| // SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later |
| /* |
| * PHB4: PCI Host Bridge 4, in POWER9 |
| * |
| * Copyright 2013-2019 IBM Corp. |
| * Copyright 2018 Raptor Engineering, LLC |
| */ |
| |
| /* |
| * |
| * FIXME: |
| * More stuff for EEH support: |
| * - PBCQ error reporting interrupt |
| * - I2C-based power management (replacing SHPC) |
| * - Directly detect fenced PHB through one dedicated HW reg |
| */ |
| |
| /* |
| * This is a simplified view of the PHB4 reset and link training steps |
| * |
| * Step 1: |
| * - Check for hotplug status: |
| * o PHB_PCIE_HOTPLUG_STATUS bit PHB_PCIE_HPSTAT_PRESENCE |
| * o If not set -> Bail out (Slot is empty) |
| * |
| * Step 2: |
| * - Do complete PHB reset: |
| * o PHB/ETU reset procedure |
| * |
| * Step 3: |
| * - Drive PERST active (skip if already asserted. ie. after cold reboot) |
| * - Wait 250ms (for cards to reset) |
| * o powervm have used 250ms for a long time without any problems |
| * |
| * Step 4: |
| * - Drive PERST inactive |
| * |
| * Step 5: |
| * - Look for inband presence: |
| * o From PERST we have two stages to get inband presence detected |
| * 1) Devices must enter Detect state within 20 ms of the end of |
| * Fundamental Reset |
| * 2) Receiver detect pulse are every 12ms |
| * - Hence minimum wait time 20 + 12 = 32ms |
| * o Unfortunatey, we've seen cards take 440ms |
| * o Hence we are conservative and poll here for 1000ms (> 440ms) |
| * - If no inband presence after 100ms -> Bail out (Slot is broken) |
| * o PHB_PCIE_DLP_TRAIN_CTL bit PHB_PCIE_DLP_INBAND_PRESENCE |
| * |
| * Step 6: |
| * - Look for link training done: |
| * o PHB_PCIE_DLP_TRAIN_CTL bit PHB_PCIE_DLP_TL_LINKACT |
| * - If not set after 2000ms, Retry (3 times) -> Goto Step 2 |
| * o phy lockup could link training failure, hence going back to a |
| * complete PHB reset on retry |
| * o not expect to happen very often |
| * |
| * Step 7: |
| * - Wait for 1 sec (before touching device config space): |
| * - From PCIe spec: |
| * Root Complex and/or system software must allow at least 1.0 s after |
| * a Conventional Reset of a device, before it may determine that a |
| * device which fails to return a Successful Completion status for a |
| * valid Configuration Request is a broken device. |
| * |
| * Step 8: |
| * - Sanity check for fence and link still up: |
| * o If fenced or link down, Retry (3 times) -> Goto Step 2 |
| * o This is not nessary but takes no time and can be useful |
| * o Once we leave here, much harder to recover from errors |
| * |
| * Step 9: |
| * - Check for optimised link for directly attached devices: |
| * o Wait for CRS (so we can read device config space) |
| * o Check chip and device are in allowlist. if not, Goto Step 10 |
| * o If trained link speed is degraded, retry -> Goto Step 2 |
| * o If trained link width is degraded, retry -> Goto Step 2 |
| * o If still degraded after 3 retries. Give up, Goto Step 10. |
| * |
| * Step 10: |
| * - PHB good, start probing config space. |
| * o core/pci.c: pci_reset_phb() -> pci_scan_phb() |
| */ |
| |
| |
| #undef NO_ASB |
