blob: 098e6e46780807ca810b6321e5db326872373131 [file] [log] [blame]
// SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
/*
* Copyright 2019 IBM Corp.
*/
#include <skiboot.h>
#include <npu3.h>
#include <npu3-regs.h>
#include <timebase.h>
#include <xscom.h>
#include <xscom-p9-regs.h>
#define NPU3DEVLOG(l, dev, fmt, a...) \
prlog(l, "NPU[%d:%d:%d]: " fmt, \
(dev)->npu->chip_id, \
(dev)->npu->index, \
(dev)->index, ##a)
#define NPU3DEVDBG(dev, fmt, a...) NPU3DEVLOG(PR_DEBUG, dev, fmt, ##a)
#define NPU3DEVINF(dev, fmt, a...) NPU3DEVLOG(PR_INFO, dev, fmt, ##a)
#define NPU3DEVERR(dev, fmt, a...) NPU3DEVLOG(PR_ERR, dev, fmt, ##a)
/*
* The documentation for the PHY training is written in terms of bits within an
* actual register so we use that representation here.
*/
struct npu3_phy_reg {
uint64_t offset;
uint64_t mask;
};
static struct npu3_phy_reg
NPU3_PHY_RX_RUN_LANE = { 0x0c8, PPC_BIT(48) },
NPU3_PHY_RX_IORESET = { 0x096, PPC_BIT(63) },
NPU3_PHY_TX_IORESET = { 0x113, PPC_BIT(48) },
NPU3_PHY_RX_PR_RESET = { 0x096, PPC_BIT(62) },
NPU3_PHY_RX_LANE_ANA_PDWN = { 0x002, PPC_BIT(54) },
NPU3_PHY_RX_LANE_DIG_PDWN = { 0x088, PPC_BIT(48) },
NPU3_PHY_RX_PR_PHASE_STEP = { 0x08a, PPC_BITMASK(60, 63) },
NPU3_PHY_TX_LANE_PDWN = { 0x101, PPC_BIT(48) },
NPU3_PHY_RX_RUN_DCCAL = { 0x0c8, PPC_BIT(49) },
NPU3_PHY_RX_DCCAL_DONE = { 0x0ca, PPC_BIT(49) },
NPU3_PHY_RX_LANE_BUSY = { 0x0ca, PPC_BIT(50) },
NPU3_PHY_RX_B_BANK_CONTROLS = { 0x002, PPC_BITMASK(58, 63) },
NPU3_PHY_TX_UNLOAD_CLK_DISABLE = { 0x103, PPC_BIT(56) },
NPU3_PHY_TX_FIFO_INIT = { 0x105, PPC_BIT(53) },
NPU3_PHY_TX_RXCAL = { 0x103, PPC_BIT(57) },
NPU3_PHY_RX_INIT_DONE = { 0x0ca, PPC_BIT(48) },
NPU3_PHY_RX_PR_EDGE_TRACK_CNTL = { 0x092, PPC_BITMASK(48, 49) },
NPU3_PHY_RX_PR_FW_OFF = { 0x08a, PPC_BIT(56) },
NPU3_PHY_RX_PR_FW_INERTIA_AMT = { 0x08a, PPC_BITMASK(57, 59) },
NPU3_PHY_RX_CFG_LTE_MC = { 0x000, PPC_BITMASK(60, 63) },
NPU3_PHY_RX_A_INTEG_COARSE_GAIN = { 0x00a, PPC_BITMASK(48, 51) },
NPU3_PHY_RX_B_INTEG_COARSE_GAIN = { 0x026, PPC_BITMASK(48, 51) },
NPU3_PHY_RX_E_INTEG_COARSE_GAIN = { 0x030, PPC_BITMASK(48, 51) },
/* These registers are per-PHY, not per lane */
NPU3_PHY_TX_ZCAL_SWO_EN = { 0x3c9, PPC_BIT(48) },
NPU3_PHY_TX_ZCAL_REQ = { 0x3c1, PPC_BIT(49) },
NPU3_PHY_TX_ZCAL_DONE = { 0x3c1, PPC_BIT(50) },
NPU3_PHY_TX_ZCAL_ERROR = { 0x3c1, PPC_BIT(51) },
NPU3_PHY_TX_ZCAL_N = { 0x3c3, PPC_BITMASK(48, 56) },
NPU3_PHY_TX_ZCAL_P = { 0x3c5, PPC_BITMASK(48, 56) },
NPU3_PHY_TX_PSEG_PRE_EN = { 0x34d, PPC_BITMASK(51, 55) },
NPU3_PHY_TX_PSEG_PRE_SELECT = { 0x34d, PPC_BITMASK(56, 60) },
NPU3_PHY_TX_NSEG_PRE_EN = { 0x34f, PPC_BITMASK(51, 55) },
NPU3_PHY_TX_NSEG_PRE_SELECT = { 0x34f, PPC_BITMASK(56, 60) },
NPU3_PHY_TX_PSEG_POST_EN = { 0x361, PPC_BITMASK(49, 55) },
NPU3_PHY_TX_PSEG_POST_SELECT = { 0x361, PPC_BITMASK(56, 62) },
NPU3_PHY_TX_NSEG_POST_EN = { 0x363, PPC_BITMASK(49, 55) },
