blob: d9325a0b441d847ab6f30b4fdb3ea2142c94769b [file] [log] [blame]
// SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
/* Copyright 2013-2019 IBM Corp. */
#include <inttypes.h>
#include <device.h>
#include <cpu.h>
#include <vpd.h>
#include <interrupts.h>
#include <ccan/str/str.h>
#include <chip.h>
#include <opal-dump.h>
#include <fsp-attn.h>
#include <fsp-leds.h>
#include <skiboot.h>
#include <vas.h>
#include "hdata.h"
#include "hostservices.h"
#include "naca.h"
#include "spira.h"
/* Processor Initialization structure, contains
* the initial NIA and MSR values for the entry
* point
*
* Note: It appears to be ignoring the entry point
* and always going to 0x180
*/
static int cpu_type;
extern struct proc_init_data proc_init_data;
__section(".procin.data") struct proc_init_data proc_init_data = {
.hdr = HDIF_SIMPLE_HDR("PROCIN", 1, struct proc_init_data),
.regs_ptr = HDIF_IDATA_PTR(offsetof(struct proc_init_data, regs), 0x10),
.regs = {
.nia = CPU_TO_BE64(0x180),
.msr = CPU_TO_BE64(MSR_SF | MSR_HV),
},
};
extern struct cpu_ctl_init_data cpu_ctl_init_data;
extern struct sp_addr_table cpu_ctl_spat_area;
extern struct sp_attn_area cpu_ctl_sp_attn_area1;
extern struct sp_attn_area cpu_ctl_sp_attn_area2;
extern struct hsr_data_area cpu_ctl_hsr_area;
/*
* cpuctrl.data begins at CPU_CTL_OFF - cpu_ctl_init_data is located there.
* + sizeof(struct cpu_ctl_init_data) - cpu_ctl_spat_area
* + sizeof(struct sp_addr_table) - cpu_ctl_sp_attn_area1
* + sizeof(struct sp_attn_area) - cpu_ctl_sp_attn_area2
* + sizeof(struct sp_attn_area) - cpu_ctl_hsr_area
*
* Can't use CPU_TO_BE64 directly on the labels as a constant initialiser.
*
* CPU_CTL_INIT_DATA_OFF is offset from 0, the others are addressed from the
* relocated address (+SKIBOOT_BASE)
*/
#define CPU_CTL_INIT_DATA_OFF (CPU_CTL_OFF)
#define CPU_CTL_SPAT_AREA_OFF (CPU_CTL_INIT_DATA_OFF + sizeof(struct cpu_ctl_init_data) + SKIBOOT_BASE)
#define CPU_CTL_SP_ATTN_AREA1_OFF (ALIGN_UP((CPU_CTL_SPAT_AREA_OFF + sizeof(struct sp_addr_table)), ATTN_AREA_SZ))
#define CPU_CTL_SP_ATTN_AREA2_OFF (CPU_CTL_SP_ATTN_AREA1_OFF + sizeof(struct sp_attn_area))
#define CPU_CTL_HSR_AREA_OFF (CPU_CTL_SP_ATTN_AREA2_OFF + sizeof(struct sp_attn_area))
__section(".cpuctrl.data") struct hsr_data_area cpu_ctl_hsr_area;
__section(".cpuctrl.data") struct sp_attn_area cpu_ctl_sp_attn_area2;
__section(".cpuctrl.data") struct sp_attn_area cpu_ctl_sp_attn_area1;
__section(".cpuctrl.data") struct sp_addr_table cpu_ctl_spat_area;
__section(".cpuctrl.data") struct cpu_ctl_init_data cpu_ctl_init_data = {
.hdr = HDIF_SIMPLE_HDR(CPU_CTL_HDIF_SIG, 2, struct cpu_ctl_init_data),
.cpu_ctl = HDIF_IDATA_PTR(offsetof(struct cpu_ctl_init_data, cpu_ctl_lt),
sizeof(struct cpu_ctl_legacy_table)),
.cpu_ctl_lt = {
.spat = {
.addr = CPU_TO_BE64(CPU_CTL_SPAT_AREA_OFF),
.size = CPU_TO_BE64(sizeof(struct sp_addr_table)),
},
.sp_attn_area1 = {
.addr = CPU_TO_BE64(CPU_CTL_SP_ATTN_AREA1_OFF),
.size = CPU_TO_BE64(sizeof(struct sp_attn_area)),
},
.sp_attn_area2 = {
.addr = CPU_TO_BE64(CPU_CTL_SP_ATTN_AREA2_OFF),
.size = CPU_TO_BE64(sizeof(struct sp_attn_area)),
},
.hsr_area = {
.addr = CPU_TO_BE64(CPU_CTL_HSR_AREA_OFF),
.size = CPU_TO_BE64(sizeof(struct hsr_data_area)),
},
},
};
/* Populate MDST table
*
* Note that we only pass sapphire console buffer here so that we can
* capture early failure logs. Later dump component (fsp_dump_mdst_init)
* creates new table with all the memory sections we are interested and
* sends updated table to FSP via MBOX.
*
* To help the FSP distinguishing between TCE tokens and actual physical
* addresses, we set the top bit to 1 on physical addresses
*/
extern struct mdst_table init_mdst_table[];
__section(".mdst.data") struct mdst_table init_mdst_table[2] = {
{
.addr = CPU_TO_BE64(INMEM_CON_START | HRMOR_BIT),
.data_region = DUMP_REGION_CONSOLE,
.dump_type = DUMP_TYPE_SYSDUMP,
.size = CPU_TO_BE32(INMEM_CON_LEN),
},
{
.addr = CPU_TO_BE64(HBRT_CON_START | HRMOR_BIT),
.data_region = DUMP_REGION_HBRT_LOG,
.dump_type = DUMP_TYPE_SYSDUMP,
.size = CPU_TO_BE32(HBRT_CON_LEN),
},
};
/* The Hypervisor SPIRA-H Structure */
__section(".spirah.data") struct spirah spirah = {
.hdr = HDIF_SIMPLE_HDR(SPIRAH_HDIF_SIG, SPIRAH_VERSION, struct spirah),
.ntuples_ptr = HDIF_IDATA_PTR(offsetof(struct spirah, ntuples),
sizeof(struct spirah_ntuples)),
.ntuples = {
.array_hdr = {
.offset = CPU_TO_BE32(HDIF_ARRAY_OFFSET),
.ecnt = CPU_TO_BE32(SPIRAH_NTUPLES_COUNT),
.esize
= CPU_TO_BE32(sizeof(struct spira_ntuple)),
.eactsz = CPU_TO_BE32(0x18),
},
/* Host Data Areas */
.hs_data_area = {
.addr = CPU_TO_BE64(SPIRA_HEAP_BASE),
.alloc_cnt = CPU_TO_BE16(1),
.alloc_len = CPU_TO_BE32(SPIRA_HEAP_SIZE),
},
/* We only populate some n-tuples */
.proc_init = {
.addr = CPU_TO_BE64(PROCIN_OFF),
.alloc_cnt = CPU_TO_BE16(1),
.act_cnt = CPU_TO_BE16(1),
.alloc_len
= CPU_TO_BE32(sizeof(struct proc_init_data)),
},
.cpu_ctrl = {
.addr = CPU_TO_BE64(CPU_CTL_INIT_DATA_OFF),
.alloc_cnt = CPU_TO_BE16(1),
.act_cnt = CPU_TO_BE16(1),
.alloc_len =
CPU_TO_BE32(sizeof(cpu_ctl_init_data)),
},
.mdump_src = {
.addr = CPU_TO_BE64(MDST_TABLE_OFF),
.alloc_cnt = CPU_TO_BE16(MDST_TABLE_SIZE / sizeof(struct mdst_table)),
.act_cnt = CPU_TO_BE16(ARRAY_SIZE(init_mdst_table)),
.alloc_len = CPU_TO_BE32(sizeof(struct mdst_table)),
.act_len = CPU_TO_BE32(sizeof(struct mdst_table)),
},
.mdump_dst = {
.addr = CPU_TO_BE64(MDDT_TABLE_OFF),
.alloc_cnt = CPU_TO_BE16(MDDT_TABLE_SIZE / sizeof(struct mddt_table)),
.act_cnt = CPU_TO_BE16(0),
.alloc_len = CPU_TO_BE32(sizeof(struct mddt_table)),
.act_len = CPU_TO_BE32(sizeof(struct mddt_table)),
},
.mdump_res = {
.addr = CPU_TO_BE64(MDRT_TABLE_BASE),
.alloc_cnt = CPU_TO_BE16(MDRT_TABLE_SIZE / sizeof(struct mdrt_table)),
/*
* XXX: Ideally hostboot should use allocated count and
* length. But looks like hostboot uses actual count
* and length to get MDRT table size. And post dump
* hostboot will update act_cnt. Hence update both
* alloc_cnt and act_cnt.
