blob: 8605c405e9b8ce81529dd1acf04a475701c2be1b [file] [log] [blame]
// SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
/*
* OCC (On Chip Controller) exports a bunch of sensors
*
* Copyright 2017-2019 IBM Corp.
*/
#include <skiboot.h>
#include <opal.h>
#include <chip.h>
#include <sensor.h>
#include <device.h>
#include <cpu.h>
#include <occ.h>
enum sensor_attr {
SENSOR_SAMPLE,
SENSOR_SAMPLE_MIN, /* OCC's min/max */
SENSOR_SAMPLE_MAX,
SENSOR_CSM_MIN, /* CSM's min/max */
SENSOR_CSM_MAX,
SENSOR_ACCUMULATOR,
MAX_SENSOR_ATTR,
};
#define HWMON_SENSORS_MASK (OCC_SENSOR_TYPE_CURRENT | \
OCC_SENSOR_TYPE_VOLTAGE | \
OCC_SENSOR_TYPE_TEMPERATURE | \
OCC_SENSOR_TYPE_POWER)
/*
* Standard HWMON linux interface expects the below units for the
* environment sensors:
* - Current : milliampere
* - Voltage : millivolt
* - Temperature : millidegree Celsius (scaled in kernel)
* - Power : microWatt (scaled in kernel)
* - Energy : microJoule
*/
/*
* OCC sensor units are obtained after scaling the sensor values.
* https://github.com/open-power/occ/blob/master/src/occ_405/sensor/sensor_info.c
*/
static struct str_map {
const char *occ_str;
const char *opal_str;
} str_maps[] = {
{"PWRSYS", "System"},
/* Bulk power of the system: Watt */
{"PWRFAN", "Fan"},
/* Power consumption of the system fans: Watt */
{"PWRIO", "IO"},
/* Power consumption of the IO subsystem: Watt */
{"PWRSTORE", "Storage"},
/* Power comsumption of the storage subsystem: Watt */
{"PWRGPU", "GPU"},
/* Power consumption for GPUs per socket read from APSS: Watt */
{"PWRAPSSCH", "APSS"},
/* Power Provided by APSS channel x (where x=0…15): Watt */
{"PWRPROC", ""},
/* Power consumption for this Processor: Watt */
{"PWRVDD", "Vdd"},
/* Power consumption for this Processor's Vdd(AVSBus readings): Watt */
{"PWRVDN", "Vdn"},
/* Power consumption for  this Processor's Vdn (nest)
* Calculated from AVSBus readings: Watt */
{"PWRMEM", "Memory"},
/* Power consumption for Memory  for this Processor read from APSS:
* Watt */
{"CURVDD", "Vdd"},
/* Processor Vdd Current (read from AVSBus): Ampere */
{"CURVDN", "Vdn"},
/* Processor Vdn Current (read from AVSBus): Ampere */
{"VOLTVDDSENSE", "Vdd Remote Sense"},
/* Vdd Voltage at the remote sense.
* AVS reading adjusted for loadline: millivolt */
{"VOLTVDNSENSE", "Vdn Remote Sense"},
/* Vdn Voltage at the remote sense.