NPU3_PHY_TX_NSEG_POST_SELECT = { 0x363, PPC_BITMASK(56, 62) },
NPU3_PHY_TX_PSEG_MARGINPU_EN = { 0x351, PPC_BITMASK(48, 55) },
NPU3_PHY_TX_NSEG_MARGINPU_EN = { 0x353, PPC_BITMASK(48, 55) },
NPU3_PHY_TX_PSEG_MARGINPD_EN = { 0x351, PPC_BITMASK(56, 63) },
NPU3_PHY_TX_NSEG_MARGINPD_EN = { 0x353, PPC_BITMASK(56, 63) },
NPU3_PHY_TX_MARGINPU_SELECT = { 0x355, PPC_BITMASK(48, 55) },
NPU3_PHY_TX_MARGINPD_SELECT = { 0x355, PPC_BITMASK(56, 63) },
NPU3_PHY_TX_PSEG_MAIN_EN = { 0x357, PPC_BITMASK(51, 57) },
NPU3_PHY_TX_NSEG_MAIN_EN = { 0x359, PPC_BITMASK(51, 57) },
NPU3_PHY_RX_CLKDIST_PDWN = { 0x204, PPC_BITMASK(48, 50) },
NPU3_PHY_RX_IREF_PDWN = { 0x230, PPC_BIT(54) },
NPU3_PHY_TX_CLKDIST_PDWN = { 0x305, PPC_BITMASK(48, 50) },
NPU3_PHY_RX_CTL_DATASM_CLKDIST_PDWN = { 0x2e0, PPC_BIT(60) };
static uint64_t npu3_phy_scom(struct npu3_dev *dev, struct npu3_phy_reg *reg,
int lane)
{
uint64_t scom;
/* Don't specify a lane for a non-per-lane register */
if (lane >= 0)
assert(reg->offset < 0x200);
else
assert(reg->offset >= 0x200);
scom = OB_INDIRECT(dev->ob_chiplet);
scom = SETFIELD(PPC_BITMASK(12, 21), scom, reg->offset);
if (lane > 0)
scom = SETFIELD(PPC_BITMASK(27, 31), scom, lane);
return scom;
}
static void npu3_phy_write_lane(struct npu3_dev *dev, struct npu3_phy_reg *reg,
int lane, uint64_t val)
{
struct npu3 *npu = dev->npu;
uint64_t scom, scom_val;
scom = npu3_phy_scom(dev, reg, lane);
xscom_read(npu->chip_id, scom, &scom_val);
scom_val = SETFIELD(reg->mask, scom_val, val);
xscom_write(npu->chip_id, scom, scom_val);
}
static uint64_t npu3_phy_read_lane(struct npu3_dev *dev,
struct npu3_phy_reg *reg,
int lane)
{
struct npu3 *npu = dev->npu;
uint64_t scom, scom_val;
scom = npu3_phy_scom(dev, reg, lane);
xscom_read(npu->chip_id, scom, &scom_val);
return GETFIELD(reg->mask, scom_val);
}
static inline void npu3_phy_write(struct npu3_dev *dev,
struct npu3_phy_reg *reg,
uint64_t val)
{
npu3_phy_write_lane(dev, reg, -1, val);
}
static inline uint64_t npu3_phy_read(struct npu3_dev *dev,
struct npu3_phy_reg *reg)
{
return npu3_phy_read_lane(dev, reg, -1);
}
struct procedure {
const char *name;
uint32_t (*steps[])(struct npu3_dev *);
};
#define DEFINE_PROCEDURE(NAME, STEPS...) \
static struct procedure procedure_##NAME = { \
.name = #NAME, \
.steps = { NAME, ##STEPS } \
}
static uint32_t stop(struct npu3_dev *npu_dev __unused)
{
return NPU3_PROC_COMPLETE | NPU3_PROC_ABORTED;
}
DEFINE_PROCEDURE(stop);
static uint32_t nop(struct npu3_dev *npu_dev __unused)
{
return NPU3_PROC_COMPLETE;
}
DEFINE_PROCEDURE(nop);
static void set_iovalid(struct npu3_dev *dev, bool raise)
{
struct npu3 *npu = dev->npu;
uint64_t reg, val;
reg = OB_CPLT_CONF1(dev->ob_chiplet);
xscom_read(npu->chip_id, reg, &val);
val = SETFIELD(OB_CPLT_CONF1_NV_IOVALID(dev->index), val, raise);
xscom_write(npu->chip_id, reg, val);
}
#define NPU3_PHY_LANES 24
#define npu3_for_each_lane(lane, dev) \