*/
.act_cnt = CPU_TO_BE16(MDRT_TABLE_SIZE / sizeof(struct mdrt_table)),
.alloc_len = CPU_TO_BE32(sizeof(struct mdrt_table)),
.act_len = CPU_TO_BE32(sizeof(struct mdrt_table)),
},
.proc_dump_area = {
.addr = CPU_TO_BE64(PROC_DUMP_AREA_OFF),
.alloc_cnt = CPU_TO_BE16(1),
.act_cnt = CPU_TO_BE16(1),
.alloc_len = CPU_TO_BE32(sizeof(struct proc_dump_area)),
.act_len = CPU_TO_BE32(sizeof(struct proc_dump_area)),
},
},
};
/* The service processor SPIRA-S structure */
struct spiras *skiboot_constant_addr spiras;
/* Overridden for testing. */
#ifndef spira_check_ptr
bool spira_check_ptr(const void *ptr, const char *file, unsigned int line)
{
if (!ptr)
return false;
if (((unsigned long)ptr) >= SPIRA_HEAP_BASE &&
((unsigned long)ptr) < (SPIRA_HEAP_BASE + SPIRA_HEAP_SIZE))
return true;
prerror("SPIRA: Bad pointer %p at %s line %d\n", ptr, file, line);
return false;
}
#endif
struct HDIF_common_hdr *__get_hdif(struct spira_ntuple *n, const char id[],
const char *file, int line)
{
struct HDIF_common_hdr *h = ntuple_addr(n);
u16 act_cnt, alloc_cnt;
u32 act_len, alloc_len;
if (!spira_check_ptr(h, file, line))
return NULL;
act_cnt = be16_to_cpu(n->act_cnt);
alloc_cnt = be16_to_cpu(n->alloc_cnt);
if (act_cnt > alloc_cnt) {
prerror("SPIRA: bad ntuple, act_cnt > alloc_cnt (%u > %u)\n",
act_cnt, alloc_cnt);
return NULL;
}
act_len = be32_to_cpu(n->act_len);
alloc_len = be32_to_cpu(n->alloc_len);
if (act_len > alloc_len) {
prerror("SPIRA: bad ntuple, act_len > alloc_len (%u > %u)\n",
act_len, alloc_len);
return NULL;
}
if (!HDIF_check(h, id)) {
prerror("SPIRA: bad tuple %p: expected %s at %s line %d\n",
h, id, file, line);
return NULL;
}
return h;
}
uint32_t get_xscom_id(const struct sppcrd_chip_info *cinfo)
{
if (proc_gen <= proc_gen_p9)
return be32_to_cpu(cinfo->xscom_id);
/* On P10 use Processor fabric topology id for chip id */
return (uint32_t)(cinfo->fab_topology_id);
}
static struct dt_node *add_xscom_node(uint64_t base,
const struct sppcrd_chip_info *cinfo)
{
struct dt_node *node;
uint64_t addr, size;
uint64_t freq;
uint32_t hw_id = get_xscom_id(cinfo);
uint32_t proc_chip_id = be32_to_cpu(cinfo->proc_chip_id);
switch (proc_gen) {
case proc_gen_p8:
/* On P8 all the chip SCOMs share single region */
addr = base | ((uint64_t)hw_id << PPC_BITLSHIFT(28));
break;
case proc_gen_p9:
/* On P9 we need to put the chip ID in the natural powerbus
* position.
*/
addr = base | (((uint64_t)hw_id) << 42);
break;
case proc_gen_p10:
default:
/* Use Primary topology table index for xscom address */
addr = base | (((uint64_t)cinfo->topology_id_table[cinfo->primary_topology_loc]) << 44);
break;
};
size = (u64)1 << PPC_BITLSHIFT(28);
prlog(PR_INFO, "XSCOM: Found HW ID 0x%x (PCID 0x%x) @ 0x%llx\n",
hw_id, proc_chip_id, (long long)addr);
node = dt_new_addr(dt_root, "xscom", addr);
assert(node);
dt_add_property_cells(node, "ibm,chip-id", hw_id);
dt_add_property_cells(node, "ibm,proc-chip-id", proc_chip_id);
dt_add_property_cells(node, "#address-cells", 1);
dt_add_property_cells(node, "#size-cells", 1);
dt_add_property(node, "scom-controller", NULL, 0);
switch(proc_gen) {
case proc_gen_p8:
dt_add_property_strings(node, "compatible",
"ibm,xscom", "ibm,power8-xscom");
break;
case proc_gen_p9:
dt_add_property_strings(node, "compatible",
"ibm,xscom", "ibm,power9-xscom");
break;
case proc_gen_p10:
dt_add_property_strings(node, "compatible",
"ibm,xscom", "ibm,power10-xscom");
break;
default:
dt_add_property_strings(node, "compatible", "ibm,xscom");
}
dt_add_property_u64s(node, "reg", addr, size);
/*
* The bus-frequency of the xscom node is actually the PIB/PCB
* frequency. It is derived from the nest-clock via a 4:1 divider
*/
freq = dt_prop_get_u64_def(dt_root, "nest-frequency", 0);
freq /= 4;
if (freq)
dt_add_property_u64(node, "bus-frequency", freq);
return node;
}
/*
* Given a xscom@ node this will return a pointer into the SPPCRD
* structure corresponding to that node
*/
#define GET_HDIF_HDR -1
static const void *xscom_to_pcrd(struct dt_node *xscom, int idata_index)
{
struct spira_ntuple *t = &spiras->ntuples.proc_chip;
const struct HDIF_common_hdr *hdif;
const void *idata;
unsigned int size;
uint32_t i;
void *base;
i = dt_prop_get_u32_def(xscom, DT_PRIVATE "sppcrd-index", 0xffffffff);
if (i == 0xffffffff)
return NULL;
base = get_hdif(t, "SPPCRD");
assert(base);
assert(i < be16_to_cpu(t->act_cnt));
hdif = base + i * be32_to_cpu(t->alloc_len);
assert(hdif);
if (idata_index == GET_HDIF_HDR)
return hdif;
idata = HDIF_get_idata(hdif, idata_index, &size);
if (!idata || !size)
return NULL;
return idata;
}
struct dt_node *find_xscom_for_chip(uint32_t chip_id)
{
struct dt_node *node;
uint32_t id;
dt_for_each_compatible(dt_root, node, "ibm,xscom") {
id = dt_get_chip_id(node);
if (id == chip_id)
return node;
}
return NULL;
}
static void add_psihb_node(struct dt_node *np)
{
u32 psi_scom, psi_slen;
const char *psi_comp;
/*
* We add a few things under XSCOM that aren't added
* by any other HDAT path
*/
/* PSI host bridge */
switch(proc_gen) {
case proc_gen_p8:
psi_scom = 0x2010900;
psi_slen = 0x20;
psi_comp = "ibm,power8-psihb-x";
break;
case proc_gen_p9:
psi_scom = 0x5012900;
psi_slen = 0x100;
psi_comp = "ibm,power9-psihb-x";
break;
case proc_gen_p10:
psi_scom = 0x3011d00;
psi_slen = 0x100;
psi_comp = "ibm,power10-psihb-x";
break;
default:
psi_comp = NULL;
}
if (psi_comp) {
struct dt_node *psi_np;
psi_np = dt_new_addr(np, "psihb", psi_scom);
if (!psi_np)
return;
dt_add_property_cells(psi_np, "reg", psi_scom, psi_slen);
dt_add_property_strings(psi_np, "compatible", psi_comp,
"ibm,psihb-x");
}
}
static void add_xive_node(struct dt_node *np)
{
struct dt_node *xive;
const char *comp;
u32 scom, slen;
switch (proc_gen) {
case proc_gen_p9:
scom = 0x5013000;
slen = 0x300;
