\n", nfir_p_wof);
PHBERR(p, " NEST FIR=%016llx\n", p->nfir_cache);
PHBERR(p, " NEST FIR WOF=%016llx\n", nfir_n_wof);
PHBERR(p, " ERR RPT0=%016llx\n", err_rpt0);
PHBERR(p, " ERR RPT1=%016llx\n", err_rpt1);
PHBERR(p, " AIB ERR=%016llx\n", err_aib);
}
static void phb4_dump_capp_err_regs(struct phb4 *p)
{
uint64_t fir, apc_master_err, snoop_err, transport_err;
uint64_t tlbi_err, capp_err_status;
uint64_t offset = PHB4_CAPP_REG_OFFSET(p);
xscom_read(p->chip_id, CAPP_FIR + offset, &fir);
xscom_read(p->chip_id, CAPP_APC_MASTER_ERR_RPT + offset,
&apc_master_err);
xscom_read(p->chip_id, CAPP_SNOOP_ERR_RTP + offset, &snoop_err);
xscom_read(p->chip_id, CAPP_TRANSPORT_ERR_RPT + offset, &transport_err);
xscom_read(p->chip_id, CAPP_TLBI_ERR_RPT + offset, &tlbi_err);
xscom_read(p->chip_id, CAPP_ERR_STATUS_CTRL + offset, &capp_err_status);
PHBERR(p, " CAPP FIR=%016llx\n", fir);
PHBERR(p, "CAPP APC MASTER ERR=%016llx\n", apc_master_err);
PHBERR(p, " CAPP SNOOP ERR=%016llx\n", snoop_err);
PHBERR(p, " CAPP TRANSPORT ERR=%016llx\n", transport_err);
PHBERR(p, " CAPP TLBI ERR=%016llx\n", tlbi_err);
PHBERR(p, " CAPP ERR STATUS=%016llx\n", capp_err_status);
}
/* Check if AIB is fenced via PBCQ NFIR */
static bool phb4_fenced(struct phb4 *p)
{
/* Already fenced ? */
if (p->flags & PHB4_AIB_FENCED)
return true;
/*
* An all 1's from the PHB indicates a PHB freeze/fence. We
* don't really differenciate them at this point.
*/
if (in_be64(p->regs + PHB_CPU_LOADSTORE_STATUS)!= 0xfffffffffffffffful)
return false;
/* Mark ourselves fenced */
p->flags |= PHB4_AIB_FENCED;
PHBERR(p, "PHB Freeze/Fence detected !\n");
phb4_dump_pec_err_regs(p);
/*
* dump capp error registers in case phb was fenced due to capp.
* Expect p->nfir_cache already updated in phb4_dump_pec_err_regs()
*/
if (p->nfir_cache & XPEC_NEST_STK_PCI_NFIR_CXA_PE_CAPP)
phb4_dump_capp_err_regs(p);
phb4_eeh_dump_regs(p);
return true;
}
static bool phb4_check_reg(struct phb4 *p, uint64_t reg)
{
if (reg == 0xffffffffffffffffUL)
return !phb4_fenced(p);
return true;
}
static void phb4_get_info(struct phb *phb, uint16_t bdfn, uint8_t *speed,
uint8_t *width)
{
int32_t ecap;
uint32_t cap;
ecap = pci_find_cap(phb, bdfn, PCI_CFG_CAP_ID_EXP);
pci_cfg_read32(phb, bdfn, ecap + PCICAP_EXP_LCAP, &cap);
*width = (cap & PCICAP_EXP_LCAP_MAXWDTH) >> 4;
*speed = cap & PCICAP_EXP_LCAP_MAXSPD;
}
#define PVR_POWER9_CUMULUS 0x00002000
static bool phb4_chip_retry_workaround(void)
{
unsigned int pvr;
if (pci_retry_all)
return true;
/* Chips that need this retry are:
* - CUMULUS DD1.0
* - NIMBUS DD2.0 (and DD1.0, but it is unsupported so no check).
*/
pvr = mfspr(SPR_PVR);
if (pvr & PVR_POWER9_CUMULUS) {
if ((PVR_VERS_MAJ(pvr) == 1) && (PVR_VERS_MIN(pvr) == 0))
return true;
} else { /* NIMBUS */
if ((PVR_VERS_MAJ(pvr) == 2) && (PVR_VERS_MIN(pvr) == 0))
return true;
}
return false;
}
struct pci_card_id {
uint16_t vendor;
uint16_t device;
};
static struct pci_card_id retry_whitelist[] = {
{ 0x1000, 0x005d }, /* LSI Logic MegaRAID SAS-3 3108 */
{ 0x1000, 0x00c9 }, /* LSI MPT SAS-3 */
{ 0x104c, 0x8241 }, /* TI xHCI USB */
{ 0x1077, 0x2261 }, /* QLogic ISP2722-based 16/32Gb FC */
{ 0x10b5, 0x8725 }, /* PLX Switch: p9dsu, witherspoon */
{ 0x10b5, 0x8748 }, /* PLX Switch: ZZ */
{ 0x11f8, 0xf117 }, /* PMC-Sierra/MicroSemi NV1604 */
{ 0x15b3, 0x1013 }, /* Mellanox ConnectX-4 */
{ 0x15b3, 0x1017 }, /* Mellanox ConnectX-5 */
{ 0x15b3, 0x1019 }, /* Mellanox ConnectX-5 Ex */
{ 0x1a03, 0x1150 }, /* ASPEED AST2500 Switch */
{ 0x8086, 0x10fb }, /* Intel x520 10G Eth */
{ 0x9005, 0x028d }, /* MicroSemi PM8069 */
};
#define VENDOR(vdid) ((vdid) & 0xffff)
#define DEVICE(vdid) (((vdid) >> 16) & 0xffff)
static bool phb4_adapter_in_whitelist(uint32_t vdid)
{
int i;
if (pci_retry_all)
return true;
for (i = 0; i < ARRAY_SIZE(retry_whitelist); i++)
if ((retry_whitelist[i].vendor == VENDOR(vdid)) &&
(retry_whitelist[i].device == DEVICE(vdid)))
return true;
return false;
}
static struct pci_card_id lane_eq_disable[] = {
{ 0x10de, 0x17fd }, /* Nvidia GM200GL [Tesla M40] */
{ 0x10de, 0x1db4 }, /* Nvidia GV100 */
};
static bool phb4_lane_eq_retry_whitelist(uint32_t vdid)
{
int i;
for (i = 0; i < ARRAY_SIZE(lane_eq_disable); i++)
if ((lane_eq_disable[i].vendor == VENDOR(vdid)) &&
(lane_eq_disable[i].device == DEVICE(vdid)))
return true;
return false;
}
static void phb4_lane_eq_change(struct phb4 *p, uint32_t vdid)
{
p->lane_eq_en = !phb4_lane_eq_retry_whitelist(vdid);
}
static bool phb4_link_optimal(struct pci_slot *slot, uint32_t *vdid)
{
struct phb4 *p = phb_to_phb4(slot->phb);
uint64_t reg;
uint32_t id;
uint16_t bdfn, lane_errs;
uint8_t trained_speed, phb_speed, dev_speed, target_speed, rx_errs;
uint8_t trained_width, phb_width, dev_width, target_width;
bool optimal_speed, optimal_width, optimal, retry_enabled, rx_err_ok;
/* Current trained state */
phb4_get_link_info(slot, &trained_speed, &trained_width);
/* Get PHB capability */
/* NOTE: phb_speed will account for the software speed limit */
phb4_get_info(slot->phb, 0, &phb_speed, &phb_width);
/* Get device capability */
bdfn = 0x0100; /* bus=1 dev=0 device=0 */
/* Since this is the first access, we need to wait for CRS */
if (!pci_wait_crs(slot->phb, bdfn , &id))
return true;
phb4_get_info(slot->phb, bdfn, &dev_speed, &dev_width);
/* Work out if we are optimally trained */
target_speed = MIN(phb_speed, dev_speed);
optimal_speed = (trained_speed >= target_speed);
target_width = MIN(phb_width, dev_width);
optimal_width = (trained_width >= target_width);
optimal = optimal_width && optimal_speed;
retry_enabled = (phb4_chip_retry_workaround() &&
phb4_adapter_in_whitelist(id)) ||
phb4_lane_eq_retry_whitelist(id);
reg = in_be64(p->regs + PHB_PCIE_DLP_ERR_COUNTERS);
rx_errs = GETFIELD(PHB_PCIE_DLP_RX_ERR_CNT, reg);
rx_err_ok = (rx_errs < rx_err_max);
reg = in_be64(p->regs + PHB_PCIE_DLP_ERR_STATUS);
lane_errs = GETFIELD(PHB_PCIE_DLP_LANE_ERR, reg);
PHBDBG(p, "LINK: Card [%04x:%04x] %s Retry:%s\n", VENDOR(id),
DEVICE(id), optimal ? "Optimal" : "Degraded",
retry_enabled ? "enabled" : "disabled");
PHBDBG(p, "LINK: Speed Train:GEN%i PHB:GEN%i DEV:GEN%i%s\n",
trained_speed, phb_speed, dev_speed, optimal_speed ? "" : " *");
PHBDBG(p, "LINK: Width Train:x%02i PHB:x%02i DEV:x%02i%s\n",
trained_width, phb_width, dev_width, optimal_width ? "" : " *");
PHBDBG(p, "LINK: RX Errors Now:%i Max:%i Lane:0x%04x%s\n",
rx_errs, rx_err_max, lane_errs, rx_err_ok ? "" : " *");
if (vdid)
*vdid = id;
/* Always do RX error retry irrespective of chip and card */
if (!rx_err_ok)
return false;
if (!retry_enabled)
return true;
return optimal;
}
/*
* This is a trace function to watch what's happening duing pcie link
* training. If any errors are detected it simply returns so the
* normal code can deal with it.
*/
static void phb4_link_trace(struct phb4 *p, uint64_t target_state, int max_ms)
{
unsigned long now, end, start = mftb(), state = 0;
uint64_t trwctl, reg, reglast = -1;
bool enabled;
/*
* Enable the DLP trace outputs. If we don't the LTSSM state in
* PHB_PCIE_DLP_TRAIN_CTL won't be updated and always reads zero.
*/
trwctl = phb4_read_reg(p, PHB_PCIE_DLP_TRWCTL);
enabled = !!(trwctl & PHB_PCIE_DLP_TRWCTL_EN);
if (!enabled) {
phb4_write_reg(p, PHB_PCIE_DLP_TRWCTL,
trwctl | PHB_PCIE_DLP_TRWCTL_EN);
}
end = start + msecs_to_tb(max_ms);
now = start;
do {
reg = in_be64(p->regs + PHB_PCIE_DLP_TRAIN_CTL);
if (reg != reglast)
state = phb4_train_info(p, reg, now - start);
reglast = reg;
if (!phb4_check_reg(p, reg)) {
PHBNOTICE(p, "TRACE: PHB fenced.\n");
goto out;
}
if (tb_compare(now, end) == TB_AAFTERB) {
PHBNOTICE(p, "TRACE: Timed out after %dms\n", max_ms);
goto out;
}
now = mftb();
} while (state != target_state);
PHBNOTICE(p, "TRACE: Reached target state\n");
out:
/*
* The trace enable bit is a clock gate for the tracing logic. Turn
* it off to save power if we're not using it otherwise.
*/
if (!enabled)
phb4_write_reg(p, PHB_PCIE_DLP_TRWCTL, trwctl);
}
/*
* This helper is called repeatedly by the host sync notifier mechanism, which
* relies on the kernel to regularly poll the OPAL_SYNC_HOST_REBOOT call as it
* shuts down.
*/
static bool phb4_host_sync_reset(void *data)
{
struct phb4 *p = (struct phb4 *)data;
struct phb *phb = &p->phb;
int64_t rc = 0;
/* Make sure no-one modifies the phb flags while we are active */
phb_lock(phb);
/* Make sure CAPP is attached to the PHB */
if (p->capp)
/* Call phb ops to disable capi */
rc = phb->ops->set_capi_mode(phb, OPAL_PHB_CAPI_MODE_PCIE,
p->capp->attached_pe);
else
rc = OPAL_SUCCESS;
/* Continue kicking state-machine if in middle of a mode transition */
if (rc == OPAL_BUSY)
rc = phb->slot->ops.run_sm(phb->slot);
phb_unlock(phb);
return rc <= OPAL_SUCCESS;
}
/*
* Notification from the pci-core that a pci slot state machine completed.
* We use this callback to mark the CAPP disabled if we were waiting for it.
*/
static int64_t phb4_slot_sm_run_completed(struct pci_slot *slot, uint64_t err)
{
struct phb4 *p = phb_to_phb4(slot->phb);
/* Check if we are disabling the capp */
if (p->flags & PHB4_CAPP_DISABLE) {
/* Unset struct capp so that we dont fall into a creset loop */
p->flags &= ~(PHB4_CAPP_DISABLE);
p->capp->phb = NULL;
p->capp->attached_pe = phb4_get_reserved_pe_number(&p->phb);
/* Remove the host sync notifier is we are done.*/
opal_del_host_sync_notifier(phb4_host_sync_reset, p);
if (err) {
/* Force a CEC ipl reboot */
disable_fast_reboot("CAPP: reset failed");
PHBERR(p, "CAPP: Unable to reset. Error=%lld\n", err);
} else {
PHBINF(p, "CAPP: reset complete\n");
}
}
return OPAL_SUCCESS;
}
static int64_t phb4_poll_link(struct pci_slot *slot)
{
struct phb4 *p = phb_to_phb4(slot->phb);
uint64_t reg;
uint32_t vdid;
switch (slot->state) {
case PHB4_SLOT_NORMAL:
case PHB4_SLOT_LINK_START:
PHBDBG(p, "LINK: Start polling\n");
slot->retries = PHB4_LINK_ELECTRICAL_RETRIES;
pci_slot_set_state(slot, PHB4_SLOT_LINK_WAIT_ELECTRICAL);
/* Polling early here has no chance of a false positive */
return pci_slot_set_sm_timeout(slot, msecs_to_tb(1));
case PHB4_SLOT_LINK_WAIT_ELECTRICAL:
/*
* Wait for the link electrical connection to be
* established (shorter timeout). This allows us to
* workaround spurrious presence detect on some machines
* without waiting 10s each time
*
* Note: We *also* check for the full link up bit here
* because simics doesn't seem to implement the electrical
* link bit at all
*/
reg = in_be64(p->regs + PHB_PCIE_DLP_TRAIN_CTL);
if (!phb4_check_reg(p, reg)) {
PHBERR(p, "PHB fence waiting for electrical link\n");
return phb4_retry_state(slot);
}
if (reg & (PHB_PCIE_DLP_INBAND_PRESENCE |
PHB_PCIE_DLP_TL_LINKACT)) {
PHBDBG(p, "LINK: Electrical link detected\n");
pci_slot_set_state(slot, PHB4_SLOT_LINK_WAIT);
slot->retries = PHB4_LINK_WAIT_RETRIES;
/* No wait here since already have an elec link */
return pci_slot_set_sm_timeout(slot, msecs_to_tb(1));
}
if (slot->retries-- == 0) {
PHBDBG(p, "LINK: No in-band presence\n");
return OPAL_SUCCESS;
}
/* Retry */
return pci_slot_set_sm_timeout(slot, msecs_to_tb(10));
case PHB4_SLOT_LINK_WAIT:
reg = in_be64(p->regs + PHB_PCIE_DLP_TRAIN_CTL);
if (!phb4_check_reg(p, reg)) {
PHBERR(p, "LINK: PHB fence waiting for link training\n");
return phb4_retry_state(slot);
}
if (reg & PHB_PCIE_DLP_TL_LINKACT) {
PHBDBG(p, "LINK: Link is up\n");
phb4_prepare_link_change(slot, true);
pci_slot_set_state(slot, PHB4_SLOT_LINK_STABLE);
return pci_slot_set_sm_timeout(slot, secs_to_tb(1));
}
if (slot->retries-- == 0) {
PHBERR(p, "LINK: Timeout waiting for link up\n");
PHBDBG(p, "LINK: DLP train control: 0x%016llx\n", reg);
return phb4_retry_state(slot);
}
/* Retry */
return pci_slot_set_sm_timeout(slot, msecs_to_tb(10));
case PHB4_SLOT_LINK_STABLE:
/* Sanity check link */
if (phb4_fenced(p)) {
PHBERR(p, "LINK: PHB fenced waiting for stabilty\n");
return phb4_retry_state(slot);
}
reg = in_be64(p->regs + PHB_PCIE_DLP_TRAIN_CTL);
if (!phb4_check_reg(p, reg)) {
PHBERR(p, "LINK: PHB fence reading training control\n");
return phb4_retry_state(slot);
}
if (reg & PHB_PCIE_DLP_TL_LINKACT) {
PHBDBG(p, "LINK: Link is stable\n");
if (!phb4_link_optimal(slot, &vdid)) {
PHBDBG(p, "LINK: Link degraded\n");
if (slot->link_retries) {
phb4_lane_eq_change(p, vdid);
return phb4_retry_state(slot);
}
/*
* Link is degraded but no more retries, so
* settle for what we have :-(
*/
PHBERR(p, "LINK: Degraded but no more retries\n");
}
pci_restore_slot_bus_configs(slot);
pci_slot_set_state(slot, PHB4_SLOT_NORMAL);
return OPAL_SUCCESS;
}
PHBERR(p, "LINK: Went down waiting for stabilty\n");
PHBDBG(p, "LINK: DLP train control: 0x%016llx\n", reg);
return phb4_retry_state(slot);
default:
PHBERR(p, "LINK: Unexpected slot state %08x\n",
slot->state);
}
pci_slot_set_state(slot, PHB4_SLOT_NORMAL);
return OPAL_HARDWARE;
}
static unsigned int phb4_get_max_link_speed(struct phb4 *p, struct dt_node *np)
{
unsigned int max_link_speed;
struct proc_chip *chip;
chip = get_chip(p->chip_id);
/* Priority order: NVRAM -> dt -> GEN3 dd2.00 -> GEN4 */
max_link_speed = 4;
if (p->rev == PHB4_REV_NIMBUS_DD20 &&
((0xf & chip->ec_level) == 0) && chip->ec_rev == 0)
max_link_speed = 3;
if (np) {
if (dt_has_node_property(np, "ibm,max-link-speed", NULL)) {
max_link_speed = dt_prop_get_u32(np, "ibm,max-link-speed");
p->dt_max_link_speed = max_link_speed;
}
else {
p->dt_max_link_speed = 0;
}
}
else {
if (p->dt_max_link_speed > 0) {
max_link_speed = p->dt_max_link_speed;
}
}
if (pcie_max_link_speed)
max_link_speed = pcie_max_link_speed;
if (max_link_speed > 4) /* clamp to 4 */
max_link_speed = 4;
return max_link_speed;
}
static void phb4_assert_perst(struct pci_slot *slot, bool assert)
{
struct phb4 *p = phb_to_phb4(slot->phb);
uint16_t linkctl;
uint64_t reg;
/*
* Disable the link before asserting PERST. The Cursed RAID card
* in ozrom1 (9005:028c) has problems coming back if PERST is asserted
* while link is active. To work around the problem we assert the link
* disable bit before asserting PERST. Asserting the secondary reset
* bit in the btctl register also works.