for (lane = 0; lane < NPU3_PHY_LANES; lane++) \
if (dev->phy_lane_mask & PPC_BIT32(lane)) \
static uint32_t phy_reset(struct npu3_dev *dev)
{
uint32_t lane;
set_iovalid(dev, false);
npu3_for_each_lane(lane, dev)
npu3_phy_write_lane(dev, &NPU3_PHY_RX_RUN_LANE, lane, 0);
return NPU3_PROC_NEXT;
}
static uint32_t phy_reset_wait(struct npu3_dev *dev)
{
int lane;
/* Wait for all lanes to become inactive */
npu3_for_each_lane(lane, dev)
if (npu3_phy_read_lane(dev, &NPU3_PHY_RX_LANE_BUSY, lane))
return NPU3_PROC_INPROGRESS;
npu3_for_each_lane(lane, dev) {
/* Set lane in reset */
npu3_phy_write_lane(dev, &NPU3_PHY_RX_IORESET, lane, 1);
npu3_phy_write_lane(dev, &NPU3_PHY_TX_IORESET, lane, 1);
/* Release lane from reset */
npu3_phy_write_lane(dev, &NPU3_PHY_RX_IORESET, lane, 0);
npu3_phy_write_lane(dev, &NPU3_PHY_TX_IORESET, lane, 0);
/* Reset the phase rotator */
npu3_phy_write_lane(dev, &NPU3_PHY_RX_PR_RESET, lane, 1);
npu3_phy_write_lane(dev, &NPU3_PHY_RX_PR_RESET, lane, 0);
}
return NPU3_PROC_NEXT;
}
/* Procedure 1.2.3 - Initialise I/O PHY Registers */
static uint32_t phy_reset_complete(struct npu3_dev *dev)
{
int lane;
npu3_for_each_lane(lane, dev) {
npu3_phy_write_lane(dev, &NPU3_PHY_RX_LANE_ANA_PDWN, lane, 0);
npu3_phy_write_lane(dev, &NPU3_PHY_RX_LANE_DIG_PDWN, lane, 0);
npu3_phy_write_lane(dev, &NPU3_PHY_RX_PR_PHASE_STEP, lane, 0xc);
npu3_phy_write_lane(dev, &NPU3_PHY_TX_LANE_PDWN, lane, 0);
npu3_phy_write_lane(dev, &NPU3_PHY_RX_PR_FW_INERTIA_AMT, lane, 4);
npu3_phy_write_lane(dev, &NPU3_PHY_RX_CFG_LTE_MC, lane, 3);
npu3_phy_write_lane(dev, &NPU3_PHY_RX_A_INTEG_COARSE_GAIN, lane, 11);
npu3_phy_write_lane(dev, &NPU3_PHY_RX_B_INTEG_COARSE_GAIN, lane, 11);
npu3_phy_write_lane(dev, &NPU3_PHY_RX_E_INTEG_COARSE_GAIN, lane, 11);
}
set_iovalid(dev, true);
return NPU3_PROC_COMPLETE;
}
DEFINE_PROCEDURE(phy_reset, phy_reset_wait, phy_reset_complete);
/* Procedure 1.2.6 - I/O PHY Tx Impedance Calibration */
static uint32_t phy_tx_zcal(struct npu3_dev *dev)
{
if (dev->npu->tx_zcal_complete)
return NPU3_PROC_COMPLETE;
/* Turn off SW enable and enable zcal state machine */
npu3_phy_write(dev, &NPU3_PHY_TX_ZCAL_SWO_EN, 0);
/* Start impedance calibration state machine */
npu3_phy_write(dev, &NPU3_PHY_TX_ZCAL_REQ, 1);
return NPU3_PROC_NEXT;
}
static uint32_t phy_tx_zcal_wait(struct npu3_dev *dev)
{
if (npu3_phy_read(dev, &NPU3_PHY_TX_ZCAL_ERROR))
return NPU3_PROC_COMPLETE | NPU3_PROC_FAILED;
if (!npu3_phy_read(dev, &NPU3_PHY_TX_ZCAL_DONE))
return NPU3_PROC_INPROGRESS;
return NPU3_PROC_NEXT;
}
#define MARGIN_RATIO 0
#define FFE_PRE_COEFF 0
#define FFE_POST_COEFF 0
#define PRE_WIDTH 5
#define POST_WIDTH 7
#define MAIN_WIDTH 7
#define ZCAL_MIN (16 * 2)
#define ZCAL_MAX (33 * 2)
#define PRECURSOR_X2_MAX (4 * 2 + 1)
#define POSTCURSOR_X2_MAX (6 * 2 + 1)
#define MARGIN_X2_MAX (8 * 2)
#define MAIN_X2_MAX (6 * 2 + 1)
#define TOTAL_X2_MAX (PRECURSOR_X2_MAX + POSTCURSOR_X2_MAX + \