comp = "ibm,power9-xive-x";
break;
case proc_gen_p10:
scom = 0x2010800;
slen = 0x400;
comp = "ibm,power10-xive-x";
break;
default:
return;
}
xive = dt_new_addr(np, "xive", scom);
dt_add_property_cells(xive, "reg", scom, slen);
dt_add_property_string(xive, "compatible", comp);
/* HACK: required for simics */
dt_add_property(xive, "force-assign-bars", NULL, 0);
}
static void add_vas_node(struct dt_node *np, int idx)
{
struct dt_node *vas;
const char *comp;
uint64_t base_addr;
if (proc_gen == proc_gen_p9) {
base_addr = P9_VAS_SCOM_BASE_ADDR;
comp = "ibm,power9-vas-x";
} else {
base_addr = VAS_SCOM_BASE_ADDR;
comp = "ibm,power10-vas-x";
}
vas = dt_new_addr(np, "vas", base_addr);
dt_add_property_cells(vas, "reg", base_addr, 0x300);
dt_add_property_string(vas, "compatible", comp);
dt_add_property_cells(vas, "ibm,vas-id", idx);
}
static void add_ecid_data(const struct HDIF_common_hdr *hdr,
struct dt_node *xscom)
{
char wafer_id[11];
uint8_t tmp;
int i;
uint32_t size = 0;
struct sppcrd_ecid *ecid;
const struct HDIF_array_hdr *ec_hdr;
ec_hdr = HDIF_get_idata(hdr, SPPCRD_IDATA_EC_LEVEL, &size);
if (!ec_hdr || !size)
return;
ecid = (void *)ec_hdr + be32_to_cpu(ec_hdr->offset);
dt_add_property_u64s(xscom, "ecid", be64_to_cpu(ecid->low),
be64_to_cpu(ecid->high));
/*
* bits 4:63 of ECID data contains wafter ID data (ten 6 bit fields
* each containing a code).
*/
for (i = 0; i < 10; i++) {
tmp = (u8)((be64_to_cpu(ecid->low) >> (i * 6)) & 0x3f);
if (tmp <= 9)
wafer_id[9 - i] = tmp + '0';
else if (tmp >= 0xA && tmp <= 0x23)
wafer_id[9 - i] = tmp + '0' + 7;
else if (tmp == 0x3D)
wafer_id[9 - i] = '-';
else if (tmp == 0x3E)
wafer_id[9 - i] = '.';
else if (tmp == 0x3F)
wafer_id[9 - i] = ' ';
else /* Unknown code */
wafer_id[9 - i] = tmp + '0';
}
wafer_id[10] = '\0';
dt_add_property_nstr(xscom, "wafer-id", wafer_id, 10);
dt_add_property_cells(xscom, "wafer-location",
(u32)((be64_to_cpu(ecid->high) >> 56) & 0xff),
(u32)((be64_to_cpu(ecid->high) >> 48) & 0xff));
}
static void add_xscom_add_pcia_assoc(struct dt_node *np, uint32_t pcid)
{
const struct HDIF_common_hdr *hdr;
u32 size;
/*
* The SPPCRD doesn't contain all the affinity data, we have
* to dig it out of a core. I assume this is so that node
* affinity can be different for groups of cores within the
* chip, but for now we are going to ignore that
*/
hdr = get_hdif(&spiras->ntuples.pcia, SPPCIA_HDIF_SIG);
if (!hdr)
return;
for_each_pcia(spiras, hdr) {
const struct sppcia_core_unique *id;
id = HDIF_get_idata(hdr, SPPCIA_IDATA_CORE_UNIQUE, &size);
if (!id || size < sizeof(*id))
continue;
if (be32_to_cpu(id->proc_chip_id) != pcid)
continue;
dt_add_property_cells(np, "ibm,ccm-node-id",
be32_to_cpu(id->ccm_node_id));
dt_add_property_cells(np, "ibm,hw-card-id",
be32_to_cpu(id->hw_card_id));
dt_add_property_cells(np, "ibm,hw-module-id",
be32_to_cpu(id->hw_module_id));
if (!dt_find_property(np, "ibm,dbob-id"))
dt_add_property_cells(np, "ibm,dbob-id",
be32_to_cpu(id->drawer_book_octant_blade_id));
if (proc_gen < proc_gen_p9) {
dt_add_property_cells(np, "ibm,mem-interleave-scope",
be32_to_cpu(id->memory_interleaving_scope));
}
return;
}
}
static bool add_xscom_sppcrd(uint64_t xscom_base)
{
const struct HDIF_common_hdr *hdif;
unsigned int i, vpd_sz;
const void *vpd;
struct dt_node *np, *vpd_node;
for_each_ntuple_idx(&spiras->ntuples.proc_chip, hdif, i,
SPPCRD_HDIF_SIG) {
const struct sppcrd_chip_info *cinfo;
const struct spira_fru_id *fru_id = NULL;
unsigned int csize;
u32 ve, version;
cinfo = HDIF_get_idata(hdif, SPPCRD_IDATA_CHIP_INFO, &csize);
if (!CHECK_SPPTR(cinfo)) {
prerror("XSCOM: Bad ChipID data %d\n", i);
continue;
}
ve = be32_to_cpu(cinfo->verif_exist_flags) & CHIP_VERIFY_MASK;
ve >>= CHIP_VERIFY_SHIFT;
if (ve == CHIP_VERIFY_NOT_INSTALLED ||
ve == CHIP_VERIFY_UNUSABLE)
continue;
/* Create the XSCOM node */
np = add_xscom_node(xscom_base, cinfo);
if (!np)
continue;
dt_add_property_cells(np, DT_PRIVATE "sppcrd-index", i);
version = be16_to_cpu(hdif->version);
/* Version 0A has additional OCC related stuff */
if (version >= 0x000a) {
if (!dt_find_property(np, "ibm,dbob-id"))
dt_add_property_cells(np, "ibm,dbob-id",
be32_to_cpu(cinfo->dbob_id));
dt_add_property_cells(np, "ibm,occ-functional-state",
be32_to_cpu(cinfo->occ_state));
}
/* Add chip VPD */
vpd_node = dt_add_vpd_node(hdif, SPPCRD_IDATA_FRU_ID,
SPPCRD_IDATA_KW_VPD);
if (vpd_node)
dt_add_property_cells(vpd_node, "ibm,chip-id",
get_xscom_id(cinfo));
fru_id = HDIF_get_idata(hdif, SPPCRD_IDATA_FRU_ID, NULL);
if (fru_id)
slca_vpd_add_loc_code(np, be16_to_cpu(fru_id->slca_index));
/* Add module VPD on version A and later */
if (version >= 0x000a) {
vpd = HDIF_get_idata(hdif, SPPCRD_IDATA_MODULE_VPD,
&vpd_sz);
if (CHECK_SPPTR(vpd)) {
dt_add_property(np, "ibm,module-vpd", vpd,
vpd_sz);
vpd_data_parse(np, vpd, vpd_sz);
if (vpd_node)
dt_add_proc_vendor(vpd_node, vpd, vpd_sz);
}
}
/*
* Extract additional associativity information from
* the core data. Pick one core on that chip
*/
add_xscom_add_pcia_assoc(np, be32_to_cpu(cinfo->proc_chip_id));
/* Add PSI Host bridge */
add_psihb_node(np);
if (proc_gen >= proc_gen_p9) {
add_xive_node(np);
parse_i2c_devs(hdif, SPPCRD_IDATA_HOST_I2C, np);
add_vas_node(np, i);
add_ecid_data(hdif, np);
if (be32_to_cpu(cinfo->verif_exist_flags) & CHIP_VERIFY_MASTER_PROC)
dt_add_property(np, "primary", NULL, 0);
}
/*
* Add sw checkstop scom address (ibm,sw-checkstop-fir)
*
* The latest HDAT versions have sw checkstop scom address
* info. But not sure from which version onwards (at least
* HDAT spec do not mention that explicitly). Hence use the
* sppcrd struct size returned by HDIF_get_idata to figure out
* whether it contains sw checkstop scom address info. Also
* check if sw_xstop_fir_scom address is non-zero.
