blob: 2c79ab18ade877532fed410b238b3a3060ff435e [file] [log] [blame]
/* Copyright 2016 IBM Corp.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
* implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <skiboot.h>
#include <xscom.h>
#include <chip.h>
#include <io.h>
#include <xive.h>
#include <xscom-p9-regs.h>
#include <interrupts.h>
#include <timebase.h>
#include <bitmap.h>
#include <buddy.h>
#include <phys-map.h>
/* Use Block group mode to move chip_id into block .... */
#define USE_BLOCK_GROUP_MODE
/* Indirect mode */
#define USE_INDIRECT
/* Always notify from EQ to VP (no EOI on EQs). Will speed up
* EOIs at the expense of potentially higher powerbus traffic.
*/
#define EQ_ALWAYS_NOTIFY
/* Verbose debug */
#undef XIVE_VERBOSE_DEBUG
/* Extra debug options used in debug builds */
#ifdef DEBUG
#define XIVE_DEBUG_DUPLICATES
#define XIVE_PERCPU_LOG
#define XIVE_DEBUG_INIT_CACHE_UPDATES
#define XIVE_EXTRA_CHECK_INIT_CACHE
#undef XIVE_CHECK_MISROUTED_IPI
#define XIVE_CHECK_LOCKS
#define XIVE_INT_SAFETY_GAP 0x1000
#else
#undef XIVE_DEBUG_DUPLICATES
#undef XIVE_PERCPU_LOG
#undef XIVE_DEBUG_INIT_CACHE_UPDATES
#undef XIVE_EXTRA_CHECK_INIT_CACHE
#undef XIVE_CHECK_MISROUTED_IPI
#undef XIVE_CHECK_LOCKS
#define XIVE_INT_SAFETY_GAP 0x10
#endif
/*
*
* VSDs, blocks, set translation etc...
*
* This stuff confused me to no end so here's an attempt at explaining
* my understanding of it and how I use it in OPAL & Linux
*
* For the following data structures, the XIVE use a mechanism called
* Virtualization Structure Tables (VST) to manage the memory layout
* and access: ESBs (Event State Buffers, aka IPI sources), EAS/IVT
* (Event assignment structures), END/EQs (Notification descriptors
* aka event queues) and NVT/VPD (Notification Virtual Targets).
*
* These structures divide those tables into 16 "blocks". Each XIVE
* instance has a definition for all 16 blocks that can either represent
* an actual table in memory or a remote XIVE MMIO port to access a
* block that is owned by that remote XIVE.
*
* Our SW design will consist of allocating one block per chip (and thus
* per XIVE instance) for now, thus giving us up to 16 supported chips in
* the system. We may have to revisit that if we ever support systems with
* more than 16 chips but that isn't on our radar at the moment or if we
* want to do like pHyp on some machines and dedicate 2 blocks per chip
* for some structures.
*
* Thus we need to be careful that we never expose to Linux the concept
* of block and block boundaries, but instead we provide full number ranges
* so that consecutive blocks can be supported.
*
* We will pre-allocate some of the tables in order to support a "fallback"
* mode operations where an old-style XICS is emulated via OPAL calls. This
* is achieved by having a default of one VP per physical thread associated
* with one EQ and one IPI. There is also enought EATs to cover all the PHBs.
*
* Similarily, for MMIO access, the BARs support what is called "set
* translation" which allows tyhe BAR to be devided into a certain
* number of sets. The VC BAR (ESBs, ENDs, ...) supports 64 sets and
* the PC BAT supports 16. Each "set" can be routed to a specific
* block and offset within a block.
*
* For now, we will not use much of that functionality. We will use a
* fixed split between ESB and ENDs for the VC BAR as defined by the
* constants below and we will allocate all the PC BARs set to the
* local block of that chip
*/
/* BAR default values (should be initialized by HostBoot but for
* now we do it). Based on the memory map document by Dave Larson
*
* Fixed IC and TM BARs first.
*/
/* Use 64K for everything by default */
#define IC_PAGE_SIZE 0x10000
#define TM_PAGE_SIZE 0x10000
#define IPI_ESB_SHIFT (16 + 1)
#define EQ_ESB_SHIFT (16 + 1)
/* VC BAR contains set translations for the ESBs and the EQs.
*
* It's divided in 64 sets, each of which can be either ESB pages or EQ pages.
* The table configuring this is the EDT
*
* Additionally, the ESB pages come in pair of Linux_Trig_Mode isn't enabled
* (which we won't enable for now as it assumes write-only permission which
* the MMU doesn't support).
*
* To get started we just hard wire the following setup:
*
* VC_BAR size is 512G. We split it into 384G of ESBs (48 sets) and 128G
* of ENDs (16 sets) for the time being. IE. Each set is thus 8GB
*/
#define VC_ESB_SETS 48
#define VC_END_SETS 16
#define VC_MAX_SETS 64
/* The table configuring the PC set translation (16 sets) is the VDT */
#define PC_MAX_SETS 16
/* XXX This is the currently top limit of number of ESB/SBE entries
* and EAS/IVT entries pre-allocated per chip. This should probably
* turn into a device-tree property or NVRAM setting, or maybe
* calculated from the amount of system RAM...
*
* This is currently set to 1M
*
* This is independent of the sizing of the MMIO space.
*
* WARNING: Due to how XICS emulation works, we cannot support more
* interrupts per chip at this stage as the full interrupt number
* (block + index) has to fit in a 24-bit number.
*
* That gives us a pre-allocated space of 256KB per chip for the state
* bits and 8M per chip for the EAS/IVT.
*
* Note: The HW interrupts from PCIe and similar other entities that
* use their own state bit array will have to share that IVT space,
* so we could potentially make the IVT size twice as big, but for now
* we will simply share it and ensure we don't hand out IPIs that
* overlap the HW interrupts.
*/
#define MAX_INT_ENTRIES (1 * 1024 * 1024)
/* Corresponding direct table sizes */
#define SBE_SIZE (MAX_INT_ENTRIES / 4)
#define IVT_SIZE (MAX_INT_ENTRIES * 8)
/* Max number of EQs. We allocate an indirect table big enough so
* that when fully populated we can have that many EQs.
*
* The max number of EQs we support in our MMIO space is 128G/128K
* ie. 1M. Since one EQ is 8 words (32 bytes), a 64K page can hold
* 2K EQs. We need 512 pointers, ie, 4K of memory for the indirect
* table.
*
* XXX Adjust that based on BAR value ?
*/
#ifdef USE_INDIRECT
#define MAX_EQ_COUNT (1 * 1024 * 1024)
#define EQ_PER_PAGE (0x10000 / 32) // Use sizeof ?
#define IND_EQ_TABLE_SIZE ((MAX_EQ_COUNT / EQ_PER_PAGE) * 8)
#else
#define MAX_EQ_COUNT (4 * 1024 * 64)
#define EQT_SIZE (MAX_EQ_COUNT * 32)
#endif
/* Number of priorities (and thus EQDs) we allocate for each VP */
#define NUM_INT_PRIORITIES 8
/* Priority used for the one queue in XICS emulation */
#define XIVE_EMULATION_PRIO 7
/* Max number of VPs. We allocate an indirect table big enough so
* that when fully populated we can have that many VPs.
*
* The max number of VPs we support in our MMIO space is 64G/64K
* ie. 1M. Since one VP is 16 words (64 bytes), a 64K page can hold
* 1K EQ. We need 1024 pointers, ie, 8K of memory for the indirect
* table.
*
* HOWEVER: A block supports only up to 512K VPs (19 bits of target
* in the EQ). Since we currently only support 1 block per chip,
* we will allocate half of the above. We might add support for
* 2 blocks per chip later if necessary.
*
* XXX Adjust that based on BAR value ?
*/
#ifdef USE_INDIRECT
#define MAX_VP_ORDER 19 /* 512k */
#define MAX_VP_COUNT (1ul << MAX_VP_ORDER)
#define VP_PER_PAGE (0x10000 / 64) // Use sizeof ?
#define IND_VP_TABLE_SIZE ((MAX_VP_COUNT / VP_PER_PAGE) * 8)
#else
#define MAX_VP_ORDER 13 /* 8k */
#define MAX_VP_COUNT (1ul << MAX_VP_ORDER)
#define VPT_SIZE (MAX_VP_COUNT * 64)
#endif
#ifdef USE_BLOCK_GROUP_MODE
/* Initial number of VPs (XXX Make it a variable ?). Round things
* up to a max of 32 cores per chip
*/
#define INITIAL_VP_BASE 0x80
#define INITIAL_VP_COUNT 0x80
#else
/* Initial number of VPs on block 0 only */
#define INITIAL_BLK0_VP_BASE 0x800
#define INITIAL_BLK0_VP_COUNT 0x800
#endif
/* The xive operation mode indicates the active "API" and corresponds
* to the "mode" parameter of the opal_xive_reset() call
*/
static enum {
XIVE_MODE_EMU = OPAL_XIVE_MODE_EMU,
XIVE_MODE_EXPL = OPAL_XIVE_MODE_EXPL,
} xive_mode;
/* Each source controller has one of these. There's one embedded
* in the XIVE struct for IPIs
*/
struct xive_src {
struct irq_source is;
const struct irq_source_ops *orig_ops;
struct xive *xive;
void *esb_mmio;
uint32_t esb_base;
uint32_t esb_shift;
uint32_t flags;
};
#define LOG_TYPE_XIRR 0
#define LOG_TYPE_XIRR2 1
#define LOG_TYPE_POPQ 2
#define LOG_TYPE_EOI 3
#define LOG_TYPE_EQD 4
struct xive_log_ent {
uint8_t type;
uint8_t cnt;
uint64_t tb;
#define MAX_LOG_DATA 8
uint32_t data[MAX_LOG_DATA];
};
#define MAX_LOG_ENT 32
struct xive_cpu_state {
struct xive *xive;
void *tm_ring1;
#ifdef XIVE_PERCPU_LOG
struct xive_log_ent log[MAX_LOG_ENT];
uint32_t log_pos;
#endif
/* Base HW VP and associated queues */
uint32_t vp_blk;
uint32_t vp_idx;
uint32_t eq_blk;
uint32_t eq_idx; /* Base eq index of a block of 8 */
void *eq_page;
/* Pre-allocated IPI */
uint32_t ipi_irq;
/* Use for XICS emulation */
struct lock lock;
uint8_t cppr;
uint8_t mfrr;
uint8_t pending;
uint8_t prev_cppr;
uint32_t *eqbuf;
uint32_t eqptr;
uint32_t eqmsk;
uint8_t eqgen;
void *eqmmio;
uint64_t total_irqs;
};
#ifdef XIVE_PERCPU_LOG
static void log_add(struct xive_cpu_state *xs, uint8_t type,
uint8_t count, ...)
{
struct xive_log_ent *e = &xs->log[xs->log_pos];
va_list args;
int i;
e->type = type;
e->cnt = count;
e->tb = mftb();
va_start(args, count);
for (i = 0; i < count; i++)
e->data[i] = va_arg(args, u32);
va_end(args);
xs->log_pos = xs->log_pos + 1;
if (xs->log_pos == MAX_LOG_ENT)
xs->log_pos = 0;
}
static void log_print(struct xive_cpu_state *xs)
{
uint32_t pos = xs->log_pos;
uint8_t buf[256];
int i, j;
static const char *lts[] = {
">XIRR",
"<XIRR",
" POPQ",
" EOI",
" EQD"
};
for (i = 0; i < MAX_LOG_ENT; i++) {
struct xive_log_ent *e = &xs->log[pos];
uint8_t *b = buf, *eb = &buf[255];
b += snprintf(b, eb-b, "%08llx %s ", e->tb,
lts[e->type]);
for (j = 0; j < e->cnt && b < eb; j++)
b += snprintf(b, eb-b, "%08x ", e->data[j]);
printf("%s\n", buf);
pos = pos + 1;
if (pos == MAX_LOG_ENT)
pos = 0;
}
}
#else /* XIVE_PERCPU_LOG */
static inline void log_add(struct xive_cpu_state *xs __unused,
uint8_t type __unused,
uint8_t count __unused, ...) { }
static inline void log_print(struct xive_cpu_state *xs __unused) { }
#endif /* XIVE_PERCPU_LOG */
struct xive {
uint32_t chip_id;
uint32_t block_id;
struct dt_node *x_node;
int rev;
#define XIVE_REV_UNKNOWN 0 /* Unknown version */
#define XIVE_REV_1 1 /* P9 (Nimbus) DD1.x */
#define XIVE_REV_2 2 /* P9 (Nimbus) DD2.x or Cumulus */
uint64_t xscom_base;
/* MMIO regions */
void *ic_base;
uint64_t ic_size;
uint32_t ic_shift;
void *tm_base;
uint64_t tm_size;
uint32_t tm_shift;
void *pc_base;
uint64_t pc_size;
void *vc_base;
uint64_t vc_size;
void *esb_mmio;
void *eq_mmio;
/* Set on XSCOM register access error */
bool last_reg_error;
/* Per-XIVE mutex */
struct lock lock;
/* Pre-allocated tables.
*
* We setup all the VDS for actual tables (ie, by opposition to
* forwarding ports) as either direct pre-allocated or indirect
* and partially populated.
*
* Currently, the ESB/SBE and the EAS/IVT tables are direct and
* fully pre-allocated based on MAX_INT_ENTRIES.
*
* The other tables are indirect, we thus pre-allocate the indirect
* table (ie, pages of pointers) and populate enough of the pages
* for our basic setup using 64K pages.
*
* The size of the indirect tables are driven by MAX_VP_COUNT and
* MAX_EQ_COUNT. The number of pre-allocated ones are driven by
* INITIAL_VP_COUNT (number of EQ depends on number of VP) in block
* mode, otherwise we only preallocate INITIAL_BLK0_VP_COUNT on
* block 0.
*/
/* Direct SBE and IVT tables */
void *sbe_base;
void *ivt_base;
#ifdef USE_INDIRECT
/* Indirect END/EQ table. NULL entries are unallocated, count is
* the numbre of pointers (ie, sub page placeholders).
*/
uint64_t *eq_ind_base;
uint32_t eq_ind_count;
#else
void *eq_base;
#endif
/* EQ allocation bitmap. Each bit represent 8 EQs */
bitmap_t *eq_map;
#ifdef USE_INDIRECT
/* Indirect NVT/VP table. NULL entries are unallocated, count is
* the numbre of pointers (ie, sub page placeholders).
*/
uint64_t *vp_ind_base;
uint32_t vp_ind_count;
#else
void *vp_base;
#endif
#ifndef USE_BLOCK_GROUP_MODE
/* VP allocation buddy when not using block group mode */
struct buddy *vp_buddy;
#endif
#ifdef USE_INDIRECT
/* Pool of donated pages for provisioning indirect EQ and VP pages */
struct list_head donated_pages;
#endif
/* To ease a possible change to supporting more than one block of
* interrupts per chip, we store here the "base" global number
* and max number of interrupts for this chip. The global number
* encompass the block number and index.
*/
uint32_t int_base;
uint32_t int_max;
/* Due to the overlap between IPIs and HW sources in the IVT table,
* we keep some kind of top-down allocator. It is used for HW sources
* to "allocate" interrupt entries and will limit what can be handed
* out as IPIs. Of course this assumes we "allocate" all HW sources
* before we start handing out IPIs.
*
* Note: The numbers here are global interrupt numbers so that we can
* potentially handle more than one block per chip in the future.
*/
uint32_t int_hw_bot; /* Bottom of HW allocation */
uint32_t int_ipi_top; /* Highest IPI handed out so far + 1 */
/* The IPI allocation bitmap */
bitmap_t *ipi_alloc_map;
/* We keep track of which interrupts were ever enabled to
* speed up xive_reset
*/
bitmap_t *int_enabled_map;
/* Embedded source IPIs */
struct xive_src ipis;
/* Embedded escalation interrupts */
struct xive_src esc_irqs;
/* In memory queue overflow */
void *q_ovf;
};
/* Global DT node */
static struct dt_node *xive_dt_node;
/* Block <-> Chip conversions.
*
* As chipIDs may not be within the range of 16 block IDs supported by XIVE,
* we have a 2 way conversion scheme.
*
* From block to chip, use the global table below.
*
* From chip to block, a field in struct proc_chip contains the first block
* of that chip. For now we only support one block per chip but that might
* change in the future
*/
#define XIVE_INVALID_CHIP 0xffffffff
#define XIVE_MAX_CHIPS 16
static uint32_t xive_block_to_chip[XIVE_MAX_CHIPS];
static uint32_t xive_block_count;
#ifdef USE_BLOCK_GROUP_MODE
static uint32_t xive_chip_to_block(uint32_t chip_id)
{
struct proc_chip *c = get_chip(chip_id);
assert(c);
assert(c->xive);
return c->xive->block_id;
}
#endif
/* Conversion between GIRQ and block/index.
*
* ------------------------------------
* |0000000E|BLOC| INDEX|
* ------------------------------------
* 8 4 20
*
* the E bit indicates that this is an escalation interrupt, in
* that case, the BLOC/INDEX represents the EQ containig the
* corresponding escalation descriptor.
*
* Global interrupt numbers for non-escalation interrupts are thus
* limited to 24 bits which is necessary for our XICS emulation since
* the top 8 bits are reserved for the CPPR value.
*
*/
#define GIRQ_TO_BLK(__g) (((__g) >> 20) & 0xf)
#define GIRQ_TO_IDX(__g) ((__g) & 0x000fffff)
#define BLKIDX_TO_GIRQ(__b,__i) (((uint32_t)(__b)) << 20 | (__i))
#define GIRQ_IS_ESCALATION(__g) ((__g) & 0x01000000)
#define MAKE_ESCALATION_GIRQ(__b,__i)(BLKIDX_TO_GIRQ(__b,__i) | 0x01000000)
/* Block/IRQ to chip# conversions */
#define PC_BLK_TO_CHIP(__b) (xive_block_to_chip[__b])
#define VC_BLK_TO_CHIP(__b) (xive_block_to_chip[__b])
#define GIRQ_TO_CHIP(__isn) (VC_BLK_TO_CHIP(GIRQ_TO_BLK(__isn)))
/* Routing of physical processors to VPs */
#ifdef USE_BLOCK_GROUP_MODE
#define PIR2VP_IDX(__pir) (0x80 | P9_PIR2LOCALCPU(__pir))
#define PIR2VP_BLK(__pir) (xive_chip_to_block(P9_PIR2GCID(__pir)))
#define VP2PIR(__blk, __idx) (P9_PIRFROMLOCALCPU(VC_BLK_TO_CHIP(__blk), (__idx) & 0x7f))
#else
#define PIR2VP_IDX(__pir) (0x800 | (P9_PIR2GCID(__pir) << 7) | P9_PIR2LOCALCPU(__pir))
#define PIR2VP_BLK(__pir) (0)
#define VP2PIR(__blk, __idx) (P9_PIRFROMLOCALCPU(((__idx) >> 7) & 0xf, (__idx) & 0x7f))
#endif
/* Decoding of OPAL API VP IDs. The VP IDs are encoded as follow
*
* Block group mode:
*
* -----------------------------------
* |GVEOOOOO| INDEX|
* -----------------------------------
* || |
* || Order
* |Virtual
* Group
*
* G (Group) : Set to 1 for a group VP (not currently supported)
* V (Virtual) : Set to 1 for an allocated VP (vs. a physical processor ID)
* E (Error) : Should never be 1, used internally for errors
* O (Order) : Allocation order of the VP block
*
* The conversion is thus done as follow (groups aren't implemented yet)
*
* If V=0, O must be 0 and 24-bit INDEX value is the PIR
* If V=1, the order O group is allocated such that if N is the number of
* chip bits considered for allocation (*)
* then the INDEX is constructed as follow (bit numbers such as 0=LSB)
* - bottom O-N bits is the index within the "VP block"
* - next N bits is the XIVE blockID of the VP
* - the remaining bits is the per-chip "base"
* so the conversion consists of "extracting" the block ID and moving
* down the upper bits by N bits.