*/
phb4_pcicfg_read16(&p->phb, 0, p->ecap + PCICAP_EXP_LCTL, &linkctl);
reg = phb4_read_reg(p, PHB_PCIE_CRESET);
if (assert) {
linkctl |= PCICAP_EXP_LCTL_LINK_DIS;
reg &= ~PHB_PCIE_CRESET_PERST_N;
} else {
linkctl &= ~PCICAP_EXP_LCTL_LINK_DIS;
reg |= PHB_PCIE_CRESET_PERST_N;
}
phb4_write_reg(p, PHB_PCIE_CRESET, reg);
phb4_pcicfg_write16(&p->phb, 0, p->ecap + PCICAP_EXP_LCTL, linkctl);
}
static int64_t phb4_hreset(struct pci_slot *slot)
{
struct phb4 *p = phb_to_phb4(slot->phb);
uint16_t brctl;
uint8_t presence = 1;
switch (slot->state) {
case PHB4_SLOT_NORMAL:
PHBDBG(p, "HRESET: Starts\n");
if (slot->ops.get_presence_state)
slot->ops.get_presence_state(slot, &presence);
if (!presence) {
PHBDBG(p, "HRESET: No device\n");
return OPAL_SUCCESS;
}
PHBDBG(p, "HRESET: Prepare for link down\n");
phb4_prepare_link_change(slot, false);
/* fall through */
case PHB4_SLOT_HRESET_START:
PHBDBG(p, "HRESET: Assert\n");
phb4_pcicfg_read16(&p->phb, 0, PCI_CFG_BRCTL, &brctl);
brctl |= PCI_CFG_BRCTL_SECONDARY_RESET;
phb4_pcicfg_write16(&p->phb, 0, PCI_CFG_BRCTL, brctl);
pci_slot_set_state(slot, PHB4_SLOT_HRESET_DELAY);
return pci_slot_set_sm_timeout(slot, secs_to_tb(1));
case PHB4_SLOT_HRESET_DELAY:
PHBDBG(p, "HRESET: Deassert\n");
/* Clear link errors before we deassert reset */
phb4_err_clear_regb(p);
phb4_pcicfg_read16(&p->phb, 0, PCI_CFG_BRCTL, &brctl);
brctl &= ~PCI_CFG_BRCTL_SECONDARY_RESET;
phb4_pcicfg_write16(&p->phb, 0, PCI_CFG_BRCTL, brctl);
/*
* Due to some oddball adapters bouncing the link
* training a couple of times, we wait for a full second
* before we start checking the link status, otherwise
* we can get a spurrious link down interrupt which
* causes us to EEH immediately.
*/
pci_slot_set_state(slot, PHB4_SLOT_HRESET_DELAY2);
return pci_slot_set_sm_timeout(slot, secs_to_tb(1));
case PHB4_SLOT_HRESET_DELAY2:
pci_slot_set_state(slot, PHB4_SLOT_LINK_START);
return slot->ops.poll_link(slot);
default:
PHBERR(p, "Unexpected slot state %08x\n", slot->state);
}
pci_slot_set_state(slot, PHB4_SLOT_NORMAL);
return OPAL_HARDWARE;
}
static int64_t phb4_freset(struct pci_slot *slot)
{
struct phb4 *p = phb_to_phb4(slot->phb);
switch(slot->state) {
case PHB4_SLOT_NORMAL:
case PHB4_SLOT_FRESET_START:
PHBDBG(p, "FRESET: Starts\n");
/* Reset max link speed for training */
p->max_link_speed = phb4_get_max_link_speed(p, NULL);
PHBDBG(p, "FRESET: Prepare for link down\n");
phb4_prepare_link_change(slot, false);
if (!p->skip_perst) {
PHBDBG(p, "FRESET: Assert\n");
phb4_assert_perst(slot, true);
pci_slot_set_state(slot, PHB4_SLOT_FRESET_ASSERT_DELAY);
/* 250ms assert time aligns with powernv */
return pci_slot_set_sm_timeout(slot, msecs_to_tb(250));
}
/* To skip the assert during boot time */
PHBDBG(p, "FRESET: Assert skipped\n");
pci_slot_set_state(slot, PHB4_SLOT_FRESET_ASSERT_DELAY);
p->skip_perst = false;
/* fall through */
case PHB4_SLOT_FRESET_ASSERT_DELAY:
/* Clear link errors before we deassert PERST */
phb4_err_clear_regb(p);
PHBDBG(p, "FRESET: Deassert\n");
phb4_assert_perst(slot, false);
if (pci_tracing)
phb4_link_trace(p, PHB_PCIE_DLP_LTSSM_L0, 3000);
pci_slot_set_state(slot, PHB4_SLOT_LINK_START);
return slot->ops.poll_link(slot);
default:
PHBERR(p, "Unexpected slot state %08x\n", slot->state);
}
pci_slot_set_state(slot, PHB4_SLOT_NORMAL);
return OPAL_HARDWARE;
}
static int64_t load_capp_ucode(struct phb4 *p)
{
int64_t rc;
if (p->index != CAPP0_PHB_INDEX && p->index != CAPP1_PHB_INDEX)
return OPAL_HARDWARE;
/* 0x434150504c494448 = 'CAPPLIDH' in ASCII */
rc = capp_load_ucode(p->chip_id, p->phb.opal_id, p->index,
0x434150504c494448UL, PHB4_CAPP_REG_OFFSET(p),
CAPP_APC_MASTER_ARRAY_ADDR_REG,
CAPP_APC_MASTER_ARRAY_WRITE_REG,
CAPP_SNP_ARRAY_ADDR_REG,
CAPP_SNP_ARRAY_WRITE_REG);
return rc;
}
static int do_capp_recovery_scoms(struct phb4 *p)
{
uint64_t rc, reg, end;
uint64_t offset = PHB4_CAPP_REG_OFFSET(p);
/* Get the status of CAPP recovery */
xscom_read(p->chip_id, CAPP_ERR_STATUS_CTRL + offset, &reg);
/* No recovery in progress ignore */
if ((reg & PPC_BIT(0)) == 0) {
PHBDBG(p, "CAPP: No recovery in progress\n");
return OPAL_SUCCESS;
}
PHBDBG(p, "CAPP: Waiting for recovery to complete\n");
/* recovery timer failure period 168ms */
end = mftb() + msecs_to_tb(168);
while ((reg & (PPC_BIT(1) | PPC_BIT(5) | PPC_BIT(9))) == 0) {
time_wait_ms(5);
xscom_read(p->chip_id, CAPP_ERR_STATUS_CTRL + offset, &reg);
if (tb_compare(mftb(), end) != TB_ABEFOREB) {
PHBERR(p, "CAPP: Capp recovery Timed-out.\n");
end = 0;
break;
}
}
/* Check if the recovery failed or passed */
if (reg & PPC_BIT(1)) {
uint64_t act0, act1, mask, fir;
/* Use the Action0/1 and mask to only clear the bits
* that cause local checkstop. Other bits needs attention
* of the PRD daemon.
*/
xscom_read(p->chip_id, CAPP_FIR_ACTION0 + offset, &act0);
xscom_read(p->chip_id, CAPP_FIR_ACTION1 + offset, &act1);
xscom_read(p->chip_id, CAPP_FIR_MASK + offset, &mask);
xscom_read(p->chip_id, CAPP_FIR + offset, &fir);
fir = ~(fir & ~mask & act0 & act1);
PHBDBG(p, "Doing CAPP recovery scoms\n");
/* update capp fir clearing bits causing local checkstop */
PHBDBG(p, "Resetting CAPP Fir with mask 0x%016llX\n", fir);
xscom_write(p->chip_id, CAPP_FIR_CLEAR + offset, fir);
/* disable snoops */
xscom_write(p->chip_id, SNOOP_CAPI_CONFIG + offset, 0);
load_capp_ucode(p);
/* clear err rpt reg*/
xscom_write(p->chip_id, CAPP_ERR_RPT_CLR + offset, 0);
/* clear capp fir */
xscom_write(p->chip_id, CAPP_FIR + offset, 0);
/* Just reset Bit-0,1 and dont touch any other bit */
xscom_read(p->chip_id, CAPP_ERR_STATUS_CTRL + offset, &reg);
reg &= ~(PPC_BIT(0) | PPC_BIT(1));
xscom_write(p->chip_id, CAPP_ERR_STATUS_CTRL + offset, reg);
PHBDBG(p, "CAPP recovery complete\n");
rc = OPAL_SUCCESS;
} else {
/* Most likely will checkstop here due to FIR ACTION for
* failed recovery. So this message would never be logged.
* But if we still enter here then return an error forcing a
* fence of the PHB.
*/
if (reg & PPC_BIT(5))
PHBERR(p, "CAPP: Capp recovery Failed\n");
else if (reg & PPC_BIT(9))
PHBERR(p, "CAPP: Capp recovery hang detected\n");
else if (end != 0)
PHBERR(p, "CAPP: Unknown recovery failure\n");
PHBDBG(p, "CAPP: Err/Status-reg=0x%016llx\n", reg);
rc = OPAL_HARDWARE;
}
return rc;
}
/*
* Disable CAPI mode on a PHB. Must be done while PHB is fenced and
* not in recovery.
*/
static void disable_capi_mode(struct phb4 *p)
{
uint64_t reg;
struct capp *capp = p->capp;
PHBINF(p, "CAPP: Deactivating\n");
/* Check if CAPP attached to the PHB and active */
if (!capp || capp->phb != &p->phb) {
PHBDBG(p, "CAPP: Not attached to this PHB!\n");
return;
}
xscom_read(p->chip_id, p->pe_xscom + XPEC_NEST_CAPP_CNTL, &reg);
if (!(reg & PPC_BIT(0))) {
/* Not in CAPI mode, no action required */
PHBERR(p, "CAPP: Not enabled!\n");
return;
}
/* CAPP should already be out of recovery in this function */
capp_xscom_read(capp, CAPP_ERR_STATUS_CTRL, &reg);
if (reg & PPC_BIT(0)) {
PHBERR(p, "CAPP: Can't disable while still in recovery!\n");
return;
}
PHBINF(p, "CAPP: Disabling CAPI mode\n");
/* First Phase Reset CAPP Registers */
/* CAPP about to be disabled mark TLBI_FENCED and tlbi_psl_is_dead */
capp_xscom_write(capp, CAPP_ERR_STATUS_CTRL, PPC_BIT(3) | PPC_BIT(4));
/* Flush SUE uOP1 Register */
if (p->rev != PHB4_REV_NIMBUS_DD10)
capp_xscom_write(capp, FLUSH_SUE_UOP1, 0);
/* Release DMA/STQ engines */
capp_xscom_write(capp, APC_FSM_READ_MASK, 0ull);
capp_xscom_write(capp, XPT_FSM_RMM, 0ull);
/* Disable snoop */
capp_xscom_write(capp, SNOOP_CAPI_CONFIG, 0);
/* Clear flush SUE state map register */
capp_xscom_write(capp, FLUSH_SUE_STATE_MAP, 0);
/* Disable epoch timer */
capp_xscom_write(capp, EPOCH_RECOVERY_TIMERS_CTRL, 0);
/* CAPP Transport Control Register */
capp_xscom_write(capp, TRANSPORT_CONTROL, PPC_BIT(15));
/* Disable snooping */
capp_xscom_write(capp, SNOOP_CONTROL, 0);
capp_xscom_write(capp, SNOOP_CAPI_CONFIG, 0);
/* APC Master PB Control Register - disable examining cResps */
capp_xscom_write(capp, APC_MASTER_PB_CTRL, 0);
/* APC Master Config Register - de-select PHBs */
xscom_write_mask(p->chip_id, capp->capp_xscom_offset +
APC_MASTER_CAPI_CTRL, 0, PPC_BITMASK(2, 3));
/* Clear all error registers */
capp_xscom_write(capp, CAPP_ERR_RPT_CLR, 0);
capp_xscom_write(capp, CAPP_FIR, 0);
capp_xscom_write(capp, CAPP_FIR_ACTION0, 0);
capp_xscom_write(capp, CAPP_FIR_ACTION1, 0);
capp_xscom_write(capp, CAPP_FIR_MASK, 0);
/* Second Phase Reset PEC/PHB Registers */
/* Reset the stack overrides if any */
xscom_write(p->chip_id, p->pci_xscom + XPEC_PCI_PRDSTKOVR, 0);
xscom_write(p->chip_id, p->pe_xscom +
XPEC_NEST_READ_STACK_OVERRIDE, 0);
/* PE Bus AIB Mode Bits. Disable Tracing. Leave HOL Blocking as it is */
if (!(p->rev == PHB4_REV_NIMBUS_DD10) && p->index == CAPP1_PHB_INDEX)
xscom_write_mask(p->chip_id,
p->pci_xscom + XPEC_PCI_PBAIB_HW_CONFIG, 0,
PPC_BIT(30));
/* Reset for PCI to PB data movement */
xscom_write_mask(p->chip_id, p->pe_xscom + XPEC_NEST_PBCQ_HW_CONFIG,
0, XPEC_NEST_PBCQ_HW_CONFIG_PBINIT);
/* Disable CAPP mode in PEC CAPP Control Register */
xscom_write(p->chip_id, p->pe_xscom + XPEC_NEST_CAPP_CNTL, 0ull);
}
static int64_t phb4_creset(struct pci_slot *slot)
{
struct phb4 *p = phb_to_phb4(slot->phb);
struct capp *capp = p->capp;
uint64_t pbcq_status;
uint64_t creset_time, wait_time;
/* Don't even try fixing a broken PHB */
if (p->broken)
return OPAL_HARDWARE;
switch (slot->state) {
case PHB4_SLOT_NORMAL:
case PHB4_SLOT_CRESET_START:
PHBDBG(p, "CRESET: Starts\n");
p->creset_start_time = mftb();
phb4_prepare_link_change(slot, false);
/* Clear error inject register, preventing recursive errors */
xscom_write(p->chip_id, p->pe_xscom + 0x2, 0x0);
/* Prevent HMI when PHB gets fenced as we are disabling CAPP */
if (p->flags & PHB4_CAPP_DISABLE &&
capp && capp->phb == slot->phb) {
/* Since no HMI, So set the recovery flag manually. */
p->flags |= PHB4_CAPP_RECOVERY;
xscom_write_mask(p->chip_id, capp->capp_xscom_offset +
CAPP_FIR_MASK,
PPC_BIT(31), PPC_BIT(31));
}
/* Force fence on the PHB to work around a non-existent PE */
if (!phb4_fenced(p))
xscom_write(p->chip_id, p->pe_stk_xscom + 0x2,
0x0000002000000000UL);
/*
* Force use of ASB for register access until the PHB has
* been fully reset.
*/
p->flags |= PHB4_CFG_USE_ASB | PHB4_AIB_FENCED;
/* Assert PREST before clearing errors */
phb4_assert_perst(slot, true);
/* Clear errors, following the proper sequence */
phb4_err_clear(p);
/* Actual reset */
p->flags |= PHB4_ETU_IN_RESET;
xscom_write(p->chip_id, p->pci_stk_xscom + XPEC_PCI_STK_ETU_RESET,
0x8000000000000000UL);
/* Read errors in PFIR and NFIR */
xscom_read(p->chip_id, p->pci_stk_xscom + 0x0, &p->pfir_cache);
xscom_read(p->chip_id, p->pe_stk_xscom + 0x0, &p->nfir_cache);
pci_slot_set_state(slot, PHB4_SLOT_CRESET_WAIT_CQ);
slot->retries = 500;
return pci_slot_set_sm_timeout(slot, msecs_to_tb(10));
case PHB4_SLOT_CRESET_WAIT_CQ:
// Wait until operations are complete
xscom_read(p->chip_id, p->pe_stk_xscom + 0xc, &pbcq_status);
if (!(pbcq_status & 0xC000000000000000UL)) {
PHBDBG(p, "CRESET: No pending transactions\n");
/* capp recovery */
if ((p->flags & PHB4_CAPP_RECOVERY) &&
(do_capp_recovery_scoms(p) != OPAL_SUCCESS))
goto error;
if (p->flags & PHB4_CAPP_DISABLE)
disable_capi_mode(p);
/* Clear errors in PFIR and NFIR */
xscom_write(p->chip_id, p->pci_stk_xscom + 0x1,
~p->pfir_cache);
xscom_write(p->chip_id, p->pe_stk_xscom + 0x1,
~p->nfir_cache);
/* Re-read errors in PFIR and NFIR and reset any new
* error reported.