| #undef LOG_CFG |
| |
| #include <skiboot.h> |
| #include <io.h> |
| #include <timebase.h> |
| #include <pci.h> |
| #include <pci-cfg.h> |
| #include <pci-slot.h> |
| #include <vpd.h> |
| #include <interrupts.h> |
| #include <opal.h> |
| #include <cpu.h> |
| #include <device.h> |
| #include <ccan/str/str.h> |
| #include <ccan/array_size/array_size.h> |
| #include <xscom.h> |
| #include <affinity.h> |
| #include <phb4.h> |
| #include <phb4-regs.h> |
| #include <phb4-capp.h> |
| #include <capp.h> |
| #include <fsp.h> |
| #include <chip.h> |
| #include <chiptod.h> |
| #include <xive.h> |
| #include <xscom-p9-regs.h> |
| #include <phys-map.h> |
| #include <nvram.h> |
| |
| /* Enable this to disable error interrupts for debug purposes */ |
| #undef DISABLE_ERR_INTS |
| |
| static void phb4_init_hw(struct phb4 *p); |
| |
| #define PHBDBG(p, fmt, a...) prlog(PR_DEBUG, "PHB#%04x[%d:%d]: " fmt, \ |
| (p)->phb.opal_id, (p)->chip_id, \ |
| (p)->index, ## a) |
| #define PHBINF(p, fmt, a...) prlog(PR_INFO, "PHB#%04x[%d:%d]: " fmt, \ |
| (p)->phb.opal_id, (p)->chip_id, \ |
| (p)->index, ## a) |
| #define PHBNOTICE(p, fmt, a...) prlog(PR_NOTICE, "PHB#%04x[%d:%d]: " fmt, \ |
| (p)->phb.opal_id, (p)->chip_id, \ |
| (p)->index, ## a) |
| #define PHBERR(p, fmt, a...) prlog(PR_ERR, "PHB#%04x[%d:%d]: " fmt, \ |
| (p)->phb.opal_id, (p)->chip_id, \ |
| (p)->index, ## a) |
| #ifdef LOG_CFG |
| #define PHBLOGCFG(p, fmt, a...) PHBDBG(p, fmt, ## a) |
| #else |
| #define PHBLOGCFG(p, fmt, a...) do {} while (0) |
| #endif |
| |
| static bool pci_eeh_mmio; |
| static bool pci_retry_all; |
| static int rx_err_max = PHB4_RX_ERR_MAX; |
| |
| static inline bool is_phb4(void) |
| { |
| return (proc_gen == proc_gen_p9); |
| } |
| |
| static inline bool is_phb5(void) |
| { |
| return (proc_gen == proc_gen_p10); |
| } |
| |
| /* PQ offloading on the XIVE IC. */ |
| static inline bool phb_pq_disable(struct phb4 *p __unused) |
| { |
| if (is_phb5()) |
| return xive2_cap_phb_pq_disable(); |
| |
| return false; |
| } |
| |
| /* |
| * Use the ESB page of the XIVE IC for event notification. Latency |
| * improvement. |
| */ |
| static inline bool phb_abt_mode(struct phb4 *p __unused) |
| { |
| if (is_phb5()) |
| return xive2_cap_phb_abt(); |
| |
| return false; |
| } |
| |
| static inline bool phb_can_store_eoi(struct phb4 *p) |
| { |
| if (is_phb5()) |
| /* PQ offloading is required for StoreEOI */ |
| return XIVE2_STORE_EOI_ENABLED && phb_pq_disable(p); |
| |
| return XIVE_STORE_EOI_ENABLED; |
| } |
| |
| /* Note: The "ASB" name is historical, practically this means access via |
| * the XSCOM backdoor |
| */ |
| static inline uint64_t phb4_read_reg_asb(struct phb4 *p, uint32_t offset) |
| { |
| #ifdef NO_ASB |
| return in_be64(p->regs + offset); |
| #else |
| int64_t rc; |
| uint64_t addr, val; |
| |
| /* Address register: must use 4 bytes for built-in config space. |
| * |
| * This path isn't usable for outbound configuration space |
| */ |
| if (((offset & 0xfffffffc) == PHB_CONFIG_DATA) && (offset & 3)) { |
| PHBERR(p, "XSCOM unaligned access to CONFIG_DATA unsupported\n"); |