*
* In non-block-group mode, the difference is that the blockID is
* on the left of the index (the entire VP block is in a single
* block ID)
*/
#ifdef USE_BLOCK_GROUP_MODE
/* VP allocation */
static uint32_t xive_chips_alloc_bits = 0;
struct buddy *xive_vp_buddy;
struct lock xive_buddy_lock = LOCK_UNLOCKED;
/* VP# decoding/encoding */
static bool xive_decode_vp(uint32_t vp, uint32_t *blk, uint32_t *idx,
uint8_t *order, bool *group)
{
uint32_t o = (vp >> 24) & 0x1f;
uint32_t n = xive_chips_alloc_bits;
uint32_t index = vp & 0x00ffffff;
uint32_t imask = (1 << (o - n)) - 1;
/* Groups not supported yet */
if ((vp >> 31) & 1)
return false;
if (group)
*group = false;
/* PIR case */
if (((vp >> 30) & 1) == 0) {
if (find_cpu_by_pir(index) == NULL)
return false;
if (blk)
*blk = PIR2VP_BLK(index);
if (idx)
*idx = PIR2VP_IDX(index);
return true;
}
/* Ensure o > n, we have *at least* 2 VPs per block */
if (o <= n)
return false;
/* Combine the index base and index */
if (idx)
*idx = ((index >> n) & ~imask) | (index & imask);
/* Extract block ID */
if (blk)
*blk = (index >> (o - n)) & ((1 << n) - 1);
/* Return order as well if asked for */
if (order)
*order = o;
return true;
}
static uint32_t xive_encode_vp(uint32_t blk, uint32_t idx, uint32_t order)
{
uint32_t vp = 0x40000000 | (order << 24);
uint32_t n = xive_chips_alloc_bits;
uint32_t imask = (1 << (order - n)) - 1;
vp |= (idx & ~imask) << n;
vp |= blk << (order - n);
vp |= idx & imask;
return vp;
}
#else /* USE_BLOCK_GROUP_MODE */
/* VP# decoding/encoding */
static bool xive_decode_vp(uint32_t vp, uint32_t *blk, uint32_t *idx,
uint8_t *order, bool *group)
{
uint32_t o = (vp >> 24) & 0x1f;
uint32_t index = vp & 0x00ffffff;
uint32_t imask = (1 << o) - 1;
/* Groups not supported yet */
if ((vp >> 31) & 1)
return false;
if (group)
*group = false;
/* PIR case */
if (((vp >> 30) & 1) == 0) {
if (find_cpu_by_pir(index) == NULL)
return false;
if (blk)
*blk = PIR2VP_BLK(index);
if (idx)
*idx = PIR2VP_IDX(index);
return true;
}
/* Ensure o > 0, we have *at least* 2 VPs per block */
if (o == 0)
return false;
/* Extract index */
if (idx)
*idx = index & imask;
/* Extract block ID */
if (blk)
*blk = index >> o;
/* Return order as well if asked for */
if (order)
*order = o;
return true;
}
static uint32_t xive_encode_vp(uint32_t blk, uint32_t idx, uint32_t order)
{
return 0x40000000 | (order << 24) | (blk << order) | idx;
}
#endif /* !USE_BLOCK_GROUP_MODE */
#define xive_regw(__x, __r, __v) \
__xive_regw(__x, __r, X_##__r, __v, #__r)
#define xive_regr(__x, __r) \
__xive_regr(__x, __r, X_##__r, #__r)
#define xive_regwx(__x, __r, __v) \
__xive_regw(__x, 0, X_##__r, __v, #__r)
#define xive_regrx(__x, __r) \
__xive_regr(__x, 0, X_##__r, #__r)
#ifdef XIVE_VERBOSE_DEBUG
#define xive_vdbg(__x,__fmt,...) prlog(PR_DEBUG,"XIVE[ IC %02x ] " __fmt, (__x)->chip_id, ##__VA_ARGS__)
#define xive_cpu_vdbg(__c,__fmt,...) prlog(PR_DEBUG,"XIVE[CPU %04x] " __fmt, (__c)->pir, ##__VA_ARGS__)
#else
#define xive_vdbg(x,fmt,...) do { } while(0)
#define xive_cpu_vdbg(x,fmt,...) do { } while(0)
#endif
#define xive_dbg(__x,__fmt,...) prlog(PR_DEBUG,"XIVE[ IC %02x ] " __fmt, (__x)->chip_id, ##__VA_ARGS__)
#define xive_cpu_dbg(__c,__fmt,...) prlog(PR_DEBUG,"XIVE[CPU %04x] " __fmt, (__c)->pir, ##__VA_ARGS__)
#define xive_warn(__x,__fmt,...) prlog(PR_WARNING,"XIVE[ IC %02x ] " __fmt, (__x)->chip_id, ##__VA_ARGS__)
#define xive_cpu_warn(__c,__fmt,...) prlog(PR_WARNING,"XIVE[CPU %04x] " __fmt, (__c)->pir, ##__VA_ARGS__)
#define xive_err(__x,__fmt,...) prlog(PR_ERR,"XIVE[ IC %02x ] " __fmt, (__x)->chip_id, ##__VA_ARGS__)
#define xive_cpu_err(__c,__fmt,...) prlog(PR_ERR,"XIVE[CPU %04x] " __fmt, (__c)->pir, ##__VA_ARGS__)
static void __xive_regw(struct xive *x, uint32_t m_reg, uint32_t x_reg, uint64_t v,
const char *rname)
{
bool use_xscom = (m_reg == 0) || !x->ic_base;
int64_t rc;
x->last_reg_error = false;
if (use_xscom) {
assert(x_reg != 0);
rc = xscom_write(x->chip_id, x->xscom_base + x_reg, v);
if (rc) {
if (!rname)
rname = "???";
xive_err(x, "Error writing register %s\n", rname);
/* Anything else we can do here ? */
x->last_reg_error = true;
}
} else {
out_be64(x->ic_base + m_reg, v);
}
}
static uint64_t __xive_regr(struct xive *x, uint32_t m_reg, uint32_t x_reg,
const char *rname)
{
bool use_xscom = (m_reg == 0) || !x->ic_base;
int64_t rc;
uint64_t val;
x->last_reg_error = false;
if (use_xscom) {
assert(x_reg != 0);
rc = xscom_read(x->chip_id, x->xscom_base + x_reg, &val);
if (rc) {
if (!rname)
rname = "???";
xive_err(x, "Error reading register %s\n", rname);
/* Anything else we can do here ? */
x->last_reg_error = true;
return -1ull;
}
} else {
val = in_be64(x->ic_base + m_reg);
}
return val;
}
/* Locate a controller from an IRQ number */
static struct xive *xive_from_isn(uint32_t isn)
{
uint32_t chip_id = GIRQ_TO_CHIP(isn);
struct proc_chip *c = get_chip(chip_id);
if (!c)
return NULL;
return c->xive;
}
static struct xive *xive_from_pc_blk(uint32_t blk)
{
uint32_t chip_id = PC_BLK_TO_CHIP(blk);
struct proc_chip *c = get_chip(chip_id);
if (!c)
return NULL;
return c->xive;
}
static struct xive *xive_from_vc_blk(uint32_t blk)
{
uint32_t chip_id = VC_BLK_TO_CHIP(blk);
struct proc_chip *c = get_chip(chip_id);
if (!c)
return NULL;
return c->xive;
}
static struct xive_eq *xive_get_eq(struct xive *x, unsigned int idx)
{
struct xive_eq *p;
#ifdef USE_INDIRECT
if (idx >= (x->eq_ind_count * EQ_PER_PAGE))
return NULL;
p = (struct xive_eq *)(x->eq_ind_base[idx / EQ_PER_PAGE] &
VSD_ADDRESS_MASK);
if (!p)
return NULL;
return &p[idx % EQ_PER_PAGE];
#else
if (idx >= MAX_EQ_COUNT)
return NULL;
if (!x->eq_base)
return NULL;
p = x->eq_base;
return p + idx;
#endif
}
static struct xive_ive *xive_get_ive(struct xive *x, unsigned int isn)
{
struct xive_ive *ivt;
uint32_t idx = GIRQ_TO_IDX(isn);
if (GIRQ_IS_ESCALATION(isn)) {
/* Allright, an escalation IVE is buried inside an EQ, let's
* try to find it
*/
struct xive_eq *eq;
if (x->chip_id != VC_BLK_TO_CHIP(GIRQ_TO_BLK(isn))) {
xive_err(x, "xive_get_ive, ESC ISN 0x%x not on right chip\n", isn);
return NULL;
}
eq = xive_get_eq(x, idx);
if (!eq) {
xive_err(x, "xive_get_ive, ESC ISN 0x%x EQ not found\n", isn);
return NULL;
}
return (struct xive_ive *)(char *)&eq->w4;
} else {
/* Check the block matches */
if (isn < x->int_base || isn >= x->int_max) {
xive_err(x, "xive_get_ive, ISN 0x%x not on right chip\n", isn);
return NULL;
}
assert (idx < MAX_INT_ENTRIES);
/* If we support >1 block per chip, this should still work as
* we are likely to make the table contiguous anyway
*/
ivt = x->ivt_base;
assert(ivt);
return ivt + idx;
}
}
static struct xive_vp *xive_get_vp(struct xive *x, unsigned int idx)
{
struct xive_vp *p;
#ifdef USE_INDIRECT
assert(idx < (x->vp_ind_count * VP_PER_PAGE));
p = (struct xive_vp *)(x->vp_ind_base[idx / VP_PER_PAGE] &
VSD_ADDRESS_MASK);
if (!p)
return NULL;
return &p[idx % VP_PER_PAGE];
#else
assert(idx < MAX_VP_COUNT);
p = x->vp_base;
return p + idx;
#endif
}
static void xive_init_default_vp(struct xive_vp *vp,
uint32_t eq_blk, uint32_t eq_idx)
{
memset(vp, 0, sizeof(struct xive_vp));
/* Stash the EQ base in the pressure relief interrupt field */
vp->w1 = (eq_blk << 28) | eq_idx;
vp->w0 = VP_W0_VALID;
}
static void xive_init_emu_eq(uint32_t vp_blk, uint32_t vp_idx,
struct xive_eq *eq, void *backing_page,
uint8_t prio)
{
memset(eq, 0, sizeof(struct xive_eq));
eq->w1 = EQ_W1_GENERATION;
eq->w3 = ((uint64_t)backing_page) & 0xffffffff;
eq->w2 = (((uint64_t)backing_page)) >> 32 & 0x0fffffff;
eq->w6 = SETFIELD(EQ_W6_NVT_BLOCK, 0ul, vp_blk) |
SETFIELD(EQ_W6_NVT_INDEX, 0ul, vp_idx);
eq->w7 = SETFIELD(EQ_W7_F0_PRIORITY, 0ul, prio);
eq->w0 = EQ_W0_VALID | EQ_W0_ENQUEUE |
SETFIELD(EQ_W0_QSIZE, 0ul, EQ_QSIZE_64K) |
EQ_W0_FIRMWARE;
#ifdef EQ_ALWAYS_NOTIFY
eq->w0 |= EQ_W0_UCOND_NOTIFY;
#endif
}
static uint32_t *xive_get_eq_buf(uint32_t eq_blk, uint32_t eq_idx)
{
struct xive *x = xive_from_vc_blk(eq_blk);
struct xive_eq *eq;
uint64_t addr;
assert(x);
eq = xive_get_eq(x, eq_idx);
assert(eq);
assert(eq->w0 & EQ_W0_VALID);
addr = (((uint64_t)eq->w2) & 0x0fffffff) << 32 | eq->w3;
return (uint32_t *)addr;
}
#ifdef USE_INDIRECT
static void *xive_get_donated_page(struct xive *x __unused)
{
return (void *)list_pop_(&x->donated_pages, 0);
}
#endif
#define XIVE_ALLOC_IS_ERR(_idx) ((_idx) >= 0xfffffff0)
#define XIVE_ALLOC_NO_SPACE 0xffffffff /* No possible space */
#define XIVE_ALLOC_NO_IND 0xfffffffe /* Indirect need provisioning */
#define XIVE_ALLOC_NO_MEM 0xfffffffd /* Local allocation failed */
static uint32_t xive_alloc_eq_set(struct xive *x, bool alloc_indirect __unused)
{
uint32_t ind_idx __unused;
int idx;
xive_vdbg(x, "Allocating EQ set...\n");
assert(x->eq_map);
/* Allocate from the EQ bitmap. Each bit is 8 EQs */
idx = bitmap_find_zero_bit(*x->eq_map, 0, MAX_EQ_COUNT >> 3);
if (idx < 0) {
xive_dbg(x, "Allocation from EQ bitmap failed !\n");
return XIVE_ALLOC_NO_SPACE;
}
bitmap_set_bit(*x->eq_map, idx);
idx <<= 3;
xive_vdbg(x, "Got EQs 0x%x..0x%x\n", idx, idx + 7);
#ifdef USE_INDIRECT
/* Calculate the indirect page where the EQs reside */
ind_idx = idx / EQ_PER_PAGE;
/* Is there an indirect page ? If not, check if we can provision it */
if (!x->eq_ind_base[ind_idx]) {
/* Default flags */
uint64_t vsd_flags = SETFIELD(VSD_TSIZE, 0ull, 4) |
SETFIELD(VSD_MODE, 0ull, VSD_MODE_EXCLUSIVE);
void *page;
/* If alloc_indirect is set, allocate the memory from OPAL own,
* otherwise try to provision from the donated pool
*/
if (alloc_indirect) {
/* Allocate/provision indirect page during boot only */
xive_dbg(x, "Indirect empty, provisioning from local pool\n");
page = local_alloc(x->chip_id, 0x10000, 0x10000);
if (!page) {
xive_dbg(x, "provisioning failed !\n");
return XIVE_ALLOC_NO_MEM;
}
vsd_flags |= VSD_FIRMWARE;
} else {
xive_dbg(x, "Indirect empty, provisioning from donated pages\n");
page = xive_get_donated_page(x);
if (!page) {
xive_dbg(x, "none available !\n");
return XIVE_ALLOC_NO_IND;
}
}
memset(page, 0, 0x10000);
x->eq_ind_base[ind_idx] = vsd_flags |
(((uint64_t)page) & VSD_ADDRESS_MASK);
/* Any cache scrub needed ? */
}
#endif /* USE_INDIRECT */
return idx;
}
static void xive_free_eq_set(struct xive *x, uint32_t eqs)
{
uint32_t idx;
xive_vdbg(x, "Freeing EQ set...\n");
assert((eqs & 7) == 0);
assert(x->eq_map);
idx = eqs >> 3;
bitmap_clr_bit(*x->eq_map, idx);
}
#ifdef USE_INDIRECT
static bool xive_provision_vp_ind(struct xive *x, uint32_t vp_idx, uint32_t order)
{
uint32_t pbase, pend, i;
pbase = vp_idx / VP_PER_PAGE;
pend = (vp_idx + (1 << order)) / VP_PER_PAGE;
for (i = pbase; i <= pend; i++) {
void *page;
u64 vsd;
/* Already provisioned ? */
if (x->vp_ind_base[i])
continue;
/* Try to grab a donated page */
page = xive_get_donated_page(x);
if (!page)
return false;
/* Install the page */
memset(page, 0, 0x10000);
vsd = ((uint64_t)page) & VSD_ADDRESS_MASK;
vsd |= SETFIELD(VSD_TSIZE, 0ull, 4);
vsd |= SETFIELD(VSD_MODE, 0ull, VSD_MODE_EXCLUSIVE);
x->vp_ind_base[i] = vsd;
}
return true;
}
#else
static inline bool xive_provision_vp_ind(struct xive *x __unused,
uint32_t vp_idx __unused,
uint32_t order __unused)
{
return true;
}
#endif /* USE_INDIRECT */
#ifdef USE_BLOCK_GROUP_MODE
static void xive_init_vp_allocator(void)
{
/* Initialize chip alloc bits */
xive_chips_alloc_bits = ilog2(xive_block_count);
prlog(PR_INFO, "XIVE: %d chips considered for VP allocations\n",
1 << xive_chips_alloc_bits);
/* Allocate a buddy big enough for MAX_VP_ORDER allocations.
*
* each bit in the buddy represents 1 << xive_chips_alloc_bits
* VPs.
*/
xive_vp_buddy = buddy_create(MAX_VP_ORDER);
assert(xive_vp_buddy);
/* We reserve the whole range of VPs representing HW chips.
*
* These are 0x80..0xff, so order 7 starting at 0x80. This will
* reserve that range on each chip.
*
* XXX This can go away if we just call xive_reset ..
*/
assert(buddy_reserve(xive_vp_buddy, 0x80, 7));
}
static uint32_t xive_alloc_vps(uint32_t order)
{
uint32_t local_order, i;
int vp;
/* The minimum order is 2 VPs per chip */
if (order < (xive_chips_alloc_bits + 1))
order = xive_chips_alloc_bits + 1;
/* We split the allocation */
local_order = order - xive_chips_alloc_bits;
/* We grab that in the global buddy */
assert(xive_vp_buddy);
lock(&xive_buddy_lock);
vp = buddy_alloc(xive_vp_buddy, local_order);
unlock(&xive_buddy_lock);
if (vp < 0)
return XIVE_ALLOC_NO_SPACE;
/* Provision on every chip considered for allocation */
for (i = 0; i < (1 << xive_chips_alloc_bits); i++) {
struct xive *x = xive_from_pc_blk(i);
bool success;
/* Return internal error & log rather than assert ? */
assert(x);
lock(&x->lock);
success = xive_provision_vp_ind(x, vp, local_order);
unlock(&x->lock);
if (!success) {
lock(&xive_buddy_lock);
buddy_free(xive_vp_buddy, vp, local_order);
unlock(&xive_buddy_lock);
return XIVE_ALLOC_NO_IND;
}
}
/* Encode the VP number. "blk" is 0 as this represents
* all blocks and the allocation always starts at 0
*/
return xive_encode_vp(0, vp, order);
}
static void xive_free_vps(uint32_t vp)
{
uint32_t idx;
uint8_t order, local_order;
assert(xive_decode_vp(vp, NULL, &idx, &order, NULL));
/* We split the allocation */
local_order = order - xive_chips_alloc_bits;
/* Free that in the buddy */
lock(&xive_buddy_lock);
buddy_free(xive_vp_buddy, idx, local_order);
unlock(&xive_buddy_lock);
}
#else /* USE_BLOCK_GROUP_MODE */
static void xive_init_vp_allocator(void)
{
struct proc_chip *chip;
for_each_chip(chip) {
struct xive *x = chip->xive;
if (!x)
continue;
/* Each chip has a MAX_VP_ORDER buddy */
x->vp_buddy = buddy_create(MAX_VP_ORDER);
assert(x->vp_buddy);
/* We reserve the whole range of VPs representing HW chips.
*
* These are 0x800..0xfff on block 0 only, so order 11
* starting at 0x800.
*/
if (x->block_id == 0)
assert(buddy_reserve(x->vp_buddy, 0x800, 11));
}
}
static uint32_t xive_alloc_vps(uint32_t order)
{
struct proc_chip *chip;
struct xive *x = NULL;
int vp = -1;
/* Minimum order is 1 */
if (order < 1)
order = 1;
/* Try on every chip */
for_each_chip(chip) {
x = chip->xive;
if (!x)
continue;
assert(x->vp_buddy);
lock(&x->lock);
vp = buddy_alloc(x->vp_buddy, order);
unlock(&x->lock);
if (vp >= 0)
break;
}
if (vp < 0)
return XIVE_ALLOC_NO_SPACE;
/* We have VPs, make sure we have backing for the
* NVTs on that block
*/
if (!xive_provision_vp_ind(x, vp, order)) {
lock(&x->lock);
buddy_free(x->vp_buddy, vp, order);
unlock(&x->lock);
return XIVE_ALLOC_NO_IND;
}
/* Encode the VP number */
return xive_encode_vp(x->block_id, vp, order);
}
static void xive_free_vps(uint32_t vp)
{
uint32_t idx, blk;
uint8_t order;
struct xive *x;
assert(xive_decode_vp(vp, &blk, &idx, &order, NULL));
/* Grab appropriate xive */
x = xive_from_pc_blk(blk);
/* XXX Return error instead ? */
assert(x);
/* Free that in the buddy */
lock(&x->lock);
buddy_free(x->vp_buddy, idx, order);
unlock(&x->lock);
}
#endif /* ndef USE_BLOCK_GROUP_MODE */
enum xive_cache_type {
xive_cache_ivc,
xive_cache_sbc,
xive_cache_eqc,
xive_cache_vpc,
};
static int64_t __xive_cache_watch(struct xive *x, enum xive_cache_type ctype,
uint64_t block, uint64_t idx,
uint32_t start_dword, uint32_t dword_count,
void *new_data, bool light_watch,
bool synchronous);
static void xive_scrub_workaround_vp(struct xive *x, uint32_t block, uint32_t idx __unused)
{
/* VP variant of the workaround described in __xive_cache_scrub(),
* we need to be careful to use for that workaround an NVT that
* sits on the same xive but isn NOT part of a donated indirect
* entry.
*
* The reason is that the dummy cache watch will re-create a
* dirty entry in the cache, even if the entry is marked
* invalid.
*
* Thus if we are about to dispose of the indirect entry backing
* it, we'll cause a checkstop later on when trying to write it
* out.
*
* Note: This means the workaround only works for block group
* mode.
*/
#ifdef USE_BLOCK_GROUP_MODE
__xive_cache_watch(x, xive_cache_vpc, block, INITIAL_VP_BASE, 0,
0, NULL, true, false);
#else
/* WARNING: Some workarounds related to cache scrubs require us to
* have at least one firmware owned (permanent) indirect entry for
* each XIVE instance. This currently only happens in block group
* mode
*/
#warning Block group mode should not be disabled
#endif
}
static void xive_scrub_workaround_eq(struct xive *x, uint32_t block __unused, uint32_t idx)
{
void *mmio;
/* EQ variant of the workaround described in __xive_cache_scrub(),
* a simple non-side effect load from ESn will do
*/
mmio = x->eq_mmio + idx * 0x20000;
/* Ensure the above has returned before we do anything else
* the XIVE store queue is completely empty
*/
load_wait(in_be64(mmio + 0x800));
}
static int64_t __xive_cache_scrub(struct xive *x, enum xive_cache_type ctype,
uint64_t block, uint64_t idx,
bool want_inval, bool want_disable)
{
uint64_t sreg, sregx, mreg, mregx;
uint64_t mval, sval;
#ifdef XIVE_CHECK_LOCKS
assert(lock_held_by_me(&x->lock));
#endif
/* Workaround a HW bug in XIVE where the scrub completion
* isn't ordered by loads, thus the data might still be
* in a queue and may not have reached coherency.
*
* The workaround is two folds: We force the scrub to also
* invalidate, then after the scrub, we do a dummy cache
* watch which will make the HW read the data back, which
* should be ordered behind all the preceding stores.
*
* Update: For EQs we can do a non-side effect ESB load instead
* which is faster.