*/
xscom_read(p->chip_id, p->pci_stk_xscom +
XPEC_PCI_STK_PCI_FIR, &p->pfir_cache);
xscom_read(p->chip_id, p->pe_stk_xscom +
XPEC_NEST_STK_PCI_NFIR, &p->nfir_cache);
if (p->pfir_cache || p->nfir_cache) {
PHBERR(p, "CRESET: PHB still fenced !!\n");
phb4_dump_pec_err_regs(p);
/* Reset the PHB errors */
xscom_write(p->chip_id, p->pci_stk_xscom +
XPEC_PCI_STK_PCI_FIR, 0);
xscom_write(p->chip_id, p->pe_stk_xscom +
XPEC_NEST_STK_PCI_NFIR, 0);
}
/* Clear PHB from reset */
xscom_write(p->chip_id,
p->pci_stk_xscom + XPEC_PCI_STK_ETU_RESET, 0x0);
p->flags &= ~PHB4_ETU_IN_RESET;
pci_slot_set_state(slot, PHB4_SLOT_CRESET_REINIT);
/* After lifting PHB reset, wait while logic settles */
return pci_slot_set_sm_timeout(slot, msecs_to_tb(10));
}
if (slot->retries-- == 0) {
PHBERR(p, "Timeout waiting for pending transaction\n");
goto error;
}
return pci_slot_set_sm_timeout(slot, msecs_to_tb(100));
case PHB4_SLOT_CRESET_REINIT:
PHBDBG(p, "CRESET: Reinitialization\n");
p->flags &= ~PHB4_AIB_FENCED;
p->flags &= ~PHB4_CAPP_RECOVERY;
p->flags &= ~PHB4_CFG_USE_ASB;
phb4_init_hw(p);
pci_slot_set_state(slot, PHB4_SLOT_CRESET_FRESET);
/*
* The PERST is sticky across resets, but LINK_DIS isn't.
* Re-assert it here now that we've reset the PHB.
*/
phb4_assert_perst(slot, true);
/*
* wait either 100ms (for the ETU logic) or until we've had
* PERST asserted for 250ms.
*/
creset_time = tb_to_msecs(mftb() - p->creset_start_time);
if (creset_time < 250)
wait_time = MAX(100, 250 - creset_time);
else
wait_time = 100;
PHBDBG(p, "CRESET: wait_time = %lld\n", wait_time);
return pci_slot_set_sm_timeout(slot, msecs_to_tb(wait_time));
case PHB4_SLOT_CRESET_FRESET:
/*
* We asserted PERST at the beginning of the CRESET and we
* have waited long enough, so we can skip it in the freset
* procedure.
*/
p->skip_perst = true;
pci_slot_set_state(slot, PHB4_SLOT_NORMAL);
return slot->ops.freset(slot);
default:
PHBERR(p, "CRESET: Unexpected slot state %08x, resetting...\n",
slot->state);
pci_slot_set_state(slot, PHB4_SLOT_NORMAL);
return slot->ops.creset(slot);
}
error:
/* Mark the PHB as dead and expect it to be removed */
p->broken = true;
return OPAL_HARDWARE;
}
/*
* Initialize root complex slot, which is mainly used to
* do fundamental reset before PCI enumeration in PCI core.
* When probing root complex and building its real slot,
* the operations will be copied over.
*/
static struct pci_slot *phb4_slot_create(struct phb *phb)
{
struct pci_slot *slot;
slot = pci_slot_alloc(phb, NULL);
if (!slot)
return slot;
/* Elementary functions */
slot->ops.get_presence_state = phb4_get_presence_state;
slot->ops.get_link_state = phb4_get_link_state;
slot->ops.get_power_state = NULL;
slot->ops.get_attention_state = NULL;
slot->ops.get_latch_state = NULL;
slot->ops.set_power_state = NULL;
slot->ops.set_attention_state = NULL;
/*
* For PHB slots, we have to split the fundamental reset
* into 2 steps. We might not have the first step which
* is to power off/on the slot, or it's controlled by
* individual platforms.
*/
slot->ops.prepare_link_change = phb4_prepare_link_change;
slot->ops.poll_link = phb4_poll_link;
slot->ops.hreset = phb4_hreset;
slot->ops.freset = phb4_freset;
slot->ops.creset = phb4_creset;
slot->ops.completed_sm_run = phb4_slot_sm_run_completed;
slot->link_retries = PHB4_LINK_LINK_RETRIES;
return slot;
}
static void phb4_int_unmask_all(struct phb4 *p)
{
/* Init_126..130 - Re-enable error interrupts */
out_be64(p->regs + PHB_ERR_IRQ_ENABLE, 0xca8880cc00000000ull);
out_be64(p->regs + PHB_TXE_ERR_IRQ_ENABLE, 0x2008400e08200000ull);
out_be64(p->regs + PHB_RXE_ARB_ERR_IRQ_ENABLE, 0xc40038fc01804070ull);
out_be64(p->regs + PHB_RXE_MRG_ERR_IRQ_ENABLE, 0x00006100008000a8ull);
out_be64(p->regs + PHB_RXE_TCE_ERR_IRQ_ENABLE, 0x60510050c0000000ull);
}
/*
* Mask the IRQ for any currently set error bits. This prevents the PHB's ERR
* and INF interrupts from being re-fired before the kernel can handle the
* underlying condition.
*/
static void phb4_int_mask_active(struct phb4 *p)
{
const uint64_t error_regs[] = {
PHB_ERR_STATUS,
PHB_TXE_ERR_STATUS,
PHB_RXE_ARB_ERR_STATUS,
PHB_RXE_MRG_ERR_STATUS,
PHB_RXE_TCE_ERR_STATUS
};
int i;
for (i = 0; i < ARRAY_SIZE(error_regs); i++) {
uint64_t stat, mask;
/* The IRQ mask reg is always offset 0x20 from the status reg */
stat = phb4_read_reg(p, error_regs[i]);
mask = phb4_read_reg(p, error_regs[i] + 0x20);
phb4_write_reg(p, error_regs[i] + 0x20, mask & ~stat);
}
}
static uint64_t phb4_get_pesta(struct phb4 *p, uint64_t pe_number)
{
uint64_t pesta;
__be64 *pPEST;
pPEST = (__be64 *)p->tbl_pest;
phb4_ioda_sel(p, IODA3_TBL_PESTA, pe_number, false);
pesta = phb4_read_reg(p, PHB_IODA_DATA0);
if (pesta & IODA3_PESTA_MMIO_FROZEN)
pesta |= be64_to_cpu(pPEST[2*pe_number]);
return pesta;
}
/* Check if the chip requires escalating a freeze to fence on MMIO loads */
static bool phb4_escalation_required(void)
{
uint64_t pvr = mfspr(SPR_PVR);
/* Only on Power9 */
if (proc_gen != proc_gen_p9)
return false;
/*
* Escalation is required on the following chip versions:
* - Cumulus DD1.0
* - Nimbus DD2.0, DD2.1 (and DD1.0, but it is unsupported so no check).
*/
if (pvr & PVR_POWER9_CUMULUS) {
if (PVR_VERS_MAJ(pvr) == 1 && PVR_VERS_MIN(pvr) == 0)
return true;
} else { /* Nimbus */
if (PVR_VERS_MAJ(pvr) == 2 && PVR_VERS_MIN(pvr) < 2)
return true;
}
return false;
}
static bool phb4_freeze_escalate(uint64_t pesta)
{
if ((GETFIELD(IODA3_PESTA_TRANS_TYPE, pesta) ==
IODA3_PESTA_TRANS_TYPE_MMIOLOAD) &&
(pesta & (IODA3_PESTA_CA_CMPLT_TMT | IODA3_PESTA_UR)))
return true;
return false;
}
static int64_t phb4_eeh_freeze_status(struct phb *phb, uint64_t pe_number,
uint8_t *freeze_state,
uint16_t *pci_error_type,
uint16_t *severity)
{
struct phb4 *p = phb_to_phb4(phb);
uint64_t peev_bit = PPC_BIT(pe_number & 0x3f);
uint64_t peev, pesta, pestb;
/* Defaults: not frozen */
*freeze_state = OPAL_EEH_STOPPED_NOT_FROZEN;
*pci_error_type = OPAL_EEH_NO_ERROR;
/* Check dead */
if (p->broken) {
*freeze_state = OPAL_EEH_STOPPED_MMIO_DMA_FREEZE;
*pci_error_type = OPAL_EEH_PHB_ERROR;
if (severity)
*severity = OPAL_EEH_SEV_PHB_DEAD;
return OPAL_HARDWARE;
}
/* Check fence and CAPP recovery */
if (phb4_fenced(p) || (p->flags & PHB4_CAPP_RECOVERY)) {
*freeze_state = OPAL_EEH_STOPPED_MMIO_DMA_FREEZE;
*pci_error_type = OPAL_EEH_PHB_ERROR;
if (severity)
*severity = OPAL_EEH_SEV_PHB_FENCED;
return OPAL_SUCCESS;
}
/* Check the PEEV */
phb4_ioda_sel(p, IODA3_TBL_PEEV, pe_number / 64, false);
peev = in_be64(p->regs + PHB_IODA_DATA0);
if (!(peev & peev_bit))
return OPAL_SUCCESS;
/* Indicate that we have an ER pending */
phb4_set_err_pending(p, true);
if (severity)
*severity = OPAL_EEH_SEV_PE_ER;
/* Read the full PESTA */
pesta = phb4_get_pesta(p, pe_number);
/* Check if we need to escalate to fence */
if (phb4_escalation_required() && phb4_freeze_escalate(pesta)) {
PHBERR(p, "Escalating freeze to fence PESTA[%lli]=%016llx\n",
pe_number, pesta);
*severity = OPAL_EEH_SEV_PHB_FENCED;
*pci_error_type = OPAL_EEH_PHB_ERROR;
}
/* Read the PESTB in the PHB */
phb4_ioda_sel(p, IODA3_TBL_PESTB, pe_number, false);
pestb = phb4_read_reg(p, PHB_IODA_DATA0);
/* Convert PESTA/B to freeze_state */
if (pesta & IODA3_PESTA_MMIO_FROZEN)
*freeze_state |= OPAL_EEH_STOPPED_MMIO_FREEZE;
if (pestb & IODA3_PESTB_DMA_STOPPED)
*freeze_state |= OPAL_EEH_STOPPED_DMA_FREEZE;
return OPAL_SUCCESS;
}
static int64_t phb4_eeh_freeze_clear(struct phb *phb, uint64_t pe_number,
uint64_t eeh_action_token)
{
struct phb4 *p = phb_to_phb4(phb);
uint64_t err, peev;
int32_t i;
bool frozen_pe = false;
if (p->broken)
return OPAL_HARDWARE;
/* Summary. If nothing, move to clearing the PESTs which can
* contain a freeze state from a previous error or simply set
* explicitely by the user
*/
err = in_be64(p->regs + PHB_ETU_ERR_SUMMARY);
if (err == 0xffffffffffffffffUL) {
if (phb4_fenced(p)) {
PHBERR(p, "eeh_freeze_clear on fenced PHB\n");
return OPAL_HARDWARE;
}
}
if (err != 0)
phb4_err_clear(p);
/*
* We have PEEV in system memory. It would give more performance
* to access that directly.
*/
if (eeh_action_token & OPAL_EEH_ACTION_CLEAR_FREEZE_MMIO) {
phb4_ioda_sel(p, IODA3_TBL_PESTA, pe_number, false);
out_be64(p->regs + PHB_IODA_DATA0, 0);
}
if (eeh_action_token & OPAL_EEH_ACTION_CLEAR_FREEZE_DMA) {
phb4_ioda_sel(p, IODA3_TBL_PESTB, pe_number, false);
out_be64(p->regs + PHB_IODA_DATA0, 0);
}
/* Update ER pending indication */
phb4_ioda_sel(p, IODA3_TBL_PEEV, 0, true);
for (i = 0; i < p->num_pes/64; i++) {
peev = in_be64(p->regs + PHB_IODA_DATA0);
if (peev) {
frozen_pe = true;
break;
}
}
if (frozen_pe) {
p->err.err_src = PHB4_ERR_SRC_PHB;
p->err.err_class = PHB4_ERR_CLASS_ER;
p->err.err_bit = -1;
phb4_set_err_pending(p, true);
} else
phb4_set_err_pending(p, false);
return OPAL_SUCCESS;
}
static int64_t phb4_eeh_freeze_set(struct phb *phb, uint64_t pe_number,
uint64_t eeh_action_token)
{
struct phb4 *p = phb_to_phb4(phb);
uint64_t data;
if (p->broken)
return OPAL_HARDWARE;
if (pe_number >= p->num_pes)
return OPAL_PARAMETER;
if (eeh_action_token != OPAL_EEH_ACTION_SET_FREEZE_MMIO &&
eeh_action_token != OPAL_EEH_ACTION_SET_FREEZE_DMA &&
eeh_action_token != OPAL_EEH_ACTION_SET_FREEZE_ALL)
return OPAL_PARAMETER;
if (eeh_action_token & OPAL_EEH_ACTION_SET_FREEZE_MMIO) {
phb4_ioda_sel(p, IODA3_TBL_PESTA, pe_number, false);
data = in_be64(p->regs + PHB_IODA_DATA0);
data |= IODA3_PESTA_MMIO_FROZEN;
out_be64(p->regs + PHB_IODA_DATA0, data);
}
if (eeh_action_token & OPAL_EEH_ACTION_SET_FREEZE_DMA) {
phb4_ioda_sel(p, IODA3_TBL_PESTB, pe_number, false);
data = in_be64(p->regs + PHB_IODA_DATA0);
data |= IODA3_PESTB_DMA_STOPPED;
out_be64(p->regs + PHB_IODA_DATA0, data);
}
return OPAL_SUCCESS;
}
static int64_t phb4_eeh_next_error(struct phb *phb,
uint64_t *first_frozen_pe,
uint16_t *pci_error_type,
uint16_t *severity)
{
struct phb4 *p = phb_to_phb4(phb);
uint64_t peev, pesta;
uint32_t peev_size = p->num_pes/64;
int32_t i, j;
/* If the PHB is broken, we needn't go forward */
if (p->broken) {
*pci_error_type = OPAL_EEH_PHB_ERROR;
*severity = OPAL_EEH_SEV_PHB_DEAD;
return OPAL_SUCCESS;
}
if ((p->flags & PHB4_CAPP_RECOVERY)) {
*pci_error_type = OPAL_EEH_PHB_ERROR;
*severity = OPAL_EEH_SEV_PHB_FENCED;
return OPAL_SUCCESS;
}
/*
* Check if we already have pending errors. If that's
* the case, then to get more information about the
* pending errors. Here we try PBCQ prior to PHB.
*/
if (phb4_err_pending(p) /*&&
!phb4_err_check_pbcq(p) &&
!phb4_err_check_lem(p) */)
phb4_set_err_pending(p, false);
/* Clear result */
*pci_error_type = OPAL_EEH_NO_ERROR;
*severity = OPAL_EEH_SEV_NO_ERROR;
*first_frozen_pe = (uint64_t)-1;
/* Check frozen PEs */
if (!phb4_err_pending(p)) {
phb4_ioda_sel(p, IODA3_TBL_PEEV, 0, true);
for (i = 0; i < peev_size; i++) {
peev = in_be64(p->regs + PHB_IODA_DATA0);
if (peev) {
p->err.err_src = PHB4_ERR_SRC_PHB;
p->err.err_class = PHB4_ERR_CLASS_ER;
p->err.err_bit = -1;
phb4_set_err_pending(p, true);
break;
}
}
}
if (!phb4_err_pending(p))
return OPAL_SUCCESS;
/*
* If the frozen PE is caused by a malfunctioning TLP, we
* need reset the PHB. So convert ER to PHB-fatal error
* for the case.
*/
if (p->err.err_class == PHB4_ERR_CLASS_ER) {
for (i = peev_size - 1; i >= 0; i--) {
phb4_ioda_sel(p, IODA3_TBL_PEEV, i, false);
peev = in_be64(p->regs + PHB_IODA_DATA0);
for (j = 0; j < 64; j++) {
if (peev & PPC_BIT(j)) {
*first_frozen_pe = i * 64 + j;
break;
}
}
if (*first_frozen_pe != (uint64_t)(-1))
break;
}
}
if (*first_frozen_pe != (uint64_t)(-1)) {
pesta = phb4_get_pesta(p, *first_frozen_pe);
if (phb4_escalation_required() && phb4_freeze_escalate(pesta)) {
PHBINF(p, "Escalating freeze to fence. PESTA[%lli]=%016llx\n",
*first_frozen_pe, pesta);
p->err.err_class = PHB4_ERR_CLASS_FENCED;
}
}
switch (p->err.err_class) {
case PHB4_ERR_CLASS_DEAD:
*pci_error_type = OPAL_EEH_PHB_ERROR;
*severity = OPAL_EEH_SEV_PHB_DEAD;
break;
case PHB4_ERR_CLASS_FENCED:
*pci_error_type = OPAL_EEH_PHB_ERROR;
*severity = OPAL_EEH_SEV_PHB_FENCED;
break;
case PHB4_ERR_CLASS_ER:
*pci_error_type = OPAL_EEH_PE_ERROR;
*severity = OPAL_EEH_SEV_PE_ER;
/* No frozen PE ? */
if (*first_frozen_pe == (uint64_t)-1) {
*pci_error_type = OPAL_EEH_NO_ERROR;
*severity = OPAL_EEH_SEV_NO_ERROR;
phb4_set_err_pending(p, false);
}
break;
case PHB4_ERR_CLASS_INF:
*pci_error_type = OPAL_EEH_PHB_ERROR;
*severity = OPAL_EEH_SEV_INF;
break;
default:
*pci_error_type = OPAL_EEH_NO_ERROR;
*severity = OPAL_EEH_SEV_NO_ERROR;
phb4_set_err_pending(p, false);
}
/*
* Unmask all our error interrupts once all pending errors
* have been handled.