2 * MARGIN_X2_MAX + MAIN_X2_MAX)
static uint32_t therm(uint32_t dec)
{
return (0x1 << dec) - 1;
}
static uint32_t therm_with_half(uint32_t dec, uint8_t width)
{
/* If the LSB of the 2r equivalent is on, then we need to set the 2r bit (MSB) */
uint32_t half_on = (dec & 0x1) << (width - 1);
/* Shift the 2r equivalent to a 1r value and convert to a thermometer code. */
uint32_t x1_equiv = ((1 << (dec >> 1)) - 1);
/* Combine 1r equivalent thermometer code + the 2r MSB value. */
return half_on | x1_equiv;
}
static uint32_t phy_tx_zcal_calculate(struct npu3_dev *dev)
{
int p_value, n_value;
uint32_t zcal_n;
uint32_t zcal_p;
uint32_t p_main_enable = MAIN_X2_MAX;
uint32_t p_margin_pu_enable = MARGIN_X2_MAX;
uint32_t p_margin_pd_enable = MARGIN_X2_MAX;
uint32_t p_precursor_select;
uint32_t p_postcursor_select;
uint32_t margin_pu_select;
uint32_t n_main_enable = MAIN_X2_MAX;
uint32_t n_margin_pu_enable = MARGIN_X2_MAX;
uint32_t n_margin_pd_enable = MARGIN_X2_MAX;
uint32_t n_precursor_select;
uint32_t n_postcursor_select;
uint32_t margin_pd_select;
uint32_t margin_select;
/* Convert the value from 8R to 2R by / 4 */
zcal_n = npu3_phy_read(dev, &NPU3_PHY_TX_ZCAL_N) / 4;
zcal_p = npu3_phy_read(dev, &NPU3_PHY_TX_ZCAL_P) / 4;
/*
* Again, if the hardware detects an unexpected condition it's
* better just to fail loudly.
*/
if (zcal_n < ZCAL_MIN || zcal_n > ZCAL_MAX ||
zcal_p < ZCAL_MIN || zcal_p > ZCAL_MAX)
return NPU3_PROC_COMPLETE | NPU3_PROC_FAILED;
p_value = zcal_p - TOTAL_X2_MAX;
p_precursor_select = p_value * FFE_PRE_COEFF / 128;
p_postcursor_select = p_value * FFE_POST_COEFF / 128;
margin_pu_select = p_value * MARGIN_RATIO / 256;
if (p_value % 2) {
p_main_enable--;
p_value++;
}
while (p_value < 0) {
if (p_main_enable > 1) {
p_main_enable -= 2;
} else if (p_margin_pu_enable + p_margin_pd_enable > 0) {
if (p_margin_pu_enable == p_margin_pd_enable)
p_margin_pd_enable -= 2;
else
p_margin_pu_enable -= 2;
}
p_value += 2;
}
n_value = zcal_n - TOTAL_X2_MAX;
n_precursor_select = n_value * FFE_PRE_COEFF / 128;
n_postcursor_select = n_value * FFE_POST_COEFF / 128;
margin_pd_select = p_value * MARGIN_RATIO / 256;
if (n_value % 2) {
n_main_enable--;
n_value++;
}
while (n_value < 0) {
if (n_main_enable > 1) {
n_main_enable -= 2;
} else if (n_margin_pu_enable + n_margin_pd_enable > 0) {
if (n_margin_pu_enable == n_margin_pd_enable)
n_margin_pd_enable -= 2;
else
n_margin_pu_enable -= 2;
}
n_value += 2;
}
margin_select = therm((margin_pu_select + 1) / 2) &
therm((margin_pd_select + 1) / 2) &
therm((p_margin_pu_enable + 1) / 2) &
therm((p_margin_pd_enable + 1) / 2) &
therm((n_margin_pu_enable + 1) / 2) &
therm((n_margin_pd_enable + 1) / 2);
npu3_phy_write(dev, &NPU3_PHY_TX_PSEG_PRE_EN, therm_with_half(PRECURSOR_X2_MAX, PRE_WIDTH));
npu3_phy_write(dev, &NPU3_PHY_TX_PSEG_PRE_SELECT, therm_with_half(p_precursor_select, PRE_WIDTH));