*/
want_inval = true;
switch (ctype) {
case xive_cache_ivc:
sreg = VC_IVC_SCRUB_TRIG;
sregx = X_VC_IVC_SCRUB_TRIG;
mreg = VC_IVC_SCRUB_MASK;
mregx = X_VC_IVC_SCRUB_MASK;
break;
case xive_cache_sbc:
sreg = VC_SBC_SCRUB_TRIG;
sregx = X_VC_SBC_SCRUB_TRIG;
mreg = VC_SBC_SCRUB_MASK;
mregx = X_VC_SBC_SCRUB_MASK;
break;
case xive_cache_eqc:
sreg = VC_EQC_SCRUB_TRIG;
sregx = X_VC_EQC_SCRUB_TRIG;
mreg = VC_EQC_SCRUB_MASK;
mregx = X_VC_EQC_SCRUB_MASK;
break;
case xive_cache_vpc:
sreg = PC_VPC_SCRUB_TRIG;
sregx = X_PC_VPC_SCRUB_TRIG;
mreg = PC_VPC_SCRUB_MASK;
mregx = X_PC_VPC_SCRUB_MASK;
break;
default:
return OPAL_INTERNAL_ERROR;
}
if (ctype == xive_cache_vpc) {
mval = PC_SCRUB_BLOCK_ID | PC_SCRUB_OFFSET;
sval = SETFIELD(PC_SCRUB_BLOCK_ID, idx, block) |
PC_SCRUB_VALID;
} else {
mval = VC_SCRUB_BLOCK_ID | VC_SCRUB_OFFSET;
sval = SETFIELD(VC_SCRUB_BLOCK_ID, idx, block) |
VC_SCRUB_VALID;
}
if (want_inval)
sval |= PC_SCRUB_WANT_INVAL;
if (want_disable)
sval |= PC_SCRUB_WANT_DISABLE;
__xive_regw(x, mreg, mregx, mval, NULL);
__xive_regw(x, sreg, sregx, sval, NULL);
/* XXX Add timeout !!! */
for (;;) {
sval = __xive_regr(x, sreg, sregx, NULL);
if (!(sval & VC_SCRUB_VALID))
break;
/* Small delay */
time_wait(100);
}
sync();
/* Workaround for HW bug described above (only applies to
* EQC and VPC
*/
if (ctype == xive_cache_eqc)
xive_scrub_workaround_eq(x, block, idx);
else if (ctype == xive_cache_vpc)
xive_scrub_workaround_vp(x, block, idx);
return 0;
}
static int64_t xive_ivc_scrub(struct xive *x, uint64_t block, uint64_t idx)
{
/* IVC has no "want_inval" bit, it always invalidates */
return __xive_cache_scrub(x, xive_cache_ivc, block, idx, false, false);
}
static int64_t xive_vpc_scrub_clean(struct xive *x, uint64_t block, uint64_t idx)
{
return __xive_cache_scrub(x, xive_cache_vpc, block, idx, true, false);
}
static int64_t __xive_cache_watch(struct xive *x, enum xive_cache_type ctype,
uint64_t block, uint64_t idx,
uint32_t start_dword, uint32_t dword_count,
void *new_data, bool light_watch,
bool synchronous)
{
uint64_t sreg, sregx, dreg0, dreg0x;
uint64_t dval0, sval, status;
int64_t i;
#ifdef XIVE_CHECK_LOCKS
assert(lock_held_by_me(&x->lock));
#endif
switch (ctype) {
case xive_cache_eqc:
sreg = VC_EQC_CWATCH_SPEC;
sregx = X_VC_EQC_CWATCH_SPEC;
dreg0 = VC_EQC_CWATCH_DAT0;
dreg0x = X_VC_EQC_CWATCH_DAT0;
sval = SETFIELD(VC_EQC_CWATCH_BLOCKID, idx, block);
break;
case xive_cache_vpc:
sreg = PC_VPC_CWATCH_SPEC;
sregx = X_PC_VPC_CWATCH_SPEC;
dreg0 = PC_VPC_CWATCH_DAT0;
dreg0x = X_PC_VPC_CWATCH_DAT0;
sval = SETFIELD(PC_VPC_CWATCH_BLOCKID, idx, block);
break;
default:
return OPAL_INTERNAL_ERROR;
}
/* The full bit is in the same position for EQC and VPC */
if (!light_watch)
sval |= VC_EQC_CWATCH_FULL;
for (;;) {
/* Write the cache watch spec */
__xive_regw(x, sreg, sregx, sval, NULL);
/* Load data0 register to populate the watch */
dval0 = __xive_regr(x, dreg0, dreg0x, NULL);
/* If new_data is NULL, this is a dummy watch used as a
* workaround for a HW bug
*/
if (!new_data) {
__xive_regw(x, dreg0, dreg0x, dval0, NULL);
return 0;
}
/* Write the words into the watch facility. We write in reverse
* order in case word 0 is part of it as it must be the last
* one written.
*/
for (i = start_dword + dword_count - 1; i >= start_dword ;i--) {
uint64_t dw = ((uint64_t *)new_data)[i - start_dword];
__xive_regw(x, dreg0 + i * 8, dreg0x + i, dw, NULL);
}
/* Write data0 register to trigger the update if word 0 wasn't
* written above
*/
if (start_dword > 0)
__xive_regw(x, dreg0, dreg0x, dval0, NULL);
/* This may not be necessary for light updates (it's possible
* that a sync in sufficient, TBD). Ensure the above is
* complete and check the status of the watch.
*/
status = __xive_regr(x, sreg, sregx, NULL);
/* Bits FULL and CONFLICT are in the same position in
* EQC and VPC
*/
if (!(status & VC_EQC_CWATCH_FULL) ||
!(status & VC_EQC_CWATCH_CONFLICT))
break;
if (!synchronous)
return OPAL_BUSY;
/* XXX Add timeout ? */
}
/* Perform a scrub with "want_invalidate" set to false to push the
* cache updates to memory as well
*/
return __xive_cache_scrub(x, ctype, block, idx, false, false);
}
static int64_t xive_eqc_cache_update(struct xive *x, uint64_t block,
uint64_t idx, uint32_t start_dword,
uint32_t dword_count, void *new_data,
bool light_watch, bool synchronous)
{
return __xive_cache_watch(x, xive_cache_eqc, block, idx,
start_dword, dword_count,
new_data, light_watch, synchronous);
}
static int64_t xive_vpc_cache_update(struct xive *x, uint64_t block,
uint64_t idx, uint32_t start_dword,
uint32_t dword_count, void *new_data,
bool light_watch, bool synchronous)
{
return __xive_cache_watch(x, xive_cache_vpc, block, idx,
start_dword, dword_count,
new_data, light_watch, synchronous);
}
static bool xive_set_vsd(struct xive *x, uint32_t tbl, uint32_t idx, uint64_t v)
{
/* Set VC version */
xive_regw(x, VC_VSD_TABLE_ADDR,
SETFIELD(VST_TABLE_SELECT, 0ull, tbl) |
SETFIELD(VST_TABLE_OFFSET, 0ull, idx));
if (x->last_reg_error)
return false;
/* Hack to workaround DD1 issue with NVT in VC in DD1 */
if (tbl == VST_TSEL_VPDT)
xive_regw(x, VC_VSD_TABLE_DATA, v | VSD_TSIZE);
else
xive_regw(x, VC_VSD_TABLE_DATA, v);
if (x->last_reg_error)
return false;
/* Except for IRQ table, also set PC version */
if (tbl == VST_TSEL_IRQ)
return true;
xive_regw(x, PC_VSD_TABLE_ADDR,
SETFIELD(VST_TABLE_SELECT, 0ull, tbl) |
SETFIELD(VST_TABLE_OFFSET, 0ull, idx));
if (x->last_reg_error)
return false;
xive_regw(x, PC_VSD_TABLE_DATA, v);
if (x->last_reg_error)
return false;
return true;
}
static bool xive_set_local_tables(struct xive *x)
{
uint64_t base, i;
/* These have to be power of 2 sized */
assert(is_pow2(SBE_SIZE));
assert(is_pow2(IVT_SIZE));
/* All tables set as exclusive */
base = SETFIELD(VSD_MODE, 0ull, VSD_MODE_EXCLUSIVE);
/* Set IVT as direct mode */
if (!xive_set_vsd(x, VST_TSEL_IVT, x->block_id, base |
(((uint64_t)x->ivt_base) & VSD_ADDRESS_MASK) |
SETFIELD(VSD_TSIZE, 0ull, ilog2(IVT_SIZE) - 12)))
return false;
/* Set SBE as direct mode */
if (!xive_set_vsd(x, VST_TSEL_SBE, x->block_id, base |
(((uint64_t)x->sbe_base) & VSD_ADDRESS_MASK) |
SETFIELD(VSD_TSIZE, 0ull, ilog2(SBE_SIZE) - 12)))
return false;
#ifdef USE_INDIRECT
/* Set EQDT as indirect mode with 64K subpages */
if (!xive_set_vsd(x, VST_TSEL_EQDT, x->block_id, base |
(((uint64_t)x->eq_ind_base) & VSD_ADDRESS_MASK) |
VSD_INDIRECT | SETFIELD(VSD_TSIZE, 0ull, 4)))
return false;
/* Set VPDT as indirect mode with 64K subpages */
if (!xive_set_vsd(x, VST_TSEL_VPDT, x->block_id, base |
(((uint64_t)x->vp_ind_base) & VSD_ADDRESS_MASK) |
VSD_INDIRECT | SETFIELD(VSD_TSIZE, 0ull, 4)))
return false;
#else
/* Set EQDT as direct mode */
if (!xive_set_vsd(x, VST_TSEL_EQDT, x->block_id, base |
(((uint64_t)x->eq_base) & VSD_ADDRESS_MASK) |
SETFIELD(VSD_TSIZE, 0ull, ilog2(EQT_SIZE) - 12)))
return false;
/* Set VPDT as direct mode */
if (!xive_set_vsd(x, VST_TSEL_VPDT, x->block_id, base |
(((uint64_t)x->vp_base) & VSD_ADDRESS_MASK) |
SETFIELD(VSD_TSIZE, 0ull, ilog2(VPT_SIZE) - 12)))
return false;
#endif
/* Setup quue overflows */
for (i = 0; i < VC_QUEUE_OVF_COUNT; i++) {
u64 addr = ((uint64_t)x->q_ovf) + i * 0x10000;
u64 cfg, sreg, sregx;
if (!xive_set_vsd(x, VST_TSEL_IRQ, i, base |
(addr & VSD_ADDRESS_MASK) |
SETFIELD(VSD_TSIZE, 0ull, 4)))
return false;
sreg = VC_IRQ_CONFIG_IPI + i * 8;
sregx = X_VC_IRQ_CONFIG_IPI + i;
cfg = __xive_regr(x, sreg, sregx, NULL);
cfg |= VC_IRQ_CONFIG_MEMB_EN;
cfg = SETFIELD(VC_IRQ_CONFIG_MEMB_SZ, cfg, 4);
__xive_regw(x, sreg, sregx, cfg, NULL);
}
return true;
}
static bool xive_configure_bars(struct xive *x)
{
uint64_t chip_id = x->chip_id;
uint64_t val;
/* IC BAR */
phys_map_get(chip_id, XIVE_IC, 0, (uint64_t *)&x->ic_base, &x->ic_size);
val = (uint64_t)x->ic_base | CQ_IC_BAR_VALID;
if (IC_PAGE_SIZE == 0x10000) {
val |= CQ_IC_BAR_64K;
x->ic_shift = 16;
} else
x->ic_shift = 12;
xive_regwx(x, CQ_IC_BAR, val);
if (x->last_reg_error)
return false;
/* TM BAR, only configure TM1. Note that this has the same address
* for each chip !!! Hence we create a fake chip 0 and use that for
* all phys_map_get(XIVE_TM) calls.
*/
phys_map_get(0, XIVE_TM, 0, (uint64_t *)&x->tm_base, &x->tm_size);
val = (uint64_t)x->tm_base | CQ_TM_BAR_VALID;
if (TM_PAGE_SIZE == 0x10000) {
x->tm_shift = 16;
val |= CQ_TM_BAR_64K;
} else
x->tm_shift = 12;
xive_regwx(x, CQ_TM1_BAR, val);
if (x->last_reg_error)
return false;
xive_regwx(x, CQ_TM2_BAR, 0);
if (x->last_reg_error)
return false;
/* PC BAR. Clear first, write mask, then write value */
phys_map_get(chip_id, XIVE_PC, 0, (uint64_t *)&x->pc_base, &x->pc_size);
xive_regwx(x, CQ_PC_BAR, 0);
if (x->last_reg_error)
return false;
val = ~(x->pc_size - 1) & CQ_PC_BARM_MASK;
xive_regwx(x, CQ_PC_BARM, val);
if (x->last_reg_error)
return false;
val = (uint64_t)x->pc_base | CQ_PC_BAR_VALID;
xive_regwx(x, CQ_PC_BAR, val);
if (x->last_reg_error)
return false;
/* VC BAR. Clear first, write mask, then write value */
phys_map_get(chip_id, XIVE_VC, 0, (uint64_t *)&x->vc_base, &x->vc_size);
xive_regwx(x, CQ_VC_BAR, 0);
if (x->last_reg_error)
return false;
val = ~(x->vc_size - 1) & CQ_VC_BARM_MASK;
xive_regwx(x, CQ_VC_BARM, val);
if (x->last_reg_error)
return false;
val = (uint64_t)x->vc_base | CQ_VC_BAR_VALID;
xive_regwx(x, CQ_VC_BAR, val);
if (x->last_reg_error)
return false;
/* Calculate some MMIO bases in the VC BAR */
x->esb_mmio = x->vc_base;
x->eq_mmio = x->vc_base + (x->vc_size / VC_MAX_SETS) * VC_ESB_SETS;
/* Print things out */
xive_dbg(x, "IC: %14p [0x%012llx/%d]\n", x->ic_base, x->ic_size,
x->ic_shift);
xive_dbg(x, "TM: %14p [0x%012llx/%d]\n", x->tm_base, x->tm_size,
x->tm_shift);
xive_dbg(x, "PC: %14p [0x%012llx]\n", x->pc_base, x->pc_size);
xive_dbg(x, "VC: %14p [0x%012llx]\n", x->vc_base, x->vc_size);
return true;
}
static void xive_dump_mmio(struct xive *x)
{
prlog(PR_DEBUG, " CQ_CFG_PB_GEN = %016llx\n",
in_be64(x->ic_base + CQ_CFG_PB_GEN));
prlog(PR_DEBUG, " CQ_MSGSND = %016llx\n",
in_be64(x->ic_base + CQ_MSGSND));
}
static bool xive_config_init(struct xive *x)
{
uint64_t val __unused;
/* Configure PC and VC page sizes and disable Linux trigger mode */
xive_regwx(x, CQ_PBI_CTL, CQ_PBI_PC_64K | CQ_PBI_VC_64K | CQ_PBI_FORCE_TM_LOCAL);
if (x->last_reg_error)
return false;
/*** The rest can use MMIO ***/
#ifdef USE_INDIRECT
/* Enable indirect mode in VC config */
val = xive_regr(x, VC_GLOBAL_CONFIG);
val |= VC_GCONF_INDIRECT;
xive_regw(x, VC_GLOBAL_CONFIG, val);
#endif
/* Enable indirect mode in PC config */
val = xive_regr(x, PC_GLOBAL_CONFIG);
#ifdef USE_INDIRECT
val |= PC_GCONF_INDIRECT;
#endif
val |= PC_GCONF_CHIPID_OVR;
val = SETFIELD(PC_GCONF_CHIPID, val, x->block_id);
xive_regw(x, PC_GLOBAL_CONFIG, val);
xive_dbg(x, "PC_GLOBAL_CONFIG=%016llx\n", val);
val = xive_regr(x, PC_TCTXT_CFG);
#ifdef USE_BLOCK_GROUP_MODE
val |= PC_TCTXT_CFG_BLKGRP_EN | PC_TCTXT_CFG_HARD_CHIPID_BLK;
#endif
val |= PC_TCTXT_CHIPID_OVERRIDE;
val |= PC_TCTXT_CFG_TARGET_EN;
val = SETFIELD(PC_TCTXT_CHIPID, val, x->block_id);
if (x->rev >= XIVE_REV_2) {
val = SETFIELD(PC_TCTXT_INIT_AGE, val, 0x2);
val |= PC_TCTXT_CFG_LGS_EN;
/* Disable pressure relief as we hijack the field in the VPs */
val &= ~PC_TCTXT_CFG_STORE_ACK;
}
xive_regw(x, PC_TCTXT_CFG, val);
xive_dbg(x, "PC_TCTXT_CFG=%016llx\n", val);
/* Subsequent inits are DD2 only */
if (x->rev < XIVE_REV_2)
return true;
val = xive_regr(x, CQ_CFG_PB_GEN);
/* 1-block-per-chip mode */
val = SETFIELD(CQ_INT_ADDR_OPT, val, 2);
xive_regw(x, CQ_CFG_PB_GEN, val);
/* Enable StoreEOI */
val = xive_regr(x, VC_SBC_CONFIG);
val |= VC_SBC_CONF_CPLX_CIST | VC_SBC_CONF_CIST_BOTH;
val |= VC_SBC_CONF_NO_UPD_PRF;
xive_regw(x, VC_SBC_CONFIG, val);
/* Enable block tracking */
val = xive_regr(x, PC_TCTXT_TRACK);
val |= PC_TCTXT_TRACK_EN;
xive_regw(x, PC_TCTXT_TRACK, val);
/* Enable relaxed ordering of trigger forwarding */
val = xive_regr(x, VC_AIB_TX_ORDER_TAG2);
val |= VC_AIB_TX_ORDER_TAG2_REL_TF;
xive_regw(x, VC_AIB_TX_ORDER_TAG2, val);
/* Enable new END s and u bits for silent escalate */
val = xive_regr(x, VC_EQC_CONFIG);
val |= VC_EQC_CONF_ENABLE_END_s_BIT;
val |= VC_EQC_CONF_ENABLE_END_u_BIT;
xive_regw(x, VC_EQC_CONFIG, val);
/* Disable error reporting in the FIR for info errors
* from the VC.