* AVS reading adjusted for loadline: millivolt */
{"VOLTVDD", "Vdd"},
/* Processor Vdd Voltage (read from AVSBus): millivolt */
{"VOLTVDN", "Vdn"},
/* Processor Vdn Voltage (read from AVSBus): millivolt */
{"TEMPC", "Core"},
/* Average temperature of core DTS sensors for Processor's Core y:
* Celsius */
{"TEMPQ", "Quad"},
/* Average temperature of quad (in cache) DTS sensors for
* Processor’s Quad y: Celsius */
{"TEMPNEST", "Nest"},
/* Average temperature of nest DTS sensors: Celsius */
{"TEMPPROCTHRMC", "Core"},
/* The combined weighted core/quad temperature for processor core y:
* Celsius */
{"TEMPDIMM", "DIMM"},
/* DIMM temperature for DIMM x: Celsius */
{"TEMPGPU", "GPU"},
/* GPU x (0..2) board temperature: Celsius */
/* TEMPGPUxMEM: GPU x hottest HBM temperature (individual memory
* temperatures are not available): Celsius */
{"TEMPVDD", "VRM VDD"},
/* VRM Vdd temperature: Celsius */
};
static u64 occ_sensor_base;
static inline
struct occ_sensor_data_header *get_sensor_header_block(int occ_num)
{
return (struct occ_sensor_data_header *)
(occ_sensor_base + occ_num * OCC_SENSOR_DATA_BLOCK_SIZE);
}
static inline
struct occ_sensor_name *get_names_block(struct occ_sensor_data_header *hb)
{
return ((struct occ_sensor_name *)((u64)hb + be32_to_cpu(hb->names_offset)));
}
static inline u32 sensor_handler(int occ_num, int sensor_id, int attr)
{
return sensor_make_handler(SENSOR_OCC, occ_num, sensor_id, attr);
}
/*
* The scaling factor for the sensors is encoded in the below format:
* (((UINT32)mantissa << 8) | (UINT32)((UINT8) 256 + (UINT8)exp))
* https://github.com/open-power/occ/blob/master/src/occ_405/sensor/sensor.h
*/
static void scale_sensor(struct occ_sensor_name *md, u64 *sensor)
{
u32 factor = be32_to_cpu(md->scale_factor);
int i;
s8 exp;
if (be16_to_cpu(md->type) == OCC_SENSOR_TYPE_CURRENT)
*sensor *= 1000; //convert to mA
*sensor *= factor >> 8;
exp = factor & 0xFF;
if (exp > 0) {
for (i = labs(exp); i > 0; i--)
*sensor *= 10;
} else {
for (i = labs(exp); i > 0; i--)
*sensor /= 10;
}
}
static void scale_energy(struct occ_sensor_name *md, u64 *sensor)
{
u32 factor = be32_to_cpu(md->freq);
int i;
s8 exp;
*sensor *= 1000000; //convert to uJ
*sensor /= factor >> 8;
exp = factor & 0xFF;
if (exp > 0) {
for (i = labs(exp); i > 0; i--)
*sensor /= 10;
} else {
for (i = labs(exp); i > 0; i--)
*sensor *= 10;
}
}
static u64 read_sensor(struct occ_sensor_record *sensor, int attr)
{
switch (attr) {
case SENSOR_SAMPLE:
return be16_to_cpu(sensor->sample);
case SENSOR_SAMPLE_MIN:
return be16_to_cpu(sensor->sample_min);
case SENSOR_SAMPLE_MAX:
return be16_to_cpu(sensor->sample_max);
case SENSOR_CSM_MIN:
return be16_to_cpu(sensor->csm_min);
case SENSOR_CSM_MAX:
return be16_to_cpu(sensor->csm_max);
case SENSOR_ACCUMULATOR:
return be64_to_cpu(sensor->accumulator);
default:
break;
}
return 0;
}
static void *select_sensor_buffer(struct occ_sensor_data_header *hb, int id)
{
struct occ_sensor_name *md;
u8 *ping, *pong;
void *buffer = NULL;
u32 reading_offset;
if (!hb)
return NULL;
md = get_names_block(hb);
ping = (u8 *)((u64)hb + be32_to_cpu(hb->reading_ping_offset));
pong = (u8 *)((u64)hb + be32_to_cpu(hb->reading_pong_offset));
reading_offset = be32_to_cpu(md[id].reading_offset);
/* Check which buffer is valid and read the data from that.