*/
if ((csize >= (offsetof(struct sppcrd_chip_info,
sw_xstop_fir_bitpos) + 1)) &&
cinfo->sw_xstop_fir_scom) {
uint8_t fir_bit = cinfo->sw_xstop_fir_bitpos;
if (!dt_find_property(dt_root, "ibm,sw-checkstop-fir"))
dt_add_property_cells(dt_root,
"ibm,sw-checkstop-fir",
be32_to_cpu(cinfo->sw_xstop_fir_scom),
fir_bit);
}
if (proc_gen >= proc_gen_p10) {
uint8_t primary_loc = cinfo->primary_topology_loc;
if (primary_loc >= CHIP_MAX_TOPOLOGY_ENTRIES) {
prerror("XSCOM: Invalid primary topology index %d\n",
primary_loc);
continue;
}
dt_add_property_cells(np, "ibm,primary-topology-index",
cinfo->topology_id_table[primary_loc]);
}
}
return i > 0;
}
static void add_xscom(void)
{
const void *ms_vpd;
const struct msvpd_pmover_bsr_synchro *pmbs;
unsigned int size;
uint64_t xscom_base;
ms_vpd = get_hdif(&spiras->ntuples.ms_vpd, MSVPD_HDIF_SIG);
if (!ms_vpd) {
prerror("XSCOM: Can't find MS VPD\n");
return;
}
pmbs = HDIF_get_idata(ms_vpd, MSVPD_IDATA_PMOVER_SYNCHRO, &size);
if (!CHECK_SPPTR(pmbs) || size < sizeof(*pmbs)) {
prerror("XSCOM: absent or bad PMBS size %u @ %p\n", size, pmbs);
return;
}
if (!(be32_to_cpu(pmbs->flags) & MSVPD_PMS_FLAG_XSCOMBASE_VALID)) {
prerror("XSCOM: No XSCOM base in PMBS, using default\n");
return;
}
xscom_base = be64_to_cpu(pmbs->xscom_addr);
/* Get rid of the top bits */
xscom_base = cleanup_addr(xscom_base);
/* First, try the new proc_chip ntuples for chip data */
if (add_xscom_sppcrd(xscom_base))
return;
}
static void add_chiptod_node(unsigned int chip_id, int flags)
{
struct dt_node *node, *xscom_node;
const char *compat_str;
uint32_t addr, len;
if ((flags & CHIPTOD_ID_FLAGS_STATUS_MASK) !=
CHIPTOD_ID_FLAGS_STATUS_OK)
return;
xscom_node = find_xscom_for_chip(chip_id);
if (!xscom_node) {
prerror("CHIPTOD: No xscom for chiptod %d?\n", chip_id);
return;
}
addr = 0x40000;
len = 0x34;
switch(proc_gen) {
case proc_gen_p8:
compat_str = "ibm,power8-chiptod";
break;
case proc_gen_p9:
compat_str = "ibm,power9-chiptod";
break;
case proc_gen_p10:
compat_str = "ibm,power10-chiptod";
break;
default:
return;
}
prlog(PR_DEBUG, "CHIPTOD: Found on chip 0x%x %s\n", chip_id,
(flags & CHIPTOD_ID_FLAGS_PRIMARY) ? "[primary]" :
((flags & CHIPTOD_ID_FLAGS_SECONDARY) ? "[secondary]" : ""));
node = dt_new_addr(xscom_node, "chiptod", addr);
if (!node)
return;
dt_add_property_cells(node, "reg", addr, len);
dt_add_property_strings(node, "compatible", "ibm,power-chiptod",
compat_str);
if (flags & CHIPTOD_ID_FLAGS_PRIMARY)
dt_add_property(node, "primary", NULL, 0);
if (flags & CHIPTOD_ID_FLAGS_SECONDARY)
dt_add_property(node, "secondary", NULL, 0);
}
static bool add_chiptod(void)
{
const void *hdif;
unsigned int i;
bool found = false;
/*
* Locate Proc Chip ID structures in SPIRA
*/
if (!get_hdif(&spiras->ntuples.proc_chip, SPPCRD_HDIF_SIG))
return found;
for_each_ntuple_idx(&spiras->ntuples.proc_chip, hdif, i,
SPPCRD_HDIF_SIG) {
const struct sppcrd_chip_info *cinfo;
const struct sppcrd_chip_tod *tinfo;
unsigned int size;
u32 ve, flags;
cinfo = HDIF_get_idata(hdif, SPPCRD_IDATA_CHIP_INFO, NULL);
if (!CHECK_SPPTR(cinfo)) {
prerror("CHIPTOD: Bad ChipID data %d\n", i);
continue;
}
ve = be32_to_cpu(cinfo->verif_exist_flags) & CHIP_VERIFY_MASK;
ve >>= CHIP_VERIFY_SHIFT;
if (ve == CHIP_VERIFY_NOT_INSTALLED ||
ve == CHIP_VERIFY_UNUSABLE)
continue;
tinfo = HDIF_get_idata(hdif, SPPCRD_IDATA_CHIP_TOD, &size);
if (!CHECK_SPPTR(tinfo)) {
prerror("CHIPTOD: Bad TOD data %d\n", i);
continue;
}
flags = be32_to_cpu(tinfo->flags);
/* The FSP may strip the chiptod info from HDAT; if we find
* a zero-ed out entry, assume that the chiptod is
* present, but we don't have any primary/secondary info. In
* this case, pick chip zero as the master.
*/
if (!size) {
flags = CHIPTOD_ID_FLAGS_STATUS_OK;
if (be32_to_cpu(cinfo->xscom_id) == 0x0)
flags |= CHIPTOD_ID_FLAGS_PRIMARY;
}
add_chiptod_node(get_xscom_id(cinfo), flags);
found = true;
}
return found;
}
static void add_nx_node(u32 gcid)
{
struct dt_node *nx;
u32 addr;
u32 size;
struct dt_node *xscom;
xscom = find_xscom_for_chip(gcid);
if (xscom == NULL) {
prerror("NX%d: did not found xscom node.\n", gcid);
return;
}
/*
* The NX register space is relatively self contained on P7+ but
* a bit more messy on P8. However it's all contained within the
* PB chiplet port 1 so we'll stick to that in the "reg" property
* and let the NX "driver" deal with the details.