*/
xive_regw(x, CQ_FIRMASK_OR, 3ull);
return true;
}
static bool xive_setup_set_xlate(struct xive *x)
{
unsigned int i;
/* Configure EDT for ESBs (aka IPIs) */
xive_regw(x, CQ_TAR, CQ_TAR_TBL_AUTOINC | CQ_TAR_TSEL_EDT);
if (x->last_reg_error)
return false;
for (i = 0; i < VC_ESB_SETS; i++) {
xive_regw(x, CQ_TDR,
/* IPI type */
(1ull << 62) |
/* block ID */
(((uint64_t)x->block_id) << 48) |
/* offset */
(((uint64_t)i) << 32));
if (x->last_reg_error)
return false;
}
/* Configure EDT for ENDs (aka EQs) */
for (i = 0; i < VC_END_SETS; i++) {
xive_regw(x, CQ_TDR,
/* EQ type */
(2ull << 62) |
/* block ID */
(((uint64_t)x->block_id) << 48) |
/* offset */
(((uint64_t)i) << 32));
if (x->last_reg_error)
return false;
}
/* Configure VDT */
xive_regw(x, CQ_TAR, CQ_TAR_TBL_AUTOINC | CQ_TAR_TSEL_VDT);
if (x->last_reg_error)
return false;
for (i = 0; i < PC_MAX_SETS; i++) {
xive_regw(x, CQ_TDR,
/* Valid bit */
(1ull << 63) |
/* block ID */
(((uint64_t)x->block_id) << 48) |
/* offset */
(((uint64_t)i) << 32));
if (x->last_reg_error)
return false;
}
return true;
}
static bool xive_prealloc_tables(struct xive *x)
{
uint32_t i __unused, vp_init_count __unused, vp_init_base __unused;
uint32_t pbase __unused, pend __unused;
uint64_t al __unused;
/* ESB/SBE has 4 entries per byte */
x->sbe_base = local_alloc(x->chip_id, SBE_SIZE, SBE_SIZE);
if (!x->sbe_base) {
xive_err(x, "Failed to allocate SBE\n");
return false;
}
/* SBEs are initialized to 0b01 which corresponds to "ints off" */
memset(x->sbe_base, 0x55, SBE_SIZE);
xive_dbg(x, "SBE at %p size 0x%x\n", x->sbe_base, IVT_SIZE);
/* EAS/IVT entries are 8 bytes */
x->ivt_base = local_alloc(x->chip_id, IVT_SIZE, IVT_SIZE);
if (!x->ivt_base) {
xive_err(x, "Failed to allocate IVT\n");
return false;
}
/* We clear the entries (non-valid). They will be initialized
* when actually used
*/
memset(x->ivt_base, 0, IVT_SIZE);
xive_dbg(x, "IVT at %p size 0x%x\n", x->ivt_base, IVT_SIZE);
#ifdef USE_INDIRECT
/* Indirect EQ table. (XXX Align to 64K until I figure out the
* HW requirements)
*/
al = (IND_EQ_TABLE_SIZE + 0xffff) & ~0xffffull;
x->eq_ind_base = local_alloc(x->chip_id, al, al);
if (!x->eq_ind_base) {
xive_err(x, "Failed to allocate EQ indirect table\n");
return false;
}
memset(x->eq_ind_base, 0, al);
xive_dbg(x, "EQi at %p size 0x%llx\n", x->eq_ind_base, al);
x->eq_ind_count = IND_EQ_TABLE_SIZE / 8;
/* Indirect VP table. (XXX Align to 64K until I figure out the
* HW requirements)
*/
al = (IND_VP_TABLE_SIZE + 0xffff) & ~0xffffull;
x->vp_ind_base = local_alloc(x->chip_id, al, al);
if (!x->vp_ind_base) {
xive_err(x, "Failed to allocate VP indirect table\n");
return false;
}
xive_dbg(x, "VPi at %p size 0x%llx\n", x->vp_ind_base, al);
x->vp_ind_count = IND_VP_TABLE_SIZE / 8;
memset(x->vp_ind_base, 0, al);
/* Populate/initialize VP/EQs indirect backing */
#ifdef USE_BLOCK_GROUP_MODE
vp_init_count = INITIAL_VP_COUNT;
vp_init_base = INITIAL_VP_BASE;
#else
vp_init_count = x->block_id == 0 ? INITIAL_BLK0_VP_COUNT : 0;
vp_init_base = INITIAL_BLK0_VP_BASE;
#endif
/* Allocate pages for some VPs in indirect mode */
pbase = vp_init_base / VP_PER_PAGE;
pend = (vp_init_base + vp_init_count) / VP_PER_PAGE;
xive_dbg(x, "Allocating pages %d to %d of VPs (for %d VPs)\n",
pbase, pend, vp_init_count);
for (i = pbase; i <= pend; i++) {
void *page;
u64 vsd;
/* Indirect entries have a VSD format */
page = local_alloc(x->chip_id, 0x10000, 0x10000);
if (!page) {
xive_err(x, "Failed to allocate VP page\n");
return false;
}
xive_dbg(x, "VP%d at %p size 0x%x\n", i, page, 0x10000);
memset(page, 0, 0x10000);
vsd = ((uint64_t)page) & VSD_ADDRESS_MASK;
vsd |= SETFIELD(VSD_TSIZE, 0ull, 4);
vsd |= SETFIELD(VSD_MODE, 0ull, VSD_MODE_EXCLUSIVE);
vsd |= VSD_FIRMWARE;
x->vp_ind_base[i] = vsd;
}
#else /* USE_INDIRECT */
/* Allocate direct EQ and VP tables */
x->eq_base = local_alloc(x->chip_id, EQT_SIZE, EQT_SIZE);
if (!x->eq_base) {
xive_err(x, "Failed to allocate EQ table\n");
return false;
}
memset(x->eq_base, 0, EQT_SIZE);
x->vp_base = local_alloc(x->chip_id, VPT_SIZE, VPT_SIZE);
if (!x->vp_base) {
xive_err(x, "Failed to allocate VP table\n");
return false;
}
/* We clear the entries (non-valid). They will be initialized
* when actually used
*/
memset(x->vp_base, 0, VPT_SIZE);
#endif /* USE_INDIRECT */
/* Allocate the queue overflow pages */
x->q_ovf = local_alloc(x->chip_id, VC_QUEUE_OVF_COUNT * 0x10000, 0x10000);
if (!x->q_ovf) {
xive_err(x, "Failed to allocate queue overflow\n");
return false;
}
return true;
}
#ifdef USE_INDIRECT
static void xive_add_provisioning_properties(void)
{
uint32_t chips[XIVE_MAX_CHIPS];
uint32_t i, count;
dt_add_property_cells(xive_dt_node,
"ibm,xive-provision-page-size", 0x10000);
#ifdef USE_BLOCK_GROUP_MODE
count = 1 << xive_chips_alloc_bits;
#else
count = xive_block_count;
#endif
for (i = 0; i < count; i++)
chips[i] = xive_block_to_chip[i];
dt_add_property(xive_dt_node, "ibm,xive-provision-chips",
chips, 4 * count);
}
#else
static inline void xive_add_provisioning_properties(void) { }
#endif
static void xive_create_mmio_dt_node(struct xive *x)
{
uint64_t tb = (uint64_t)x->tm_base;
uint32_t stride = 1u << x->tm_shift;
xive_dt_node = dt_new_addr(dt_root, "interrupt-controller", tb);
assert(xive_dt_node);
dt_add_property_u64s(xive_dt_node, "reg",
tb + 0 * stride, stride,
tb + 1 * stride, stride,
tb + 2 * stride, stride,
tb + 3 * stride, stride);
dt_add_property_strings(xive_dt_node, "compatible",
"ibm,opal-xive-pe", "ibm,opal-intc");
dt_add_property_cells(xive_dt_node, "ibm,xive-eq-sizes",
12, 16, 21, 24);
dt_add_property_cells(xive_dt_node, "ibm,xive-#priorities", 8);
xive_add_provisioning_properties();
}
static void xive_setup_forward_ports(struct xive *x, struct proc_chip *remote_chip)
{
struct xive *remote_xive = remote_chip->xive;
uint64_t base = SETFIELD(VSD_MODE, 0ull, VSD_MODE_FORWARD);
uint32_t remote_id = remote_xive->block_id;
uint64_t nport;
/* ESB(SBE), EAS(IVT) and END(EQ) point to the notify port */
nport = ((uint64_t)remote_xive->ic_base) + (1ul << remote_xive->ic_shift);
if (!xive_set_vsd(x, VST_TSEL_IVT, remote_id, base | nport))
goto error;
if (!xive_set_vsd(x, VST_TSEL_SBE, remote_id, base | nport))
goto error;
if (!xive_set_vsd(x, VST_TSEL_EQDT, remote_id, base | nport))
goto error;
/* NVT/VPD points to the remote NVT MMIO sets */
if (!xive_set_vsd(x, VST_TSEL_VPDT, remote_id,
base | ((uint64_t)remote_xive->pc_base) |
SETFIELD(VSD_TSIZE, 0ull, ilog2(x->pc_size) - 12)))
goto error;
return;
error:
xive_err(x, "Failure configuring forwarding ports\n");
}
static void late_init_one_xive(struct xive *x)
{
struct proc_chip *chip;
/* We need to setup the cross-chip forward ports. Let's
* iterate all chip and set them up accordingly
*/
for_each_chip(chip) {
/* We skip ourselves or chips without a xive */
if (chip->xive == x || !chip->xive)
continue;
/* Setup our forward ports to that chip */
xive_setup_forward_ports(x, chip);
}
}
static bool xive_check_ipi_free(struct xive *x, uint32_t irq, uint32_t count)
{
uint32_t i, idx = GIRQ_TO_IDX(irq);
for (i = 0; i < count; i++)
if (bitmap_tst_bit(*x->ipi_alloc_map, idx + i))
return false;
return true;
}
uint32_t xive_alloc_hw_irqs(uint32_t chip_id, uint32_t count, uint32_t align)
{
struct proc_chip *chip = get_chip(chip_id);
struct xive *x;
uint32_t base, i;
assert(chip);
assert(is_pow2(align));
x = chip->xive;
assert(x);
lock(&x->lock);
/* Allocate the HW interrupts */
base = x->int_hw_bot - count;
base &= ~(align - 1);
if (base < x->int_ipi_top) {
xive_err(x,
"HW alloc request for %d interrupts aligned to %d failed\n",
count, align);
unlock(&x->lock);
return XIVE_IRQ_ERROR;
}
if (!xive_check_ipi_free(x, base, count)) {
xive_err(x, "HWIRQ boot allocator request overlaps dynamic allocator\n");
unlock(&x->lock);
return XIVE_IRQ_ERROR;
}
x->int_hw_bot = base;
/* Initialize the corresponding IVT entries to sane defaults,
* IE entry is valid, not routed and masked, EQ data is set
* to the GIRQ number.
*/
for (i = 0; i < count; i++) {
struct xive_ive *ive = xive_get_ive(x, base + i);
ive->w = IVE_VALID | IVE_MASKED | SETFIELD(IVE_EQ_DATA, 0ul, base + i);
}
unlock(&x->lock);
return base;
}
uint32_t xive_alloc_ipi_irqs(uint32_t chip_id, uint32_t count, uint32_t align)
{
struct proc_chip *chip = get_chip(chip_id);
struct xive *x;
uint32_t base, i;
assert(chip);
assert(is_pow2(align));
x = chip->xive;
assert(x);
lock(&x->lock);
/* Allocate the IPI interrupts */
base = x->int_ipi_top + (align - 1);
base &= ~(align - 1);
if (base >= x->int_hw_bot) {
xive_err(x,
"IPI alloc request for %d interrupts aligned to %d failed\n",
count, align);
unlock(&x->lock);
return XIVE_IRQ_ERROR;
}
if (!xive_check_ipi_free(x, base, count)) {
xive_err(x, "IPI boot allocator request overlaps dynamic allocator\n");
unlock(&x->lock);
return XIVE_IRQ_ERROR;
}
x->int_ipi_top = base + count;
/* Initialize the corresponding IVT entries to sane defaults,
* IE entry is valid, not routed and masked, EQ data is set
* to the GIRQ number.
*/
for (i = 0; i < count; i++) {
struct xive_ive *ive = xive_get_ive(x, base + i);
ive->w = IVE_VALID | IVE_MASKED |
SETFIELD(IVE_EQ_DATA, 0ul, base + i);
}
unlock(&x->lock);
return base;
}
void *xive_get_trigger_port(uint32_t girq)
{
uint32_t idx = GIRQ_TO_IDX(girq);
struct xive *x;
/* Find XIVE on which the IVE resides */
x = xive_from_isn(girq);
if (!x)
return NULL;
if (GIRQ_IS_ESCALATION(girq)) {
/* There is no trigger page for escalation interrupts */
return NULL;
} else {
/* Make sure it's an IPI on that chip */
if (girq < x->int_base ||
girq >= x->int_ipi_top)
return NULL;
return x->esb_mmio + idx * 0x20000;
}
}
uint64_t xive_get_notify_port(uint32_t chip_id, uint32_t ent)
{
struct proc_chip *chip = get_chip(chip_id);
struct xive *x;
uint32_t offset = 0;
assert(chip);
x = chip->xive;
assert(x);
/* This is where we can assign a different HW queue to a different
* source by offsetting into the cache lines of the notify port
*
* For now we keep it very basic, this will have to be looked at
* again on real HW with some proper performance analysis.
*
* Here's what Florian says on the matter:
*
* <<
* The first 2k of the notify port page can all be used for PCIe triggers
*
* However the idea would be that we try to use the first 4 cache lines to
* balance the PCIe Interrupt requests to use the least used snoop buses
* (we went from 2 to 4 snoop buses for P9). snoop 0 is heavily used
* (I think TLBIs are using that in addition to the normal addresses),
* snoop 3 is used for all Int commands, so I think snoop 2 (CL 2 in the
* page) is the least used overall. So we probably should that one for
* the Int commands from PCIe.
*
* In addition, our EAS cache supports hashing to provide "private" cache
* areas for the PHBs in the shared 1k EAS cache. This allows e.g. to avoid
* that one "thrashing" PHB thrashes the EAS cache for everyone, or provide
* a PHB with a private area that would allow high cache hits in case of a
* device using very few interrupts. The hashing is based on the offset within
* the cache line. So using that, you can e.g. set the EAS cache up so that
* IPIs use 512 entries, the x16 PHB uses 256 entries and the x8 PHBs 128
* entries each - or IPIs using all entries and sharing with PHBs, so PHBs
* would use 512 entries and 256 entries respectively.
*
* This is a tuning we would probably do later in the lab, but as a "prep"
* we should set up the different PHBs such that they are using different
* 8B-aligned offsets within the cache line, so e.g.
* PH4_0 addr 0x100 (CL 2 DW0
* PH4_1 addr 0x108 (CL 2 DW1)
* PH4_2 addr 0x110 (CL 2 DW2)
* etc.
* >>
*
* I'm using snoop1 for PHB0 and snoop2 for everybody else.
*/
switch(ent) {
case XIVE_HW_SRC_PHBn(0):
offset = 0x100;
break;
case XIVE_HW_SRC_PHBn(1):
offset = 0x208;
break;
case XIVE_HW_SRC_PHBn(2):
offset = 0x210;
break;
case XIVE_HW_SRC_PHBn(3):
offset = 0x218;
break;
case XIVE_HW_SRC_PHBn(4):
offset = 0x220;
break;
case XIVE_HW_SRC_PHBn(5):
offset = 0x228;
break;
case XIVE_HW_SRC_PSI:
offset = 0x230;
break;
default:
assert(false);
return 0;
}
/* Notify port is the second page of the IC BAR */
return ((uint64_t)x->ic_base) + (1ul << x->ic_shift) + offset;
}
/* Manufacture the powerbus packet bits 32:63 */
__attrconst uint32_t xive_get_notify_base(uint32_t girq)
{
return (GIRQ_TO_BLK(girq) << 28) | GIRQ_TO_IDX(girq);
}
static bool xive_get_irq_targetting(uint32_t isn, uint32_t *out_target,
uint8_t *out_prio, uint32_t *out_lirq)
{
struct xive_ive *ive;
struct xive *x, *eq_x;
struct xive_eq *eq;
uint32_t eq_blk, eq_idx;
uint32_t vp_blk __unused, vp_idx;
uint32_t prio, server;
bool is_escalation = GIRQ_IS_ESCALATION(isn);
/* Find XIVE on which the IVE resides */
x = xive_from_isn(isn);
if (!x)
return false;
/* Grab the IVE */
ive = xive_get_ive(x, isn);
if (!ive)
return false;
if (!(ive->w & IVE_VALID) && !is_escalation) {
xive_err(x, "ISN %x lead to invalid IVE !\n", isn);
return false;
}
if (out_lirq)
*out_lirq = GETFIELD(IVE_EQ_DATA, ive->w);
/* Find the EQ and its xive instance */
eq_blk = GETFIELD(IVE_EQ_BLOCK, ive->w);
eq_idx = GETFIELD(IVE_EQ_INDEX, ive->w);
eq_x = xive_from_vc_blk(eq_blk);
/* This can fail if the interrupt hasn't been initialized yet
* but it should also be masked, so fail silently
*/
if (!eq_x)
goto pick_default;
eq = xive_get_eq(eq_x, eq_idx);
if (!eq)
goto pick_default;
/* XXX Check valid and format 0 */
/* No priority conversion, return the actual one ! */
if (ive->w & IVE_MASKED)
prio = 0xff;
else
prio = GETFIELD(EQ_W7_F0_PRIORITY, eq->w7);
if (out_prio)
*out_prio = prio;
vp_blk = GETFIELD(EQ_W6_NVT_BLOCK, eq->w6);
vp_idx = GETFIELD(EQ_W6_NVT_INDEX, eq->w6);
server = VP2PIR(vp_blk, vp_idx);
if (out_target)
*out_target = server;
xive_vdbg(eq_x, "EQ info for ISN %x: prio=%d, server=0x%x (VP %x/%x)\n",
isn, prio, server, vp_blk, vp_idx);
return true;
pick_default:
xive_vdbg(eq_x, "EQ info for ISN %x: Using masked defaults\n", isn);
if (out_prio)
*out_prio = 0xff;
/* Pick a random default, me will be fine ... */
if (out_target)
*out_target = mfspr(SPR_PIR);
return true;
}
static inline bool xive_eq_for_target(uint32_t target, uint8_t prio,
uint32_t *out_eq_blk,
uint32_t *out_eq_idx)
{
struct xive *x;
struct xive_vp *vp;
uint32_t vp_blk, vp_idx;
uint32_t eq_blk, eq_idx;
if (prio > 7)
return false;
/* Get the VP block/index from the target word */
if (!xive_decode_vp(target, &vp_blk, &vp_idx, NULL, NULL))
return false;
/* Grab the target VP's XIVE */
x = xive_from_pc_blk(vp_blk);
if (!x)
return false;
/* Find the VP structrure where we stashed the EQ number */
vp = xive_get_vp(x, vp_idx);
if (!vp)
return false;
/* Grab it, it's in the pressure relief interrupt field,
* top 4 bits are the block (word 1).
*/
eq_blk = vp->w1 >> 28;
eq_idx = vp->w1 & 0x0fffffff;
/* Currently the EQ block and VP block should be the same */
if (eq_blk != vp_blk) {
xive_err(x, "eq_blk != vp_blk (%d vs. %d) for target 0x%08x/%d\n",
eq_blk, vp_blk, target, prio);
assert(false);
}
if (out_eq_blk)
*out_eq_blk = eq_blk;
if (out_eq_idx)
*out_eq_idx = eq_idx + prio;
return true;
}
static int64_t xive_set_irq_targetting(uint32_t isn, uint32_t target,
uint8_t prio, uint32_t lirq,
bool synchronous)
{
struct xive *x;
struct xive_ive *ive;
uint32_t eq_blk, eq_idx;
bool is_escalation = GIRQ_IS_ESCALATION(isn);
uint64_t new_ive;
int64_t rc;
/* Find XIVE on which the IVE resides */
x = xive_from_isn(isn);
if (!x)
return OPAL_PARAMETER;
/* Grab the IVE */
ive = xive_get_ive(x, isn);
if (!ive)
return OPAL_PARAMETER;
if (!(ive->w & IVE_VALID) && !is_escalation) {
xive_err(x, "ISN %x lead to invalid IVE !\n", isn);
return OPAL_PARAMETER;
}
lock(&x->lock);
/* If using emulation mode, fixup prio to the only supported one */
if (xive_mode == XIVE_MODE_EMU && prio != 0xff)
prio = XIVE_EMULATION_PRIO;
/* Read existing IVE */
new_ive = ive->w;
/* Are we masking ? */
if (prio == 0xff && !is_escalation) {
new_ive |= IVE_MASKED;
xive_vdbg(x, "ISN %x masked !\n", isn);
/* Put prio 7 in the EQ */
prio = 7;
} else {
/* Unmasking */
new_ive = ive->w & ~IVE_MASKED;
xive_vdbg(x, "ISN %x unmasked !\n", isn);
/* For normal interrupt sources, keep track of which ones
* we ever enabled since the last reset
*/
if (!is_escalation)
bitmap_set_bit(*x->int_enabled_map, GIRQ_TO_IDX(isn));
}
/* If prio isn't 0xff, re-target the IVE. First find the EQ
* correponding to the target
*/
if (prio != 0xff) {
if (!xive_eq_for_target(target, prio, &eq_blk, &eq_idx)) {
xive_err(x, "Can't find EQ for target/prio 0x%x/%d\n",
target, prio);
unlock(&x->lock);
return OPAL_PARAMETER;
}
/* Try to update it atomically to avoid an intermediary
* stale state
*/
new_ive = SETFIELD(IVE_EQ_BLOCK, new_ive, eq_blk);
new_ive = SETFIELD(IVE_EQ_INDEX, new_ive, eq_idx);
}
new_ive = SETFIELD(IVE_EQ_DATA, new_ive, lirq);
xive_vdbg(x,"ISN %x routed to eq %x/%x lirq=%08x IVE=%016llx !\n",
isn, eq_blk, eq_idx, lirq, new_ive);
/* Updating the cache differs between real IVEs and escalation
* IVEs inside an EQ
*/
if (is_escalation) {
rc = xive_eqc_cache_update(x, x->block_id, GIRQ_TO_IDX(isn),
2, 1, &new_ive, true, synchronous);
} else {
sync();
ive->w = new_ive;
rc = xive_ivc_scrub(x, x->block_id, GIRQ_TO_IDX(isn));
}
unlock(&x->lock);
return rc;
}
static int64_t xive_source_get_xive(struct irq_source *is __unused,
uint32_t isn, uint16_t *server,
uint8_t *prio)
{
uint32_t target_id;
if (xive_get_irq_targetting(isn, &target_id, prio, NULL)) {
*server = target_id << 2;
return OPAL_SUCCESS;
} else
return OPAL_PARAMETER;
}
static void xive_update_irq_mask(struct xive_src *s, uint32_t idx, bool masked)
{
void *mmio_base = s->esb_mmio + (1ul << s->esb_shift) * idx;
uint32_t offset;
/* XXX FIXME: A quick mask/umask can make us shoot an interrupt
* more than once to a queue. We need to keep track better
*/
if (s->flags & XIVE_SRC_EOI_PAGE1)
mmio_base += 1ull << (s->esb_shift - 1);
if (masked)
offset = 0xd00; /* PQ = 01 */
else
offset = 0xc00; /* PQ = 00 */
if (s->flags & XIVE_SRC_SHIFT_BUG)
offset <<= 4;
in_be64(mmio_base + offset);
}
static int64_t xive_sync(struct xive *x)
{
uint64_t r;
void *p;
lock(&x->lock);
/* Second 2K range of second page */
p = x->ic_base + (1 << x->ic_shift) + 0x800;
/* TODO: Make this more fine grained */
out_be64(p + (10 << 7), 0); /* Sync OS escalations */
out_be64(p + (11 << 7), 0); /* Sync Hyp escalations */
out_be64(p + (12 << 7), 0); /* Sync Redistribution */
out_be64(p + ( 8 << 7), 0); /* Sync IPI */
out_be64(p + ( 9 << 7), 0); /* Sync HW */
#define SYNC_MASK \
(VC_EQC_CONF_SYNC_IPI | \
VC_EQC_CONF_SYNC_HW | \
VC_EQC_CONF_SYNC_ESC1 | \
VC_EQC_CONF_SYNC_ESC2 | \
VC_EQC_CONF_SYNC_REDI)
/* XXX Add timeout */
for (;;) {
r = xive_regrx(x, VC_EQC_CONFIG);
if ((r & SYNC_MASK) == SYNC_MASK)
break;
cpu_relax();
}
xive_regw(x, VC_EQC_CONFIG, r & ~SYNC_MASK);
/* Workaround HW issue, read back before allowing a new sync */
xive_regr(x, VC_GLOBAL_CONFIG);
unlock(&x->lock);
return 0;
}
static int64_t __xive_set_irq_config(struct irq_source *is, uint32_t girq,
uint64_t vp, uint8_t prio, uint32_t lirq,
bool update_esb, bool no_sync)
{
struct xive_src *s = container_of(is, struct xive_src, is);
uint32_t old_target, vp_blk;
u8 old_prio;
int64_t rc;
/* Grab existing target */
if (!xive_get_irq_targetting(girq, &old_target, &old_prio, NULL))
return OPAL_PARAMETER;
/* Let XIVE configure the EQ. We do the update without the
* synchronous flag, thus a cache update failure will result
* in us returning OPAL_BUSY
*/
rc = xive_set_irq_targetting(girq, vp, prio, lirq, false);
if (rc)
return rc;
/* Do we need to update the mask ? */
if (old_prio != prio && (old_prio == 0xff || prio == 0xff)) {
/* The source has special variants of masking/unmasking */
if (s->orig_ops && s->orig_ops->set_xive) {
/* We don't pass as server on source ops ! Targetting
* is handled by the XIVE
*/
rc = s->orig_ops->set_xive(is, girq, 0, prio);
} else if (update_esb) {
/* Ensure it's enabled/disabled in the source
* controller
*/
xive_update_irq_mask(s, girq - s->esb_base,
prio == 0xff);
}
}
/*
* Synchronize the source and old target XIVEs to ensure that
* all pending interrupts to the old target have reached their
* respective queue.