* Ping Pong Action
* 0 0 Return with error
* 0 1 Read Pong
* 1 0 Read Ping
* 1 1 Read the buffer with latest timestamp
*/
if (*ping && *pong) {
u64 tping, tpong;
u64 ping_buf = (u64)ping + reading_offset;
u64 pong_buf = (u64)pong + reading_offset;
tping = be64_to_cpu(((struct occ_sensor_record *)ping_buf)->timestamp);
tpong = be64_to_cpu(((struct occ_sensor_record *)pong_buf)->timestamp);
if (tping > tpong)
buffer = ping;
else
buffer = pong;
} else if (*ping && !*pong) {
buffer = ping;
} else if (!*ping && *pong) {
buffer = pong;
} else if (!*ping && !*pong) {
prlog(PR_DEBUG, "OCC: Both ping and pong sensor buffers are invalid\n");
return NULL;
}
assert(buffer);
buffer = (void *)((u64)buffer + reading_offset);
return buffer;
}
int occ_sensor_read(u32 handle, __be64 *data)
{
struct occ_sensor_data_header *hb;
struct occ_sensor_name *md;
u16 id = sensor_get_rid(handle);
u8 occ_num = sensor_get_frc(handle);
u8 attr = sensor_get_attr(handle);
u64 d;
void *buff;
if (occ_num > MAX_OCCS)
return OPAL_PARAMETER;
if (attr > MAX_SENSOR_ATTR)
return OPAL_PARAMETER;
if (is_occ_reset())
return OPAL_HARDWARE;
hb = get_sensor_header_block(occ_num);
if (hb->valid != 1)
return OPAL_HARDWARE;
if (id > be16_to_cpu(hb->nr_sensors))
return OPAL_PARAMETER;
buff = select_sensor_buffer(hb, id);
if (!buff)
return OPAL_HARDWARE;
d = read_sensor(buff, attr);
if (!d)
goto out_success;
md = get_names_block(hb);
if (be16_to_cpu(md[id].type) == OCC_SENSOR_TYPE_POWER && attr == SENSOR_ACCUMULATOR)
scale_energy(&md[id], &d);
else
scale_sensor(&md[id], &d);
out_success:
*data = cpu_to_be64(d);
return OPAL_SUCCESS;
}
static bool occ_sensor_sanity(struct occ_sensor_data_header *hb, int chipid)
{
if (hb->valid != 0x01) {
prerror("OCC: Chip %d sensor data invalid\n", chipid);
return false;
}
if (hb->version != 0x01) {
prerror("OCC: Chip %d unsupported sensor header block version %d\n",
chipid, hb->version);
return false;
}
if (hb->reading_version != 0x01) {
prerror("OCC: Chip %d unsupported sensor record format %d\n",
chipid, hb->reading_version);
return false;
}
if (hb->names_version != 0x01) {
prerror("OCC: Chip %d unsupported sensor names format %d\n",
chipid, hb->names_version);
return false;
}
if (hb->name_length != sizeof(struct occ_sensor_name)) {
prerror("OCC: Chip %d unsupported sensor names length %d\n",
chipid, hb->name_length);
return false;
}
if (!hb->nr_sensors) {
prerror("OCC: Chip %d has no sensors\n", chipid);
return false;
}
if (!hb->names_offset ||
!hb->reading_ping_offset ||
!hb->reading_pong_offset) {
prerror("OCC: Chip %d Invalid sensor buffer pointers\n",
chipid);
return false;
}
return true;
}
/*
* parse_entity: Parses OCC sensor name to return the entity number like
* chipid, core-id, dimm-no, gpu-no. 'end' is used to
* get the subentity strings. Returns -1 if no number is found.