*/
if (!phb4_err_pending(p))
phb4_int_unmask_all(p);
return OPAL_SUCCESS;
}
static int64_t phb4_err_inject_finalize(struct phb4 *phb, uint64_t addr,
uint64_t mask, uint64_t ctrl,
bool is_write)
{
if (is_write)
ctrl |= PHB_PAPR_ERR_INJ_CTL_WR;
else
ctrl |= PHB_PAPR_ERR_INJ_CTL_RD;
out_be64(phb->regs + PHB_PAPR_ERR_INJ_ADDR, addr);
out_be64(phb->regs + PHB_PAPR_ERR_INJ_MASK, mask);
out_be64(phb->regs + PHB_PAPR_ERR_INJ_CTL, ctrl);
return OPAL_SUCCESS;
}
static int64_t phb4_err_inject_mem32(struct phb4 *phb __unused,
uint64_t pe_number __unused,
uint64_t addr __unused,
uint64_t mask __unused,
bool is_write __unused)
{
return OPAL_UNSUPPORTED;
}
static int64_t phb4_err_inject_mem64(struct phb4 *phb __unused,
uint64_t pe_number __unused,
uint64_t addr __unused,
uint64_t mask __unused,
bool is_write __unused)
{
return OPAL_UNSUPPORTED;
}
static int64_t phb4_err_inject_cfg(struct phb4 *phb, uint64_t pe_number,
uint64_t addr, uint64_t mask,
bool is_write)
{
uint64_t a, m, prefer, ctrl;
int bdfn;
bool is_bus_pe = false;
a = 0xffffull;
prefer = 0xffffull;
m = PHB_PAPR_ERR_INJ_MASK_CFG_ALL;
ctrl = PHB_PAPR_ERR_INJ_CTL_CFG;
for (bdfn = 0; bdfn < RTT_TABLE_ENTRIES; bdfn++) {
if (be16_to_cpu(phb->tbl_rtt[bdfn]) != pe_number)
continue;
/* The PE can be associated with PCI bus or device */
is_bus_pe = false;
if ((bdfn + 8) < RTT_TABLE_ENTRIES &&
be16_to_cpu(phb->tbl_rtt[bdfn + 8]) == pe_number)
is_bus_pe = true;
/* Figure out the PCI config address */
if (prefer == 0xffffull) {
if (is_bus_pe) {
m = PHB_PAPR_ERR_INJ_MASK_CFG;
prefer = SETFIELD(m, 0x0ull, PCI_BUS_NUM(bdfn));
} else {
m = PHB_PAPR_ERR_INJ_MASK_CFG_ALL;
prefer = SETFIELD(m, 0x0ull, bdfn);
}
}
/* Check the input address is valid or not */
if (!is_bus_pe &&
GETFIELD(PHB_PAPR_ERR_INJ_MASK_CFG_ALL, addr) == bdfn) {
a = addr;
break;
}
if (is_bus_pe &&
GETFIELD(PHB_PAPR_ERR_INJ_MASK_CFG, addr) == PCI_BUS_NUM(bdfn)) {
a = addr;
break;
}
}
/* Invalid PE number */
if (prefer == 0xffffull)
return OPAL_PARAMETER;
/* Specified address is out of range */
if (a == 0xffffull)
a = prefer;
else
m = mask;
return phb4_err_inject_finalize(phb, a, m, ctrl, is_write);
}
static int64_t phb4_err_inject_dma(struct phb4 *phb __unused,
uint64_t pe_number __unused,
uint64_t addr __unused,
uint64_t mask __unused,
bool is_write __unused,
bool is_64bits __unused)
{
return OPAL_UNSUPPORTED;
}
static int64_t phb4_err_inject_dma32(struct phb4 *phb, uint64_t pe_number,
uint64_t addr, uint64_t mask,
bool is_write)
{
return phb4_err_inject_dma(phb, pe_number, addr, mask, is_write, false);
}
static int64_t phb4_err_inject_dma64(struct phb4 *phb, uint64_t pe_number,
uint64_t addr, uint64_t mask,
bool is_write)
{
return phb4_err_inject_dma(phb, pe_number, addr, mask, is_write, true);
}
static int64_t phb4_err_inject(struct phb *phb, uint64_t pe_number,
uint32_t type, uint32_t func,
uint64_t addr, uint64_t mask)
{
struct phb4 *p = phb_to_phb4(phb);
int64_t (*handler)(struct phb4 *p, uint64_t pe_number,
uint64_t addr, uint64_t mask, bool is_write);
bool is_write;
/* We can't inject error to the reserved PE */
if (pe_number == PHB4_RESERVED_PE_NUM(p) || pe_number >= p->num_pes)
return OPAL_PARAMETER;
/* Clear leftover from last time */
out_be64(p->regs + PHB_PAPR_ERR_INJ_CTL, 0x0ul);
switch (func) {
case OPAL_ERR_INJECT_FUNC_IOA_LD_MEM_ADDR:
case OPAL_ERR_INJECT_FUNC_IOA_LD_MEM_DATA:
is_write = false;
if (type == OPAL_ERR_INJECT_TYPE_IOA_BUS_ERR64)
handler = phb4_err_inject_mem64;
else
handler = phb4_err_inject_mem32;
break;
case OPAL_ERR_INJECT_FUNC_IOA_ST_MEM_ADDR:
case OPAL_ERR_INJECT_FUNC_IOA_ST_MEM_DATA:
is_write = true;
if (type == OPAL_ERR_INJECT_TYPE_IOA_BUS_ERR64)
handler = phb4_err_inject_mem64;
else
handler = phb4_err_inject_mem32;
break;
case OPAL_ERR_INJECT_FUNC_IOA_LD_CFG_ADDR:
case OPAL_ERR_INJECT_FUNC_IOA_LD_CFG_DATA:
is_write = false;
handler = phb4_err_inject_cfg;
break;
case OPAL_ERR_INJECT_FUNC_IOA_ST_CFG_ADDR:
case OPAL_ERR_INJECT_FUNC_IOA_ST_CFG_DATA:
is_write = true;
handler = phb4_err_inject_cfg;
break;
case OPAL_ERR_INJECT_FUNC_IOA_DMA_RD_ADDR:
case OPAL_ERR_INJECT_FUNC_IOA_DMA_RD_DATA:
case OPAL_ERR_INJECT_FUNC_IOA_DMA_RD_MASTER:
case OPAL_ERR_INJECT_FUNC_IOA_DMA_RD_TARGET:
is_write = false;
if (type == OPAL_ERR_INJECT_TYPE_IOA_BUS_ERR64)
handler = phb4_err_inject_dma64;
else
handler = phb4_err_inject_dma32;
break;
case OPAL_ERR_INJECT_FUNC_IOA_DMA_WR_ADDR:
case OPAL_ERR_INJECT_FUNC_IOA_DMA_WR_DATA:
case OPAL_ERR_INJECT_FUNC_IOA_DMA_WR_MASTER:
case OPAL_ERR_INJECT_FUNC_IOA_DMA_WR_TARGET:
is_write = true;
if (type == OPAL_ERR_INJECT_TYPE_IOA_BUS_ERR64)
handler = phb4_err_inject_dma64;
else
handler = phb4_err_inject_dma32;
break;
default:
return OPAL_PARAMETER;
}
return handler(p, pe_number, addr, mask, is_write);
}
static int64_t phb4_get_diag_data(struct phb *phb,
void *diag_buffer,
uint64_t diag_buffer_len)
{
bool fenced;
struct phb4 *p = phb_to_phb4(phb);
struct OpalIoPhb4ErrorData *data = diag_buffer;
if (diag_buffer_len < sizeof(struct OpalIoPhb4ErrorData))
return OPAL_PARAMETER;
if (p->broken)
return OPAL_HARDWARE;
/*
* Dummy check for fence so that phb4_read_phb_status knows
* whether to use ASB or AIB
*/
fenced = phb4_fenced(p);
phb4_read_phb_status(p, data);
if (!fenced)
phb4_eeh_dump_regs(p);
/*
* We're running to here probably because of errors
* (INF class). For that case, we need clear the error
* explicitly.
*/
if (phb4_err_pending(p) &&
p->err.err_class == PHB4_ERR_CLASS_INF &&
p->err.err_src == PHB4_ERR_SRC_PHB) {
phb4_err_clear(p);
phb4_set_err_pending(p, false);
}
return OPAL_SUCCESS;
}
static uint64_t tve_encode_50b_noxlate(uint64_t start_addr, uint64_t end_addr)
{
uint64_t tve;
/*
* Put start address bits 49:24 into TVE[52:53]||[0:23]
* and end address bits 49:24 into TVE[54:55]||[24:47]
* and set TVE[51]
*/
tve = (start_addr << 16) & (0xffffffull << 40);
tve |= (start_addr >> 38) & (3ull << 10);
tve |= (end_addr >> 8) & (0xfffffful << 16);
tve |= (end_addr >> 40) & (3ull << 8);
tve |= PPC_BIT(51) | IODA3_TVT_NON_TRANSLATE_50;
return tve;
}
static bool phb4_is_dd20(struct phb4 *p)
{
struct proc_chip *chip = get_chip(p->chip_id);
if (p->rev == PHB4_REV_NIMBUS_DD20 && ((0xf & chip->ec_level) == 0))
return true;
return false;
}
static int64_t phb4_get_capp_info(int chip_id, struct phb *phb,
struct capp_info *info)
{
struct phb4 *p = phb_to_phb4(phb);
uint32_t offset;
if (chip_id != p->chip_id)
return OPAL_PARAMETER;
/* Check is CAPP is attached to the PHB */
if (p->capp == NULL || p->capp->phb != phb)
return OPAL_PARAMETER;
offset = PHB4_CAPP_REG_OFFSET(p);
if (p->index == CAPP0_PHB_INDEX)
info->capp_index = 0;
if (p->index == CAPP1_PHB_INDEX)
info->capp_index = 1;
info->phb_index = p->index;
info->capp_fir_reg = CAPP_FIR + offset;
info->capp_fir_mask_reg = CAPP_FIR_MASK + offset;
info->capp_fir_action0_reg = CAPP_FIR_ACTION0 + offset;
info->capp_fir_action1_reg = CAPP_FIR_ACTION1 + offset;
info->capp_err_status_ctrl_reg = CAPP_ERR_STATUS_CTRL + offset;
return OPAL_SUCCESS;
}
static void phb4_init_capp_regs(struct phb4 *p, uint32_t capp_eng)
{
uint64_t reg;
uint32_t offset;
uint8_t link_width_x16 = 1;
offset = PHB4_CAPP_REG_OFFSET(p);
/* Calculate the phb link width if card is attached to PEC2 */
if (p->index == CAPP1_PHB_INDEX) {
/* Check if PEC2 is in x8 or x16 mode.
* PEC0 is always in x16
*/
xscom_read(p->chip_id, XPEC_PCI2_CPLT_CONF1, &reg);
link_width_x16 = ((reg & XPEC_PCI2_IOVALID_MASK) ==
XPEC_PCI2_IOVALID_X16);
}
/* APC Master PowerBus Control Register */
xscom_read(p->chip_id, APC_MASTER_PB_CTRL + offset, &reg);
reg |= PPC_BIT(0); /* enable cResp exam */
reg |= PPC_BIT(3); /* disable vg not sys */
reg |= PPC_BIT(12);/* HW417025: disable capp virtual machines */
reg |= PPC_BIT(2); /* disable nn rn */
reg |= PPC_BIT(4); /* disable g */
reg |= PPC_BIT(5); /* disable ln */
xscom_write(p->chip_id, APC_MASTER_PB_CTRL + offset, reg);
/* Set PHB mode, HPC Dir State and P9 mode */
xscom_write(p->chip_id, APC_MASTER_CAPI_CTRL + offset,
0x1772000000000000UL);
PHBINF(p, "CAPP: port attached\n");
/* Set snoop ttype decoding , dir size to 512K */
xscom_write(p->chip_id, SNOOP_CAPI_CONFIG + offset, 0x9000000000000000UL);
/* Use Read Epsilon Tier2 for all scopes.
* Set Tier2 Read Epsilon.
*/
xscom_read(p->chip_id, SNOOP_CONTROL + offset, &reg);
reg |= PPC_BIT(0);
reg |= PPC_BIT(35);
reg |= PPC_BIT(45);
reg |= PPC_BIT(46);
reg |= PPC_BIT(47);
reg |= PPC_BIT(50);
xscom_write(p->chip_id, SNOOP_CONTROL + offset, reg);
/* Transport Control Register */
xscom_read(p->chip_id, TRANSPORT_CONTROL + offset, &reg);
if (p->index == CAPP0_PHB_INDEX) {
reg |= PPC_BIT(1); /* Send Packet Timer Value */
reg |= PPC_BITMASK(10, 13); /* Send Packet Timer Value */
reg &= ~PPC_BITMASK(14, 17); /* Set Max LPC CI store buffer to zeros */
reg &= ~PPC_BITMASK(18, 21); /* Set Max tlbi divider */
if (capp_eng & CAPP_MIN_STQ_ENGINES) {
/* 2 CAPP msg engines */
reg |= PPC_BIT(58);
reg |= PPC_BIT(59);
reg |= PPC_BIT(60);
}
if (capp_eng & CAPP_MAX_STQ_ENGINES) {
/* 14 CAPP msg engines */
reg |= PPC_BIT(60);
}
reg |= PPC_BIT(62);
}
if (p->index == CAPP1_PHB_INDEX) {
reg |= PPC_BIT(4); /* Send Packet Timer Value */
reg &= ~PPC_BIT(10); /* Set CI Store Buffer Threshold=5 */
reg |= PPC_BIT(11); /* Set CI Store Buffer Threshold=5 */
reg &= ~PPC_BIT(12); /* Set CI Store Buffer Threshold=5 */
reg |= PPC_BIT(13); /* Set CI Store Buffer Threshold=5 */
reg &= ~PPC_BITMASK(14, 17); /* Set Max LPC CI store buffer to zeros */
reg &= ~PPC_BITMASK(18, 21); /* Set Max tlbi divider */
if (capp_eng & CAPP_MIN_STQ_ENGINES) {
/* 2 CAPP msg engines */
reg |= PPC_BIT(59);
reg |= PPC_BIT(60);
} else if (capp_eng & CAPP_MAX_STQ_ENGINES) {
if (link_width_x16)
/* 14 CAPP msg engines */
reg |= PPC_BIT(60) | PPC_BIT(62);
else
/* 6 CAPP msg engines */
reg |= PPC_BIT(60);
}
}
xscom_write(p->chip_id, TRANSPORT_CONTROL + offset, reg);
/* The transport control register needs to be loaded in two
* steps. Once the register values have been set, we have to
* write bit 63 to a '1', which loads the register values into
* the ci store buffer logic.
*/
xscom_read(p->chip_id, TRANSPORT_CONTROL + offset, &reg);
reg |= PPC_BIT(63);
xscom_write(p->chip_id, TRANSPORT_CONTROL + offset, reg);
/* Enable epoch timer */
xscom_write(p->chip_id, EPOCH_RECOVERY_TIMERS_CTRL + offset,
0xC0000000FFF8FFE0UL);
/* Flush SUE State Map Register */
xscom_write(p->chip_id, FLUSH_SUE_STATE_MAP + offset,
0x08020A0000000000UL);
/* Flush SUE uOP1 Register */
xscom_write(p->chip_id, FLUSH_SUE_UOP1 + offset,
0xDCE0280428000000);
/* capp owns PHB read buffers */
if (p->index == CAPP0_PHB_INDEX) {
/* max PHB read buffers 0-47 */
reg = 0xFFFFFFFFFFFF0000UL;
if (capp_eng & CAPP_MAX_DMA_READ_ENGINES)
reg = 0xF000000000000000UL;
xscom_write(p->chip_id, APC_FSM_READ_MASK + offset, reg);
xscom_write(p->chip_id, XPT_FSM_RMM + offset, reg);
}
if (p->index == CAPP1_PHB_INDEX) {
if (capp_eng & CAPP_MAX_DMA_READ_ENGINES) {
reg = 0xF000000000000000ULL;
} else if (link_width_x16) {
/* 0-47 (Read machines) are available for
* capp use
*/
reg = 0x0000FFFFFFFFFFFFULL;
} else {
/* Set 30 Read machines for CAPP Minus
* 20-27 for DMA
*/
reg = 0xFFFFF00E00000000ULL;
}
xscom_write(p->chip_id, APC_FSM_READ_MASK + offset, reg);
xscom_write(p->chip_id, XPT_FSM_RMM + offset, reg);
}
/* CAPP FIR Action 0 */
xscom_write(p->chip_id, CAPP_FIR_ACTION0 + offset, 0x0b1c000104060000UL);
/* CAPP FIR Action 1 */
xscom_write(p->chip_id, CAPP_FIR_ACTION1 + offset, 0x2b9c0001240E0000UL);
/* CAPP FIR MASK */
xscom_write(p->chip_id, CAPP_FIR_MASK + offset, 0x80031f98d8717000UL);
/* Mask the CAPP PSL Credit Timeout Register error */
xscom_write_mask(p->chip_id, CAPP_FIR_MASK + offset,
PPC_BIT(46), PPC_BIT(46));
/* Deassert TLBI_FENCED and tlbi_psl_is_dead */
xscom_write(p->chip_id, CAPP_ERR_STATUS_CTRL + offset, 0);
}
/* override some inits with CAPI defaults */
static void phb4_init_capp_errors(struct phb4 *p)
{
/* Init_77: TXE Error AIB Fence Enable Register */
if (phb4_is_dd20(p))
out_be64(p->regs + 0x0d30, 0xdfffbf0ff7ddfff0ull);
else
out_be64(p->regs + 0x0d30, 0xdff7bf0ff7ddfff0ull);
/* Init_86: RXE_ARB Error AIB Fence Enable Register */
out_be64(p->regs + 0x0db0, 0xfbffd7bbfb7fbfefull);
/* Init_95: RXE_MRG Error AIB Fence Enable Register */
out_be64(p->regs + 0x0e30, 0xfffffeffff7fff57ull);
/* Init_104: RXE_TCE Error AIB Fence Enable Register */
out_be64(p->regs + 0x0eb0, 0xffaeffafffffffffull);
/* Init_113: PHB Error AIB Fence Enable Register */
out_be64(p->regs + 0x0cb0, 0x35777073ff000000ull);
}
/*
* The capi indicator is over the 8 most significant bits on p9 (and
* not 16). We stay away from bits 59 (TVE select), 60 and 61 (MSI)
*
* For the mask, we keep bit 59 in, as capi messages must hit TVE#0.