| return -1ull; |
| } |
| addr = XETU_HV_IND_ADDR_VALID | offset; |
| if ((offset >= 0x1000 && offset < 0x1800) || (offset == PHB_CONFIG_DATA)) |
| addr |= XETU_HV_IND_ADDR_4B; |
| rc = xscom_write(p->chip_id, p->etu_xscom + XETU_HV_IND_ADDRESS, addr); |
| if (rc != 0) { |
| PHBERR(p, "XSCOM error addressing register 0x%x\n", offset); |
| return -1ull; |
| } |
| rc = xscom_read(p->chip_id, p->etu_xscom + XETU_HV_IND_DATA, &val); |
| if (rc != 0) { |
| PHBERR(p, "XSCOM error reading register 0x%x\n", offset); |
| return -1ull; |
| } |
| return val; |
| #endif |
| } |
| |
| static inline void phb4_write_reg_asb(struct phb4 *p, |
| uint32_t offset, uint64_t val) |
| { |
| #ifdef NO_ASB |
| out_be64(p->regs + offset, val); |
| #else |
| int64_t rc; |
| uint64_t addr; |
| |
| /* Address register: must use 4 bytes for built-in config space. |
| * |
| * This path isn't usable for outbound configuration space |
| */ |
| if (((offset & 0xfffffffc) == PHB_CONFIG_DATA) && (offset & 3)) { |
| PHBERR(p, "XSCOM access to CONFIG_DATA unsupported\n"); |
| return; |
| } |
| addr = XETU_HV_IND_ADDR_VALID | offset; |
| if ((offset >= 0x1000 && offset < 0x1800) || (offset == PHB_CONFIG_DATA)) |
| addr |= XETU_HV_IND_ADDR_4B; |
| rc = xscom_write(p->chip_id, p->etu_xscom + XETU_HV_IND_ADDRESS, addr); |
| if (rc != 0) { |
| PHBERR(p, "XSCOM error addressing register 0x%x\n", offset); |
| return; |
| } |
| rc = xscom_write(p->chip_id, p->etu_xscom + XETU_HV_IND_DATA, val); |
| if (rc != 0) { |
| PHBERR(p, "XSCOM error writing register 0x%x\n", offset); |
| return; |
| } |
| #endif |
| } |
| |
| static uint64_t phb4_read_reg(struct phb4 *p, uint32_t offset) |
| { |
| /* No register accesses are permitted while in reset */ |
| if (p->flags & PHB4_ETU_IN_RESET) |
| return -1ull; |
| |
| if (p->flags & PHB4_CFG_USE_ASB) |
| return phb4_read_reg_asb(p, offset); |
| else |
| return in_be64(p->regs + offset); |
| } |
| |
| static void phb4_write_reg(struct phb4 *p, uint32_t offset, uint64_t val) |
| { |
| /* No register accesses are permitted while in reset */ |
| if (p->flags & PHB4_ETU_IN_RESET) |
| return; |
| |
| if (p->flags & PHB4_CFG_USE_ASB) |
| phb4_write_reg_asb(p, offset, val); |
| else |
| return out_be64(p->regs + offset, val); |
| } |
| |
| /* Helper to select an IODA table entry */ |
| static inline void phb4_ioda_sel(struct phb4 *p, uint32_t table, |
| uint32_t addr, bool autoinc) |
| { |
| phb4_write_reg(p, PHB_IODA_ADDR, |
| (autoinc ? PHB_IODA_AD_AUTOINC : 0) | |
| SETFIELD(PHB_IODA_AD_TSEL, 0ul, table) | |
| SETFIELD(PHB_IODA_AD_TADR, 0ul, addr)); |
| } |
| |
| /* |
| * Configuration space access |
| * |
| * The PHB lock is assumed to be already held |
| */ |
| static int64_t phb4_pcicfg_check(struct phb4 *p, uint32_t bdfn, |
| uint32_t offset, uint32_t size, |
| uint16_t *pe) |
| { |
| uint32_t sm = size - 1; |
| |
| if (offset > 0xfff || bdfn > 0xffff) |
| return OPAL_PARAMETER; |
| if (offset & sm) |
| return OPAL_PARAMETER; |
| |
| /* The root bus only has a device at 0 and we get into an |
| * error state if we try to probe beyond that, so let's |