* TEMPC4 --> returns 4, end will be NULL
* TEMPGPU2DRAM1 --> returns 2, end = "DRAM1"
* PWRSYS --> returns -1, end = NULL
*/
static int parse_entity(const char *name, char **end)
{
while (*name != '\0') {
if (isdigit(*name))
break;
name++;
}
if (*name)
return strtol(name, end, 10);
else
return -1;
}
static void add_sensor_label(struct dt_node *node, struct occ_sensor_name *md,
int chipid)
{
char sname[30] = "";
char prefix[30] = "";
uint16_t location = be16_to_cpu(md->location);
int i;
if (location != OCC_SENSOR_LOC_SYSTEM)
snprintf(prefix, sizeof(prefix), "%s %d ", "Chip", chipid);
for (i = 0; i < ARRAY_SIZE(str_maps); i++)
if (!strncmp(str_maps[i].occ_str, md->name,
strlen(str_maps[i].occ_str))) {
char *end;
int num = -1;
if (location != OCC_SENSOR_LOC_CORE)
num = parse_entity(md->name, &end);
if (num != -1) {
snprintf(sname, sizeof(sname), "%s%s %d %s",
prefix, str_maps[i].opal_str, num,
end);
} else {
snprintf(sname, sizeof(sname), "%s%s", prefix,
str_maps[i].opal_str);
}
dt_add_property_string(node, "label", sname);
return;
}
/* Fallback to OCC literal if mapping is not found */
if (location == OCC_SENSOR_LOC_SYSTEM) {
dt_add_property_string(node, "label", md->name);
} else {
snprintf(sname, sizeof(sname), "%s%s", prefix, md->name);
dt_add_property_string(node, "label", sname);
}
}
static const char *get_sensor_type_string(enum occ_sensor_type type)
{
switch (type) {
case OCC_SENSOR_TYPE_POWER:
return "power";
case OCC_SENSOR_TYPE_TEMPERATURE:
return "temp";
case OCC_SENSOR_TYPE_CURRENT:
return "curr";
case OCC_SENSOR_TYPE_VOLTAGE:
return "in";
default:
break;
}
return "unknown";
}
static const char *get_sensor_loc_string(enum occ_sensor_location loc)
{
switch (loc) {
case OCC_SENSOR_LOC_SYSTEM:
return "sys";
case OCC_SENSOR_LOC_PROCESSOR:
return "proc";
case OCC_SENSOR_LOC_MEMORY:
return "mem";
case OCC_SENSOR_LOC_VRM:
return "vrm";
case OCC_SENSOR_LOC_CORE:
return "core";
case OCC_SENSOR_LOC_QUAD:
return "quad";
case OCC_SENSOR_LOC_GPU:
return "gpu";
default:
break;
}
return "unknown";
}
/*
* Power sensors can be 0 valued in few platforms like Zaius, Romulus
* which do not have APSS. At the moment there is no HDAT/DT property
* to indicate if APSS is present. So for now skip zero valued power
* sensors.
*/
static bool check_sensor_sample(struct occ_sensor_data_header *hb, u32 offset)
{
struct occ_sensor_record *ping, *pong;
ping = (struct occ_sensor_record *)((u64)hb
+ be32_to_cpu(hb->reading_ping_offset) + offset);
pong = (struct occ_sensor_record *)((u64)hb
+ be32_to_cpu(hb->reading_pong_offset) + offset);
return ping->sample || pong->sample;
}
static void add_sensor_node(const char *loc, const char *type, int i, int attr,
struct occ_sensor_name *md, __be32 *phandle, u32 *ptype,
u32 pir, u32 occ_num, u32 chipid)
{
char name[30];
struct dt_node *node;
u32 handler;
snprintf(name, sizeof(name), "%s-%s", loc, type);
handler = sensor_handler(occ_num, i, attr);
node = dt_new_addr(sensor_node, name, handler);
dt_add_property_string(node, "sensor-type", type);
dt_add_property_cells(node, "sensor-data", handler);
dt_add_property_cells(node, "reg", handler);
dt_add_property_string(node, "occ_label", md->name);
add_sensor_label(node, md, chipid);
if (be16_to_cpu(md->location) == OCC_SENSOR_LOC_CORE)
dt_add_property_cells(node, "ibm,pir", pir);
*ptype = be16_to_cpu(md->type);
if (attr == SENSOR_SAMPLE) {
handler = sensor_handler(occ_num, i, SENSOR_CSM_MAX);
dt_add_property_cells(node, "sensor-data-max", handler);
handler = sensor_handler(occ_num, i, SENSOR_CSM_MIN);
dt_add_property_cells(node, "sensor-data-min", handler);
}
dt_add_property_string(node, "compatible", "ibm,opal-sensor");
*phandle = cpu_to_be32(node->phandle);
}
bool occ_sensors_init(void)
{
struct proc_chip *chip;
struct dt_node *sg, *exports;
int occ_num = 0, i;
bool has_gpu = false;
/* OCC inband sensors is only supported in P9 */
if (proc_gen != proc_gen_p9)
return false;
/* Sensors are copied to BAR2 OCC Common Area */
chip = next_chip(NULL);
if (!chip->occ_common_base) {
prerror("OCC: Unassigned OCC Common Area. No sensors found\n");
return false;
}
occ_sensor_base = chip->occ_common_base + OCC_SENSOR_DATA_BLOCK_OFFSET;
sg = dt_new(opal_node, "sensor-groups");
if (!sg) {
prerror("OCC: Failed to create sensor groups node\n");
return false;
}
dt_add_property_string(sg, "compatible", "ibm,opal-sensor-group");
dt_add_property_cells(sg, "#address-cells", 1);
dt_add_property_cells(sg, "#size-cells", 0);
/*
* On POWER9, ibm,ioda2-npu2-phb indicates the presence of a
* GPU NVlink.