* Bit 56 is not part of the mask, so that a NBW message (see below)
* is also considered a capi message.
*/
#define CAPIIND 0x0200
#define CAPIMASK 0xFE00
/*
* Non-Blocking Write messages are a subset of capi messages, so the
* indicator is the same as capi + an extra bit (56) to differentiate.
* Mask is the same as capi + the extra bit
*/
#define NBWIND 0x0300
#define NBWMASK 0xFF00
/*
* The ASN indicator is used for tunneled operations (as_notify and
* atomics). Tunneled operation messages can be sent in PCI mode as
* well as CAPI mode.
*
* The format of those messages is specific and, for as_notify
* messages, the address field is hijacked to encode the LPID/PID/TID
* of the target thread, so those messages should not go through
* translation. They must hit TVE#1. Therefore bit 59 is part of the
* indicator.
*/
#define ASNIND 0x0C00
#define ASNMASK 0xFF00
/* Power Bus Common Queue Registers
* All PBCQ and PBAIB registers are accessed via SCOM
* NestBase = 4010C00 for PEC0
* 4011000 for PEC1
* 4011400 for PEC2
* PCIBase = D010800 for PE0
* E010800 for PE1
* F010800 for PE2
*
* Some registers are shared amongst all of the stacks and will only
* have 1 copy. Other registers are implemented one per stack.
* Registers that are duplicated will have an additional offset
* of “StackBase” so that they have a unique address.
* Stackoffset = 00000040 for Stack0
* = 00000080 for Stack1
* = 000000C0 for Stack2
*/
static int64_t enable_capi_mode(struct phb4 *p, uint64_t pe_number,
uint32_t capp_eng)
{
uint64_t reg, start_addr, end_addr, stq_eng, dma_eng;
uint64_t mbt0, mbt1;
int i, window_num = -1;
/* CAPP Control Register */
xscom_read(p->chip_id, p->pe_xscom + XPEC_NEST_CAPP_CNTL, &reg);
if (reg & PPC_BIT(0)) {
PHBDBG(p, "Already in CAPP mode\n");
}
for (i = 0; i < 500000; i++) {
/* PBCQ General Status Register */
xscom_read(p->chip_id,
p->pe_stk_xscom + XPEC_NEST_STK_PBCQ_STAT,
&reg);
if (!(reg & 0xC000000000000000UL))
break;
time_wait_us(10);
}
if (reg & 0xC000000000000000UL) {
PHBERR(p, "CAPP: Timeout waiting for pending transaction\n");
return OPAL_HARDWARE;
}
stq_eng = 0x0000000000000000ULL;
dma_eng = 0x0000000000000000ULL;
if (p->index == CAPP0_PHB_INDEX) {
/* PBCQ is operating as a x16 stack
* - The maximum number of engines give to CAPP will be
* 14 and will be assigned in the order of STQ 15 to 2.
* - 0-47 (Read machines) are available for capp use.
*/
stq_eng = 0x000E000000000000ULL; /* 14 CAPP msg engines */
dma_eng = 0x0000FFFFFFFFFFFFULL; /* 48 CAPP Read machines */
}
if (p->index == CAPP1_PHB_INDEX) {
/* Check if PEC is in x8 or x16 mode */
xscom_read(p->chip_id, XPEC_PCI2_CPLT_CONF1, &reg);
if ((reg & XPEC_PCI2_IOVALID_MASK) == XPEC_PCI2_IOVALID_X16) {
/* PBCQ is operating as a x16 stack
* - The maximum number of engines give to CAPP will be
* 14 and will be assigned in the order of STQ 15 to 2.
* - 0-47 (Read machines) are available for capp use.
*/
stq_eng = 0x000E000000000000ULL;
dma_eng = 0x0000FFFFFFFFFFFFULL;
} else {
/* PBCQ is operating as a x8 stack
* - The maximum number of engines given to CAPP should
* be 6 and will be assigned in the order of 7 to 2.
* - 0-30 (Read machines) are available for capp use.
*/
stq_eng = 0x0006000000000000ULL;
/* 30 Read machines for CAPP Minus 20-27 for DMA */
dma_eng = 0x0000FFFFF00E0000ULL;
}
}
if (capp_eng & CAPP_MIN_STQ_ENGINES)
stq_eng = 0x0002000000000000ULL; /* 2 capp msg engines */
/* CAPP Control Register. Enable CAPP Mode */
reg = 0x8000000000000000ULL; /* PEC works in CAPP Mode */
reg |= stq_eng;
if (capp_eng & CAPP_MAX_DMA_READ_ENGINES)
dma_eng = 0x0000F00000000000ULL; /* 4 CAPP Read machines */
reg |= dma_eng;
xscom_write(p->chip_id, p->pe_xscom + XPEC_NEST_CAPP_CNTL, reg);
/* PEC2 has 3 ETU's + 16 pci lanes that can operate as x16,
* x8+x8 (bifurcated) or x8+x4+x4 (trifurcated) mode. When
* Mellanox CX5 card is attached to stack0 of this PEC, indicated by
* request to allocate CAPP_MAX_DMA_READ_ENGINES; we tweak the default
* dma-read engines allocations to maximize the DMA read performance
*/
if ((p->index == CAPP1_PHB_INDEX) &&
(capp_eng & CAPP_MAX_DMA_READ_ENGINES))
phb4_pec2_dma_engine_realloc(p);
/* PCI to PB data movement ignores the PB init signal. */
xscom_write_mask(p->chip_id, p->pe_xscom + XPEC_NEST_PBCQ_HW_CONFIG,
XPEC_NEST_PBCQ_HW_CONFIG_PBINIT,
XPEC_NEST_PBCQ_HW_CONFIG_PBINIT);
/* If pump mode is enabled don't do nodal broadcasts.
*/
xscom_read(p->chip_id, PB_CENT_HP_MODE_CURR, &reg);
if (reg & PB_CFG_PUMP_MODE) {
reg = XPEC_NEST_PBCQ_HW_CONFIG_DIS_NODAL;
reg |= XPEC_NEST_PBCQ_HW_CONFIG_DIS_RNNN;
xscom_write_mask(p->chip_id,
p->pe_xscom + XPEC_NEST_PBCQ_HW_CONFIG,
reg, reg);
}
/* PEC Phase 4 (PHB) registers adjustment
* Inbound CAPP traffic: The CAPI can send both CAPP packets and
* I/O packets. A PCIe packet is indentified as a CAPP packet in
* the PHB if the PCIe address matches either the CAPI
* Compare/Mask register or its NBW Compare/Mask register.
*/
/*
* Bit [0:7] XSL_DSNCTL[capiind]
* Init_26 - CAPI Compare/Mask
*/
out_be64(p->regs + PHB_CAPI_CMPM,
((u64)CAPIIND << 48) |
((u64)CAPIMASK << 32) | PHB_CAPI_CMPM_ENABLE);
/* PB AIB Hardware Control Register
* Wait 32 PCI clocks for a credit to become available
* before rejecting.
*/
xscom_read(p->chip_id, p->pci_xscom + XPEC_PCI_PBAIB_HW_CONFIG, &reg);
reg |= PPC_BITMASK(40, 42);
if (p->index == CAPP1_PHB_INDEX)
reg |= PPC_BIT(30);
xscom_write(p->chip_id, p->pci_xscom + XPEC_PCI_PBAIB_HW_CONFIG, reg);
/* non-translate/50-bit mode */
out_be64(p->regs + PHB_NXLATE_PREFIX, 0x0000000000000000Ull);
/* set tve no translate mode allow mmio window */
memset(p->tve_cache, 0x0, sizeof(p->tve_cache));
/*
* In 50-bit non-translate mode, the fields of the TVE are
* used to perform an address range check. In this mode TCE
* Table Size(0) must be a '1' (TVE[51] = 1)
* PCI Addr(49:24) >= TVE[52:53]+TVE[0:23] and
* PCI Addr(49:24) < TVE[54:55]+TVE[24:47]
*
* TVE[51] = 1
* TVE[56] = 1: 50-bit Non-Translate Mode Enable
* TVE[0:23] = 0x000000
* TVE[24:47] = 0xFFFFFF
*
* capi dma mode: CAPP DMA mode needs access to all of memory
* capi mode: Allow address range (bit 14 = 1)
* 0x0002000000000000: 0x0002FFFFFFFFFFFF
* TVE[52:53] = '10' and TVE[54:55] = '10'
*/
/* TVT#0: CAPI window + DMA, all memory */
start_addr = 0ull;
end_addr = 0x0003ffffffffffffull;
p->tve_cache[pe_number * 2] =
tve_encode_50b_noxlate(start_addr, end_addr);
/* TVT#1: CAPI window + DMA, all memory, in bypass mode */
start_addr = (1ull << 59);
end_addr = start_addr + 0x0003ffffffffffffull;
p->tve_cache[pe_number * 2 + 1] =
tve_encode_50b_noxlate(start_addr, end_addr);
phb4_ioda_sel(p, IODA3_TBL_TVT, 0, true);
for (i = 0; i < p->tvt_size; i++)
out_be64(p->regs + PHB_IODA_DATA0, p->tve_cache[i]);
/*
* Since TVT#0 is in by-pass mode, disable 32-bit MSI, as a
* DMA write targeting 0x00000000FFFFxxxx would be interpreted
* as a 32-bit MSI
*/
reg = in_be64(p->regs + PHB_PHB4_CONFIG);
reg &= ~PHB_PHB4C_32BIT_MSI_EN;
out_be64(p->regs + PHB_PHB4_CONFIG, reg);
/* set mbt bar to pass capi mmio window and keep the other
* mmio values
*/
mbt0 = IODA3_MBT0_ENABLE | IODA3_MBT0_TYPE_M64 |
SETFIELD(IODA3_MBT0_MODE, 0ull, IODA3_MBT0_MODE_SINGLE_PE) |
SETFIELD(IODA3_MBT0_MDT_COLUMN, 0ull, 0) |
(0x0002000000000000ULL & IODA3_MBT0_BASE_ADDR);
mbt1 = IODA3_MBT1_ENABLE |
(0x00ff000000000000ULL & IODA3_MBT1_MASK) |
SETFIELD(IODA3_MBT1_SINGLE_PE_NUM, 0ull, pe_number);
for (i = 0; i < p->mbt_size; i++) {
/* search if the capi mmio window is already present */
if ((p->mbt_cache[i][0] == mbt0) &&
(p->mbt_cache[i][1] == mbt1))
break;
/* search a free entry */
if ((window_num == -1) &&
((!(p->mbt_cache[i][0] & IODA3_MBT0_ENABLE)) &&
(!(p->mbt_cache[i][1] & IODA3_MBT1_ENABLE))))
window_num = i;
}
if (window_num >= 0 && i == p->mbt_size) {
/* no capi mmio window found, so add it */
p->mbt_cache[window_num][0] = mbt0;
p->mbt_cache[window_num][1] = mbt1;
phb4_ioda_sel(p, IODA3_TBL_MBT, window_num << 1, true);
out_be64(p->regs + PHB_IODA_DATA0, mbt0);
out_be64(p->regs + PHB_IODA_DATA0, mbt1);
} else if (i == p->mbt_size) {
/* mbt cache full, this case should never happen */
PHBERR(p, "CAPP: Failed to add CAPI mmio window\n");
} else {
/* duplicate entry. Nothing to do */
}
phb4_init_capp_errors(p);
phb4_init_capp_regs(p, capp_eng);
if (!chiptod_capp_timebase_sync(p->chip_id, CAPP_TFMR,
CAPP_TB,
PHB4_CAPP_REG_OFFSET(p)))
PHBERR(p, "CAPP: Failed to sync timebase\n");
/* set callbacks to handle HMI events */
capi_ops.get_capp_info = &phb4_get_capp_info;
return OPAL_SUCCESS;
}
static int64_t phb4_init_capp(struct phb4 *p)
{
struct capp *capp;
int rc;
if (p->index != CAPP0_PHB_INDEX &&
p->index != CAPP1_PHB_INDEX)
return OPAL_UNSUPPORTED;
capp = zalloc(sizeof(struct capp));
if (capp == NULL)
return OPAL_NO_MEM;
if (p->index == CAPP0_PHB_INDEX) {
capp->capp_index = 0;
capp->capp_xscom_offset = 0;
} else if (p->index == CAPP1_PHB_INDEX) {
capp->capp_index = 1;
capp->capp_xscom_offset = CAPP1_REG_OFFSET;
}
capp->attached_pe = phb4_get_reserved_pe_number(&p->phb);
capp->chip_id = p->chip_id;
/* Load capp microcode into the capp unit */
rc = load_capp_ucode(p);
if (rc == OPAL_SUCCESS)
p->capp = capp;
else
free(capp);
return rc;
}
static int64_t phb4_set_capi_mode(struct phb *phb, uint64_t mode,
uint64_t pe_number)
{
struct phb4 *p = phb_to_phb4(phb);
struct proc_chip *chip = get_chip(p->chip_id);
struct capp *capp = p->capp;
uint64_t reg, ret;
/* cant do a mode switch when capp is in recovery mode */
ret = capp_xscom_read(capp, CAPP_ERR_STATUS_CTRL, &reg);
if (ret != OPAL_SUCCESS)
return ret;
if ((reg & PPC_BIT(0)) && (!(reg & PPC_BIT(1)))) {
PHBDBG(p, "CAPP: recovery in progress\n");
return OPAL_BUSY;
}
switch (mode) {
case OPAL_PHB_CAPI_MODE_DMA: /* Enabled by default on p9 */
case OPAL_PHB_CAPI_MODE_SNOOP_ON:
/* nothing to do on P9 if CAPP is already enabled */
ret = p->capp->phb ? OPAL_SUCCESS : OPAL_UNSUPPORTED;
break;
case OPAL_PHB_CAPI_MODE_SNOOP_OFF:
ret = p->capp->phb ? OPAL_UNSUPPORTED : OPAL_SUCCESS;
break;
case OPAL_PHB_CAPI_MODE_PCIE:
if (p->flags & PHB4_CAPP_DISABLE) {
/* We are in middle of a CAPP disable */
ret = OPAL_BUSY;
} else if (capp->phb) {
/* Kick start a creset */
p->flags |= PHB4_CAPP_DISABLE;
PHBINF(p, "CAPP: PCIE mode needs a cold-reset\n");
/* Kick off the pci state machine */
ret = phb4_creset(phb->slot);
ret = ret > 0 ? OPAL_BUSY : ret;
} else {
/* PHB already in PCI mode */
ret = OPAL_SUCCESS;
}
break;
case OPAL_PHB_CAPI_MODE_CAPI: /* Fall Through */
case OPAL_PHB_CAPI_MODE_DMA_TVT1:
/* Make sure that PHB is not disabling CAPP */
if (p->flags & PHB4_CAPP_DISABLE) {
PHBERR(p, "CAPP: Disable in progress\n");
ret = OPAL_BUSY;
break;
}
/* Check if ucode is available */
if (!capp_ucode_loaded(chip, p->index)) {
PHBERR(p, "CAPP: ucode not loaded\n");
ret = OPAL_RESOURCE;
break;
}
/*
* Mark the CAPP attached to the PHB right away so that
* if a MCE happens during CAPP init we can handle it.
* In case of an error in CAPP init we remove the PHB
* from the attached_mask later.
*/
capp->phb = phb;
capp->attached_pe = pe_number;
if (mode == OPAL_PHB_CAPI_MODE_DMA_TVT1)
ret = enable_capi_mode(p, pe_number,
CAPP_MIN_STQ_ENGINES |
CAPP_MAX_DMA_READ_ENGINES);
else
ret = enable_capi_mode(p, pe_number,
CAPP_MAX_STQ_ENGINES |
CAPP_MIN_DMA_READ_ENGINES);
if (ret == OPAL_SUCCESS) {
/* register notification on system shutdown */
opal_add_host_sync_notifier(&phb4_host_sync_reset, p);
} else {
/* In case of an error mark the PHB detached */
capp->phb = NULL;
capp->attached_pe = phb4_get_reserved_pe_number(phb);
}
break;
default:
ret = OPAL_UNSUPPORTED;
break;
};
return ret;
}
static void phb4_p2p_set_initiator(struct phb4 *p, uint16_t pe_number)
{
uint64_t tve;
uint16_t window_id = (pe_number << 1) + 1;
/*
* Initiator needs access to the MMIO space of the target,
* which is well beyond the 'normal' memory area. Set its TVE
* with no range checking.