| * avoid that and just return an error to Linux |
| */ |
| if (PCI_BUS_NUM(bdfn) == 0 && (bdfn & 0xff)) |
| return OPAL_HARDWARE; |
| |
| /* Check PHB state */ |
| if (p->broken) |
| return OPAL_HARDWARE; |
| |
| /* Fetch the PE# from cache */ |
| *pe = be16_to_cpu(p->tbl_rtt[bdfn]); |
| |
| return OPAL_SUCCESS; |
| } |
| |
| static int64_t phb4_rc_read(struct phb4 *p, uint32_t offset, uint8_t sz, |
| void *data, bool use_asb) |
| { |
| uint32_t reg = offset & ~3; |
| uint32_t oval; |
| |
| /* Some registers are handled locally */ |
| switch (reg) { |
| /* Bridge base/limit registers are cached here as HW |
| * doesn't implement them (it hard codes values that |
| * will confuse a proper PCI implementation). |
| */ |
| case PCI_CFG_MEM_BASE: /* Includes PCI_CFG_MEM_LIMIT */ |
| oval = p->rc_cache[(reg - 0x20) >> 2] & 0xfff0fff0; |
| break; |
| case PCI_CFG_PREF_MEM_BASE: /* Includes PCI_CFG_PREF_MEM_LIMIT */ |
| oval = p->rc_cache[(reg - 0x20) >> 2] & 0xfff0fff0; |
| oval |= 0x00010001; |
| break; |
| case PCI_CFG_IO_BASE_U16: /* Includes PCI_CFG_IO_LIMIT_U16 */ |
| oval = 0; |
| break; |
| case PCI_CFG_PREF_MEM_BASE_U32: |
| case PCI_CFG_PREF_MEM_LIMIT_U32: |
| oval = p->rc_cache[(reg - 0x20) >> 2]; |
| break; |
| default: |
| oval = 0xffffffff; /* default if offset too big */ |
| if (reg < PHB_RC_CONFIG_SIZE) { |
| if (use_asb) |
| oval = bswap_32(phb4_read_reg_asb(p, PHB_RC_CONFIG_BASE |
| + reg)); |
| else |
| oval = in_le32(p->regs + PHB_RC_CONFIG_BASE + reg); |
| } |
| } |
| |
| /* Apply any post-read fixups */ |
| switch (reg) { |
| case PCI_CFG_IO_BASE: |
| oval |= 0x01f1; /* Set IO base < limit to disable the window */ |
| break; |
| } |
| |
| switch (sz) { |
| case 1: |
| offset &= 3; |
| *((uint8_t *)data) = (oval >> (offset << 3)) & 0xff; |
| PHBLOGCFG(p, "000 CFG08 Rd %02x=%02x\n", |
| offset, *((uint8_t *)data)); |
| break; |
| case 2: |
| offset &= 2; |
| *((uint16_t *)data) = (oval >> (offset << 3)) & 0xffff; |
| PHBLOGCFG(p, "000 CFG16 Rd %02x=%04x\n", |
| offset, *((uint16_t *)data)); |
| break; |
| case 4: |
| *((uint32_t *)data) = oval; |
| PHBLOGCFG(p, "000 CFG32 Rd %02x=%08x\n", |
| offset, *((uint32_t *)data)); |
| break; |
| default: |
| assert(false); |
| } |
| return OPAL_SUCCESS; |
| } |
| |
| static int64_t phb4_rc_write(struct phb4 *p, uint32_t offset, uint8_t sz, |
| uint32_t val, bool use_asb) |
| { |
| uint32_t reg = offset & ~3; |
| uint32_t old, mask, shift, oldold; |
| int64_t rc; |
| |
| if (reg > PHB_RC_CONFIG_SIZE) |
| return OPAL_SUCCESS; |
| |
| /* If size isn't 4-bytes, do a RMW cycle */ |
| if (sz < 4) { |
| rc = phb4_rc_read(p, reg, 4, &old, use_asb); |
| if (rc != OPAL_SUCCESS) |
| return rc; |
| |
| /* |
| * Since we have to Read-Modify-Write here, we need to filter |
| * out registers that have write-1-to-clear bits to prevent |
| * clearing stuff we shouldn't be. So for any register this |
| * applies to, mask out those bits. |
| */ |
| oldold = old; |
| switch(reg) { |
| case 0x1C: /* Secondary status */ |
| old &= 0x00ffffff; /* mask out 24-31 */ |
| break; |
| case 0x50: /* EC - Device status */ |