*
* WARNING: This assumes the VP and it's queues are on the same
* XIVE instance !
*/
if (no_sync)
return OPAL_SUCCESS;
xive_sync(s->xive);
if (xive_decode_vp(old_target, &vp_blk, NULL, NULL, NULL)) {
struct xive *x = xive_from_pc_blk(vp_blk);
if (x)
xive_sync(x);
}
return OPAL_SUCCESS;
}
static int64_t xive_set_irq_config(uint32_t girq, uint64_t vp, uint8_t prio,
uint32_t lirq, bool update_esb)
{
struct irq_source *is = irq_find_source(girq);
return __xive_set_irq_config(is, girq, vp, prio, lirq, update_esb,
false);
}
static int64_t xive_source_set_xive(struct irq_source *is,
uint32_t isn, uint16_t server, uint8_t prio)
{
/*
* WARNING: There is an inherent race with the use of the
* mask bit in the EAS/IVT. When masked, interrupts are "lost"
* but their P/Q bits are still set. So when unmasking, one has
* to check the P bit and possibly trigger a resend.
*
* We "deal" with it by relying on the fact that the OS will
* lazy disable MSIs. Thus mask will only be called if the
* interrupt occurred while already logically masked. Thus
* losing subsequent occurrences is of no consequences, we just
* need to "cleanup" P and Q when unmasking.
*
* This needs to be documented in the OPAL APIs
*/
/* Unmangle server */
server >>= 2;
/* Set logical irq to match isn */
return __xive_set_irq_config(is, isn, server, prio, isn, true, false);
}
void __xive_source_eoi(struct irq_source *is, uint32_t isn)
{
struct xive_src *s = container_of(is, struct xive_src, is);
uint32_t idx = isn - s->esb_base;
struct xive_ive *ive;
void *mmio_base;
uint64_t eoi_val;
/* Grab the IVE */
ive = s->xive->ivt_base;
if (!ive)
return;
ive += GIRQ_TO_IDX(isn);
/* XXX To fix the races with mask/unmask potentially causing
* multiple queue entries, we need to keep track of EOIs here,
* before the masked test below
*/
/* If it's invalid or masked, don't do anything */
if ((ive->w & IVE_MASKED) || !(ive->w & IVE_VALID))
return;
/* Grab MMIO control address for that ESB */
mmio_base = s->esb_mmio + (1ull << s->esb_shift) * idx;
/* If the XIVE supports the new "store EOI facility, use it */
if (s->flags & XIVE_SRC_STORE_EOI)
out_be64(mmio_base + 0x400, 0);
else {
uint64_t offset;
/* Otherwise for EOI, we use the special MMIO that does
* a clear of both P and Q and returns the old Q.
*
* This allows us to then do a re-trigger if Q was set
* rather than synthetizing an interrupt in software
*/
if (s->flags & XIVE_SRC_EOI_PAGE1)
mmio_base += 1ull << (s->esb_shift - 1);
/* LSIs don't need anything special, just EOI */
if (s->flags & XIVE_SRC_LSI)
in_be64(mmio_base);
else {
offset = 0xc00;
if (s->flags & XIVE_SRC_SHIFT_BUG)
offset <<= 4;
eoi_val = in_be64(mmio_base + offset);
xive_vdbg(s->xive, "ISN: %08x EOI=%llx\n",
isn, eoi_val);
if (!(eoi_val & 1))
return;
/* Re-trigger always on page0 or page1 ? */
out_be64(mmio_base, 0);
}
}
}
static void xive_source_eoi(struct irq_source *is, uint32_t isn)
{
struct xive_src *s = container_of(is, struct xive_src, is);
if (s->orig_ops && s->orig_ops->eoi)
s->orig_ops->eoi(is, isn);
else
__xive_source_eoi(is, isn);
}
static void xive_source_interrupt(struct irq_source *is, uint32_t isn)
{
struct xive_src *s = container_of(is, struct xive_src, is);
if (!s->orig_ops || !s->orig_ops->interrupt)
return;
s->orig_ops->interrupt(is, isn);
}
static uint64_t xive_source_attributes(struct irq_source *is, uint32_t isn)
{
struct xive_src *s = container_of(is, struct xive_src, is);
if (!s->orig_ops || !s->orig_ops->attributes)
return IRQ_ATTR_TARGET_LINUX;
return s->orig_ops->attributes(is, isn);
}
static char *xive_source_name(struct irq_source *is, uint32_t isn)
{
struct xive_src *s = container_of(is, struct xive_src, is);
if (!s->orig_ops || !s->orig_ops->name)
return NULL;
return s->orig_ops->name(is, isn);
}
static const struct irq_source_ops xive_irq_source_ops = {
.get_xive = xive_source_get_xive,
.set_xive = xive_source_set_xive,
.eoi = xive_source_eoi,
.interrupt = xive_source_interrupt,
.attributes = xive_source_attributes,
.name = xive_source_name,
};
static void __xive_register_source(struct xive *x, struct xive_src *s,
uint32_t base, uint32_t count,
uint32_t shift, void *mmio, uint32_t flags,
bool secondary, void *data,
const struct irq_source_ops *orig_ops)
{
s->esb_base = base;
s->esb_shift = shift;
s->esb_mmio = mmio;
s->flags = flags;
s->orig_ops = orig_ops;
s->xive = x;
s->is.start = base;
s->is.end = base + count;
s->is.ops = &xive_irq_source_ops;
s->is.data = data;
__register_irq_source(&s->is, secondary);
}
void xive_register_hw_source(uint32_t base, uint32_t count, uint32_t shift,
void *mmio, uint32_t flags, void *data,
const struct irq_source_ops *ops)
{
struct xive_src *s;
struct xive *x = xive_from_isn(base);
assert(x);
s = malloc(sizeof(struct xive_src));
assert(s);
__xive_register_source(x, s, base, count, shift, mmio, flags,
false, data, ops);
}
void xive_register_ipi_source(uint32_t base, uint32_t count, void *data,
const struct irq_source_ops *ops)
{
struct xive_src *s;
struct xive *x = xive_from_isn(base);
uint32_t base_idx = GIRQ_TO_IDX(base);
void *mmio_base;
uint32_t flags = XIVE_SRC_EOI_PAGE1 | XIVE_SRC_TRIGGER_PAGE;
assert(x);
assert(base >= x->int_base && (base + count) <= x->int_ipi_top);
s = malloc(sizeof(struct xive_src));
assert(s);
/* Store EOI supported on DD2.0 */
if (x->rev >= XIVE_REV_2)
flags |= XIVE_SRC_STORE_EOI;
/* Callbacks assume the MMIO base corresponds to the first
* interrupt of that source structure so adjust it
*/
mmio_base = x->esb_mmio + (1ul << IPI_ESB_SHIFT) * base_idx;
__xive_register_source(x, s, base, count, IPI_ESB_SHIFT, mmio_base,
flags, false, data, ops);
}
static struct xive *init_one_xive(struct dt_node *np)
{
struct xive *x;
struct proc_chip *chip;
uint32_t flags;
x = zalloc(sizeof(struct xive));
assert(x);
x->x_node = np;
x->xscom_base = dt_get_address(np, 0, NULL);
x->chip_id = dt_get_chip_id(np);
/* "Allocate" a new block ID for the chip */
x->block_id = xive_block_count++;
assert (x->block_id < XIVE_MAX_CHIPS);
xive_block_to_chip[x->block_id] = x->chip_id;
init_lock(&x->lock);
chip = get_chip(x->chip_id);
assert(chip);
x->rev = XIVE_REV_UNKNOWN;
if (chip->type == PROC_CHIP_P9_NIMBUS) {
if ((chip->ec_level & 0xf0) == 0x10)
x->rev = XIVE_REV_1;
else if ((chip->ec_level & 0xf0) == 0x20)
x->rev = XIVE_REV_2;
} else if (chip->type == PROC_CHIP_P9_CUMULUS)
x->rev = XIVE_REV_2;
xive_dbg(x, "Initializing rev %d block ID %d...\n",
x->rev, x->block_id);
chip->xive = x;
#ifdef USE_INDIRECT
list_head_init(&x->donated_pages);
#endif
/* Base interrupt numbers and allocator init */
/* XXX Consider allocating half as many ESBs than MMIO space
* so that HW sources land outside of ESB space...
*/
x->int_base = BLKIDX_TO_GIRQ(x->block_id, 0);
x->int_max = x->int_base + MAX_INT_ENTRIES;
x->int_hw_bot = x->int_max;
x->int_ipi_top = x->int_base;
/* Make sure we never hand out "2" as it's reserved for XICS emulation
* IPI returns. Generally start handing out at 0x10
*/
if (x->int_ipi_top < XIVE_INT_SAFETY_GAP)
x->int_ipi_top = XIVE_INT_SAFETY_GAP;
/* Allocate a few bitmaps */
x->eq_map = zalloc(BITMAP_BYTES(MAX_EQ_COUNT >> 3));
assert(x->eq_map);
/* Make sure we don't hand out 0 */
bitmap_set_bit(*x->eq_map, 0);
x->int_enabled_map = zalloc(BITMAP_BYTES(MAX_INT_ENTRIES));
assert(x->int_enabled_map);
x->ipi_alloc_map = zalloc(BITMAP_BYTES(MAX_INT_ENTRIES));
assert(x->ipi_alloc_map);
xive_dbg(x, "Handling interrupts [%08x..%08x]\n",
x->int_base, x->int_max - 1);
/* System dependant values that must be set before BARs */
//xive_regwx(x, CQ_CFG_PB_GEN, xx);
//xive_regwx(x, CQ_MSGSND, xx);
/* Setup the BARs */
if (!xive_configure_bars(x))
goto fail;
/* Some basic global inits such as page sizes etc... */
if (!xive_config_init(x))
goto fail;
/* Configure the set translations for MMIO */
if (!xive_setup_set_xlate(x))
goto fail;
/* Dump some MMIO registers for diagnostics */
xive_dump_mmio(x);
/* Pre-allocate a number of tables */
if (!xive_prealloc_tables(x))
goto fail;
/* Configure local tables in VSDs (forward ports will be
* handled later)
*/
if (!xive_set_local_tables(x))
goto fail;
/* Register built-in source controllers (aka IPIs) */
flags = XIVE_SRC_EOI_PAGE1 | XIVE_SRC_TRIGGER_PAGE;
if (x->rev >= XIVE_REV_2)
flags |= XIVE_SRC_STORE_EOI;
__xive_register_source(x, &x->ipis, x->int_base,
x->int_hw_bot - x->int_base, IPI_ESB_SHIFT,
x->esb_mmio, flags, true, NULL, NULL);
/* Register escalation sources */
__xive_register_source(x, &x->esc_irqs,
MAKE_ESCALATION_GIRQ(x->block_id, 0),
MAX_EQ_COUNT, EQ_ESB_SHIFT,
x->eq_mmio, XIVE_SRC_EOI_PAGE1,
false, NULL, NULL);
return x;
fail:
xive_err(x, "Initialization failed...\n");
/* Should this be fatal ? */
//assert(false);
return NULL;
}
/*
* XICS emulation
*/
static void xive_ipi_init(struct xive *x, struct cpu_thread *cpu)
{
struct xive_cpu_state *xs = cpu->xstate;
assert(xs);
__xive_set_irq_config(&x->ipis.is, xs->ipi_irq, cpu->pir,
XIVE_EMULATION_PRIO, xs->ipi_irq,
true, false);
}
static void xive_ipi_eoi(struct xive *x, uint32_t idx)
{
uint8_t *mm = x->esb_mmio + idx * 0x20000;
uint8_t eoi_val;
/* For EOI, we use the special MMIO that does a clear of both
* P and Q and returns the old Q.
*
* This allows us to then do a re-trigger if Q was set rather
* than synthetizing an interrupt in software
*/
eoi_val = in_8(mm + 0x10c00);
if (eoi_val & 1) {
out_8(mm, 0);
}
}
static void xive_ipi_trigger(struct xive *x, uint32_t idx)
{
uint8_t *mm = x->esb_mmio + idx * 0x20000;
xive_vdbg(x, "Trigger IPI 0x%x\n", idx);
out_8(mm, 0);
}
static void xive_reset_enable_thread(struct cpu_thread *c)
{
struct proc_chip *chip = get_chip(c->chip_id);
struct xive *x = chip->xive;
uint32_t fc, bit;
/* Get fused core number */
fc = (c->pir >> 3) & 0xf;
/* Get bit in register */
bit = c->pir & 0x3f;
/* Get which register to access */
if (fc < 8) {
xive_regw(x, PC_THREAD_EN_REG0_CLR, PPC_BIT(bit));
xive_regw(x, PC_THREAD_EN_REG0_SET, PPC_BIT(bit));
} else {
xive_regw(x, PC_THREAD_EN_REG1_CLR, PPC_BIT(bit));
xive_regw(x, PC_THREAD_EN_REG1_SET, PPC_BIT(bit));
}
}
void xive_cpu_callin(struct cpu_thread *cpu)
{
struct xive_cpu_state *xs = cpu->xstate;
uint8_t old_w2, w2;
if (!xs)
return;
/* Reset the HW thread context and enable it */
xive_reset_enable_thread(cpu);
/* Set VT to 1 */
old_w2 = in_8(xs->tm_ring1 + TM_QW3_HV_PHYS + TM_WORD2);
out_8(xs->tm_ring1 + TM_QW3_HV_PHYS + TM_WORD2, 0x80);
w2 = in_8(xs->tm_ring1 + TM_QW3_HV_PHYS + TM_WORD2);
xive_cpu_dbg(cpu, "Initialized TIMA VP=%x/%x W01=%016llx W2=%02x->%02x\n",
xs->vp_blk, xs->vp_idx,
in_be64(xs->tm_ring1 + TM_QW3_HV_PHYS),
old_w2, w2);
}
#ifdef XIVE_DEBUG_INIT_CACHE_UPDATES
static bool xive_check_eq_update(struct xive *x, uint32_t idx, struct xive_eq *eq)
{
struct xive_eq *eq_p = xive_get_eq(x, idx);
struct xive_eq eq2;
assert(eq_p);
eq2 = *eq_p;
if (memcmp(eq, &eq2, sizeof(eq)) != 0) {
xive_err(x, "EQ update mismatch idx %d\n", idx);
xive_err(x, "want: %08x %08x %08x %08x\n",
eq->w0, eq->w1, eq->w2, eq->w3);
xive_err(x, " %08x %08x %08x %08x\n",
eq->w4, eq->w5, eq->w6, eq->w7);
xive_err(x, "got : %08x %08x %08x %08x\n",
eq2.w0, eq2.w1, eq2.w2, eq2.w3);
xive_err(x, " %08x %08x %08x %08x\n",
eq2.w4, eq2.w5, eq2.w6, eq2.w7);
return false;
}
return true;
}
static bool xive_check_vpc_update(struct xive *x, uint32_t idx, struct xive_vp *vp)
{
struct xive_vp *vp_p = xive_get_vp(x, idx);
struct xive_vp vp2;
assert(vp_p);
vp2 = *vp_p;
if (memcmp(vp, &vp2, sizeof(vp)) != 0) {
xive_err(x, "VP update mismatch idx %d\n", idx);
xive_err(x, "want: %08x %08x %08x %08x\n",
vp->w0, vp->w1, vp->w2, vp->w3);
xive_err(x, " %08x %08x %08x %08x\n",
vp->w4, vp->w5, vp->w6, vp->w7);
xive_err(x, "got : %08x %08x %08x %08x\n",
vp2.w0, vp2.w1, vp2.w2, vp2.w3);
xive_err(x, " %08x %08x %08x %08x\n",
vp2.w4, vp2.w5, vp2.w6, vp2.w7);
return false;
}
return true;
}
#else
static inline bool xive_check_eq_update(struct xive *x __unused,
uint32_t idx __unused,
struct xive_eq *eq __unused)
{
return true;
}
static inline bool xive_check_vpc_update(struct xive *x __unused,
uint32_t idx __unused,
struct xive_vp *vp __unused)
{
return true;
}
#endif
#ifdef XIVE_EXTRA_CHECK_INIT_CACHE
static void xive_special_cache_check(struct xive *x, uint32_t blk, uint32_t idx)
{
struct xive_vp vp = {};
uint32_t i;
for (i = 0; i < 1000; i++) {
struct xive_vp *vp_m = xive_get_vp(x, idx);
memset(vp_m, (~i) & 0xff, sizeof(*vp_m));
sync();
vp.w1 = (i << 16) | i;
xive_vpc_cache_update(x, blk, idx,
0, 8, &vp, false, true);
if (!xive_check_vpc_update(x, idx, &vp)) {
xive_dbg(x, "Test failed at %d iterations\n", i);
return;
}
}
xive_dbg(x, "1000 iterations test success at %d/0x%x\n", blk, idx);
}
#else
static inline void xive_special_cache_check(struct xive *x __unused,
uint32_t blk __unused,
uint32_t idx __unused)
{
}
#endif
static void xive_setup_hw_for_emu(struct xive_cpu_state *xs)
{
struct xive_eq eq;
struct xive_vp vp;
struct xive *x_eq, *x_vp;
/* Grab the XIVE where the VP resides. It could be different from
* the local chip XIVE if not using block group mode
*/
x_vp = xive_from_pc_blk(xs->vp_blk);
assert(x_vp);
/* Grab the XIVE where the EQ resides. It will be the same as the
* VP one with the current provisioning but I prefer not making
* this code depend on it.
*/
x_eq = xive_from_vc_blk(xs->eq_blk);
assert(x_eq);
/* Initialize the structure */
xive_init_emu_eq(xs->vp_blk, xs->vp_idx, &eq,
xs->eq_page, XIVE_EMULATION_PRIO);
/* Use the cache watch to write it out */
lock(&x_eq->lock);
xive_eqc_cache_update(x_eq, xs->eq_blk,
xs->eq_idx + XIVE_EMULATION_PRIO,
0, 4, &eq, false, true);
xive_check_eq_update(x_eq, xs->eq_idx + XIVE_EMULATION_PRIO, &eq);
/* Extra testing of cache watch & scrub facilities */
xive_special_cache_check(x_vp, xs->vp_blk, xs->vp_idx);
unlock(&x_eq->lock);
/* Initialize/enable the VP */
xive_init_default_vp(&vp, xs->eq_blk, xs->eq_idx);
/* Use the cache watch to write it out */
lock(&x_vp->lock);
xive_vpc_cache_update(x_vp, xs->vp_blk, xs->vp_idx,
0, 8, &vp, false, true);
xive_check_vpc_update(x_vp, xs->vp_idx, &vp);
unlock(&x_vp->lock);
}
static void xive_init_cpu_emulation(struct xive_cpu_state *xs,
struct cpu_thread *cpu)
{
struct xive *x;
/* Setup HW EQ and VP */
xive_setup_hw_for_emu(xs);
/* Setup and unmask the IPI */
xive_ipi_init(xs->xive, cpu);
/* Initialize remaining state */
xs->cppr = 0;
xs->mfrr = 0xff;
xs->eqbuf = xive_get_eq_buf(xs->vp_blk,
xs->eq_idx + XIVE_EMULATION_PRIO);
assert(xs->eqbuf);
memset(xs->eqbuf, 0, 0x10000);
xs->eqptr = 0;
xs->eqmsk = (0x10000/4) - 1;
xs->eqgen = 0;
x = xive_from_vc_blk(xs->eq_blk);
assert(x);
xs->eqmmio = x->eq_mmio + (xs->eq_idx + XIVE_EMULATION_PRIO) * 0x20000;
}
static void xive_init_cpu_exploitation(struct xive_cpu_state *xs)
{
struct xive_vp vp;
struct xive *x_vp;
/* Grab the XIVE where the VP resides. It could be different from
* the local chip XIVE if not using block group mode
*/
x_vp = xive_from_pc_blk(xs->vp_blk);
assert(x_vp);
/* Initialize/enable the VP */
xive_init_default_vp(&vp, xs->eq_blk, xs->eq_idx);
/* Use the cache watch to write it out */
lock(&x_vp->lock);
xive_vpc_cache_update(x_vp, xs->vp_blk, xs->vp_idx,
0, 8, &vp, false, true);
unlock(&x_vp->lock);
/* Clenaup remaining state */
xs->cppr = 0;
xs->mfrr = 0xff;
xs->eqbuf = NULL;
xs->eqptr = 0;
xs->eqmsk = 0;
xs->eqgen = 0;
xs->eqmmio = NULL;
}
static void xive_configure_ex_special_bar(struct xive *x, struct cpu_thread *c)
{
uint64_t xa, val;
int64_t rc;
xive_cpu_dbg(c, "Setting up special BAR\n");
xa = XSCOM_ADDR_P9_EX(pir_to_core_id(c->pir), P9X_EX_NCU_SPEC_BAR);
val = (uint64_t)x->tm_base | P9X_EX_NCU_SPEC_BAR_ENABLE;
if (x->tm_shift == 16)
val |= P9X_EX_NCU_SPEC_BAR_256K;
xive_cpu_dbg(c, "NCU_SPEC_BAR_XA[%08llx]=%016llx\n", xa, val);
rc = xscom_write(c->chip_id, xa, val);
if (rc) {
xive_cpu_err(c, "Failed to setup NCU_SPEC_BAR\n");
/* XXXX what do do now ? */
}
}
static void xive_provision_cpu(struct xive_cpu_state *xs, struct cpu_thread *c)
{
struct xive *x;
void *p;
/* Physical VPs are pre-allocated */
xs->vp_blk = PIR2VP_BLK(c->pir);
xs->vp_idx = PIR2VP_IDX(c->pir);
/* For now we use identical block IDs for VC and PC but that might
* change. We allocate the EQs on the same XIVE as the VP.