*/
PHBDBG(p, "Setting TVE#1 for peer-to-peer for pe %d\n", pe_number);
tve = PPC_BIT(51);
phb4_ioda_sel(p, IODA3_TBL_TVT, window_id, false);
out_be64(p->regs + PHB_IODA_DATA0, tve);
p->tve_cache[window_id] = tve;
}
static void phb4_p2p_set_target(struct phb4 *p, bool enable)
{
uint64_t val;
/*
* Enabling p2p on a target PHB reserves an outbound (as seen
* from the CPU) store queue for p2p
*/
PHBDBG(p, "%s peer-to-peer\n", (enable ? "Enabling" : "Disabling"));
xscom_read(p->chip_id,
p->pe_stk_xscom + XPEC_NEST_STK_PBCQ_MODE, &val);
if (enable)
val |= XPEC_NEST_STK_PBCQ_MODE_P2P;
else
val &= ~XPEC_NEST_STK_PBCQ_MODE_P2P;
xscom_write(p->chip_id,
p->pe_stk_xscom + XPEC_NEST_STK_PBCQ_MODE, val);
}
static void phb4_set_p2p(struct phb *phb, uint64_t mode, uint64_t flags,
uint16_t pe_number)
{
struct phb4 *p = phb_to_phb4(phb);
switch (mode) {
case OPAL_PCI_P2P_INITIATOR:
if (flags & OPAL_PCI_P2P_ENABLE)
phb4_p2p_set_initiator(p, pe_number);
/*
* When disabling p2p on the initiator, we should
* reset the TVE to its default bypass setting, but it
* is more easily done from the OS, as it knows the
* the start and end address and there's already an
* opal call for it, so let linux handle it.
*/
break;
case OPAL_PCI_P2P_TARGET:
phb4_p2p_set_target(p, !!(flags & OPAL_PCI_P2P_ENABLE));
break;
default:
assert(0);
}
}
static int64_t phb4_set_capp_recovery(struct phb *phb)
{
struct phb4 *p = phb_to_phb4(phb);
if (p->flags & PHB4_CAPP_RECOVERY)
return 0;
/* set opal event flag to indicate eeh condition */
opal_update_pending_evt(OPAL_EVENT_PCI_ERROR,
OPAL_EVENT_PCI_ERROR);
p->flags |= PHB4_CAPP_RECOVERY;
return 0;
}
/*
* Return the address out of a PBCQ Tunnel Bar register.
*/
static void phb4_get_tunnel_bar(struct phb *phb, uint64_t *addr)
{
struct phb4 *p = phb_to_phb4(phb);
uint64_t val;
xscom_read(p->chip_id, p->pe_stk_xscom + XPEC_NEST_STK_TUNNEL_BAR,
&val);
*addr = val >> 8;
}
/*
* Set PBCQ Tunnel Bar register.
* Store addr bits [8:50] in PBCQ Tunnel Bar register bits [0:42].
* Note that addr bits [8:50] must also match PSL_TNR_ADDR[8:50].
* Reset register if val == 0.
*
* This interface is required to let device drivers set the Tunnel Bar
* value of their choice.
*
* Compatibility with older versions of linux, that do not set the
* Tunnel Bar with phb4_set_tunnel_bar(), is ensured by enable_capi_mode(),
* that will set the default value that used to be assumed.
*/
static int64_t phb4_set_tunnel_bar(struct phb *phb, uint64_t addr)
{
struct phb4 *p = phb_to_phb4(phb);
uint64_t mask = 0x00FFFFFFFFFFE000ULL;
if (!addr) {
/* Reset register */
xscom_write(p->chip_id,
p->pe_stk_xscom + XPEC_NEST_STK_TUNNEL_BAR, addr);
return OPAL_SUCCESS;
}
if ((addr & ~mask))
return OPAL_PARAMETER;
if (!(addr & mask))
return OPAL_PARAMETER;
xscom_write(p->chip_id, p->pe_stk_xscom + XPEC_NEST_STK_TUNNEL_BAR,
(addr & mask) << 8);
return OPAL_SUCCESS;
}
static const struct phb_ops phb4_ops = {
.cfg_read8 = phb4_pcicfg_read8,
.cfg_read16 = phb4_pcicfg_read16,
.cfg_read32 = phb4_pcicfg_read32,
.cfg_write8 = phb4_pcicfg_write8,
.cfg_write16 = phb4_pcicfg_write16,
.cfg_write32 = phb4_pcicfg_write32,
.get_reserved_pe_number = phb4_get_reserved_pe_number,
.device_init = phb4_device_init,
.device_remove = NULL,
.ioda_reset = phb4_ioda_reset,
.papr_errinjct_reset = phb4_papr_errinjct_reset,
.pci_reinit = phb4_pci_reinit,
.set_phb_mem_window = phb4_set_phb_mem_window,
.phb_mmio_enable = phb4_phb_mmio_enable,
.map_pe_mmio_window = phb4_map_pe_mmio_window,
.map_pe_dma_window = phb4_map_pe_dma_window,
.map_pe_dma_window_real = phb4_map_pe_dma_window_real,
.set_option = phb4_set_option,
.get_option = phb4_get_option,
.set_xive_pe = phb4_set_ive_pe,
.get_msi_32 = phb4_get_msi_32,
.get_msi_64 = phb4_get_msi_64,
.set_pe = phb4_set_pe,
.set_peltv = phb4_set_peltv,
.eeh_freeze_status = phb4_eeh_freeze_status,
.eeh_freeze_clear = phb4_eeh_freeze_clear,
.eeh_freeze_set = phb4_eeh_freeze_set,
.next_error = phb4_eeh_next_error,
.err_inject = phb4_err_inject,
.get_diag_data2 = phb4_get_diag_data,
.tce_kill = phb4_tce_kill,
.set_capi_mode = phb4_set_capi_mode,
.set_p2p = phb4_set_p2p,
.set_capp_recovery = phb4_set_capp_recovery,
.get_tunnel_bar = phb4_get_tunnel_bar,
.set_tunnel_bar = phb4_set_tunnel_bar,
};
static void phb4_init_ioda3(struct phb4 *p)
{
/* Init_18 - Interrupt Notify Base Address */
out_be64(p->regs + PHB_INT_NOTIFY_ADDR, p->irq_port);
/* Init_19 - Interrupt Notify Base Index */
out_be64(p->regs + PHB_INT_NOTIFY_INDEX,
xive_get_notify_base(p->base_msi));
/* Init_19x - Not in spec: Initialize source ID */
PHBDBG(p, "Reset state SRC_ID: %016llx\n",
in_be64(p->regs + PHB_LSI_SOURCE_ID));
out_be64(p->regs + PHB_LSI_SOURCE_ID,
SETFIELD(PHB_LSI_SRC_ID, 0ull, (p->num_irqs - 1) >> 3));
/* Init_20 - RTT BAR */
out_be64(p->regs + PHB_RTT_BAR, (u64) p->tbl_rtt | PHB_RTT_BAR_ENABLE);
/* Init_21 - PELT-V BAR */
out_be64(p->regs + PHB_PELTV_BAR,
(u64) p->tbl_peltv | PHB_PELTV_BAR_ENABLE);
/* Init_22 - Setup M32 starting address */
out_be64(p->regs + PHB_M32_START_ADDR, M32_PCI_START);
/* Init_23 - Setup PEST BAR */
out_be64(p->regs + PHB_PEST_BAR,
p->tbl_pest | PHB_PEST_BAR_ENABLE);
/* Init_24 - CRW Base Address Reg */
/* See enable_capi_mode() */
/* Init_25 - ASN Compare/Mask */
out_be64(p->regs + PHB_ASN_CMPM, ((u64)ASNIND << 48) |
((u64)ASNMASK << 32) | PHB_ASN_CMPM_ENABLE);
/* Init_26 - CAPI Compare/Mask */
/* See enable_capi_mode() */
/* if CAPP being disabled then reset CAPI Compare/Mask Register */
if (p->flags & PHB4_CAPP_DISABLE)
out_be64(p->regs + PHB_CAPI_CMPM, 0);
/* Init_27 - PCIE Outbound upper address */
out_be64(p->regs + PHB_M64_UPPER_BITS, 0);
/* Init_28 - PHB4 Configuration */
out_be64(p->regs + PHB_PHB4_CONFIG,
PHB_PHB4C_32BIT_MSI_EN |
PHB_PHB4C_64BIT_MSI_EN);
/* Init_29 - At least 256ns delay according to spec. Do a dummy
* read first to flush posted writes
*/
in_be64(p->regs + PHB_PHB4_CONFIG);
time_wait_us(2);
/* Init_30..41 - On-chip IODA tables init */
phb4_ioda_reset(&p->phb, false);
}
/* phb4_init_rc - Initialize the Root Complex config space
*/
static bool phb4_init_rc_cfg(struct phb4 *p)
{
int64_t ecap, aercap;
/* XXX Handle errors ? */
/* Init_46:
*
* Set primary bus to 0, secondary to 1 and subordinate to 0xff
*/
phb4_pcicfg_write32(&p->phb, 0, PCI_CFG_PRIMARY_BUS, 0x00ff0100);
/* Init_47 - Clear errors */
/* see phb4_rc_err_clear() called below */
/* Init_48
*
* PCIE Device control/status, enable error reporting, disable relaxed
* ordering, set MPS to 128 (see note), clear errors.
*
* Note: The doc recommends to set MPS to 512. This has proved to have
* some issues as it requires specific clamping of MRSS on devices and
* we've found devices in the field that misbehave when doing that.
*
* We currently leave it all to 128 bytes (minimum setting) at init
* time. The generic PCIe probing later on might apply a different
* value, or the kernel will, but we play it safe at early init
*/
if (p->ecap <= 0) {
ecap = pci_find_cap(&p->phb, 0, PCI_CFG_CAP_ID_EXP);
if (ecap < 0) {
PHBERR(p, "Can't locate PCI-E capability\n");
return false;
}
p->ecap = ecap;
} else {
ecap = p->ecap;
}
phb4_pcicfg_write16(&p->phb, 0, ecap + PCICAP_EXP_DEVCTL,
PCICAP_EXP_DEVCTL_CE_REPORT |
PCICAP_EXP_DEVCTL_NFE_REPORT |
PCICAP_EXP_DEVCTL_FE_REPORT |
PCICAP_EXP_DEVCTL_UR_REPORT |
SETFIELD(PCICAP_EXP_DEVCTL_MPS, 0, PCIE_MPS_128B));
/* Init_49 - Device Control/Status 2 */
phb4_pcicfg_write16(&p->phb, 0, ecap + PCICAP_EXP_DCTL2,
SETFIELD(PCICAP_EXP_DCTL2_CMPTOUT, 0, 0x5) |
PCICAP_EXP_DCTL2_ARI_FWD);
/* Init_50..54
*
* AER inits
*/
if (p->aercap <= 0) {
aercap = pci_find_ecap(&p->phb, 0, PCIECAP_ID_AER, NULL);
if (aercap < 0) {
PHBERR(p, "Can't locate AER capability\n");
return false;
}
p->aercap = aercap;
} else {
aercap = p->aercap;
}
/* Disable some error reporting as per the PHB4 spec */
phb4_pcicfg_write32(&p->phb, 0, aercap + PCIECAP_AER_UE_MASK,
PCIECAP_AER_UE_POISON_TLP |
PCIECAP_AER_UE_COMPL_TIMEOUT |
PCIECAP_AER_UE_COMPL_ABORT);
/* Enable ECRC generation & checking */
phb4_pcicfg_write32(&p->phb, 0, aercap + PCIECAP_AER_CAPCTL,
PCIECAP_AER_CAPCTL_ECRCG_EN |
PCIECAP_AER_CAPCTL_ECRCC_EN);
phb4_rc_err_clear(p);
return true;
}
static void phb4_init_errors(struct phb4 *p)
{
/* Init_55..63 - PBL errors */
out_be64(p->regs + 0x1900, 0xffffffffffffffffull);
out_be64(p->regs + 0x1908, 0x0000000000000000ull);
out_be64(p->regs + 0x1920, 0x000000004d1780f8ull);
out_be64(p->regs + 0x1928, 0x0000000000000000ull);
out_be64(p->regs + 0x1930, 0xffffffffb2f87f07ull);
out_be64(p->regs + 0x1940, 0x0000000000000000ull);
out_be64(p->regs + 0x1948, 0x0000000000000000ull);
out_be64(p->regs + 0x1950, 0x0000000000000000ull);
out_be64(p->regs + 0x1958, 0x0000000000000000ull);
/* Init_64..72 - REGB errors */
out_be64(p->regs + 0x1c00, 0xffffffffffffffffull);
out_be64(p->regs + 0x1c08, 0x0000000000000000ull);
/* Enable/disable error status indicators that trigger irqs */
if (p->has_link) {
out_be64(p->regs + 0x1c20, 0x2130006efca8bc00ull);
out_be64(p->regs + 0x1c30, 0xde1fff91035743ffull);
} else {
out_be64(p->regs + 0x1c20, 0x0000000000000000ull);
out_be64(p->regs + 0x1c30, 0x0000000000000000ull);
}
out_be64(p->regs + 0x1c28, 0x0080000000000000ull);
out_be64(p->regs + 0x1c40, 0x0000000000000000ull);
out_be64(p->regs + 0x1c48, 0x0000000000000000ull);
out_be64(p->regs + 0x1c50, 0x0000000000000000ull);
out_be64(p->regs + 0x1c58, 0x0040000000000000ull);
/* Init_73..81 - TXE errors */
out_be64(p->regs + 0x0d08, 0x0000000000000000ull);
/* Errata: Clear bit 17, otherwise a CFG write UR/CA will incorrectly
* freeze a "random" PE (whatever last PE did an MMIO)
*/
out_be64(p->regs + 0x0d28, 0x0000000a00000000ull);
if (phb4_is_dd20(p)) {
out_be64(p->regs + 0x0d00, 0xf3acff0ff7ddfff0ull);
out_be64(p->regs + 0x0d18, 0xf3acff0ff7ddfff0ull);
out_be64(p->regs + 0x0d30, 0xdfffbd05f7ddfff0ull); /* XXX CAPI has diff. value */
} else {
out_be64(p->regs + 0x0d00, 0xffffffffffffffffull);
out_be64(p->regs + 0x0d18, 0xffffff0fffffffffull);
out_be64(p->regs + 0x0d30, 0xdff7bd05f7ddfff0ull);
}
out_be64(p->regs + 0x0d40, 0x0000000000000000ull);
out_be64(p->regs + 0x0d48, 0x0000000000000000ull);
out_be64(p->regs + 0x0d50, 0x0000000000000000ull);
out_be64(p->regs + 0x0d58, 0x0000000000000000ull);
/* Init_82..90 - RXE_ARB errors */
out_be64(p->regs + 0x0d80, 0xffffffffffffffffull);
out_be64(p->regs + 0x0d88, 0x0000000000000000ull);
out_be64(p->regs + 0x0d98, 0xfffffffffbffffffull);
out_be64(p->regs + 0x0da8, 0xc00018b801000060ull);
/*
* Errata ER20161123 says we should set the top two bits in
* 0x0db0 but this causes config space accesses which don't
* get a response to fence the PHB. This breaks probing,
* hence we don't set them here.
*/
out_be64(p->regs + 0x0db0, 0x3bffd703fa7fbf8full); /* XXX CAPI has diff. value */
out_be64(p->regs + 0x0dc0, 0x0000000000000000ull);
out_be64(p->regs + 0x0dc8, 0x0000000000000000ull);
out_be64(p->regs + 0x0dd0, 0x0000000000000000ull);
out_be64(p->regs + 0x0dd8, 0x0000000004000000ull);
/* Init_91..99 - RXE_MRG errors */
out_be64(p->regs + 0x0e00, 0xffffffffffffffffull);
out_be64(p->regs + 0x0e08, 0x0000000000000000ull);
out_be64(p->regs + 0x0e18, 0xffffffffffffffffull);
out_be64(p->regs + 0x0e28, 0x0000600000000000ull);
out_be64(p->regs + 0x0e30, 0xfffffeffff7fff57ull);
out_be64(p->regs + 0x0e40, 0x0000000000000000ull);
out_be64(p->regs + 0x0e48, 0x0000000000000000ull);
out_be64(p->regs + 0x0e50, 0x0000000000000000ull);
out_be64(p->regs + 0x0e58, 0x0000000000000000ull);
/* Init_100..108 - RXE_TCE errors */
out_be64(p->regs + 0x0e80, 0xffffffffffffffffull);
out_be64(p->regs + 0x0e88, 0x0000000000000000ull);
out_be64(p->regs + 0x0e98, 0xffffffffffffffffull);
out_be64(p->regs + 0x0ea8, 0x60000000c0000000ull);
out_be64(p->regs + 0x0eb0, 0x9faeffaf3fffffffull); /* XXX CAPI has diff. value */
out_be64(p->regs + 0x0ec0, 0x0000000000000000ull);
out_be64(p->regs + 0x0ec8, 0x0000000000000000ull);
out_be64(p->regs + 0x0ed0, 0x0000000000000000ull);
out_be64(p->regs + 0x0ed8, 0x0000000000000000ull);
/* Init_109..117 - RXPHB errors */
out_be64(p->regs + 0x0c80, 0xffffffffffffffffull);
out_be64(p->regs + 0x0c88, 0x0000000000000000ull);
out_be64(p->regs + 0x0c98, 0xffffffffffffffffull);
out_be64(p->regs + 0x0ca8, 0x0000004000000000ull);
out_be64(p->regs + 0x0cb0, 0x35777033ff000000ull); /* XXX CAPI has diff. value */
out_be64(p->regs + 0x0cc0, 0x0000000000000000ull);
out_be64(p->regs + 0x0cc8, 0x0000000000000000ull);
out_be64(p->regs + 0x0cd0, 0x0000000000000000ull);
out_be64(p->regs + 0x0cd8, 0x0000000000000000ull);
/* Init_118..121 - LEM */
out_be64(p->regs + 0x0c00, 0x0000000000000000ull);
if (phb4_is_dd20(p)) {
out_be64(p->regs + 0x0c30, 0xf3ffffffffffffffull);
out_be64(p->regs + 0x0c38, 0xf3ffffffffffffffull);
} else {
out_be64(p->regs + 0x0c30, 0xffffffffffffffffull);
out_be64(p->regs + 0x0c38, 0xffffffffffffffffull);
}
out_be64(p->regs + 0x0c40, 0x0000000000000000ull);
}
static bool phb4_wait_dlp_reset(struct phb4 *p)
{
unsigned int i;
uint64_t val;
/*
* Firmware cannot access the UTL core regs or PCI config space
* until the cores are out of DL_PGRESET.