*/
addr = 0x2010000;
size = 0x0004000;
nx = dt_new_addr(xscom, "nx", addr);
if (!nx)
return;
switch (proc_gen) {
case proc_gen_p8:
dt_add_property_strings(nx, "compatible", "ibm,power-nx",
"ibm,power8-nx");
break;
case proc_gen_p9:
case proc_gen_p10:
/* POWER9 NX is not software compatible with P8 NX */
dt_add_property_strings(nx, "compatible", "ibm,power9-nx");
break;
default:
return;
}
dt_add_property_cells(nx, "reg", addr, size);
}
static void add_nx(void)
{
unsigned int i;
void *hdif;
for_each_ntuple_idx(&spiras->ntuples.proc_chip, hdif, i,
SPPCRD_HDIF_SIG) {
const struct sppcrd_chip_info *cinfo;
u32 ve;
cinfo = HDIF_get_idata(hdif, SPPCRD_IDATA_CHIP_INFO, NULL);
if (!CHECK_SPPTR(cinfo)) {
prerror("NX: Bad ChipID data %d\n", i);
continue;
}
ve = be32_to_cpu(cinfo->verif_exist_flags) & CHIP_VERIFY_MASK;
ve >>= CHIP_VERIFY_SHIFT;
if (ve == CHIP_VERIFY_NOT_INSTALLED ||
ve == CHIP_VERIFY_UNUSABLE)
continue;
if (cinfo->nx_state)
add_nx_node(get_xscom_id(cinfo));
}
}
static void add_nmmu(void)
{
struct dt_node *xscom, *nmmu;
u32 scom1, scom2;
u32 chip_id;
/* Nest MMU only exists on POWER9 or later */
if (proc_gen < proc_gen_p9)
return;
if (proc_gen == proc_gen_p10) {
scom1 = 0x2010c40;
scom2 = 0x3010c40;
} else
scom1 = 0x5012c40;
dt_for_each_compatible(dt_root, xscom, "ibm,xscom") {
nmmu = dt_new_addr(xscom, "nmmu", scom1);
dt_add_property_strings(nmmu, "compatible", "ibm,power9-nest-mmu");
dt_add_property_cells(nmmu, "reg", scom1, 0x20);
/*
* P10 has a second nMMU, a.k.a "south" nMMU.
* It exists only on P1 and P3
*/
if (proc_gen == proc_gen_p10) {
chip_id = __dt_get_chip_id(xscom);
if (chip_id != 2 && chip_id != 6)
continue;
nmmu = dt_new_addr(xscom, "nmmu", scom2);
dt_add_property_strings(nmmu, "compatible", "ibm,power9-nest-mmu");
dt_add_property_cells(nmmu, "reg", scom2, 0x20);
}
}
}
static void dt_init_secureboot_node(const struct iplparams_sysparams *sysparams)
{
struct dt_node *node;
u16 sys_sec_setting;
u16 hw_key_hash_size;
u16 host_fw_key_clear;
node = dt_new(dt_root, "ibm,secureboot");
assert(node);
dt_add_property_strings(node, "compatible",
"ibm,secureboot", "ibm,secureboot-v2");
sys_sec_setting = be16_to_cpu(sysparams->sys_sec_setting);
if (sys_sec_setting & SEC_CONTAINER_SIG_CHECKING)
dt_add_property(node, "secure-enabled", NULL, 0);
if (sys_sec_setting & SEC_HASHES_EXTENDED_TO_TPM)
dt_add_property(node, "trusted-enabled", NULL, 0);
if (sys_sec_setting & PHYSICAL_PRESENCE_ASSERTED)
dt_add_property(node, "physical-presence-asserted", NULL, 0);
host_fw_key_clear = be16_to_cpu(sysparams->host_fw_key_clear);
if (host_fw_key_clear & KEY_CLEAR_OS_KEYS)
dt_add_property(node, "clear-os-keys", NULL, 0);
if (host_fw_key_clear & KEY_CLEAR_MFG)
dt_add_property(node, "clear-mfg-keys", NULL, 0);
if (host_fw_key_clear & KEY_CLEAR_ALL)
dt_add_property(node, "clear-all-keys", NULL, 0);
hw_key_hash_size = be16_to_cpu(sysparams->hw_key_hash_size);
/* Prevent hw-key-hash buffer overflow by truncating hw-key-hash-size if
* it is bigger than the hw-key-hash buffer.
* Secure boot will be enforced later in skiboot, if the hw-key-hash-size
* was not supposed to be SYSPARAMS_HW_KEY_HASH_MAX.
*/
if (hw_key_hash_size > SYSPARAMS_HW_KEY_HASH_MAX) {
prlog(PR_ERR, "IPLPARAMS: hw-key-hash-size=%d too big, "
"truncating to %d\n", hw_key_hash_size,
SYSPARAMS_HW_KEY_HASH_MAX);
hw_key_hash_size = SYSPARAMS_HW_KEY_HASH_MAX;
}
dt_add_property(node, "hw-key-hash", sysparams->hw_key_hash,
hw_key_hash_size);
dt_add_property_cells(node, "hw-key-hash-size", hw_key_hash_size);
}
static void opal_dump_add_mpipl_boot(const struct iplparams_iplparams *p)
{
u32 mdrt_cnt = be16_to_cpu(spirah.ntuples.mdump_res.act_cnt);
u32 mdrt_max_cnt = MDRT_TABLE_SIZE / sizeof(struct mdrt_table);
struct dt_node *dump_node;
dump_node = dt_find_by_path(opal_node, "dump");
if (!dump_node)
return;
/* Check boot params to detect MPIPL boot or not */
if (p->cec_ipl_maj_type != IPLPARAMS_MAJ_TYPE_REIPL)
return;
/*
* On FSP system we get minor type as post dump IPL and on BMC system
* we get platform reboot. Hence lets check for both values.
*/
if (p->cec_ipl_min_type != IPLPARAMS_MIN_TYPE_POST_DUMP &&
p->cec_ipl_min_type != IPLPARAMS_MIN_TYPE_PLAT_REBOOT) {
prlog(PR_NOTICE, "DUMP: Non MPIPL reboot "
"[minor type = 0x%x]\n", p->cec_ipl_min_type);
return;
}
if (be16_to_cpu(p->cec_ipl_attrib) != IPLPARAMS_ATTRIB_MEM_PRESERVE) {
prlog(PR_DEBUG, "DUMP: Memory not preserved\n");
return;
}
if (mdrt_cnt == 0 || mdrt_cnt >= mdrt_max_cnt) {
prlog(PR_DEBUG, "DUMP: Invalid MDRT count : %x\n", mdrt_cnt);
return;
}
prlog(PR_NOTICE, "DUMP: Dump found, MDRT count = 0x%x\n", mdrt_cnt);
dt_add_property(dump_node, "mpipl-boot", NULL, 0);
}
static void add_opal_dump_node(void)
{
__be64 fw_load_area[4];
struct dt_node *node;
opal_node = dt_new_check(dt_root, "ibm,opal");
node = dt_new(opal_node, "dump");
assert(node);
dt_add_property_string(node, "compatible", "ibm,opal-dump");
fw_load_area[0] = cpu_to_be64((u64)KERNEL_LOAD_BASE);
fw_load_area[1] = cpu_to_be64(KERNEL_LOAD_SIZE);
fw_load_area[2] = cpu_to_be64((u64)INITRAMFS_LOAD_BASE);
fw_load_area[3] = cpu_to_be64(INITRAMFS_LOAD_SIZE);
dt_add_property(node, "fw-load-area", fw_load_area, sizeof(fw_load_area));
}
static void add_iplparams_sys_params(const void *iplp, struct dt_node *node)
{
const struct iplparams_sysparams *p;
const struct HDIF_common_hdr *hdif = iplp;
u16 version = be16_to_cpu(hdif->version);
const char *vendor = NULL;
u32 sys_attributes;
u64 bus_speed;
p = HDIF_get_idata(iplp, IPLPARAMS_SYSPARAMS, NULL);
if (!CHECK_SPPTR(p)) {
prerror("IPLPARAMS: No SYS Parameters\n");
/* Create a generic compatible property */
dt_add_property_string(dt_root, "compatible", "ibm,powernv");
return;
}
node = dt_new(node, "sys-params");
assert(node);
dt_add_property_cells(node, "#address-cells", 0);
dt_add_property_cells(node, "#size-cells", 0);
dt_add_property_nstr(node, "ibm,sys-model", p->sys_model, 4);
/*
* Compatible has up to three entries:
* "ibm,powernv", the system family and system type.
*
* On P9 and above the family and type strings come from the HDAT
* directly. On P8 we find it from the system ID numbers.