*/
xs->eq_blk = xs->vp_blk;
/* Grab the XIVE where the EQ resides. It could be different from
* the local chip XIVE if not using block group mode
*/
x = xive_from_vc_blk(xs->eq_blk);
assert(x);
/* Allocate a set of EQs for that VP */
xs->eq_idx = xive_alloc_eq_set(x, true);
assert(!XIVE_ALLOC_IS_ERR(xs->eq_idx));
/* Provision one of the queues. Allocate the memory on the
* chip where the CPU resides
*/
p = local_alloc(c->chip_id, 0x10000, 0x10000);
if (!p) {
xive_err(x, "Failed to allocate EQ backing store\n");
assert(false);
}
xs->eq_page = p;
}
static void xive_init_cpu(struct cpu_thread *c)
{
struct proc_chip *chip = get_chip(c->chip_id);
struct xive *x = chip->xive;
struct xive_cpu_state *xs;
if (!x)
return;
/*
* Each core pair (EX) needs this special BAR setup to have the
* right powerbus cycle for the TM area (as it has the same address
* on all chips so it's somewhat special).
*
* Because we don't want to bother trying to figure out which core
* of a pair is present we just do the setup for each of them, which
* is harmless.
*/
if (cpu_is_thread0(c))
xive_configure_ex_special_bar(x, c);
/* Initialize the state structure */
c->xstate = xs = local_alloc(c->chip_id, sizeof(struct xive_cpu_state), 1);
assert(xs);
memset(xs, 0, sizeof(struct xive_cpu_state));
xs->xive = x;
init_lock(&xs->lock);
/* Shortcut to TM HV ring */
xs->tm_ring1 = x->tm_base + (1u << x->tm_shift);
/* Allocate an IPI */
xs->ipi_irq = xive_alloc_ipi_irqs(c->chip_id, 1, 1);
xive_cpu_dbg(c, "CPU IPI is irq %08x\n", xs->ipi_irq);
/* Provision a VP and some EQDs for a physical CPU */
xive_provision_cpu(xs, c);
/* Initialize the XICS emulation related fields */
xive_init_cpu_emulation(xs, c);
}
static void xive_init_cpu_properties(struct cpu_thread *cpu)
{
struct cpu_thread *t;
uint32_t iprop[8][2] = { };
uint32_t i;
assert(cpu_thread_count <= 8);
if (!cpu->node)
return;
for (i = 0; i < cpu_thread_count; i++) {
t = (i == 0) ? cpu : find_cpu_by_pir(cpu->pir + i);
if (!t)
continue;
iprop[i][0] = t->xstate->ipi_irq;
iprop[i][1] = 0; /* Edge */
}
dt_add_property(cpu->node, "interrupts", iprop, cpu_thread_count * 8);
dt_add_property_cells(cpu->node, "interrupt-parent", get_ics_phandle());
}
#ifdef XIVE_DEBUG_DUPLICATES
static uint32_t xive_count_irq_copies(struct xive_cpu_state *xs, uint32_t ref)
{
uint32_t i, irq;
uint32_t cnt = 0;
uint32_t pos = xs->eqptr;
uint32_t gen = xs->eqgen;
for (i = 0; i < 0x3fff; i++) {
irq = xs->eqbuf[pos];
if ((irq >> 31) == gen)
break;
if (irq == ref)
cnt++;
pos = (pos + 1) & xs->eqmsk;
if (!pos)
gen ^= 1;
}
return cnt;
}
#else
static inline uint32_t xive_count_irq_copies(struct xive_cpu_state *xs __unused,
uint32_t ref __unused)
{
return 1;
}
#endif
static uint32_t xive_read_eq(struct xive_cpu_state *xs, bool just_peek)
{
uint32_t cur, copies;
xive_cpu_vdbg(this_cpu(), " EQ %s... IDX=%x MSK=%x G=%d\n",
just_peek ? "peek" : "read",
xs->eqptr, xs->eqmsk, xs->eqgen);
cur = xs->eqbuf[xs->eqptr];
xive_cpu_vdbg(this_cpu(), " cur: %08x [%08x %08x %08x ...]\n", cur,
xs->eqbuf[(xs->eqptr + 1) & xs->eqmsk],
xs->eqbuf[(xs->eqptr + 2) & xs->eqmsk],
xs->eqbuf[(xs->eqptr + 3) & xs->eqmsk]);
if ((cur >> 31) == xs->eqgen)
return 0;
/* Debug: check for duplicate interrupts in the queue */
copies = xive_count_irq_copies(xs, cur);
if (copies > 1) {
struct xive_eq *eq;
prerror("Wow ! Dups of irq %x, found %d copies !\n",
cur & 0x7fffffff, copies);
prerror("[%08x > %08x %08x %08x %08x ...] eqgen=%x eqptr=%x jp=%d\n",
xs->eqbuf[(xs->eqptr - 1) & xs->eqmsk],
xs->eqbuf[(xs->eqptr + 0) & xs->eqmsk],
xs->eqbuf[(xs->eqptr + 1) & xs->eqmsk],
xs->eqbuf[(xs->eqptr + 2) & xs->eqmsk],
xs->eqbuf[(xs->eqptr + 3) & xs->eqmsk],
xs->eqgen, xs->eqptr, just_peek);
lock(&xs->xive->lock);
__xive_cache_scrub(xs->xive, xive_cache_eqc, xs->eq_blk,
xs->eq_idx + XIVE_EMULATION_PRIO,
false, false);
unlock(&xs->xive->lock);
eq = xive_get_eq(xs->xive, xs->eq_idx + XIVE_EMULATION_PRIO);
prerror("EQ @%p W0=%08x W1=%08x qbuf @%p\n",
eq, eq->w0, eq->w1, xs->eqbuf);
}
log_add(xs, LOG_TYPE_POPQ, 7, cur,
xs->eqbuf[(xs->eqptr + 1) & xs->eqmsk],
xs->eqbuf[(xs->eqptr + 2) & xs->eqmsk],
copies,
xs->eqptr, xs->eqgen, just_peek);
if (!just_peek) {
xs->eqptr = (xs->eqptr + 1) & xs->eqmsk;
if (xs->eqptr == 0)
xs->eqgen ^= 1;
xs->total_irqs++;
}
return cur & 0x00ffffff;
}
static uint8_t xive_sanitize_cppr(uint8_t cppr)
{
if (cppr == 0xff || cppr == 0)
return cppr;
else
return XIVE_EMULATION_PRIO;
}
static inline uint8_t opal_xive_check_pending(struct xive_cpu_state *xs,
uint8_t cppr)
{
uint8_t mask = (cppr > 7) ? 0xff : ~((0x100 >> cppr) - 1);
return xs->pending & mask;
}
static void opal_xive_update_cppr(struct xive_cpu_state *xs, u8 cppr)
{
/* Peform the update */
xs->cppr = cppr;
out_8(xs->tm_ring1 + TM_QW3_HV_PHYS + TM_CPPR, cppr);
/* Trigger the IPI if it's still more favored than the CPPR
*
* This can lead to a bunch of spurrious retriggers if the
* IPI is queued up behind other interrupts but that's not
* a big deal and keeps the code simpler
*/
if (xs->mfrr < cppr)
xive_ipi_trigger(xs->xive, GIRQ_TO_IDX(xs->ipi_irq));
}
static int64_t opal_xive_eoi(uint32_t xirr)
{
struct cpu_thread *c = this_cpu();
struct xive_cpu_state *xs = c->xstate;
uint32_t isn = xirr & 0x00ffffff;
struct xive *src_x;
bool special_ipi = false;
uint8_t cppr;
/*
* In exploitation mode, this is supported as a way to perform
* an EOI via a FW calls. This can be needed to workaround HW
* implementation bugs for example. In this case interrupts will
* have the OPAL_XIVE_IRQ_EOI_VIA_FW flag set.
*
* In that mode the entire "xirr" argument is interpreterd as
* a global IRQ number (including the escalation bit), ther is
* no split between the top 8 bits for CPPR and bottom 24 for
* the interrupt number.
*/
if (xive_mode != XIVE_MODE_EMU)
return irq_source_eoi(xirr) ? OPAL_SUCCESS : OPAL_PARAMETER;
if (!xs)
return OPAL_INTERNAL_ERROR;
xive_cpu_vdbg(c, "EOI xirr=%08x cur_cppr=%d\n", xirr, xs->cppr);
/* Limit supported CPPR values from OS */
cppr = xive_sanitize_cppr(xirr >> 24);
lock(&xs->lock);
log_add(xs, LOG_TYPE_EOI, 3, isn, xs->eqptr, xs->eqgen);
/* If this was our magic IPI, convert to IRQ number */
if (isn == 2) {
isn = xs->ipi_irq;
special_ipi = true;
xive_cpu_vdbg(c, "User EOI for IPI !\n");
}
/* First check if we have stuff in that queue. If we do, don't bother with
* doing an EOI on the EQ. Just mark that priority pending, we'll come
* back later.
*
* If/when supporting multiple queues we would have to check them all
* in ascending prio order up to the passed-in CPPR value (exclusive).
*/
if (xive_read_eq(xs, true)) {
xive_cpu_vdbg(c, " isn %08x, skip, queue non empty\n", xirr);
xs->pending |= 1 << XIVE_EMULATION_PRIO;
}
#ifndef EQ_ALWAYS_NOTIFY
else {
uint8_t eoi_val;
/* Perform EQ level EOI. Only one EQ for now ...
*
* Note: We aren't doing an actual EOI. Instead we are clearing
* both P and Q and will re-check the queue if Q was set.
*/
eoi_val = in_8(xs->eqmmio + 0xc00);
xive_cpu_vdbg(c, " isn %08x, eoi_val=%02x\n", xirr, eoi_val);
/* Q was set ? Check EQ again after doing a sync to ensure
* ordering.
*/
if (eoi_val & 1) {
sync();
if (xive_read_eq(xs, true))
xs->pending |= 1 << XIVE_EMULATION_PRIO;
}
}
#endif
/* Perform source level EOI if it's not our emulated MFRR IPI
* otherwise EOI ourselves
*/
src_x = xive_from_isn(isn);
if (src_x) {
uint32_t idx = GIRQ_TO_IDX(isn);
/* Is it an IPI ? */
if (special_ipi) {
xive_ipi_eoi(src_x, idx);
} else {
/* Otherwise go through the source mechanism */
xive_vdbg(src_x, "EOI of IDX %x in EXT range\n", idx);
irq_source_eoi(isn);
}
} else {
xive_cpu_err(c, " EOI unknown ISN %08x\n", isn);
}
/* Finally restore CPPR */
opal_xive_update_cppr(xs, cppr);
xive_cpu_vdbg(c, " pending=0x%x cppr=%d\n", xs->pending, cppr);
unlock(&xs->lock);
/* Return whether something is pending that is suitable for
* delivery considering the new CPPR value. This can be done
* without lock as these fields are per-cpu.
*/
return opal_xive_check_pending(xs, cppr) ? 1 : 0;
}
#ifdef XIVE_CHECK_MISROUTED_IPI
static void xive_dump_eq(uint32_t eq_blk, uint32_t eq_idx)
{
struct cpu_thread *me = this_cpu();
struct xive *x;
struct xive_eq *eq;
x = xive_from_vc_blk(eq_blk);
if (!x)
return;
eq = xive_get_eq(x, eq_idx);
if (!eq)
return;
xive_cpu_err(me, "EQ: %08x %08x %08x %08x (@%p)\n",
eq->w0, eq->w1, eq->w2, eq->w3, eq);
xive_cpu_err(me, " %08x %08x %08x %08x\n",
eq->w4, eq->w5, eq->w6, eq->w7);
}
static int64_t __opal_xive_dump_emu(struct xive_cpu_state *xs, uint32_t pir);
static bool check_misrouted_ipi(struct cpu_thread *me, uint32_t irq)
{
struct cpu_thread *c;
for_each_present_cpu(c) {
struct xive_cpu_state *xs = c->xstate;
struct xive_ive *ive;
uint32_t ipi_target, i, eq_blk, eq_idx;
struct proc_chip *chip;
struct xive *x;
if (!xs)
continue;
if (irq == xs->ipi_irq) {
xive_cpu_err(me, "misrouted IPI 0x%x, should"
" be aimed at CPU 0x%x\n",
irq, c->pir);
xive_cpu_err(me, " my eq_page=%p eqbuff=%p eq=0x%x/%x\n",
me->xstate->eq_page, me->xstate->eqbuf,
me->xstate->eq_blk, me->xstate->eq_idx + XIVE_EMULATION_PRIO);
xive_cpu_err(me, "tgt eq_page=%p eqbuff=%p eq=0x%x/%x\n",
c->xstate->eq_page, c->xstate->eqbuf,
c->xstate->eq_blk, c->xstate->eq_idx + XIVE_EMULATION_PRIO);
__opal_xive_dump_emu(me->xstate, me->pir);
__opal_xive_dump_emu(c->xstate, c->pir);
if (xive_get_irq_targetting(xs->ipi_irq, &ipi_target, NULL, NULL))
xive_cpu_err(me, "target=%08x\n", ipi_target);
else
xive_cpu_err(me, "target=???\n");
/* Find XIVE on which the IVE resides */
x = xive_from_isn(irq);
if (!x) {
xive_cpu_err(me, "no xive attached\n");
return true;
}
ive = xive_get_ive(x, irq);
if (!ive) {
xive_cpu_err(me, "no ive attached\n");
return true;
}
xive_cpu_err(me, "ive=%016llx\n", ive->w);
for_each_chip(chip) {
x = chip->xive;
if (!x)
continue;
ive = x->ivt_base;
for (i = 0; i < MAX_INT_ENTRIES; i++) {
if ((ive[i].w & IVE_EQ_DATA) == irq) {
eq_blk = GETFIELD(IVE_EQ_BLOCK, ive[i].w);
eq_idx = GETFIELD(IVE_EQ_INDEX, ive[i].w);
xive_cpu_err(me, "Found source: 0x%x ive=%016llx\n"
" eq 0x%x/%x",
BLKIDX_TO_GIRQ(x->block_id, i),
ive[i].w, eq_blk, eq_idx);
xive_dump_eq(eq_blk, eq_idx);
}
}
}
return true;
}
}
return false;
}
#else
static inline bool check_misrouted_ipi(struct cpu_thread *c __unused,
uint32_t irq __unused)
{
return false;
}
#endif
static int64_t opal_xive_get_xirr(uint32_t *out_xirr, bool just_poll)
{
struct cpu_thread *c = this_cpu();
struct xive_cpu_state *xs = c->xstate;
uint16_t ack;
uint8_t active, old_cppr;
if (xive_mode != XIVE_MODE_EMU)
return OPAL_WRONG_STATE;
if (!xs)
return OPAL_INTERNAL_ERROR;
if (!out_xirr)
return OPAL_PARAMETER;
*out_xirr = 0;
lock(&xs->lock);
/*
* Due to the need to fetch multiple interrupts from the EQ, we
* need to play some tricks.
*
* The "pending" byte in "xs" keeps track of the priorities that
* are known to have stuff to read (currently we only use one).
*
* It is set in EOI and cleared when consumed here. We don't bother
* looking ahead here, EOI will do it.
*
* We do need to still do an ACK every time in case a higher prio
* exception occurred (though we don't do prio yet... right ? still
* let's get the basic design right !).
*
* Note that if we haven't found anything via ack, but did find
* something in the queue, we must also raise CPPR back.
*/
xive_cpu_vdbg(c, "get_xirr W01=%016llx W2=%08x\n",
__in_be64(xs->tm_ring1 + TM_QW3_HV_PHYS),
__in_be32(xs->tm_ring1 + TM_QW3_HV_PHYS + 8));
/* Perform the HV Ack cycle */
if (just_poll)
ack = __in_be64(xs->tm_ring1 + TM_QW3_HV_PHYS) >> 48;
else
ack = __in_be16(xs->tm_ring1 + TM_SPC_ACK_HV_REG);
sync();
xive_cpu_vdbg(c, "get_xirr,%s=%04x\n", just_poll ? "POLL" : "ACK", ack);
/* Capture the old CPPR which we will return with the interrupt */
old_cppr = xs->cppr;
switch(GETFIELD(TM_QW3_NSR_HE, (ack >> 8))) {
case TM_QW3_NSR_HE_NONE:
break;
case TM_QW3_NSR_HE_POOL:
break;
case TM_QW3_NSR_HE_PHYS:
/* Mark pending and keep track of the CPPR update */
if (!just_poll && (ack & 0xff) != 0xff) {
xs->cppr = ack & 0xff;
xs->pending |= 1 << xs->cppr;
}
break;
case TM_QW3_NSR_HE_LSI:
break;
}
/* Calculate "active" lines as being the pending interrupts
* masked by the "old" CPPR
*/
active = opal_xive_check_pending(xs, old_cppr);
log_add(xs, LOG_TYPE_XIRR, 6, old_cppr, xs->cppr, xs->pending, active,
xs->eqptr, xs->eqgen);
#ifdef XIVE_PERCPU_LOG
{
struct xive_eq *eq;
lock(&xs->xive->lock);
__xive_cache_scrub(xs->xive, xive_cache_eqc, xs->eq_blk,
xs->eq_idx + XIVE_EMULATION_PRIO,
false, false);
unlock(&xs->xive->lock);
eq = xive_get_eq(xs->xive, xs->eq_idx + XIVE_EMULATION_PRIO);
log_add(xs, LOG_TYPE_EQD, 2, eq->w0, eq->w1);
}
#endif /* XIVE_PERCPU_LOG */
xive_cpu_vdbg(c, " cppr=%d->%d pending=0x%x active=%x\n",
old_cppr, xs->cppr, xs->pending, active);
if (active) {
/* Find highest pending */
uint8_t prio = ffs(active) - 1;
uint32_t val;
/* XXX Use "p" to select queue */
val = xive_read_eq(xs, just_poll);
if (val && val < XIVE_INT_SAFETY_GAP)
xive_cpu_err(c, "Bogus interrupt 0x%x received !\n", val);
/* Convert to magic IPI if needed */
if (val == xs->ipi_irq)
val = 2;
if (check_misrouted_ipi(c, val))
val = 2;
*out_xirr = (old_cppr << 24) | val;
/* If we are polling, that's it */
if (just_poll)
goto skip;
/* Clear the pending bit. EOI will set it again if needed. We
* could check the queue but that's not really critical here.
*/
xs->pending &= ~(1 << prio);
/* Spurrious IPB bit, nothing to fetch, bring CPPR back */
if (!val)
prio = old_cppr;
/* We could have fetched a pending interrupt left over
* by a previous EOI, so the CPPR might need adjusting
* Also if we had a spurrious one as well.
*/
if (xs->cppr != prio) {
xs->cppr = prio;
out_8(xs->tm_ring1 + TM_QW3_HV_PHYS + TM_CPPR, prio);
xive_cpu_vdbg(c, " adjusted CPPR to %d\n", prio);
}
if (val)
xive_cpu_vdbg(c, " found irq, prio=%d\n", prio);
} else {
/* Nothing was active, this is a fluke, restore CPPR */
opal_xive_update_cppr(xs, old_cppr);
xive_cpu_vdbg(c, " nothing active, restored CPPR to %d\n",
old_cppr);
}
skip:
log_add(xs, LOG_TYPE_XIRR2, 5, xs->cppr, xs->pending,
*out_xirr, xs->eqptr, xs->eqgen);
xive_cpu_vdbg(c, " returning XIRR=%08x, pending=0x%x\n",
*out_xirr, xs->pending);
unlock(&xs->lock);
return OPAL_SUCCESS;
}
static int64_t opal_xive_set_cppr(uint8_t cppr)
{
struct cpu_thread *c = this_cpu();
struct xive_cpu_state *xs = c->xstate;
if (xive_mode != XIVE_MODE_EMU)
return OPAL_WRONG_STATE;
/* Limit supported CPPR values */
cppr = xive_sanitize_cppr(cppr);
if (!xs)
return OPAL_INTERNAL_ERROR;
xive_cpu_vdbg(c, "CPPR setting to %d\n", cppr);
lock(&xs->lock);
opal_xive_update_cppr(xs, cppr);
unlock(&xs->lock);
return OPAL_SUCCESS;
}
static int64_t opal_xive_set_mfrr(uint32_t cpu, uint8_t mfrr)
{
struct cpu_thread *c = find_cpu_by_server(cpu);
struct xive_cpu_state *xs;
uint8_t old_mfrr;
if (xive_mode != XIVE_MODE_EMU)
return OPAL_WRONG_STATE;
if (!c)
return OPAL_PARAMETER;
xs = c->xstate;
if (!xs)
return OPAL_INTERNAL_ERROR;
lock(&xs->lock);
old_mfrr = xs->mfrr;
xive_cpu_vdbg(c, " Setting MFRR to %x, old is %x\n", mfrr, old_mfrr);
xs->mfrr = mfrr;
if (old_mfrr > mfrr && mfrr < xs->cppr)
xive_ipi_trigger(xs->xive, GIRQ_TO_IDX(xs->ipi_irq));
unlock(&xs->lock);
return OPAL_SUCCESS;
}
static uint64_t xive_convert_irq_flags(uint64_t iflags)
{
uint64_t oflags = 0;
if (iflags & XIVE_SRC_STORE_EOI)
oflags |= OPAL_XIVE_IRQ_STORE_EOI;
/* OPAL_XIVE_IRQ_TRIGGER_PAGE is only meant to be set if
* the interrupt has a *separate* trigger page.