| old &= 0xfff0ffff; /* mask out 16-19 */ |
| break; |
| case 0x58: /* EC - Link status */ |
| old &= 0x3fffffff; /* mask out 30-31 */ |
| break; |
| case 0x78: /* EC - Link status 2 */ |
| old &= 0xf000ffff; /* mask out 16-27 */ |
| break; |
| /* These registers *only* have write-1-to-clear bits */ |
| case 0x104: /* AER - Uncorr. error status */ |
| case 0x110: /* AER - Corr. error status */ |
| case 0x130: /* AER - Root error status */ |
| case 0x180: /* P16 - status */ |
| case 0x184: /* P16 - LDPM status */ |
| case 0x188: /* P16 - FRDPM status */ |
| case 0x18C: /* P16 - SRDPM status */ |
| old &= 0x00000000; |
| break; |
| } |
| |
| if (old != oldold) { |
| PHBLOGCFG(p, "Rewrote %x to %x for reg %x for W1C\n", |
| oldold, old, reg); |
| } |
| |
| if (sz == 1) { |
| shift = (offset & 3) << 3; |
| mask = 0xff << shift; |
| val = (old & ~mask) | ((val & 0xff) << shift); |
| } else { |
| shift = (offset & 2) << 3; |
| mask = 0xffff << shift; |
| val = (old & ~mask) | ((val & 0xffff) << shift); |
| } |
| } |
| |
| /* Some registers are handled locally */ |
| switch (reg) { |
| /* See comment in phb4_rc_read() */ |
| case PCI_CFG_MEM_BASE: /* Includes PCI_CFG_MEM_LIMIT */ |
| case PCI_CFG_PREF_MEM_BASE: /* Includes PCI_CFG_PREF_MEM_LIMIT */ |
| case PCI_CFG_PREF_MEM_BASE_U32: |
| case PCI_CFG_PREF_MEM_LIMIT_U32: |
| p->rc_cache[(reg - 0x20) >> 2] = val; |
| break; |
| case PCI_CFG_IO_BASE_U16: /* Includes PCI_CFG_IO_LIMIT_U16 */ |
| break; |
| default: |
| /* Workaround PHB config space enable */ |
| PHBLOGCFG(p, "000 CFG%02d Wr %02x=%08x\n", 8 * sz, reg, val); |
| if (use_asb) |
| phb4_write_reg_asb(p, PHB_RC_CONFIG_BASE + reg, val); |
| else |
| out_le32(p->regs + PHB_RC_CONFIG_BASE + reg, val); |
| } |
| return OPAL_SUCCESS; |
| } |
| |
| static int64_t phb4_pcicfg_read(struct phb4 *p, uint32_t bdfn, |
| uint32_t offset, uint32_t size, |
| void *data) |
| { |
| uint64_t addr, val64; |
| int64_t rc; |
| uint16_t pe; |
| bool use_asb = false; |
| |
| rc = phb4_pcicfg_check(p, bdfn, offset, size, &pe); |
| if (rc) |
| return rc; |
| |
| if (p->flags & PHB4_AIB_FENCED) { |
| if (!(p->flags & PHB4_CFG_USE_ASB)) |
| return OPAL_HARDWARE; |
| if (bdfn != 0) |
| return OPAL_HARDWARE; |
| use_asb = true; |
| } else if ((p->flags & PHB4_CFG_BLOCKED) && bdfn != 0) { |
| return OPAL_HARDWARE; |
| } |
| |
| /* Handle per-device filters */ |
| rc = pci_handle_cfg_filters(&p->phb, bdfn, offset, size, |
| (uint32_t *)data, false); |
| if (rc != OPAL_PARTIAL) |
| return rc; |
| |
| /* Handle root complex MMIO based config space */ |
| if (bdfn == 0) |
| return phb4_rc_read(p, offset, size, data, use_asb); |
| |
| addr = PHB_CA_ENABLE; |
| addr = SETFIELD(PHB_CA_BDFN, addr, bdfn); |
| addr = SETFIELD(PHB_CA_REG, addr, offset & ~3u); |
| addr = SETFIELD(PHB_CA_PE, addr, pe); |
| if (use_asb) { |
| phb4_write_reg_asb(p, PHB_CONFIG_ADDRESS, addr); |
| sync(); |
| val64 = bswap_64(phb4_read_reg_asb(p, PHB_CONFIG_DATA)); |
| switch(size) { |
| case 1: |
| *((uint8_t *)data) = val64 >> (8 * (offset & 3)); |
| break; |
| case 2: |
| *((uint16_t *)data) = val64 >> (8 * (offset & 2)); |