*/
if (proc_gen >= proc_gen_p9) {
dt_add_property_strings(dt_root, "compatible", "ibm,powernv",
p->sys_family_str, p->sys_type_str);
prlog(PR_INFO, "IPLPARAMS: v0x70 Platform family/type: %s/%s\n",
p->sys_family_str, p->sys_type_str);
} else {
u32 sys_type = be32_to_cpu(p->system_type);
const char *sys_family;
switch (sys_type >> 28) {
case 0:
sys_family = "ibm,squadrons";
break;
case 1:
sys_family = "ibm,eclipz";
break;
case 2:
sys_family = "ibm,apollo";
break;
case 3:
sys_family = "ibm,firenze";
break;
default:
sys_family = NULL;
prerror("IPLPARAMS: Unknown system family\n");
break;
}
dt_add_property_strings(dt_root, "compatible", "ibm,powernv",
sys_family);
prlog(PR_INFO,
"IPLPARAMS: Legacy platform family: %s"
" (sys_type=0x%08x)\n", sys_family, sys_type);
}
/* Grab nest frequency when available */
if (version >= 0x005b) {
u64 freq = be32_to_cpu(p->nest_freq_mhz);
freq *= 1000000;
dt_add_property_u64(dt_root, "nest-frequency", freq);
}
/* Grab ABC bus speed */
bus_speed = be32_to_cpu(p->abc_bus_speed);
if (bus_speed)
dt_add_property_u64(node, "abc-bus-freq-mhz", bus_speed);
/* Grab WXYZ bus speed */
bus_speed = be32_to_cpu(p->wxyz_bus_speed);
if (bus_speed)
dt_add_property_u64(node, "wxyz-bus-freq-mhz", bus_speed);
if (version >= 0x5f)
vendor = p->sys_vendor;
/* Workaround a bug where we have NULL vendor */
if (!vendor || vendor[0] == '\0')
vendor = "IBM";
dt_add_property_string(dt_root, "vendor", vendor);
sys_attributes = be32_to_cpu(p->sys_attributes);
if (sys_attributes & SYS_ATTR_RISK_LEVEL)
dt_add_property(node, "elevated-risk-level", NULL, 0);
/* Populate OPAL dump node */
if (sys_attributes & SYS_ATTR_MPIPL_SUPPORTED)
add_opal_dump_node();
if (version >= 0x60 && proc_gen >= proc_gen_p9)
dt_init_secureboot_node(p);
}
static void add_iplparams_ipl_params(const void *iplp, struct dt_node *node)
{
const struct iplparams_iplparams *p;
struct dt_node *led_node;
p = HDIF_get_idata(iplp, IPLPARAMS_IPLPARAMS, NULL);
if (!CHECK_SPPTR(p)) {
prerror("IPLPARAMS: No IPL Parameters\n");
return;
}
node = dt_new(node, "ipl-params");
assert(node);
dt_add_property_cells(node, "#address-cells", 0);
dt_add_property_cells(node, "#size-cells", 0);
/* On an ASM initiated factory reset, this bit will be set
* and the FSP expects the firmware to reset the PCI bus
* numbers and respond with a Power Down (CE,4D,02) message
*/
if (be32_to_cpu(p->other_attrib) & IPLPARAMS_OATTR_RST_PCI_BUSNO)
dt_add_property_cells(node, "pci-busno-reset-ipl", 1);
dt_add_property_strings(node, "cec-ipl-side",
(p->ipl_side & IPLPARAMS_CEC_FW_IPL_SIDE_TEMP) ?
"temp" : "perm");
if (proc_gen >= proc_gen_p9) {
dt_add_property_strings(node, "sp-ipl-side",
(p->ipl_side & IPLPARAMS_FSP_FW_IPL_SIDE_TEMP) ?
"temp" : "perm");
} else {
dt_add_property_strings(node, "fsp-ipl-side",
(p->ipl_side & IPLPARAMS_FSP_FW_IPL_SIDE_TEMP) ?
"temp" : "perm");
}
dt_add_property_cells(node, "os-ipl-mode", p->os_ipl_mode);
dt_add_property_strings(node, "cec-major-type",
p->cec_ipl_maj_type ? "hot" : "cold");
/* Add LED type info under '/ibm,opal/led' node */
led_node = dt_find_by_path(opal_node, DT_PROPERTY_LED_NODE);
assert(led_node);
if (be32_to_cpu(p->other_attrib) & IPLPARAMS_OATRR_LIGHT_PATH)
dt_add_property_strings(led_node, DT_PROPERTY_LED_MODE,
LED_MODE_LIGHT_PATH);
else
dt_add_property_strings(led_node, DT_PROPERTY_LED_MODE,
LED_MODE_GUIDING_LIGHT);
/* Populate opal dump result table */
opal_dump_add_mpipl_boot(p);
}
static void add_iplparams_serials(const void *iplp, struct dt_node *node)
{
const struct iplparms_serial *ipser;
struct dt_node *ser_node;
int count, i;
count = HDIF_get_iarray_size(iplp, IPLPARMS_IDATA_SERIAL);
if (count <= 0)
return;
prlog(PR_INFO, "IPLPARAMS: %d serial ports in array\n", count);
node = dt_new(node, "fsp-serial");
assert(node);
dt_add_property_cells(node, "#address-cells", 1);
dt_add_property_cells(node, "#size-cells", 0);
for (i = 0; i < count; i++) {
u16 rsrc_id;
ipser = HDIF_get_iarray_item(iplp, IPLPARMS_IDATA_SERIAL,
i, NULL);
if (!CHECK_SPPTR(ipser))
continue;
rsrc_id = be16_to_cpu(ipser->rsrc_id);
prlog(PR_INFO, "IPLPARAMS: Serial %d rsrc: %04x loc: %s\n",
i, rsrc_id, ipser->loc_code);
ser_node = dt_new_addr(node, "serial", rsrc_id);
if (!ser_node)
continue;
dt_add_property_cells(ser_node, "reg", rsrc_id);
dt_add_property_nstr(ser_node, "ibm,loc-code",
ipser->loc_code, LOC_CODE_SIZE);
dt_add_property_string(ser_node, "compatible",
"ibm,fsp-serial");
/* XXX handle CALLHOME flag ? */
}
}
/*
* Check for platform dump, if present populate DT
*/
static void add_iplparams_platform_dump(const void *iplp, struct dt_node *node)
{
const struct iplparams_dump *ipl_dump;
ipl_dump = HDIF_get_idata(iplp, IPLPARAMS_PLATFORM_DUMP, NULL);
if (!CHECK_SPPTR(ipl_dump))
return;
node = dt_new(node, "platform-dump");
assert(node);
if (be32_to_cpu(ipl_dump->dump_id)) {
dt_add_property_cells(node, "dump-id",
be32_to_cpu(ipl_dump->dump_id));
dt_add_property_u64(node, "total-size",
be64_to_cpu(ipl_dump->act_dump_sz));
dt_add_property_u64(node, "hw-dump-size",
be32_to_cpu(ipl_dump->act_hw_dump_sz));
dt_add_property_cells(node, "plog-id",
be32_to_cpu(ipl_dump->plid));
}
}
static void add_iplparams_features(const struct HDIF_common_hdr *iplp)
{
const struct iplparams_feature *feature;
const struct HDIF_array_hdr *array;
struct dt_node *fw_features;
unsigned int count, i;
char name[65];
array = HDIF_get_iarray(iplp, IPLPARAMS_FEATURES, &count);
if (!array || !count)
return;
opal_node = dt_new_check(dt_root, "ibm,opal");
fw_features = dt_new(opal_node, "fw-features");
if (!fw_features)
return;
HDIF_iarray_for_each(array, i, feature) {
struct dt_node *n;
uint64_t flags;
/* the name field isn't necessarily null terminated */
BUILD_ASSERT(sizeof(name) > sizeof(feature->name));
strncpy(name, feature->name, sizeof(name)-1);
name[sizeof(name)-1] = '\0';
flags = be64_to_cpu(feature->flags);
if (strlen(name) == 0) {
prlog(PR_DEBUG, "IPLPARAMS: FW feature name is NULL\n");
continue;
}
prlog(PR_DEBUG, "IPLPARAMS: FW feature %s = %016"PRIx64"\n",
name, flags);
/* get rid of tm-suspend-mode-enabled being disabled */
if (strcmp(name, "tm-suspend-mode-enabled") == 0)
strcpy(name, "tm-suspend-mode");
n = dt_new(fw_features, name);
/*
* This is a bit overkill, but we'll want seperate properties
* for each flag bit(s).