npu3_phy_write(dev, &NPU3_PHY_TX_PSEG_POST_EN, therm_with_half(POSTCURSOR_X2_MAX, POST_WIDTH));
npu3_phy_write(dev, &NPU3_PHY_TX_PSEG_POST_SELECT, therm_with_half(p_postcursor_select, POST_WIDTH));
npu3_phy_write(dev, &NPU3_PHY_TX_PSEG_MARGINPU_EN, therm((p_margin_pu_enable + 1) / 2));
npu3_phy_write(dev, &NPU3_PHY_TX_PSEG_MARGINPD_EN, therm((p_margin_pd_enable + 1) / 2));
npu3_phy_write(dev, &NPU3_PHY_TX_PSEG_MAIN_EN, therm_with_half(p_main_enable, MAIN_WIDTH));
npu3_phy_write(dev, &NPU3_PHY_TX_NSEG_PRE_EN, therm_with_half(PRECURSOR_X2_MAX, PRE_WIDTH));
npu3_phy_write(dev, &NPU3_PHY_TX_NSEG_PRE_SELECT, therm_with_half(n_precursor_select, PRE_WIDTH));
npu3_phy_write(dev, &NPU3_PHY_TX_NSEG_POST_EN, therm_with_half(POSTCURSOR_X2_MAX, POST_WIDTH));
npu3_phy_write(dev, &NPU3_PHY_TX_NSEG_POST_SELECT, therm_with_half(n_postcursor_select, POST_WIDTH));
npu3_phy_write(dev, &NPU3_PHY_TX_NSEG_MARGINPU_EN, therm((n_margin_pu_enable + 1) / 2));
npu3_phy_write(dev, &NPU3_PHY_TX_NSEG_MARGINPD_EN, therm((n_margin_pd_enable + 1) / 2));
npu3_phy_write(dev, &NPU3_PHY_TX_NSEG_MAIN_EN, therm_with_half(n_main_enable, MAIN_WIDTH));
npu3_phy_write(dev, &NPU3_PHY_TX_MARGINPU_SELECT, therm(margin_select + 1) / 2);
npu3_phy_write(dev, &NPU3_PHY_TX_MARGINPD_SELECT, therm(margin_select + 1) / 2);
dev->npu->tx_zcal_complete = true;
return NPU3_PROC_COMPLETE;
}
DEFINE_PROCEDURE(phy_tx_zcal, phy_tx_zcal_wait, phy_tx_zcal_calculate);
/* Procedure 1.2.4 - I/O PHY DC Calibration */
static uint32_t phy_rx_dccal(struct npu3_dev *dev)
{
int lane;
set_iovalid(dev, false);
npu3_for_each_lane(lane, dev)
npu3_phy_write_lane(dev, &NPU3_PHY_RX_PR_FW_OFF, lane, 1);
npu3_for_each_lane(lane, dev)
npu3_phy_write_lane(dev, &NPU3_PHY_RX_RUN_DCCAL, lane, 1);
return NPU3_PROC_NEXT;
}
static uint32_t phy_rx_dccal_complete(struct npu3_dev *dev)
{
int lane;
npu3_for_each_lane(lane, dev)
if (!npu3_phy_read_lane(dev, &NPU3_PHY_RX_DCCAL_DONE, lane))
return NPU3_PROC_INPROGRESS;
npu3_for_each_lane(lane, dev)
npu3_phy_write_lane(dev, &NPU3_PHY_RX_RUN_DCCAL, lane, 0);
npu3_for_each_lane(lane, dev) {
npu3_phy_write_lane(dev, &NPU3_PHY_RX_B_BANK_CONTROLS, lane, 0);
npu3_phy_write_lane(dev, &NPU3_PHY_RX_PR_EDGE_TRACK_CNTL, lane, 0);
npu3_phy_write_lane(dev, &NPU3_PHY_RX_PR_FW_OFF, lane, 0);
}
return NPU3_PROC_NEXT;
}
/* Procedure 1.2.5 - IO PHY Tx FIFO Init */
static uint32_t phy_tx_fifo_init(struct npu3_dev *dev)
{
int lane;
npu3_for_each_lane(lane, dev) {
npu3_phy_write_lane(dev, &NPU3_PHY_TX_UNLOAD_CLK_DISABLE, lane, 0);
npu3_phy_write_lane(dev, &NPU3_PHY_TX_FIFO_INIT, lane, 1);
npu3_phy_write_lane(dev, &NPU3_PHY_TX_UNLOAD_CLK_DISABLE, lane, 1);
}
set_iovalid(dev, true);
return NPU3_PROC_COMPLETE;
}
DEFINE_PROCEDURE(phy_rx_dccal, phy_rx_dccal_complete, phy_tx_fifo_init);
/* Procedure 1.2.8 - Enable Downstream Link Training */
static uint32_t phy_enable_tx_rxcal(struct npu3_dev *dev)
{
int lane;