* DL_PGRESET should be polled until it is inactive with a value
* of '0'. The recommended polling frequency is once every 1ms.
* Firmware should poll at least 200 attempts before giving up.
* MMIO Stores to the link are silently dropped by the UTL core if
* the link is down.
* MMIO Loads to the link will be dropped by the UTL core and will
* eventually time-out and will return an all ones response if the
* link is down.
*/
#define DLP_RESET_ATTEMPTS 200
PHBDBG(p, "Waiting for DLP PG reset to complete...\n");
for (i = 0; i < DLP_RESET_ATTEMPTS; i++) {
val = in_be64(p->regs + PHB_PCIE_DLP_TRAIN_CTL);
if (!(val & PHB_PCIE_DLP_DL_PGRESET))
break;
time_wait_ms(1);
}
if (val & PHB_PCIE_DLP_DL_PGRESET) {
PHBERR(p, "Timeout waiting for DLP PG reset !\n");
return false;
}
return true;
}
static void phb4_init_hw(struct phb4 *p)
{
uint64_t val, creset;
PHBDBG(p, "Initializing PHB4...\n");
/* Init_1 - Sync reset
*
* At this point we assume the PHB has already been reset.
*/
/* Init_2 - Mask FIRs */
out_be64(p->regs + PHB_LEM_ERROR_MASK, 0xffffffffffffffffull);
/* Init_3 - TCE tag enable */
out_be64(p->regs + PHB_TCE_TAG_ENABLE, 0xffffffffffffffffull);
/* Init_4 - PCIE System Configuration Register
*
* Adjust max speed based on system config
*/
val = in_be64(p->regs + PHB_PCIE_SCR);
PHBDBG(p, "Default system config: 0x%016llx\n", val);
val = SETFIELD(PHB_PCIE_SCR_MAXLINKSPEED, val, p->max_link_speed);
out_be64(p->regs + PHB_PCIE_SCR, val);
PHBDBG(p, "New system config : 0x%016llx\n",
in_be64(p->regs + PHB_PCIE_SCR));
/* Init_5 - deassert CFG reset */
creset = in_be64(p->regs + PHB_PCIE_CRESET);
PHBDBG(p, "Initial PHB CRESET is 0x%016llx\n", creset);
creset &= ~PHB_PCIE_CRESET_CFG_CORE;
out_be64(p->regs + PHB_PCIE_CRESET, creset);
/* Init_6..13 - PCIE DLP Lane EQ control */
if (p->lane_eq) {
out_be64(p->regs + PHB_PCIE_LANE_EQ_CNTL0, be64_to_cpu(p->lane_eq[0]));
out_be64(p->regs + PHB_PCIE_LANE_EQ_CNTL1, be64_to_cpu(p->lane_eq[1]));
out_be64(p->regs + PHB_PCIE_LANE_EQ_CNTL2, be64_to_cpu(p->lane_eq[2]));
out_be64(p->regs + PHB_PCIE_LANE_EQ_CNTL3, be64_to_cpu(p->lane_eq[3]));
out_be64(p->regs + PHB_PCIE_LANE_EQ_CNTL20, be64_to_cpu(p->lane_eq[4]));
out_be64(p->regs + PHB_PCIE_LANE_EQ_CNTL21, be64_to_cpu(p->lane_eq[5]));
}
if (!p->lane_eq_en) {
/* Read modify write and set to 2 bits */
PHBDBG(p, "LINK: Disabling Lane EQ\n");
val = in_be64(p->regs + PHB_PCIE_DLP_CTL);
val |= PHB_PCIE_DLP_CTL_BYPASS_PH2 | PHB_PCIE_DLP_CTL_BYPASS_PH3;
out_be64(p->regs + PHB_PCIE_DLP_CTL, val);
}
/* Init_14 - Clear link training */
phb4_pcicfg_write32(&p->phb, 0, 0x78,
0x07FE0000 | p->max_link_speed);
/* Init_15 - deassert cores reset */
/*
* Lift the PHB resets but not PERST, this will be lifted
* later by the initial PERST state machine
*/
creset &= ~(PHB_PCIE_CRESET_TLDLP | PHB_PCIE_CRESET_PBL);
creset |= PHB_PCIE_CRESET_PIPE_N;
out_be64(p->regs + PHB_PCIE_CRESET, creset);
/* Init_16 - Wait for DLP PGRESET to clear */
if (!phb4_wait_dlp_reset(p))
goto failed;
/* Init_17 - PHB Control */
val = PHB_CTRLR_IRQ_PGSZ_64K;
val |= PHB_CTRLR_TCE_CLB_DISABLE; // HW557787 circumvention
val |= SETFIELD(PHB_CTRLR_TVT_ADDR_SEL, 0ull, TVT_2_PER_PE);
if (PHB4_CAN_STORE_EOI(p))
val |= PHB_CTRLR_IRQ_STORE_EOI;
if (!pci_eeh_mmio)
val |= PHB_CTRLR_MMIO_EEH_DISABLE;
out_be64(p->regs + PHB_CTRLR, val);
/* Init_18..41 - Architected IODA3 inits */
phb4_init_ioda3(p);
/* Init_42..45 - Clear DLP error logs */
out_be64(p->regs + 0x1aa0, 0xffffffffffffffffull);
out_be64(p->regs + 0x1aa8, 0xffffffffffffffffull);
out_be64(p->regs + 0x1ab0, 0xffffffffffffffffull);
out_be64(p->regs + 0x1ab8, 0x0);
/* Init_46..54 : Init root complex config space */
if (!phb4_init_rc_cfg(p))
goto failed;
/* Init_55..121 : Setup error registers */
phb4_init_errors(p);
/* Init_122..123 : Wait for link
* NOTE: At this point the spec waits for the link to come up. We
* don't bother as we are doing a PERST soon.
*/
/* Init_124 : NBW. XXX TODO */
/* See enable_capi_mode() */
/* Init_125 : Setup PCI command/status on root complex
* I don't know why the spec does this now and not earlier, so
* to be sure to get it right we might want to move it to the freset
* state machine, though the generic PCI layer will probably do
* this anyway (ie, enable MEM, etc... in the RC)
*/
phb4_pcicfg_write16(&p->phb, 0, PCI_CFG_CMD,
PCI_CFG_CMD_MEM_EN |
PCI_CFG_CMD_BUS_MASTER_EN);
/* Clear errors */
phb4_pcicfg_write16(&p->phb, 0, PCI_CFG_STAT,
PCI_CFG_STAT_SENT_TABORT |
PCI_CFG_STAT_RECV_TABORT |
PCI_CFG_STAT_RECV_MABORT |
PCI_CFG_STAT_SENT_SERR |
PCI_CFG_STAT_RECV_PERR);
/* Init_126..130 - Re-enable error interrupts */
phb4_int_unmask_all(p);
/* Init_131 - Re-enable LEM error mask */
out_be64(p->regs + PHB_LEM_ERROR_MASK, 0x0000000000000000ull);
/* Init_132 - Enable DMA address speculation */
out_be64(p->regs + PHB_TCE_SPEC_CTL, 0x0000000000000000ull);
/* Init_133 - Timeout Control Register 1 */
out_be64(p->regs + PHB_TIMEOUT_CTRL1, 0x0015150000150000ull);
/* Init_134 - Timeout Control Register 2 */
out_be64(p->regs + PHB_TIMEOUT_CTRL2, 0x0000151500000000ull);
/* Init_135 - PBL Timeout Control Register */
out_be64(p->regs + PHB_PBL_TIMEOUT_CTRL, 0x2013000000000000ull);
/* Mark the PHB as functional which enables all the various sequences */
p->broken = false;
PHBDBG(p, "Initialization complete\n");
return;
failed:
PHBERR(p, "Initialization failed\n");
p->broken = true;
}
/* FIXME: Use scoms rather than MMIO incase we are fenced */
static bool phb4_read_capabilities(struct phb4 *p)
{
uint64_t val;
/* XXX Should make sure ETU is out of reset ! */
/* Grab version and fit it in an int */
val = phb4_read_reg_asb(p, PHB_VERSION);
if (val == 0 || val == 0xffffffffffffffffUL) {
PHBERR(p, "Failed to read version, PHB appears broken\n");
return false;
}
p->rev = ((val >> 16) & 0x00ff0000) | (val & 0xffff);
PHBDBG(p, "Core revision 0x%x\n", p->rev);
/* Read EEH capabilities */
val = in_be64(p->regs + PHB_PHB4_EEH_CAP);
if (val == 0xffffffffffffffffUL) {
PHBERR(p, "Failed to read EEH cap, PHB appears broken\n");
return false;
}
p->max_num_pes = val >> 52;
if (p->max_num_pes >= 512) {
p->mrt_size = 16;
p->mbt_size = 32;
p->tvt_size = 1024;
} else {
p->mrt_size = 8;
p->mbt_size = 16;
p->tvt_size = 512;
}
val = in_be64(p->regs + PHB_PHB4_IRQ_CAP);
if (val == 0xffffffffffffffffUL) {
PHBERR(p, "Failed to read IRQ cap, PHB appears broken\n");
return false;
}
p->num_irqs = val & 0xffff;
/* This works for 512 PEs. FIXME calculate for any hardware
* size returned above
*/
p->tbl_peltv_size = PELTV_TABLE_SIZE_MAX;
p->tbl_pest_size = p->max_num_pes*16;
PHBDBG(p, "Found %d max PEs and %d IRQs \n",
p->max_num_pes, p->num_irqs);
return true;
}
static void phb4_allocate_tables(struct phb4 *p)
{
uint32_t i;
/* XXX Our current memalign implementation sucks,
*
* It will do the job, however it doesn't support freeing
* the memory and wastes space by always allocating twice
* as much as requested (size + alignment)
*/
p->tbl_rtt = local_alloc(p->chip_id, RTT_TABLE_SIZE, RTT_TABLE_SIZE);
assert(p->tbl_rtt);
for (i = 0; i < RTT_TABLE_ENTRIES; i++)
p->tbl_rtt[i] = cpu_to_be16(PHB4_RESERVED_PE_NUM(p));
p->tbl_peltv = local_alloc(p->chip_id, p->tbl_peltv_size, p->tbl_peltv_size);
assert(p->tbl_peltv);
memset(p->tbl_peltv, 0, p->tbl_peltv_size);
p->tbl_pest = (uint64_t)local_alloc(p->chip_id, p->tbl_pest_size, p->tbl_pest_size);
assert(p->tbl_pest);
memset((void *)p->tbl_pest, 0, p->tbl_pest_size);
}
static void phb4_add_properties(struct phb4 *p)
{
struct dt_node *np = p->phb.dt_node;
uint32_t lsibase, icsp = get_ics_phandle();
uint64_t m32b, m64b, m64s;
/* Add various properties that HB doesn't have to
* add, some of them simply because they result from
* policy decisions made in skiboot rather than in HB
* such as the MMIO windows going to PCI, interrupts,
* etc...
*/
dt_add_property_cells(np, "#address-cells", 3);
dt_add_property_cells(np, "#size-cells", 2);
dt_add_property_cells(np, "#interrupt-cells", 1);
dt_add_property_cells(np, "bus-range", 0, 0xff);
dt_add_property_cells(np, "clock-frequency", 0x200, 0); /* ??? */
dt_add_property_cells(np, "interrupt-parent", icsp);
/* XXX FIXME: add slot-name */
//dt_property_cell("bus-width", 8); /* Figure it out from VPD ? */
/* "ranges", we only expose M32 (PHB4 doesn't do IO)
*
* Note: The kernel expects us to have chopped of 64k from the
* M32 size (for the 32-bit MSIs). If we don't do that, it will
* get confused (OPAL does it)
*/
m32b = cleanup_addr(p->mm1_base);
m64b = cleanup_addr(p->mm0_base);
m64s = p->mm0_size;
dt_add_property_cells(np, "ranges",
/* M32 space */
0x02000000, 0x00000000, M32_PCI_START,
hi32(m32b), lo32(m32b), 0, M32_PCI_SIZE - 0x10000);
/* XXX FIXME: add opal-memwin32, dmawins, etc... */
dt_add_property_u64s(np, "ibm,opal-m64-window", m64b, m64b, m64s);
dt_add_property(np, "ibm,opal-single-pe", NULL, 0);
dt_add_property_cells(np, "ibm,opal-num-pes", p->num_pes);
dt_add_property_cells(np, "ibm,opal-reserved-pe",
PHB4_RESERVED_PE_NUM(p));
dt_add_property_cells(np, "ibm,opal-msi-ranges",
p->base_msi, p->num_irqs - 8);
/* M64 ranges start at 1 as MBT0 is used for M32 */
dt_add_property_cells(np, "ibm,opal-available-m64-ranges",
1, p->mbt_size - 1);
dt_add_property_cells(np, "ibm,supported-tce-sizes",
12, // 4K
16, // 64K
21, // 2M
30); // 1G
/* Tell Linux about alignment limits for segment splits.
*
* XXX We currently only expose splits of 1 and "num PEs",
*/
dt_add_property_cells(np, "ibm,opal-m64-segment-splits",
/* Full split, number of segments: */
p->num_pes,
/* Encoding passed to the enable call */
OPAL_ENABLE_M64_SPLIT,
/* Alignement/size restriction in #bits*/
/* XXX VERIFY VALUE */
12,
/* Unused */
0,
/* single PE, number of segments: */
1,
/* Encoding passed to the enable call */
OPAL_ENABLE_M64_NON_SPLIT,
/* Alignement/size restriction in #bits*/
/* XXX VERIFY VALUE */
12,
/* Unused */
0);
/* The interrupt maps will be generated in the RC node by the
* PCI code based on the content of this structure:
*/
lsibase = p->base_lsi;
p->phb.lstate.int_size = 2;
p->phb.lstate.int_val[0][0] = lsibase + PHB4_LSI_PCIE_INTA;
p->phb.lstate.int_val[0][1] = 1;
p->phb.lstate.int_val[1][0] = lsibase + PHB4_LSI_PCIE_INTB;
p->phb.lstate.int_val[1][1] = 1;
p->phb.lstate.int_val[2][0] = lsibase + PHB4_LSI_PCIE_INTC;
p->phb.lstate.int_val[2][1] = 1;
p->phb.lstate.int_val[3][0] = lsibase + PHB4_LSI_PCIE_INTD;
p->phb.lstate.int_val[3][1] = 1;
p->phb.lstate.int_parent[0] = icsp;
p->phb.lstate.int_parent[1] = icsp;
p->phb.lstate.int_parent[2] = icsp;
p->phb.lstate.int_parent[3] = icsp;
/* Indicators for variable tables */
dt_add_property_cells(np, "ibm,opal-rtt-table",
hi32((u64) p->tbl_rtt), lo32((u64) p->tbl_rtt), RTT_TABLE_SIZE);
dt_add_property_cells(np, "ibm,opal-peltv-table",
hi32((u64) p->tbl_peltv), lo32((u64) p->tbl_peltv),
p->tbl_peltv_size);
dt_add_property_cells(np, "ibm,opal-pest-table",
hi32(p->tbl_pest), lo32(p->tbl_pest), p->tbl_pest_size);
dt_add_property_cells(np, "ibm,phb-diag-data-size",
sizeof(struct OpalIoPhb4ErrorData));
/* Indicate to Linux that CAPP timebase sync is supported */
dt_add_property_string(np, "ibm,capp-timebase-sync", NULL);
/* Tell Linux Compare/Mask indication values */
dt_add_property_cells(np, "ibm,phb-indications", CAPIIND, ASNIND,
NBWIND);
}
static bool phb4_calculate_windows(struct phb4 *p)
{
const struct dt_property *prop;
/* Get PBCQ MMIO windows from device-tree */
prop = dt_require_property(p->phb.dt_node,
"ibm,mmio-windows", -1);
assert(prop->len >= (2 * sizeof(uint64_t)));
p->mm0_base = dt_property_get_u64(prop, 0);
p->mm0_size = dt_property_get_u64(prop, 1);
if (prop->len > 16) {
p->mm1_base = dt_property_get_u64(prop, 2);
p->mm1_size = dt_property_get_u64(prop, 3);
}
/* Sort them so that 0 is big and 1 is small */
if (p->mm1_size && p->mm1_size > p->mm0_size) {
uint64_t b = p->mm0_base;
uint64_t s = p->mm0_size;
p->mm0_base = p->mm1_base;
p->mm0_size = p->mm1_size;
p->mm1_base = b;
p->mm1_size = s;
}
/* If 1 is too small, ditch it */
if (p->mm1_size < M32_PCI_SIZE)
p->mm1_size = 0;
/* If 1 doesn't exist, carve it out of 0 */
if (p->mm1_size == 0) {
p->mm0_size /= 2;
p->mm1_base = p->mm0_base + p->mm0_size;
p->mm1_size = p->mm0_size;
}
/* Crop mm1 to our desired size */
if (p->mm1_size > M32_PCI_SIZE)
p->mm1_size = M32_PCI_SIZE;
return true;
}
static void phb4_err_interrupt(struct irq_source *is, uint32_t isn)
{
struct phb4 *p = is->data;
PHBDBG(p, "Got interrupt 0x%08x\n", isn);
/* mask the interrupt conditions to prevent it from re-firing */
phb4_int_mask_active(p);
/* Update pending event */
opal_update_pending_evt(OPAL_EVENT_PCI_ERROR,
OPAL_EVENT_PCI_ERROR);
/* If the PHB is broken, go away */
if (p->broken)
return;
/*
* Mark the PHB has pending error so that the OS
* can handle it at late point.