*/
if ((iflags & XIVE_SRC_EOI_PAGE1) &&
(iflags & XIVE_SRC_TRIGGER_PAGE))
oflags |= OPAL_XIVE_IRQ_TRIGGER_PAGE;
if (iflags & XIVE_SRC_LSI)
oflags |= OPAL_XIVE_IRQ_LSI;
if (iflags & XIVE_SRC_SHIFT_BUG)
oflags |= OPAL_XIVE_IRQ_SHIFT_BUG;
return oflags;
}
static int64_t opal_xive_get_irq_info(uint32_t girq,
uint64_t *out_flags,
uint64_t *out_eoi_page,
uint64_t *out_trig_page,
uint32_t *out_esb_shift,
uint32_t *out_src_chip)
{
struct irq_source *is = irq_find_source(girq);
struct xive_src *s = container_of(is, struct xive_src, is);
uint32_t idx;
uint64_t mm_base;
uint64_t eoi_page = 0, trig_page = 0;
if (xive_mode != XIVE_MODE_EXPL)
return OPAL_WRONG_STATE;
if (is == NULL || out_flags == NULL)
return OPAL_PARAMETER;
assert(is->ops == &xive_irq_source_ops);
if (out_flags)
*out_flags = xive_convert_irq_flags(s->flags);
/*
* If the orig source has a set_xive callback, then set
* OPAL_XIVE_IRQ_MASK_VIA_FW as masking/unmasking requires
* source specific workarounds. Same with EOI.
*/
if (out_flags && s->orig_ops) {
if (s->orig_ops->set_xive)
*out_flags |= OPAL_XIVE_IRQ_MASK_VIA_FW;
if (s->orig_ops->eoi)
*out_flags |= OPAL_XIVE_IRQ_EOI_VIA_FW;
}
idx = girq - s->esb_base;
if (out_esb_shift)
*out_esb_shift = s->esb_shift;
mm_base = (uint64_t)s->esb_mmio + (1ull << s->esb_shift) * idx;
/* The EOI page can either be the first or second page */
if (s->flags & XIVE_SRC_EOI_PAGE1) {
uint64_t p1off = 1ull << (s->esb_shift - 1);
eoi_page = mm_base + p1off;
} else
eoi_page = mm_base;
/* The trigger page, if it exists, is always the first page */
if (s->flags & XIVE_SRC_TRIGGER_PAGE)
trig_page = mm_base;
if (out_eoi_page)
*out_eoi_page = eoi_page;
if (out_trig_page)
*out_trig_page = trig_page;
if (out_src_chip)
*out_src_chip = GIRQ_TO_CHIP(girq);
return OPAL_SUCCESS;
}
static int64_t opal_xive_get_irq_config(uint32_t girq,
uint64_t *out_vp,
uint8_t *out_prio,
uint32_t *out_lirq)
{
uint32_t vp;
if (xive_mode != XIVE_MODE_EXPL)
return OPAL_WRONG_STATE;
if (xive_get_irq_targetting(girq, &vp, out_prio, out_lirq)) {
*out_vp = vp;
return OPAL_SUCCESS;
} else
return OPAL_PARAMETER;
}
static int64_t opal_xive_set_irq_config(uint32_t girq,
uint64_t vp,
uint8_t prio,
uint32_t lirq)
{
/*
* This variant is meant for a XIVE-aware OS, thus it will
* *not* affect the ESB state of the interrupt. If used with
* a prio of FF, the IVT/EAS will be mased. In that case the
* races have to be handled by the OS.
*
* The exception to this rule is interrupts for which masking
* and unmasking is handled by firmware. In that case the ESB
* state isn't under OS control and will be dealt here. This
* is currently only the case of LSIs and on P9 DD1.0 only so
* isn't an issue.
*/
if (xive_mode != XIVE_MODE_EXPL)
return OPAL_WRONG_STATE;
return xive_set_irq_config(girq, vp, prio, lirq, false);
}
static int64_t opal_xive_get_queue_info(uint64_t vp, uint32_t prio,
uint64_t *out_qpage,
uint64_t *out_qsize,
uint64_t *out_qeoi_page,
uint32_t *out_escalate_irq,
uint64_t *out_qflags)
{
uint32_t blk, idx;
struct xive *x;
struct xive_eq *eq;
if (xive_mode != XIVE_MODE_EXPL)
return OPAL_WRONG_STATE;
if (!xive_eq_for_target(vp, prio, &blk, &idx))
return OPAL_PARAMETER;
x = xive_from_vc_blk(blk);
if (!x)
return OPAL_PARAMETER;
eq = xive_get_eq(x, idx);
if (!eq)
return OPAL_PARAMETER;
if (out_escalate_irq) {
*out_escalate_irq =
MAKE_ESCALATION_GIRQ(blk, idx);
}
if (out_qpage) {
if (eq->w0 & EQ_W0_ENQUEUE)
*out_qpage =
(((uint64_t)(eq->w2 & 0x0fffffff)) << 32) | eq->w3;
else
*out_qpage = 0;
}
if (out_qsize) {
if (eq->w0 & EQ_W0_ENQUEUE)
*out_qsize = GETFIELD(EQ_W0_QSIZE, eq->w0) + 12;
else
*out_qsize = 0;
}
if (out_qeoi_page) {
*out_qeoi_page =
(uint64_t)x->eq_mmio + idx * 0x20000;
}
if (out_qflags) {
*out_qflags = 0;
if (eq->w0 & EQ_W0_VALID)
*out_qflags |= OPAL_XIVE_EQ_ENABLED;
if (eq->w0 & EQ_W0_UCOND_NOTIFY)
*out_qflags |= OPAL_XIVE_EQ_ALWAYS_NOTIFY;
if (eq->w0 & EQ_W0_ESCALATE_CTL)
*out_qflags |= OPAL_XIVE_EQ_ESCALATE;
}
return OPAL_SUCCESS;
}
static int64_t opal_xive_set_queue_info(uint64_t vp, uint32_t prio,
uint64_t qpage,
uint64_t qsize,
uint64_t qflags)
{
uint32_t blk, idx;
struct xive *x;
struct xive_eq *old_eq;
struct xive_eq eq;
uint32_t vp_blk, vp_idx;
bool group;
int64_t rc;
if (xive_mode != XIVE_MODE_EXPL)
return OPAL_WRONG_STATE;
if (!xive_eq_for_target(vp, prio, &blk, &idx))
return OPAL_PARAMETER;
x = xive_from_vc_blk(blk);
if (!x)
return OPAL_PARAMETER;
old_eq = xive_get_eq(x, idx);
if (!old_eq)
return OPAL_PARAMETER;
/* This shouldn't fail or xive_eq_for_target would have
* failed already
*/
if (!xive_decode_vp(vp, &vp_blk, &vp_idx, NULL, &group))
return OPAL_PARAMETER;
/*
* Make a local copy which we will later try to commit using
* the cache watch facility
*/
eq = *old_eq;
switch(qsize) {
/* Supported sizes */
case 12:
case 16:
case 21:
case 24:
eq.w3 = ((uint64_t)qpage) & 0xffffffff;
eq.w2 = (((uint64_t)qpage)) >> 32 & 0x0fffffff;
eq.w0 |= EQ_W0_ENQUEUE;
eq.w0 = SETFIELD(EQ_W0_QSIZE, eq.w0, qsize - 12);
break;
case 0:
eq.w2 = eq.w3 = 0;
eq.w0 &= ~EQ_W0_ENQUEUE;
break;
default:
return OPAL_PARAMETER;
}
/* Ensure the priority and target are correctly set (they will
* not be right after allocation
*/
eq.w6 = SETFIELD(EQ_W6_NVT_BLOCK, 0ul, vp_blk) |
SETFIELD(EQ_W6_NVT_INDEX, 0ul, vp_idx);
eq.w7 = SETFIELD(EQ_W7_F0_PRIORITY, 0ul, prio);
/* XXX Handle group i bit when needed */
/* Always notify flag */
if (qflags & OPAL_XIVE_EQ_ALWAYS_NOTIFY)
eq.w0 |= EQ_W0_UCOND_NOTIFY;
else
eq.w0 &= ~EQ_W0_UCOND_NOTIFY;
/* Escalation flag */
if (qflags & OPAL_XIVE_EQ_ESCALATE)
eq.w0 |= EQ_W0_ESCALATE_CTL;
else
eq.w0 &= ~EQ_W0_ESCALATE_CTL;
/* Unconditionally clear the current queue pointer, set
* generation to 1 and disable escalation interrupts.
*/
eq.w1 = EQ_W1_GENERATION |
(old_eq->w1 & (EQ_W1_ESe_P | EQ_W1_ESe_Q |
EQ_W1_ESn_P | EQ_W1_ESn_Q));
/* Enable or disable. We always enable backlog for an
* enabled queue otherwise escalations won't work.
*/
if (qflags & OPAL_XIVE_EQ_ENABLED)
eq.w0 |= EQ_W0_VALID | EQ_W0_BACKLOG;
else {
eq.w0 &= ~EQ_W0_VALID;
eq.w1 &= ~(EQ_W1_ESe_P | EQ_W1_ESn_P);
eq.w1 |= EQ_W1_ESe_Q | EQ_W1_ESn_Q;
}
/* Update EQ, non-synchronous */
lock(&x->lock);
rc = xive_eqc_cache_update(x, blk, idx, 0, 4, &eq, false, false);
unlock(&x->lock);
return rc;
}
static int64_t opal_xive_donate_page(uint32_t chip_id, uint64_t addr)
{
struct proc_chip *c = get_chip(chip_id);
struct list_node *n __unused;
if (xive_mode != XIVE_MODE_EXPL)
return OPAL_WRONG_STATE;
if (!c)
return OPAL_PARAMETER;
if (!c->xive)
return OPAL_PARAMETER;
if (addr & 0xffff)
return OPAL_PARAMETER;
#ifdef USE_INDIRECT
n = (struct list_node *)addr;
lock(&c->xive->lock);
list_add(&c->xive->donated_pages, n);
unlock(&c->xive->lock);
#endif
return OPAL_SUCCESS;
}
static int64_t opal_xive_get_vp_info(uint64_t vp_id,
uint64_t *out_flags,
uint64_t *out_cam_value,
uint64_t *out_report_cl_pair,
uint32_t *out_chip_id)
{
struct xive *x;
struct xive_vp *vp;
uint32_t blk, idx;
bool group;
if (!xive_decode_vp(vp_id, &blk, &idx, NULL, &group))
return OPAL_PARAMETER;
/* We don't do groups yet */
if (group)
return OPAL_PARAMETER;
x = xive_from_pc_blk(blk);
if (!x)
return OPAL_PARAMETER;
vp = xive_get_vp(x, idx);
if (!vp)
return OPAL_PARAMETER;
if (out_flags) {
*out_flags = 0;
if (vp->w0 & VP_W0_VALID)
*out_flags |= OPAL_XIVE_VP_ENABLED;
}
if (out_cam_value)
*out_cam_value = (blk << 19) | idx;
if (out_report_cl_pair) {
*out_report_cl_pair = ((uint64_t)(vp->w6 & 0x0fffffff)) << 32;
*out_report_cl_pair |= vp->w7 & 0xffffff00;
}
if (out_chip_id)
*out_chip_id = xive_block_to_chip[blk];
return OPAL_SUCCESS;
}
static int64_t opal_xive_set_vp_info(uint64_t vp_id,
uint64_t flags,
uint64_t report_cl_pair)
{
struct xive *x;
struct xive_vp *vp, vp_new;
uint32_t blk, idx;
bool group;
int64_t rc;
if (!xive_decode_vp(vp_id, &blk, &idx, NULL, &group))
return OPAL_PARAMETER;
/* We don't do groups yet */
if (group)
return OPAL_PARAMETER;
if (report_cl_pair & 0xff)
return OPAL_PARAMETER;
x = xive_from_pc_blk(blk);
if (!x)
return OPAL_PARAMETER;
vp = xive_get_vp(x, idx);
if (!vp)
return OPAL_PARAMETER;
vp_new = *vp;
if (flags & OPAL_XIVE_VP_ENABLED)
vp_new.w0 |= VP_W0_VALID;
else
vp_new.w0 &= ~VP_W0_VALID;
vp_new.w7 = report_cl_pair & 0xffffffff;
vp_new.w6 = report_cl_pair >> 32;
lock(&x->lock);
rc = xive_vpc_cache_update(x, blk, idx, 0, 8, &vp_new, false, false);
if (rc) {
unlock(&x->lock);
return rc;
}
/* When disabling, we scrub clean (invalidate the entry) so
* we can avoid cache ops in alloc/free
*/
if (!(flags & OPAL_XIVE_VP_ENABLED))
xive_vpc_scrub_clean(x, blk, idx);
unlock(&x->lock);
return OPAL_SUCCESS;
}
static void xive_cleanup_cpu_tima(struct cpu_thread *c)
{
struct xive_cpu_state *xs = c->xstate;
struct xive *x = xs->xive;
void *ind_tm_base = x->ic_base + (4 << x->ic_shift);
uint8_t old_w2, w2;
/* Reset the HW context */
xive_reset_enable_thread(c);
/* Setup indirect access to the corresponding thread */
xive_regw(x, PC_TCTXT_INDIR0,
PC_TCTXT_INDIR_VALID |
SETFIELD(PC_TCTXT_INDIR_THRDID, 0ull, c->pir & 0xff));
/* Workaround for HW issue: Need to read the above register
* back before doing the subsequent accesses
*/
xive_regr(x, PC_TCTXT_INDIR0);
/* Set VT to 1 */
old_w2 = in_8(ind_tm_base + TM_QW3_HV_PHYS + TM_WORD2);
out_8(ind_tm_base + TM_QW3_HV_PHYS + TM_WORD2, 0x80);
w2 = in_8(ind_tm_base + TM_QW3_HV_PHYS + TM_WORD2);
/* Dump HV state */
xive_cpu_dbg(c, "[reset] VP TIMA VP=%x/%x W01=%016llx W2=%02x->%02x\n",
xs->vp_blk, xs->vp_idx,
in_be64(ind_tm_base + TM_QW3_HV_PHYS),
old_w2, w2);
/* Reset indirect access */
xive_regw(x, PC_TCTXT_INDIR0, 0);
}
#ifdef USE_INDIRECT
static int64_t xive_vc_ind_cache_kill(struct xive *x, uint64_t type)
{
uint64_t val;
/* We clear the whole thing */
xive_regw(x, VC_AT_MACRO_KILL_MASK, 0);
xive_regw(x, VC_AT_MACRO_KILL, VC_KILL_VALID |
SETFIELD(VC_KILL_TYPE, 0ull, type));
/* XXX SIMICS problem ? */
if (chip_quirk(QUIRK_SIMICS))
return 0;
/* XXX Add timeout */
for (;;) {
val = xive_regr(x, VC_AT_MACRO_KILL);
if (!(val & VC_KILL_VALID))
break;
}
return 0;
}
static int64_t xive_pc_ind_cache_kill(struct xive *x)
{
uint64_t val;
/* We clear the whole thing */
xive_regw(x, PC_AT_KILL_MASK, 0);
xive_regw(x, PC_AT_KILL, PC_AT_KILL_VALID);
/* XXX SIMICS problem ? */
if (chip_quirk(QUIRK_SIMICS))
return 0;
/* XXX Add timeout */
for (;;) {
val = xive_regr(x, PC_AT_KILL);
if (!(val & PC_AT_KILL_VALID))
break;
}
return 0;
}
static void xive_cleanup_vp_ind(struct xive *x)
{
int i;
xive_dbg(x, "Cleaning up %d VP ind entries...\n", x->vp_ind_count);
for (i = 0; i < x->vp_ind_count; i++) {
if (x->vp_ind_base[i] & VSD_FIRMWARE) {
xive_dbg(x, " %04x ... skip (firmware)\n", i);
continue;
}
if (x->vp_ind_base[i] != 0) {
x->vp_ind_base[i] = 0;
xive_dbg(x, " %04x ... cleaned\n", i);
}
}
xive_pc_ind_cache_kill(x);
}
static void xive_cleanup_eq_ind(struct xive *x)
{
int i;
xive_dbg(x, "Cleaning up %d EQ ind entries...\n", x->eq_ind_count);
for (i = 0; i < x->eq_ind_count; i++) {
if (x->eq_ind_base[i] & VSD_FIRMWARE) {
xive_dbg(x, " %04x ... skip (firmware)\n", i);
continue;
}
if (x->eq_ind_base[i] != 0) {
x->eq_ind_base[i] = 0;
xive_dbg(x, " %04x ... cleaned\n", i);
}
}
xive_vc_ind_cache_kill(x, VC_KILL_EQD);
}
#endif /* USE_INDIRECT */
static void xive_reset_one(struct xive *x)
{
struct cpu_thread *c;
bool eq_firmware;
int i;
xive_dbg(x, "Resetting one xive...\n");
lock(&x->lock);
/* Check all interrupts are disabled */
i = bitmap_find_one_bit(*x->int_enabled_map, 0, MAX_INT_ENTRIES);
if (i >= 0)
xive_warn(x, "Interrupt %d (and maybe more) not disabled"
" at reset !\n", i);
/* Reset IPI allocation */
xive_dbg(x, "freeing alloc map %p/%p\n",
x->ipi_alloc_map, *x->ipi_alloc_map);
memset(x->ipi_alloc_map, 0, BITMAP_BYTES(MAX_INT_ENTRIES));
xive_dbg(x, "Resetting EQs...\n");
/* Reset all allocated EQs and free the user ones */
bitmap_for_each_one(*x->eq_map, MAX_EQ_COUNT >> 3, i) {
struct xive_eq eq0;
struct xive_eq *eq;
int j;
if (i == 0)
continue;
eq_firmware = false;
memset(&eq0, 0, sizeof(eq0));
for (j = 0; j < 8; j++) {
uint32_t idx = (i << 3) | j;
eq = xive_get_eq(x, idx);
if (!eq)
continue;
/* We need to preserve the firmware bit, otherwise
* we will incorrectly free the EQs that are reserved
* for the physical CPUs
*/
eq0.w0 = eq->w0 & EQ_W0_FIRMWARE;
xive_eqc_cache_update(x, x->block_id,
idx, 0, 4, &eq0, false, true);
if (eq->w0 & EQ_W0_FIRMWARE)
eq_firmware = true;
}
if (!eq_firmware)
bitmap_clr_bit(*x->eq_map, i);
}
/* Take out all VPs from HW and reset all CPPRs to 0 */
for_each_present_cpu(c) {
if (c->chip_id != x->chip_id)
continue;
if (!c->xstate)
continue;
xive_cleanup_cpu_tima(c);
}
/* Reset all user-allocated VPs. This is inefficient, we should
* either keep a bitmap of allocated VPs or add an iterator to
* the buddy which is trickier but doable.