npu3_for_each_lane(lane, dev)
npu3_phy_write_lane(dev, &NPU3_PHY_TX_RXCAL, lane, 1);
return NPU3_PROC_COMPLETE;
}
DEFINE_PROCEDURE(phy_enable_tx_rxcal);
/* Procedure 1.2.9 - Disable Downstream Link Training */
static uint32_t phy_disable_tx_rxcal(struct npu3_dev *dev)
{
int lane;
npu3_for_each_lane(lane, dev)
npu3_phy_write_lane(dev, &NPU3_PHY_TX_RXCAL, lane, 0);
return NPU3_PROC_COMPLETE;
}
DEFINE_PROCEDURE(phy_disable_tx_rxcal);
/* Procedure 1.2.7 - I/O PHY Upstream Link Training */
static uint32_t phy_rx_training(struct npu3_dev *dev)
{
int lane;
npu3_for_each_lane(lane, dev)
npu3_phy_write_lane(dev, &NPU3_PHY_RX_RUN_LANE, lane, 1);
return NPU3_PROC_NEXT;
}
static uint32_t phy_rx_training_wait(struct npu3_dev *dev)
{
int lane;
npu3_for_each_lane(lane, dev)
if (!npu3_phy_read_lane(dev, &NPU3_PHY_RX_INIT_DONE, lane))
return NPU3_PROC_INPROGRESS;
return NPU3_PROC_COMPLETE;
}
DEFINE_PROCEDURE(phy_rx_training, phy_rx_training_wait);
static void npu3_dev_fence_set(struct npu3_dev *dev, uint8_t state)
{
struct npu3 *npu = dev->npu;
uint64_t val;
val = npu3_read(npu, NPU3_NTL_MISC_CFG1(dev->index));
val = SETFIELD(NPU3_NTL_MISC_CFG1_NTL_RESET, val, state);
npu3_write(npu, NPU3_NTL_MISC_CFG1(dev->index), val);
}
static uint8_t npu3_dev_fence_get(struct npu3_dev *dev)
{
uint64_t val;
val = npu3_read(dev->npu, NPU3_NTL_CQ_FENCE_STATUS(dev->index));
return GETFIELD(NPU3_NTL_CQ_FENCE_STATUS_FIELD, val);
}
/* Procedure 1.2.1 - Reset NPU/NDL */
static uint32_t reset_ntl(struct npu3_dev *dev)
{
struct npu3 *npu = dev->npu;
uint64_t val;
int lane;
set_iovalid(dev, true);
/* Power on clocks */
npu3_phy_write(dev, &NPU3_PHY_RX_CLKDIST_PDWN, 0);
npu3_phy_write(dev, &NPU3_PHY_RX_IREF_PDWN, 1);
npu3_phy_write(dev, &NPU3_PHY_TX_CLKDIST_PDWN, 0);
npu3_phy_write(dev, &NPU3_PHY_RX_CTL_DATASM_CLKDIST_PDWN, 0);
npu3_for_each_lane(lane, dev) {
npu3_phy_write_lane(dev, &NPU3_PHY_RX_LANE_ANA_PDWN, lane, 0);
npu3_phy_write_lane(dev, &NPU3_PHY_RX_LANE_DIG_PDWN, lane, 0);
npu3_phy_write_lane(dev, &NPU3_PHY_TX_LANE_PDWN, lane, 0);
}
/* Write PRI */
val = SETFIELD(NPU3_NTL_PRI_CFG_NDL, 0ull, dev->index);
npu3_write(npu, NPU3_NTL_PRI_CFG(dev->index), val);
/* Disable parity checking */
val = npu3_read(npu, NPU3_NTL_MISC_CFG2(dev->index));
val &= ~(NPU3_NTL_MISC_CFG2_NDL_RX_PARITY_ENA |
NPU3_NTL_MISC_CFG2_NDL_TX_PARITY_ENA |
NPU3_NTL_MISC_CFG2_NDL_PRI_PARITY_ENA);
npu3_write(npu, NPU3_NTL_MISC_CFG2(dev->index), val);
if (dev->type == NPU3_DEV_TYPE_NVLINK)
npu3_pvd_flag_clear(dev, NPU3_DEV_DL_RESET);
npu3_dev_fence_set(dev, NPU3_NTL_CQ_FENCE_STATUS_FULL);
return NPU3_PROC_NEXT;
}
static uint32_t reset_ndl(struct npu3_dev *dev)
{
struct npu3 *npu = dev->npu;
uint64_t reg;
uint32_t val32;
if (npu3_dev_fence_get(dev) != NPU3_NTL_CQ_FENCE_STATUS_FULL)
return NPU3_PROC_INPROGRESS;
reg = NPU3_DLPL_CTL(dev->index);
val32 = npu3_read_4b(npu, reg);
val32 |= NPU3_DLPL_CTL_RESET_RX | NPU3_DLPL_CTL_RESET_MISC;