*/
if (dt_find_compatible_node(dt_root, NULL, "ibm,ioda2-npu2-phb")) {
for_each_chip(chip) {
int max_gpus_per_chip = 3, i;
for(i = 0; i < max_gpus_per_chip; i++) {
has_gpu = occ_get_gpu_presence(chip, i);
if (has_gpu)
break;
}
if (has_gpu)
break;
}
}
for_each_chip(chip) {
struct occ_sensor_data_header *hb;
struct occ_sensor_name *md;
__be32 *phandles;
u32 *ptype, phcount = 0;
unsigned int nr_sensors;
hb = get_sensor_header_block(occ_num);
md = get_names_block(hb);
/* Sanity check of the Sensor Data Header Block */
if (!occ_sensor_sanity(hb, chip->id))
continue;
nr_sensors = be16_to_cpu(hb->nr_sensors);
phandles = malloc(nr_sensors * sizeof(__be32));
assert(phandles);
ptype = malloc(nr_sensors * sizeof(u32));
assert(ptype);
for (i = 0; i < nr_sensors; i++) {
const char *type_name, *loc;
struct cpu_thread *c = NULL;
uint32_t pir = 0;
uint16_t type = be16_to_cpu(md[i].type);
uint16_t location = be16_to_cpu(md[i].location);
if (md[i].structure_type != OCC_SENSOR_READING_FULL)
continue;
if (!(type & HWMON_SENSORS_MASK))
continue;
if (location == OCC_SENSOR_LOC_GPU && !has_gpu)
continue;
if (type == OCC_SENSOR_TYPE_POWER &&
!check_sensor_sample(hb, be32_to_cpu(md[i].reading_offset)))
continue;
if (location == OCC_SENSOR_LOC_CORE) {
int num = parse_entity(md[i].name, NULL);
for_each_available_core_in_chip(c, chip->id)
if (pir_to_core_id(c->pir) == num)
break;
if (!c)
continue;
pir = c->pir;
}
type_name = get_sensor_type_string(type);
loc = get_sensor_loc_string(location);
add_sensor_node(loc, type_name, i, SENSOR_SAMPLE, &md[i],
&phandles[phcount], &ptype[phcount],
pir, occ_num, chip->id);
phcount++;
/* Add energy sensors */
if (type == OCC_SENSOR_TYPE_POWER &&
md[i].structure_type == OCC_SENSOR_READING_FULL) {
add_sensor_node(loc, "energy", i,
SENSOR_ACCUMULATOR, &md[i],
&phandles[phcount], &ptype[phcount],
pir, occ_num, chip->id);
phcount++;
}
}
occ_num++;
occ_add_sensor_groups(sg, phandles, ptype, phcount, chip->id);
free(phandles);
free(ptype);
}
/* clear the device tree property if no sensors */
if (list_empty(&sg->children)) {
dt_free(sg);
}
if (!occ_num)
return false;
exports = dt_find_by_path(dt_root, "/ibm,opal/firmware/exports");
if (!exports) {
prerror("OCC: dt node /ibm,opal/firmware/exports not found\n");
return false;
}
dt_add_property_u64s(exports, "occ_inband_sensors", occ_sensor_base,
OCC_SENSOR_DATA_BLOCK_SIZE * occ_num);
return true;
}