*/
if (flags & PPC_BIT(0))
dt_add_property(n, "enabled", NULL, 0);
else
dt_add_property(n, "disabled", NULL, 0);
}
}
static void add_iplparams(void)
{
struct dt_node *iplp_node;
const void *ipl_parms;
ipl_parms = get_hdif(&spiras->ntuples.ipl_parms, "IPLPMS");
if (!ipl_parms) {
prerror("IPLPARAMS: Cannot find IPL Parms in SPIRA\n");
return;
}
iplp_node = dt_new(dt_root, "ipl-params");
assert(iplp_node);
dt_add_property_cells(iplp_node, "#address-cells", 0);
dt_add_property_cells(iplp_node, "#size-cells", 0);
add_iplparams_sys_params(ipl_parms, iplp_node);
add_iplparams_ipl_params(ipl_parms, iplp_node);
add_iplparams_serials(ipl_parms, iplp_node);
add_iplparams_platform_dump(ipl_parms, iplp_node);
add_iplparams_features(ipl_parms);
}
/* Various structure contain a "proc_chip_id" which is an arbitrary
* numbering used by HDAT to reference chips, which doesn't correspond
* to the HW IDs. We want to use the HW IDs everywhere in the DT so
* we convert using this.
*/
uint32_t pcid_to_chip_id(uint32_t proc_chip_id)
{
unsigned int i;
const void *hdif;
/* First, try the proc_chip ntuples for chip data */
for_each_ntuple_idx(&spiras->ntuples.proc_chip, hdif, i,
SPPCRD_HDIF_SIG) {
const struct sppcrd_chip_info *cinfo;
cinfo = HDIF_get_idata(hdif, SPPCRD_IDATA_CHIP_INFO,
NULL);
if (!CHECK_SPPTR(cinfo)) {
prerror("XSCOM: Bad ChipID data %d\n", i);
continue;
}
if (proc_chip_id == be32_to_cpu(cinfo->proc_chip_id))
return get_xscom_id(cinfo);
}
/* Not found, what to do ? Assert ? For now return a number
* guaranteed to not exist
*/
return (uint32_t)-1;
}
uint32_t pcid_to_topology_idx(uint32_t proc_chip_id)
{
unsigned int i;
const void *hdif;
/* First, try the proc_chip ntuples for chip data */
for_each_ntuple_idx(&spiras->ntuples.proc_chip, hdif, i,
SPPCRD_HDIF_SIG) {
const struct sppcrd_chip_info *cinfo;
cinfo = HDIF_get_idata(hdif, SPPCRD_IDATA_CHIP_INFO, NULL);
if (!CHECK_SPPTR(cinfo)) {
prerror("XSCOM: Bad ChipID data %d\n", i);
continue;
}
if (proc_chip_id == be32_to_cpu(cinfo->proc_chip_id)) {
if (proc_gen <= proc_gen_p9)
return get_xscom_id(cinfo);
else
return ((u32)cinfo->topology_id_table[cinfo->primary_topology_loc]);
}
}
/* Not found, what to do ? Assert ? For now return a number
* guaranteed to not exist
*/
return (uint32_t)-1;
}
/* Create '/ibm,opal/led' node */
static void dt_init_led_node(void)
{
struct dt_node *led_node;
/* Create /ibm,opal node, if its not created already */
if (!opal_node) {
opal_node = dt_new(dt_root, "ibm,opal");
assert(opal_node);
}
/* Crete LED parent node */
led_node = dt_new(opal_node, DT_PROPERTY_LED_NODE);
assert(led_node);
}
static void hostservices_parse(void)
{
struct HDIF_common_hdr *hs_hdr;
const void *dt_blob;
unsigned int size;
unsigned int ntuples_size;
/* Deprecated on P9 */
if (proc_gen >= proc_gen_p9)
return;
ntuples_size = sizeof(struct HDIF_array_hdr) +
be32_to_cpu(spiras->ntuples.array_hdr.ecnt) *
sizeof(struct spira_ntuple);
if (offsetof(struct spiras_ntuples, hs_data) >= ntuples_size) {
prerror("SPIRA: No host services data found\n");
return;
}
hs_hdr = get_hdif(&spiras->ntuples.hs_data, HSERV_HDIF_SIG);
if (!hs_hdr) {
prerror("SPIRA: No host services data found\n");
return;
}
dt_blob = HDIF_get_idata(hs_hdr, 0, &size);
if (!dt_blob) {
prerror("SPIRA: No host services idata found\n");
return;
}
hservices_from_hdat(dt_blob, size);
}
static void add_stop_levels(void)
{
struct spira_ntuple *t = &spiras->ntuples.proc_chip;
struct HDIF_common_hdr *hdif;
u32 stop_levels = ~0;
bool valid = false;
int i;
if (proc_gen < proc_gen_p9)
return;
/*
* OPAL only exports a single set of flags to indicate the supported
* STOP modes while the HDAT descibes the support top levels *per chip*
* We parse the list of chips to find a common set of STOP levels to
* export.
*/
for_each_ntuple_idx(t, hdif, i, SPPCRD_HDIF_SIG) {
unsigned int size;
const struct sppcrd_chip_info *cinfo =
HDIF_get_idata(hdif, SPPCRD_IDATA_CHIP_INFO, &size);
u32 ve, chip_levels;
if (!cinfo)
continue;
/*
* If the chip info field is too small then assume we have no
* STOP level information.
*/
if (size < 0x44) {
stop_levels = 0;
break;
}
ve = be32_to_cpu(cinfo->verif_exist_flags) & CPU_ID_VERIFY_MASK;
ve >>= CPU_ID_VERIFY_SHIFT;
if (ve == CHIP_VERIFY_NOT_INSTALLED ||
ve == CHIP_VERIFY_UNUSABLE)
continue;
chip_levels = be32_to_cpu(cinfo->stop_levels);
prlog(PR_INSANE, "CHIP[%x] supported STOP mask 0x%.8x\n",
be32_to_cpu(cinfo->proc_chip_id), chip_levels);
stop_levels &= chip_levels;
valid = true;
}
if (!valid)
stop_levels = 0;
dt_add_property_cells(dt_new_check(opal_node, "power-mgt"),
"ibm,enabled-stop-levels", stop_levels);
}
#define NPU_BASE 0x5011000
#define NPU_SIZE 0x2c
#define NPU_INDIRECT0 0x8000000009010c3fULL
#define NPU_INDIRECT1 0x800000000c010c3fULL
static void add_npu(struct dt_node *xscom, const struct HDIF_array_hdr *links,
int npu_index)
{
const struct sppcrd_smp_link *link;
struct dt_node *npu;
int group_target[6]; /* Tracks the PCI slot targeted each link group */
int group_count = 0;
int link_count = 0;
uint32_t size, chip_id;
int i;
size = be32_to_cpu(links->esize);
chip_id = dt_get_chip_id(xscom);
memset(group_target, 0, sizeof(group_target));
npu = dt_new_addr(xscom, "npu", NPU_BASE);
dt_add_property_cells(npu, "reg", NPU_BASE, NPU_SIZE);
dt_add_property_cells(npu, "#size-cells", 0);
dt_add_property_cells(npu, "#address-cells", 1);
dt_add_property_strings(npu, "compatible", "ibm,power9-npu");
dt_add_property_cells(npu, "ibm,npu-index", npu_index);
HDIF_iarray_for_each(links, i, link) {
uint16_t slot_id = be16_to_cpu(link->pci_slot_idx);
uint32_t link_id = be32_to_cpu(link->link_id);
uint64_t speed = 0, nvlink_speed = 0;
struct dt_node *node;
/*
* Only add a link node if this link is targeted at a
* GPU device.