npu3_write_4b(npu, reg, val32);
val32 = npu3_read_4b(npu, reg);
val32 &= ~(NPU3_DLPL_CTL_RESET_RX | NPU3_DLPL_CTL_RESET_MISC);
npu3_write_4b(npu, reg, val32);
reg = NPU3_DLPL_CFG(dev->index);
val32 = NPU3_DLPL_CFG_PRI_BYTESWAP;
npu3_write_4b(npu, reg, val32);
/* Clear FIR bits */
for (uint32_t i = 0; i < NPU3_FIR_MAX; i++)
xscom_write(npu->chip_id, npu->xscom_base + NPU3_FIR(i), 0ull);
npu3_dev_fence_set(dev, NPU3_NTL_CQ_FENCE_STATUS_HALF);
return NPU3_PROC_NEXT;
}
static uint32_t reset_ntl_release(struct npu3_dev *dev)
{
struct npu3 *npu = dev->npu;
uint32_t i = dev->index;
if (npu3_dev_fence_get(dev) != NPU3_NTL_CQ_FENCE_STATUS_HALF)
return NPU3_PROC_INPROGRESS;
/* Credit setup */
npu3_write(npu, NPU3_NTL_CREQ_HDR_CRED_SND(i), 0x0200000000000000);
npu3_write(npu, NPU3_NTL_PRB_HDR_CRED_SND(i), 0x0200000000000000);
npu3_write(npu, NPU3_NTL_ATR_HDR_CRED_SND(i), 0x0200000000000000);
npu3_write(npu, NPU3_NTL_RSP_HDR_CRED_SND(i), 0x0200000000000000);
npu3_write(npu, NPU3_NTL_CREQ_DAT_CRED_SND(i), 0x1000000000000000);
npu3_write(npu, NPU3_NTL_RSP_DAT_CRED_SND(i), 0x1000000000000000);
npu3_write(npu, NPU3_NTL_CREQ_HDR_CRED_RCV(i), 0x0000be0000000000);
npu3_write(npu, NPU3_NTL_DGD_HDR_CRED_RCV(i), 0x0000640000000000);
npu3_write(npu, NPU3_NTL_ATSD_HDR_CRED_RCV(i), 0x0000200000000000);
npu3_write(npu, NPU3_NTL_RSP_HDR_CRED_RCV(i), 0x0000be0000000000);
npu3_write(npu, NPU3_NTL_CREQ_DAT_CRED_RCV(i), 0x0001000000000000);
npu3_write(npu, NPU3_NTL_RSP_DAT_CRED_RCV(i), 0x0001000000000000);
npu3_dev_fence_set(dev, NPU3_NTL_CQ_FENCE_STATUS_NONE);
return NPU3_PROC_NEXT;
}
static uint32_t reset_ntl_finish(struct npu3_dev *dev) {
struct npu3 *npu = dev->npu;
uint64_t val;
if (npu3_dev_fence_get(dev) != NPU3_NTL_CQ_FENCE_STATUS_NONE)
return NPU3_PROC_INPROGRESS;
/* Enable parity checking */
val = npu3_read(npu, NPU3_NTL_MISC_CFG2(dev->index));
val |= NPU3_NTL_MISC_CFG2_NDL_RX_PARITY_ENA |
NPU3_NTL_MISC_CFG2_NDL_TX_PARITY_ENA |
NPU3_NTL_MISC_CFG2_NDL_PRI_PARITY_ENA;
npu3_write(npu, NPU3_NTL_MISC_CFG2(dev->index), val);
if (dev->type == NPU3_DEV_TYPE_NVLINK)
npu3_pvd_flag_set(dev, NPU3_DEV_DL_RESET);
return NPU3_PROC_COMPLETE;
}
DEFINE_PROCEDURE(reset_ntl, reset_ndl, reset_ntl_release, reset_ntl_finish);
static int npu3_dev_regcmp(struct npu3_dev *dev, uint64_t reg,
const char *reg_name, uint64_t expected)
{
uint64_t val;
val = npu3_read(dev->npu, reg);
if (val == expected)
return 0;
NPU3DEVERR(dev, "%s: expected 0x%llx, read 0x%llx\n",
reg_name, expected, val);
return 1;
}
#define REGCMP(reg, expected) \
npu3_dev_regcmp(dev, reg(dev->index), #reg, expected)
static uint32_t check_credits(struct npu3_dev *dev)
{
/* Use bitwise OR to prevent short-circuit evaluation */
if (REGCMP(NPU3_NTL_CREQ_HDR_CRED_RCV, 0x0be0be0000000000ull) |
REGCMP(NPU3_NTL_DGD_HDR_CRED_RCV, 0x0640640000000000ull) |
REGCMP(NPU3_NTL_ATSD_HDR_CRED_RCV, 0x0200200000000000ull) |