*/
for (i = 0; i < MAX_VP_COUNT; i++) {
struct xive_vp *vp;
struct xive_vp vp0 = {0};
/* Ignore the physical CPU VPs */
#ifdef USE_BLOCK_GROUP_MODE
if (i >= INITIAL_VP_BASE &&
i < (INITIAL_VP_BASE + INITIAL_VP_COUNT))
continue;
#else
if (x->block_id == 0 &&
i >= INITIAL_BLK0_VP_BASE &&
i < (INITIAL_BLK0_VP_BASE + INITIAL_BLK0_VP_BASE))
continue;
#endif
/* Is the VP valid ? */
vp = xive_get_vp(x, i);
if (!vp || !(vp->w0 & VP_W0_VALID))
continue;
/* Clear it */
xive_vpc_cache_update(x, x->block_id,
i, 0, 8, &vp0, false, true);
}
#ifndef USE_BLOCK_GROUP_MODE
/* If block group mode isn't enabled, reset VP alloc buddy */
buddy_reset(x->vp_buddy);
#endif
#ifdef USE_INDIRECT
/* Forget about remaining donated pages */
list_head_init(&x->donated_pages);
/* And cleanup donated indirect VP and EQ pages */
xive_cleanup_vp_ind(x);
xive_cleanup_eq_ind(x);
#endif
/* The rest must not be called with the lock held */
unlock(&x->lock);
/* Re-configure VPs and emulation */
for_each_present_cpu(c) {
struct xive_cpu_state *xs = c->xstate;
if (c->chip_id != x->chip_id || !xs)
continue;
if (xive_mode == XIVE_MODE_EMU)
xive_init_cpu_emulation(xs, c);
else
xive_init_cpu_exploitation(xs);
}
}
static void xive_reset_mask_source_cb(struct irq_source *is,
void *data __unused)
{
struct xive_src *s = container_of(is, struct xive_src, is);
struct xive *x;
uint32_t isn;
if (is->ops != &xive_irq_source_ops)
return;
/* Skip escalation sources */
if (GIRQ_IS_ESCALATION(is->start))
return;
x = s->xive;
/* Iterate all interrupts */
for (isn = is->start; isn < is->end; isn++) {
/* Has it ever been enabled ? */
if (!bitmap_tst_bit(*x->int_enabled_map, GIRQ_TO_IDX(isn)))
continue;
/* Mask it and clear the enabled map bit */
xive_dbg(x, "[reset] disabling source 0x%x\n", isn);
__xive_set_irq_config(is, isn, 0, 0xff, isn, true, true);
bitmap_clr_bit(*x->int_enabled_map, GIRQ_TO_IDX(isn));
}
}
static int64_t opal_xive_reset(uint64_t version)
{
struct proc_chip *chip;
prlog(PR_DEBUG, "XIVE reset, version: %d...\n", (int)version);
if (version > 1)
return OPAL_PARAMETER;
xive_mode = version;
/* Mask all interrupt sources */
irq_for_each_source(xive_reset_mask_source_cb, NULL);
/* For each XIVE do a sync... */
for_each_chip(chip) {
if (!chip->xive)
continue;
xive_sync(chip->xive);
}
/* For each XIVE reset everything else... */
for_each_chip(chip) {
if (!chip->xive)
continue;
xive_reset_one(chip->xive);
}
#ifdef USE_BLOCK_GROUP_MODE
/* Cleanup global VP allocator */
buddy_reset(xive_vp_buddy);
/* We reserve the whole range of VPs representing HW chips.
*
* These are 0x80..0xff, so order 7 starting at 0x80. This will
* reserve that range on each chip.
*/
assert(buddy_reserve(xive_vp_buddy, 0x80, 7));
#endif /* USE_BLOCK_GROUP_MODE */
return OPAL_SUCCESS;
}
static int64_t opal_xive_free_vp_block(uint64_t vp_base)
{
uint32_t blk, idx, i, count;
uint8_t order;
bool group;
if (xive_mode != XIVE_MODE_EXPL)
return OPAL_WRONG_STATE;
if (!xive_decode_vp(vp_base, &blk, &idx, &order, &group))
return OPAL_PARAMETER;
if (group)
return OPAL_PARAMETER;
#ifdef USE_BLOCK_GROUP_MODE
if (blk)
return OPAL_PARAMETER;
if (order < (xive_chips_alloc_bits + 1))
return OPAL_PARAMETER;
if (idx & ((1 << (order - xive_chips_alloc_bits)) - 1))
return OPAL_PARAMETER;
#else
if (order < 1)
return OPAL_PARAMETER;
if (idx & ((1 << order) - 1))
return OPAL_PARAMETER;
#endif
count = 1 << order;
for (i = 0; i < count; i++) {
uint32_t vp_id = vp_base + i;
uint32_t blk, idx, eq_blk, eq_idx;
struct xive *x;
struct xive_vp *vp;
if (!xive_decode_vp(vp_id, &blk, &idx, NULL, NULL)) {
prerror("XIVE: Couldn't decode VP id %u\n", vp_id);
return OPAL_INTERNAL_ERROR;
}
x = xive_from_pc_blk(blk);
if (!x) {
prerror("XIVE: Instance not found for deallocated VP"
" block %d\n", blk);
return OPAL_INTERNAL_ERROR;
}
vp = xive_get_vp(x, idx);
if (!vp) {
prerror("XIVE: VP not found for deallocation !");
return OPAL_INTERNAL_ERROR;
}
/* VP must be disabled */
if (vp->w0 & VP_W0_VALID) {
prerror("XIVE: Freeing enabled VP !\n");
// XXX Disable it synchronously
}
/* Not populated */
if (vp->w1 == 0)
continue;
eq_blk = vp->w1 >> 28;
eq_idx = vp->w1 & 0x0fffffff;
vp->w1 = 0;
if (eq_blk != blk) {
prerror("XIVE: Block mismatch trying to free EQs\n");
return OPAL_INTERNAL_ERROR;
}
/* XX Ensure the EQs are disabled */
lock(&x->lock);
xive_free_eq_set(x, eq_idx);
unlock(&x->lock);
}
xive_free_vps(vp_base);
return OPAL_SUCCESS;
}
static int64_t opal_xive_alloc_vp_block(uint32_t alloc_order)
{
uint32_t vp_base, eqs, count, i;
int64_t rc;
if (xive_mode != XIVE_MODE_EXPL)
return OPAL_WRONG_STATE;
prlog(PR_DEBUG, "opal_xive_alloc_vp_block(%d)\n", alloc_order);
vp_base = xive_alloc_vps(alloc_order);
if (XIVE_ALLOC_IS_ERR(vp_base)) {
if (vp_base == XIVE_ALLOC_NO_IND)
return OPAL_XIVE_PROVISIONING;
return OPAL_RESOURCE;
}
/* Allocate EQs and initialize VPs */
count = 1 << alloc_order;
for (i = 0; i < count; i++) {
uint32_t vp_id = vp_base + i;
uint32_t blk, idx;
struct xive *x;
struct xive_vp *vp;
if (!xive_decode_vp(vp_id, &blk, &idx, NULL, NULL)) {
prerror("XIVE: Couldn't decode VP id %u\n", vp_id);
return OPAL_INTERNAL_ERROR;
}
x = xive_from_pc_blk(blk);
if (!x) {
prerror("XIVE: Instance not found for allocated VP"
" block %d\n", blk);
rc = OPAL_INTERNAL_ERROR;
goto fail;
}
vp = xive_get_vp(x, idx);
if (!vp) {
prerror("XIVE: VP not found after allocation !");
rc = OPAL_INTERNAL_ERROR;
goto fail;
}
/* Allocate EQs, if fails, free the VPs and return */
lock(&x->lock);
eqs = xive_alloc_eq_set(x, false);
unlock(&x->lock);
if (XIVE_ALLOC_IS_ERR(eqs)) {
if (eqs == XIVE_ALLOC_NO_IND)
rc = OPAL_XIVE_PROVISIONING;
else
rc = OPAL_RESOURCE;
goto fail;
}
/* Initialize the VP structure. We don't use a cache watch
* as we have made sure when freeing the entries to scrub
* it out of the cache.
*/
memset(vp, 0, sizeof(*vp));
vp->w1 = (blk << 28) | eqs;
vp->w5 = 0xff000000;
}
return vp_base;
fail:
opal_xive_free_vp_block(vp_base);
return rc;
}
static int64_t xive_try_allocate_irq(struct xive *x)
{
int idx, base_idx, max_count, girq;
struct xive_ive *ive;
lock(&x->lock);
base_idx = x->int_ipi_top - x->int_base;
max_count = x->int_hw_bot - x->int_ipi_top;
idx = bitmap_find_zero_bit(*x->ipi_alloc_map, base_idx, max_count);
if (idx < 0) {
unlock(&x->lock);
return XIVE_ALLOC_NO_SPACE;
}
bitmap_set_bit(*x->ipi_alloc_map, idx);
girq = x->int_base + idx;
/* Mark the IVE valid. Don't bother with the HW cache, it's
* still masked anyway, the cache will be updated when unmasked
* and configured.
*/
ive = xive_get_ive(x, girq);
if (!ive) {
bitmap_clr_bit(*x->ipi_alloc_map, idx);
unlock(&x->lock);
return OPAL_PARAMETER;
}
ive->w = IVE_VALID | IVE_MASKED | SETFIELD(IVE_EQ_DATA, 0ul, girq);
unlock(&x->lock);
return girq;
}
static int64_t opal_xive_allocate_irq(uint32_t chip_id)
{
struct proc_chip *chip;
bool try_all = false;
int64_t rc;
if (xive_mode != XIVE_MODE_EXPL)
return OPAL_WRONG_STATE;
if (chip_id == OPAL_XIVE_ANY_CHIP) {
try_all = true;
chip_id = this_cpu()->chip_id;
}
chip = get_chip(chip_id);
if (!chip)
return OPAL_PARAMETER;
/* Try initial target chip */
if (!chip->xive)
rc = OPAL_PARAMETER;
else
rc = xive_try_allocate_irq(chip->xive);
if (rc >= 0 || !try_all)
return rc;
/* Failed and we try all... do so */
for_each_chip(chip) {
if (!chip->xive)
continue;
rc = xive_try_allocate_irq(chip->xive);
if (rc >= 0)
break;
}
return rc;
}
static int64_t opal_xive_free_irq(uint32_t girq)
{
struct irq_source *is = irq_find_source(girq);
struct xive_src *s = container_of(is, struct xive_src, is);
struct xive *x = xive_from_isn(girq);
struct xive_ive *ive;
uint32_t idx;
if (xive_mode != XIVE_MODE_EXPL)
return OPAL_WRONG_STATE;
if (!x || !is)
return OPAL_PARAMETER;
idx = GIRQ_TO_IDX(girq);
lock(&x->lock);
ive = xive_get_ive(x, girq);
if (!ive) {
unlock(&x->lock);
return OPAL_PARAMETER;
}
/* Mask the interrupt source */
xive_update_irq_mask(s, girq - s->esb_base, true);
/* Mark the IVE masked and invalid */
ive->w = IVE_MASKED | IVE_VALID;
xive_ivc_scrub(x, x->block_id, idx);
/* Free it */
if (!bitmap_tst_bit(*x->ipi_alloc_map, idx)) {
unlock(&x->lock);
return OPAL_PARAMETER;
}
bitmap_clr_bit(*x->ipi_alloc_map, idx);
bitmap_clr_bit(*x->int_enabled_map, idx);
unlock(&x->lock);
return OPAL_SUCCESS;
}
static int64_t opal_xive_dump_tm(uint32_t offset, const char *n, uint32_t pir)
{
struct cpu_thread *c = find_cpu_by_pir(pir);
struct xive_cpu_state *xs;
struct xive *x;
void *ind_tm_base;
uint64_t v0,v1;
if (!c)
return OPAL_PARAMETER;
xs = c->xstate;
if (!xs || !xs->tm_ring1)
return OPAL_INTERNAL_ERROR;
x = xs->xive;
ind_tm_base = x->ic_base + (4 << x->ic_shift);
lock(&x->lock);
/* Setup indirect access to the corresponding thread */
xive_regw(x, PC_TCTXT_INDIR0,
PC_TCTXT_INDIR_VALID |
SETFIELD(PC_TCTXT_INDIR_THRDID, 0ull, pir & 0xff));
/* Workaround for HW issue: Need to read the above register
* back before doing the subsequent accesses
*/
xive_regr(x, PC_TCTXT_INDIR0);
v0 = in_be64(ind_tm_base + offset);
if (offset == TM_QW3_HV_PHYS) {
v1 = in_8(ind_tm_base + offset + 8);
v1 <<= 56;
} else {
v1 = in_be32(ind_tm_base + offset + 8);
v1 <<= 32;
}
prlog(PR_INFO, "CPU[%04x]: TM state for QW %s\n", pir, n);
prlog(PR_INFO, "CPU[%04x]: NSR CPPR IPB LSMFB ACK# INC AGE PIPR"
" W2 W3\n", pir);
prlog(PR_INFO, "CPU[%04x]: %02x %02x %02x %02x %02x "
"%02x %02x %02x %08x %08x\n", pir,
(uint8_t)(v0 >> 58) & 0xff, (uint8_t)(v0 >> 48) & 0xff,
(uint8_t)(v0 >> 40) & 0xff, (uint8_t)(v0 >> 32) & 0xff,
(uint8_t)(v0 >> 24) & 0xff, (uint8_t)(v0 >> 16) & 0xff,
(uint8_t)(v0 >> 8) & 0xff, (uint8_t)(v0 ) & 0xff,
(uint32_t)(v1 >> 32) & 0xffffffff,
(uint32_t)(v1 & 0xffffffff));
xive_regw(x, PC_TCTXT_INDIR0, 0);
unlock(&x->lock);
return OPAL_SUCCESS;
}
static int64_t opal_xive_dump_vp(uint32_t vp_id)
{
uint32_t blk, idx;
uint8_t order;
bool group;
struct xive *x;
struct xive_vp *vp;
uint32_t *vpw;
if (!xive_decode_vp(vp_id, &blk, &idx, &order, &group))
return OPAL_PARAMETER;
x = xive_from_vc_blk(blk);
if (!x)
return OPAL_PARAMETER;
vp = xive_get_vp(x, idx);
if (!vp)
return OPAL_PARAMETER;
lock(&x->lock);
xive_vpc_scrub_clean(x, blk, idx);
vpw = ((uint32_t *)vp) + (group ? 8 : 0);
prlog(PR_INFO, "VP[%08x]: 0..3: %08x %08x %08x %08x\n", vp_id,
vpw[0], vpw[1], vpw[2], vpw[3]);
prlog(PR_INFO, "VP[%08x]: 4..7: %08x %08x %08x %08x\n", vp_id,
vpw[4], vpw[5], vpw[6], vpw[7]);
unlock(&x->lock);
return OPAL_SUCCESS;
}
static int64_t __opal_xive_dump_emu(struct xive_cpu_state *xs, uint32_t pir)
{
struct xive_eq *eq;
uint32_t ipi_target;
uint8_t *mm, pq;
prlog(PR_INFO, "CPU[%04x]: XIVE emulation state\n", pir);
prlog(PR_INFO, "CPU[%04x]: cppr=%02x mfrr=%02x pend=%02x"
" prev_cppr=%02x total_irqs=%llx\n", pir,
xs->cppr, xs->mfrr, xs->pending, xs->prev_cppr, xs->total_irqs);
prlog(PR_INFO, "CPU[%04x]: EQ IDX=%x MSK=%x G=%d [%08x %08x %08x > %08x %08x %08x %08x ...]\n",
pir, xs->eqptr, xs->eqmsk, xs->eqgen,
xs->eqbuf[(xs->eqptr - 3) & xs->eqmsk],
xs->eqbuf[(xs->eqptr - 2) & xs->eqmsk],
xs->eqbuf[(xs->eqptr - 1) & xs->eqmsk],
xs->eqbuf[(xs->eqptr + 0) & xs->eqmsk],
xs->eqbuf[(xs->eqptr + 1) & xs->eqmsk],
xs->eqbuf[(xs->eqptr + 2) & xs->eqmsk],
xs->eqbuf[(xs->eqptr + 3) & xs->eqmsk]);
mm = xs->xive->esb_mmio + GIRQ_TO_IDX(xs->ipi_irq) * 0x20000;
pq = in_8(mm + 0x10800);
if (xive_get_irq_targetting(xs->ipi_irq, &ipi_target, NULL, NULL))
prlog(PR_INFO, "CPU[%04x]: IPI #%08x PQ=%x target=%08x\n",
pir, xs->ipi_irq, pq, ipi_target);
else
prlog(PR_INFO, "CPU[%04x]: IPI #%08x PQ=%x target=??\n",
pir, xs->ipi_irq, pq);
__xive_cache_scrub(xs->xive, xive_cache_eqc, xs->eq_blk,
xs->eq_idx + XIVE_EMULATION_PRIO,
false, false);
eq = xive_get_eq(xs->xive, xs->eq_idx + XIVE_EMULATION_PRIO);
prlog(PR_INFO, "CPU[%04x]: EQ @%p W0=%08x W1=%08x qbuf @%p\n",
pir, eq, eq->w0, eq->w1, xs->eqbuf);
return OPAL_SUCCESS;
}
static int64_t opal_xive_dump_emu(uint32_t pir)
{
struct cpu_thread *c = find_cpu_by_pir(pir);
struct xive_cpu_state *xs;
int64_t rc;
if (!c)
return OPAL_PARAMETER;
xs = c->xstate;
if (!xs) {
prlog(PR_INFO, " <none>\n");
return OPAL_SUCCESS;
}
lock(&xs->lock);
rc = __opal_xive_dump_emu(xs, pir);
log_print(xs);
unlock(&xs->lock);
return rc;
}
static int64_t opal_xive_sync_irq_src(uint32_t girq)
{
struct xive *x = xive_from_isn(girq);
if (!x)
return OPAL_PARAMETER;
return xive_sync(x);
}
static int64_t opal_xive_sync_irq_target(uint32_t girq)
{
uint32_t target, vp_blk;
struct xive *x;
if (!xive_get_irq_targetting(girq, &target, NULL, NULL))
return OPAL_PARAMETER;
if (!xive_decode_vp(target, &vp_blk, NULL, NULL, NULL))
return OPAL_PARAMETER;
x = xive_from_pc_blk(vp_blk);
if (!x)
return OPAL_PARAMETER;
return xive_sync(x);
}
static int64_t opal_xive_sync(uint32_t type, uint32_t id)
{
int64_t rc = OPAL_SUCCESS;;
if (type & XIVE_SYNC_EAS)
rc = opal_xive_sync_irq_src(id);
if (rc)
return rc;
if (type & XIVE_SYNC_QUEUE)
rc = opal_xive_sync_irq_target(id);
if (rc)
return rc;
/* Add more ... */
return rc;
}
static int64_t opal_xive_dump(uint32_t type, uint32_t id)
{
switch (type) {
case XIVE_DUMP_TM_HYP:
return opal_xive_dump_tm(TM_QW3_HV_PHYS, "PHYS", id);
case XIVE_DUMP_TM_POOL:
return opal_xive_dump_tm(TM_QW2_HV_POOL, "POOL", id);
case XIVE_DUMP_TM_OS:
return opal_xive_dump_tm(TM_QW1_OS, "OS ", id);
case XIVE_DUMP_TM_USER:
return opal_xive_dump_tm(TM_QW0_USER, "USER", id);
case XIVE_DUMP_VP:
return opal_xive_dump_vp(id);
case XIVE_DUMP_EMU_STATE:
return opal_xive_dump_emu(id);
default:
return OPAL_PARAMETER;
}
}
static void xive_init_globals(void)
{
uint32_t i;
for (i = 0; i < XIVE_MAX_CHIPS; i++)
xive_block_to_chip[i] = XIVE_INVALID_CHIP;
}
void init_xive(void)
{
struct dt_node *np;
struct proc_chip *chip;
struct cpu_thread *cpu;
struct xive *one_xive;
bool first = true;
/* Look for xive nodes and do basic inits */
dt_for_each_compatible(dt_root, np, "ibm,power9-xive-x") {
struct xive *x;
/* Initialize some global stuff */
if (first)
xive_init_globals();
/* Create/initialize the xive instance */
x = init_one_xive(np);
if (first)
one_xive = x;
first = false;
}
if (first)
return;
/* Init VP allocator */
xive_init_vp_allocator();
/* Create a device-tree node for Linux use */
xive_create_mmio_dt_node(one_xive);
/* Some inits must be done after all xive have been created
* such as setting up the forwarding ports
*/
for_each_chip(chip) {
if (chip->xive)
late_init_one_xive(chip->xive);
}
/* Initialize XICS emulation per-cpu structures */
for_each_present_cpu(cpu) {
xive_init_cpu(cpu);
}
/* Add interrupts propertie to each CPU node */
for_each_present_cpu(cpu) {
if (cpu_is_thread0(cpu))
xive_init_cpu_properties(cpu);
}
/* Calling boot CPU */
xive_cpu_callin(this_cpu());
/* Register XICS emulation calls */
opal_register(OPAL_INT_GET_XIRR, opal_xive_get_xirr, 2);
opal_register(OPAL_INT_SET_CPPR, opal_xive_set_cppr, 1);
opal_register(OPAL_INT_EOI, opal_xive_eoi, 1);
opal_register(OPAL_INT_SET_MFRR, opal_xive_set_mfrr, 2);
/* Register XIVE exploitation calls */
opal_register(OPAL_XIVE_RESET, opal_xive_reset, 1);
opal_register(OPAL_XIVE_GET_IRQ_INFO, opal_xive_get_irq_info, 6);
opal_register(OPAL_XIVE_GET_IRQ_CONFIG, opal_xive_get_irq_config, 4);
opal_register(OPAL_XIVE_SET_IRQ_CONFIG, opal_xive_set_irq_config, 4);
opal_register(OPAL_XIVE_GET_QUEUE_INFO, opal_xive_get_queue_info, 7);
opal_register(OPAL_XIVE_SET_QUEUE_INFO, opal_xive_set_queue_info, 5);
opal_register(OPAL_XIVE_DONATE_PAGE, opal_xive_donate_page, 2);
opal_register(OPAL_XIVE_ALLOCATE_IRQ, opal_xive_allocate_irq, 1);
opal_register(OPAL_XIVE_FREE_IRQ, opal_xive_free_irq, 1);
opal_register(OPAL_XIVE_ALLOCATE_VP_BLOCK, opal_xive_alloc_vp_block, 1);
opal_register(OPAL_XIVE_FREE_VP_BLOCK, opal_xive_free_vp_block, 1);
opal_register(OPAL_XIVE_GET_VP_INFO, opal_xive_get_vp_info, 5);
opal_register(OPAL_XIVE_SET_VP_INFO, opal_xive_set_vp_info, 3);
opal_register(OPAL_XIVE_SYNC, opal_xive_sync, 2);
opal_register(OPAL_XIVE_DUMP, opal_xive_dump, 2);
}