*
* If we ever activate it for an opencapi device, we
* should revisit the link definitions hard-coded
* on ZZ.
*/
if (be32_to_cpu(link->usage) != SMP_LINK_USE_GPU)
continue;
/*
* XXX: The link_id that we get from HDAT is essentially an
* arbitrary ID number so we can't use it as the reg for the
* link node.
*
* a) There's a 1-1 mapping between entries in the SMP link
* structure and the NPU links.
*
* b) The SMP link array contains them in ascending order.
*
* We have some assurances that b) is correct, but if we get
* broken link numbering it's something to watch for.
*
* If we every have actual A-Bus (SMP) link info in here
* this is going to break.
*/
prlog(PR_DEBUG, "NPU: %04x:%d: Link (%d) targets slot %u\n",
chip_id, link_count, link_count, slot_id);
if (link_count >= 6) {
prerror("NPU: %04x:%d: Ignoring extra link (max 6)\n",
chip_id, link_count);
break;
}
node = dt_new_addr(npu, "link", link_count);
if (!node) {
prerror("NPU: %04x:%d: Creating link node failed\n",
chip_id, link_count);
continue;
}
dt_add_property_string(node, "compatible", "ibm,npu-link");
dt_add_property_cells(node, "reg", link_count);
dt_add_property_cells(node, "ibm,npu-link-index", link_count);
dt_add_property_cells(node, "ibm,workbook-link-id", link_id);
dt_add_property_u64s(node, "ibm,npu-phy",
link_count < 3 ? NPU_INDIRECT0 : NPU_INDIRECT1);
dt_add_property_cells(node, "ibm,npu-lane-mask",
be32_to_cpu(link->lane_mask));
dt_add_property_cells(node, "ibm,npu-brick-id",
be32_to_cpu(link->brick_id));
link_count++;
/*
* Add the group details if this is an NVlink.
*
* TODO: Cable card stuff.
*/
if (slot_id) {
struct dt_node *slot;
const char *name;
int group;
/*
* Search the existing groups for one targeting
* this PCI slot
*/
for (group = 0; group < group_count; group++)
if (group_target[group] == slot_id)
break;
/* no group, make a new one */
if (group == group_count) {
group_target[group] = slot_id;
group_count++;
}
dt_add_property_cells(node, "ibm,npu-group-id", group);
slot = find_slot_entry_node(dt_root, slot_id);
if (!slot) {
prerror("NPU: %04x:%d: Unable find node for targeted PCIe slot\n",
chip_id, link_count - 1);
continue;
}
/*
* The slot_id points to a node that indicates that
* this GPU should appear under the slot. Grab the
* slot-label from the parent node that represents
* the actual slot.
*/
name = dt_prop_get_def(slot->parent, "ibm,slot-label",
(char *)"<SLOT NAME MISSING>");
prlog(PR_DEBUG, "NPU: %04x:%d: Target slot %s\n",
chip_id, link_count - 1, name);
dt_add_property_string(node, "ibm,slot-label", name);
dt_add_property_cells(node, "ibm,pcie-slot",
slot->phandle);
}
/* Newer fields which might not be populated */
if (size <= 0x24)
continue;
switch (link->link_speed) {
case 0: /* 20Gbps */
speed = 20000000000ul;
nvlink_speed = 0x3;
break;
case 1: /* 25Gbps */
speed = 25000000000ul;
nvlink_speed = 0x9;
break;
case 2: /* 25.78125 Gbps */
nvlink_speed = 0x8;
speed = 25781250000ul;
break;
}
/* ibm,link-speed is in bps and nvidia,link-speed is ~magic~ */
dt_add_property_u64s(node, "ibm,link-speed", speed);
dt_add_property_cells(node, "nvidia,link-speed", nvlink_speed);
dt_add_property_cells(node, DT_PRIVATE "occ-flag-pos",
PPC_BIT(link->occ_flag_bit));
}
dt_add_property_cells(npu, "ibm,npu-links", link_count);
}
static void add_npus(void)
{
struct dt_node *xscom;
int npu_index = 0;
/* Only consult HDAT for npu2 */
if (cpu_type != PVR_TYPE_P9)
return;
dt_for_each_compatible(dt_root, xscom, "ibm,xscom") {
const struct HDIF_array_hdr *links;
links = xscom_to_pcrd(xscom, SPPCRD_IDATA_SMP_LINK);
if (!links) {
prerror("NPU: Unable to find matching SPPCRD for %s\n",
xscom->name);
continue;
}
/* should never happen, but stranger things have */
if (!dt_find_by_name(dt_root, "ibm,pcie-slots")) {
prerror("PCIe slot information missing, can't add npu");
continue;
}
/* some hostboots will give us an empty array */
if (be32_to_cpu(links->ecnt))
add_npu(xscom, links, npu_index++);
}
}
/*
* SPIRA-S is initialized and provided by boot firmware. Check the SPIRA-S
* signature to confirm it was provided.
*/
static bool find_spiras(void)
{
#if !defined(TEST)
spiras = (struct spiras *)SPIRA_HEAP_BASE;
#endif
/* Validate SPIRA-S signature */
if (!spiras)
return false;
if (!HDIF_check(&spiras->hdr, SPIRAS_HDIF_SIG))
return false;
prlog(PR_DEBUG, "SPIRA-S found.\n");
return true;
}
/*
* All the data structure addresses are relative to payload base. Hence adjust
* structures that are needed to capture OPAL dump during MPIPL.
*/
static void update_spirah_addr(void)
{
#if !defined(TEST)
if (proc_gen < proc_gen_p9)
return;
naca.spirah_addr = CPU_TO_BE64(SPIRAH_OFF);
naca.spira_addr = 0;
spirah.ntuples.hs_data_area.addr = CPU_TO_BE64(SPIRA_HEAP_BASE - SKIBOOT_BASE);
spirah.ntuples.mdump_res.addr = CPU_TO_BE64(MDRT_TABLE_BASE - SKIBOOT_BASE);
#endif
}
int parse_hdat(bool is_opal)
{
cpu_type = PVR_TYPE(mfspr(SPR_PVR));
prlog(PR_DEBUG, "Parsing HDAT...\n");
if (!find_spiras()) {
prlog(PR_ERR, "SPIRA-S not found.\n");
return -1;
}
update_spirah_addr();
/*
* Basic DT root stuff
*/
dt_add_property_cells(dt_root, "#address-cells", 2);
dt_add_property_cells(dt_root, "#size-cells", 2);
if (proc_gen < proc_gen_p9)
dt_add_property_string(dt_root, "lid-type", is_opal ? "opal" : "phyp");
/* Add any BMCs and enable the LPC UART */
bmc_parse();
/* Create and populate /vpd node */
dt_init_vpd_node();
/* Create /ibm,opal/led node */
dt_init_led_node();
/* Parse PCIA */
if (!pcia_parse())
return -1;
/* IPL params */
add_iplparams();
/* Add XSCOM node (must be before chiptod, IO and FSP) */
add_xscom();
/* Parse MS VPD */
memory_parse();
/* Add any FSPs */
fsp_parse();
/* Add ChipTOD's */
if (!add_chiptod())
prerror("CHIPTOD: No ChipTOD found !\n");
/* Add NX */
add_nx();
/* Add nest mmu */
add_nmmu();
/* Add IO HUBs and/or PHBs */
io_parse();
/* Add NPU nodes */
add_npus();
/* Parse VPD */
vpd_parse();
/* Host services information. */
hostservices_parse();
/* Parse System Attention Indicator inforamtion */
slca_dt_add_sai_node();
add_stop_levels();
/* Parse node secure and trusted boot data */
if (proc_gen >= proc_gen_p9)
node_stb_parse();
prlog(PR_DEBUG, "Parsing HDAT...done\n");
return 0;
}