REGCMP(NPU3_NTL_RSP_HDR_CRED_RCV, 0x0be0be0000000000ull) |
REGCMP(NPU3_NTL_CREQ_DAT_CRED_RCV, 0x1001000000000000ull) |
REGCMP(NPU3_NTL_RSP_DAT_CRED_RCV, 0x1001000000000000ull))
return NPU3_PROC_COMPLETE | NPU3_PROC_FAILED;
return NPU3_PROC_COMPLETE;
}
DEFINE_PROCEDURE(check_credits);
static struct procedure *procedures[] = {
[0] = &procedure_stop,
[1] = &procedure_nop,
[4] = &procedure_phy_reset,
[5] = &procedure_phy_tx_zcal,
[6] = &procedure_phy_rx_dccal,
[7] = &procedure_phy_enable_tx_rxcal,
[8] = &procedure_phy_disable_tx_rxcal,
[9] = &procedure_phy_rx_training,
[10] = &procedure_reset_ntl,
[11] = &procedure_nop, /* Placeholder for pre-terminate */
[12] = &procedure_nop, /* Placeholder for terminate */
[13] = &procedure_check_credits,
};
void npu3_dev_procedure_init(struct npu3_dev *dev, uint32_t pnum)
{
struct npu3_procedure *proc = &dev->proc;
const char *name;
if (pnum >= ARRAY_SIZE(procedures) || !procedures[pnum]) {
NPU3DEVERR(dev, "Unsupported procedure number %d\n", pnum);
proc->status = NPU3_PROC_COMPLETE | NPU3_PROC_UNSUPPORTED;
return;
}
name = procedures[pnum]->name;
if (proc->number == pnum && !(proc->status & NPU3_PROC_COMPLETE))
NPU3DEVINF(dev, "Restarting procedure %s\n", name);
else
NPU3DEVINF(dev, "Starting procedure %s\n", name);
proc->status = NPU3_PROC_INPROGRESS;
proc->number = pnum;
proc->step = 0;
proc->timeout = mftb() + msecs_to_tb(1000);
}
static uint32_t npu3_dev_procedure_run_step(struct npu3_dev *dev)
{
struct npu3_procedure *proc = &dev->proc;
uint32_t result;
result = procedures[proc->number]->steps[proc->step](dev);
if (result & NPU3_PROC_NEXT) {
proc->step++;
NPU3DEVINF(dev, "Running procedure %s step %d\n",
procedures[proc->number]->name, proc->step);
}
return result;
}
static void npu3_dev_procedure_run(struct npu3_dev *dev)
{
struct npu3_procedure *proc = &dev->proc;
const char *name;
uint32_t result;
do {
result = npu3_dev_procedure_run_step(dev);
} while (result & NPU3_PROC_NEXT);
name = procedures[proc->number]->name;
if (result & NPU3_PROC_COMPLETE) {
NPU3DEVINF(dev, "Procedure %s complete\n", name);
} else if (tb_compare(mftb(), proc->timeout) == TB_AAFTERB) {
NPU3DEVINF(dev, "Procedure %s timed out\n", name);
result = NPU3_PROC_COMPLETE | NPU3_PROC_FAILED;
}
/* Mask off internal state bits */
proc->status = result & NPU3_PROC_STATUS_MASK;
}
uint32_t npu3_dev_procedure_status(struct npu3_dev *dev)
{
/* Run the procedure if not already complete */
if (!(dev->proc.status & NPU3_PROC_COMPLETE))
npu3_dev_procedure_run(dev);
return dev->proc.status;
}
int64_t npu3_dev_reset(struct npu3_dev *dev)
{
unsigned long timeout;
reset_ntl(dev);
timeout = mftb() + msecs_to_tb(1000);
while (npu3_dev_fence_get(dev) != NPU3_NTL_CQ_FENCE_STATUS_FULL) {
if (tb_compare(mftb(), timeout) == TB_AAFTERB) {
NPU3DEVINF(dev, "Device reset timed out\n");
return OPAL_BUSY;
}
}
return OPAL_SUCCESS;
}