*/
phb4_set_err_pending(p, true);
}
static uint64_t phb4_lsi_attributes(struct irq_source *is __unused,
uint32_t isn __unused)
{
#ifndef DISABLE_ERR_INTS
struct phb4 *p = is->data;
uint32_t idx = isn - p->base_lsi;
if (idx == PHB4_LSI_PCIE_INF || idx == PHB4_LSI_PCIE_ER)
return IRQ_ATTR_TARGET_OPAL | IRQ_ATTR_TARGET_RARE | IRQ_ATTR_TYPE_LSI;
#endif
return IRQ_ATTR_TARGET_LINUX;
}
static char *phb4_lsi_name(struct irq_source *is, uint32_t isn)
{
struct phb4 *p = is->data;
uint32_t idx = isn - p->base_lsi;
char buf[32];
if (idx == PHB4_LSI_PCIE_INF)
snprintf(buf, 32, "phb#%04x-inf", p->phb.opal_id);
else if (idx == PHB4_LSI_PCIE_ER)
snprintf(buf, 32, "phb#%04x-err", p->phb.opal_id);
else
assert(0); /* PCIe LSIs should never be directed to OPAL */
return strdup(buf);
}
static const struct irq_source_ops phb4_lsi_ops = {
.interrupt = phb4_err_interrupt,
.attributes = phb4_lsi_attributes,
.name = phb4_lsi_name,
};
static __be64 lane_eq_default[8] = {
CPU_TO_BE64(0x5454545454545454UL), CPU_TO_BE64(0x5454545454545454UL),
CPU_TO_BE64(0x5454545454545454UL), CPU_TO_BE64(0x5454545454545454UL),
CPU_TO_BE64(0x7777777777777777UL), CPU_TO_BE64(0x7777777777777777UL),
CPU_TO_BE64(0x7777777777777777UL), CPU_TO_BE64(0x7777777777777777UL),
};
static void phb4_create(struct dt_node *np)
{
const struct dt_property *prop;
struct phb4 *p;
struct pci_slot *slot;
size_t lane_eq_len, lane_eq_len_req;
struct dt_node *iplp;
char *path;
uint32_t irq_base, irq_flags;
int i;
int chip_id;
chip_id = dt_prop_get_u32(np, "ibm,chip-id");
p = local_alloc(chip_id, sizeof(struct phb4), 8);
assert(p);
memset(p, 0x0, sizeof(struct phb4));
/* Populate base stuff */
p->index = dt_prop_get_u32(np, "ibm,phb-index");
p->chip_id = chip_id;
p->pec = dt_prop_get_u32(np, "ibm,phb-pec-index");
p->regs = (void *)dt_get_address(np, 0, NULL);
p->int_mmio = (void *)dt_get_address(np, 1, NULL);
p->phb.dt_node = np;
p->phb.ops = &phb4_ops;
p->phb.phb_type = phb_type_pcie_v4;
p->phb.scan_map = 0x1; /* Only device 0 to scan */
if (!phb4_calculate_windows(p))
return;
/* Get the various XSCOM register bases from the device-tree */
prop = dt_require_property(np, "ibm,xscom-bases", 5 * sizeof(uint32_t));
p->pe_xscom = dt_property_get_cell(prop, 0);
p->pe_stk_xscom = dt_property_get_cell(prop, 1);
p->pci_xscom = dt_property_get_cell(prop, 2);
p->pci_stk_xscom = dt_property_get_cell(prop, 3);
p->etu_xscom = dt_property_get_cell(prop, 4);
/*
* We skip the initial PERST assertion requested by the generic code
* when doing a cold boot because we are coming out of cold boot already
* so we save boot time that way. The PERST state machine will still
* handle waiting for the link to come up, it will just avoid actually
* asserting & deasserting the PERST output
*
* For a hot IPL, we still do a PERST
*
* Note: In absence of property (ie, FSP-less), we stick to the old
* behaviour and set skip_perst to true
*/
p->skip_perst = true; /* Default */
iplp = dt_find_by_path(dt_root, "ipl-params/ipl-params");
if (iplp) {
const char *ipl_type = dt_prop_get_def(iplp, "cec-major-type", NULL);
if (ipl_type && (!strcmp(ipl_type, "hot")))
p->skip_perst = false;
}
/* By default link is assumed down */
p->has_link = false;
/* We register the PHB before we initialize it so we
* get a useful OPAL ID for it
*/
pci_register_phb(&p->phb, phb4_get_opal_id(p->chip_id, p->index));
/* Create slot structure */
slot = phb4_slot_create(&p->phb);
if (!slot)
PHBERR(p, "Cannot create PHB slot\n");
/* Hello ! */
path = dt_get_path(np);
PHBINF(p, "Found %s @%p\n", path, p->regs);
PHBINF(p, " M32 [0x%016llx..0x%016llx]\n",
p->mm1_base, p->mm1_base + p->mm1_size - 1);
PHBINF(p, " M64 [0x%016llx..0x%016llx]\n",
p->mm0_base, p->mm0_base + p->mm0_size - 1);
free(path);
/* Find base location code from root node */
p->phb.base_loc_code = dt_prop_get_def(dt_root,
"ibm,io-base-loc-code", NULL);
if (!p->phb.base_loc_code)
PHBDBG(p, "Base location code not found !\n");
/*
* Grab CEC IO VPD load info from the root of the device-tree,
* on P8 there's a single such VPD for the whole machine
*/
prop = dt_find_property(dt_root, "ibm,io-vpd");
if (!prop) {
/* LX VPD Lid not already loaded */
if (platform.vpd_iohub_load)
platform.vpd_iohub_load(dt_root);
}
/* Obtain informatin about the PHB from the hardware directly */
if (!phb4_read_capabilities(p))
goto failed;
p->max_link_speed = phb4_get_max_link_speed(p, np);
PHBINF(p, "Max link speed: GEN%i\n", p->max_link_speed);
/* Check for lane equalization values from HB or HDAT */
p->lane_eq_en = true;
p->lane_eq = dt_prop_get_def_size(np, "ibm,lane-eq", NULL, &lane_eq_len);
lane_eq_len_req = 6 * 8;
if (p->lane_eq) {
if (lane_eq_len < lane_eq_len_req) {
PHBERR(p, "Device-tree has ibm,lane-eq too short: %ld"
" (want %ld)\n", lane_eq_len, lane_eq_len_req);
p->lane_eq = NULL;
}
} else {
PHBDBG(p, "Using default lane equalization settings\n");
p->lane_eq = lane_eq_default;
}
if (p->lane_eq) {
PHBDBG(p, "Override lane equalization settings:\n");
for (i = 0 ; i < lane_eq_len_req/(8 * 2) ; i++)
PHBDBG(p, " 0x%016llx 0x%016llx\n",
be64_to_cpu(p->lane_eq[2 * i]),
be64_to_cpu(p->lane_eq[2 * i + 1]));
}
/* Allocate a block of interrupts. We need to know if it needs
* 2K or 4K interrupts ... for now we just use 4K but that
* needs to be fixed
*/
irq_base = xive_alloc_hw_irqs(p->chip_id, p->num_irqs, p->num_irqs);
if (irq_base == XIVE_IRQ_ERROR) {
PHBERR(p, "Failed to allocate %d interrupt sources\n",
p->num_irqs);
goto failed;
}
p->base_msi = irq_base;
p->base_lsi = irq_base + p->num_irqs - 8;
p->irq_port = xive_get_notify_port(p->chip_id,
XIVE_HW_SRC_PHBn(p->index));
p->num_pes = p->max_num_pes;
/* Allocate the SkiBoot internal in-memory tables for the PHB */
phb4_allocate_tables(p);
phb4_add_properties(p);
/* Clear IODA3 cache */
phb4_init_ioda_cache(p);
/* Get the HW up and running */
phb4_init_hw(p);
/* init capp that might get attached to the phb */
phb4_init_capp(p);
/* Compute XIVE source flags depending on PHB revision */
irq_flags = 0;
if (PHB4_CAN_STORE_EOI(p))
irq_flags |= XIVE_SRC_STORE_EOI;
else
irq_flags |= XIVE_SRC_TRIGGER_PAGE;
/* Register all interrupt sources with XIVE */
xive_register_hw_source(p->base_msi, p->num_irqs - 8, 16,
p->int_mmio, irq_flags, NULL, NULL);
xive_register_hw_source(p->base_lsi, 8, 16,
p->int_mmio + ((p->num_irqs - 8) << 16),
XIVE_SRC_LSI, p, &phb4_lsi_ops);
/* Platform additional setup */
if (platform.pci_setup_phb)
platform.pci_setup_phb(&p->phb, p->index);
dt_add_property_string(np, "status", "okay");
return;
failed:
p->broken = true;
/* Tell Linux it's broken */
dt_add_property_string(np, "status", "error");
}
static void phb4_probe_stack(struct dt_node *stk_node, uint32_t pec_index,
uint32_t nest_base, uint32_t pci_base)
{
uint32_t pci_stack, nest_stack, etu_base, gcid, phb_num, stk_index;
uint64_t val, phb_bar = 0, irq_bar = 0, bar_en;
uint64_t mmio0_bar = 0, mmio0_bmask, mmio0_sz;
uint64_t mmio1_bar = 0, mmio1_bmask, mmio1_sz;
void *foo;
__be64 mmio_win[4];
unsigned int mmio_win_sz;
struct dt_node *np;
char *path;
uint64_t capp_ucode_base;
unsigned int max_link_speed;
int rc;
gcid = dt_get_chip_id(stk_node);
stk_index = dt_prop_get_u32(stk_node, "reg");
phb_num = dt_prop_get_u32(stk_node, "ibm,phb-index");
path = dt_get_path(stk_node);
prlog(PR_INFO, "PHB: Chip %d Found PHB4 PBCQ%d Stack %d at %s\n",
gcid, pec_index, stk_index, path);
free(path);
pci_stack = pci_base + 0x40 * (stk_index + 1);
nest_stack = nest_base + 0x40 * (stk_index + 1);
etu_base = pci_base + 0x100 + 0x40 * stk_index;
prlog(PR_DEBUG, "PHB[%d:%d] X[PE]=0x%08x/0x%08x X[PCI]=0x%08x/0x%08x X[ETU]=0x%08x\n",
gcid, phb_num, nest_base, nest_stack, pci_base, pci_stack, etu_base);
/* Default BAR enables */
bar_en = 0;
/* Initialize PHB register BAR */
phys_map_get(gcid, PHB4_REG_SPC, phb_num, &phb_bar, NULL);
rc = xscom_write(gcid, nest_stack + XPEC_NEST_STK_PHB_REG_BAR,
phb_bar << 8);
/* A scom error here probably indicates a defective/garded PHB */
if (rc != OPAL_SUCCESS) {
prerror("PHB[%d:%d] Unable to set PHB BAR. Error=%d\n",
gcid, phb_num, rc);
return;
}
bar_en |= XPEC_NEST_STK_BAR_EN_PHB;
/* Same with INT BAR (ESB) */
phys_map_get(gcid, PHB4_XIVE_ESB, phb_num, &irq_bar, NULL);
xscom_write(gcid, nest_stack + XPEC_NEST_STK_IRQ_BAR, irq_bar << 8);
bar_en |= XPEC_NEST_STK_BAR_EN_INT;
/* Same with MMIO windows */
phys_map_get(gcid, PHB4_64BIT_MMIO, phb_num, &mmio0_bar, &mmio0_sz);
mmio0_bmask = (~(mmio0_sz - 1)) & 0x00FFFFFFFFFFFFFFULL;
xscom_write(gcid, nest_stack + XPEC_NEST_STK_MMIO_BAR0, mmio0_bar << 8);
xscom_write(gcid, nest_stack + XPEC_NEST_STK_MMIO_BAR0_MASK, mmio0_bmask << 8);
phys_map_get(gcid, PHB4_32BIT_MMIO, phb_num, &mmio1_bar, &mmio1_sz);
mmio1_bmask = (~(mmio1_sz - 1)) & 0x00FFFFFFFFFFFFFFULL;
xscom_write(gcid, nest_stack + XPEC_NEST_STK_MMIO_BAR1, mmio1_bar << 8);
xscom_write(gcid, nest_stack + XPEC_NEST_STK_MMIO_BAR1_MASK, mmio1_bmask << 8);
/* Build MMIO windows list */
mmio_win_sz = 0;
if (mmio0_bar) {
mmio_win[mmio_win_sz++] = cpu_to_be64(mmio0_bar);
mmio_win[mmio_win_sz++] = cpu_to_be64(mmio0_sz);
bar_en |= XPEC_NEST_STK_BAR_EN_MMIO0;
}
if (mmio1_bar) {
mmio_win[mmio_win_sz++] = cpu_to_be64(mmio1_bar);
mmio_win[mmio_win_sz++] = cpu_to_be64(mmio1_sz);
bar_en |= XPEC_NEST_STK_BAR_EN_MMIO1;
}
/* Set the appropriate enables */
xscom_read(gcid, nest_stack + XPEC_NEST_STK_BAR_EN, &val);
val |= bar_en;
xscom_write(gcid, nest_stack + XPEC_NEST_STK_BAR_EN, val);
/* No MMIO windows ? Barf ! */
if (mmio_win_sz == 0) {
prerror("PHB[%d:%d] No MMIO windows enabled !\n", gcid, phb_num);
return;
}
/* Clear errors in PFIR and NFIR */
xscom_write(gcid, pci_stack + XPEC_PCI_STK_PCI_FIR, 0);
xscom_write(gcid, nest_stack + XPEC_NEST_STK_PCI_NFIR, 0);
/* Check ETU reset */
xscom_read(gcid, pci_stack + XPEC_PCI_STK_ETU_RESET, &val);
prlog_once(PR_DEBUG, "ETU reset: %llx\n", val);
xscom_write(gcid, pci_stack + XPEC_PCI_STK_ETU_RESET, 0);
time_wait_ms(1);
// show we can read phb mmio space
foo = (void *)(phb_bar + 0x800); // phb version register
prlog_once(PR_DEBUG, "Version reg: 0x%016llx\n", in_be64(foo));
/* Create PHB node */
np = dt_new_addr(dt_root, "pciex", phb_bar);
if (!np)
return;
dt_add_property_strings(np, "compatible", "ibm,power9-pciex", "ibm,ioda3-phb");
dt_add_property_strings(np, "device_type", "pciex");
dt_add_property_u64s(np, "reg",
phb_bar, 0x1000,
irq_bar, 0x10000000);
/* Everything else is handled later by skiboot, we just
* stick a few hints here
*/
dt_add_property_cells(np, "ibm,xscom-bases",
nest_base, nest_stack, pci_base, pci_stack, etu_base);
dt_add_property(np, "ibm,mmio-windows", mmio_win, 8 * mmio_win_sz);
dt_add_property_cells(np, "ibm,phb-index", phb_num);
dt_add_property_cells(np, "ibm,phb-pec-index", pec_index);
dt_add_property_cells(np, "ibm,phb-stack", stk_node->phandle);
dt_add_property_cells(np, "ibm,phb-stack-index", stk_index);
dt_add_property_cells(np, "ibm,chip-id", gcid);
/* read the hub-id out of the pbcq node */
if (dt_has_node_property(stk_node->parent, "ibm,hub-id", NULL)) {
uint32_t hub_id;
hub_id = dt_prop_get_u32(stk_node->parent, "ibm,hub-id");
dt_add_property_cells(np, "ibm,hub-id", hub_id);
}
if (dt_has_node_property(stk_node->parent, "ibm,loc-code", NULL)) {
const char *lc = dt_prop_get(stk_node->parent, "ibm,loc-code");
dt_add_property_string(np, "ibm,loc-code", lc);
}
if (dt_has_node_property(stk_node, "ibm,lane-eq", NULL)) {
size_t leq_size;
const void *leq = dt_prop_get_def_size(stk_node, "ibm,lane-eq",
NULL, &leq_size);
if (leq != NULL && leq_size >= 6 * 8)
dt_add_property(np, "ibm,lane-eq", leq, leq_size);
}
if (dt_has_node_property(stk_node, "ibm,capp-ucode", NULL)) {
capp_ucode_base = dt_prop_get_u32(stk_node, "ibm,capp-ucode");
dt_add_property_cells(np, "ibm,capp-ucode", capp_ucode_base);
}
if (dt_has_node_property(stk_node, "ibm,max-link-speed", NULL)) {
max_link_speed = dt_prop_get_u32(stk_node, "ibm,max-link-speed");
dt_add_property_cells(np, "ibm,max-link-speed", max_link_speed);
}
dt_add_property_cells(np, "ibm,capi-flags",
OPAL_PHB_CAPI_FLAG_SNOOP_CONTROL);
add_chip_dev_associativity(np);
}
static void phb4_probe_pbcq(struct dt_node *pbcq)
{
uint32_t nest_base, pci_base, pec_index;
struct dt_node *stk;
/* REMOVEME: force this for now until we stabalise PCIe */
verbose_eeh = 1;
nest_base = dt_get_address(pbcq, 0, NULL);
pci_base = dt_get_address(pbcq, 1, NULL);
pec_index = dt_prop_get_u32(pbcq, "ibm,pec-index");
dt_for_each_child(pbcq, stk) {
if (dt_node_is_enabled(stk))
phb4_probe_stack(stk, pec_index, nest_base, pci_base);
}
}
void probe_phb4(void)
{
struct dt_node *np;
const char *s;
pci_eeh_mmio = !nvram_query_eq_dangerous("pci-eeh-mmio", "disabled");
pci_retry_all = nvram_query_eq_dangerous("pci-retry-all", "true");
s = nvram_query_dangerous("phb-rx-err-max");
if (s) {
rx_err_max = atoi(s);
/* Clip to uint8_t used by hardware */
rx_err_max = MAX(rx_err_max, 0);
rx_err_max = MIN(rx_err_max, 255);
}
prlog(PR_DEBUG, "PHB4: Maximum RX errors during training: %d\n", rx_err_max);
/* Look for PBCQ XSCOM nodes */
dt_for_each_compatible(dt_root, np, "ibm,power9-pbcq")
phb4_probe_pbcq(np);
/* Look for newly created PHB nodes */
dt_for_each_compatible(dt_root, np, "ibm,power9-pciex")
phb4_create(np);
}