| break; |
| case 4: |
| *((uint32_t *)data) = val64; |
| break; |
| default: |
| return OPAL_PARAMETER; |
| } |
| } else { |
| out_be64(p->regs + PHB_CONFIG_ADDRESS, addr); |
| switch(size) { |
| case 1: |
| *((uint8_t *)data) = |
| in_8(p->regs + PHB_CONFIG_DATA + (offset & 3)); |
| PHBLOGCFG(p, "%03x CFG08 Rd %02x=%02x\n", |
| bdfn, offset, *((uint8_t *)data)); |
| break; |
| case 2: |
| *((uint16_t *)data) = |
| in_le16(p->regs + PHB_CONFIG_DATA + (offset & 2)); |
| PHBLOGCFG(p, "%03x CFG16 Rd %02x=%04x\n", |
| bdfn, offset, *((uint16_t *)data)); |
| break; |
| case 4: |
| *((uint32_t *)data) = in_le32(p->regs + PHB_CONFIG_DATA); |
| PHBLOGCFG(p, "%03x CFG32 Rd %02x=%08x\n", |
| bdfn, offset, *((uint32_t *)data)); |
| break; |
| default: |
| return OPAL_PARAMETER; |
| } |
| } |
| return OPAL_SUCCESS; |
| } |
| |
| |
| #define PHB4_PCI_CFG_READ(size, type) \ |
| static int64_t phb4_pcicfg_read##size(struct phb *phb, uint32_t bdfn, \ |
| uint32_t offset, type *data) \ |
| { \ |
| struct phb4 *p = phb_to_phb4(phb); \ |
| \ |
| /* Initialize data in case of error */ \ |
| *data = (type)0xffffffff; \ |
| return phb4_pcicfg_read(p, bdfn, offset, sizeof(type), data); \ |
| } |
| |
| static int64_t phb4_pcicfg_write(struct phb4 *p, uint32_t bdfn, |
| uint32_t offset, uint32_t size, |
| uint32_t data) |
| { |
| uint64_t addr; |
| int64_t rc; |
| uint16_t pe; |
| bool use_asb = false; |
| |
| rc = phb4_pcicfg_check(p, bdfn, offset, size, &pe); |
| if (rc) |
| return rc; |
| |
| if (p->flags & PHB4_AIB_FENCED) { |
| if (!(p->flags & PHB4_CFG_USE_ASB)) |
| return OPAL_HARDWARE; |
| if (bdfn != 0) |
| return OPAL_HARDWARE; |
| use_asb = true; |
| } else if ((p->flags & PHB4_CFG_BLOCKED) && bdfn != 0) { |
| return OPAL_HARDWARE; |
| } |
| |
| /* Handle per-device filters */ |
| rc = pci_handle_cfg_filters(&p->phb, bdfn, offset, size, |
| (uint32_t *)&data, true); |
| if (rc != OPAL_PARTIAL) |
| return rc; |
| |
| /* Handle root complex MMIO based config space */ |
| if (bdfn == 0) |
| return phb4_rc_write(p, offset, size, data, use_asb); |
| |
| addr = PHB_CA_ENABLE; |
| addr = SETFIELD(PHB_CA_BDFN, addr, bdfn); |
| addr = SETFIELD(PHB_CA_REG, addr, offset & ~3u); |
| addr = SETFIELD(PHB_CA_PE, addr, pe); |
| if (use_asb) { |
| /* We don't support ASB config space writes */ |
| return OPAL_UNSUPPORTED; |
| } else { |
| out_be64(p->regs + PHB_CONFIG_ADDRESS, addr); |
| switch(size) { |
| case 1: |
| out_8(p->regs + PHB_CONFIG_DATA + (offset & 3), data); |
| break; |
| case 2: |
| out_le16(p->regs + PHB_CONFIG_DATA + (offset & 2), data); |
| break; |
| case 4: |
| out_le32(p->regs + PHB_CONFIG_DATA, data); |
| break; |
| default: |
| return OPAL_PARAMETER; |
| } |
| } |
| PHBLOGCFG(p, "%03x CFG%d Wr %02x=%08x\n", bdfn, 8 * size, offset, data); |
| return OPAL_SUCCESS; |
| } |
| |
| #define PHB4_PCI_CFG_WRITE(size, type) \ |
| static int64_t phb4_pcicfg_write##size(struct phb *phb, uint32_t bdfn, \ |
| uint32_t offset, type data) \ |
| { \ |
| struct phb4 *p = phb_to_phb4(phb); \ |
| \ |
| return phb4_pcicfg_write(p, bdfn, offset, sizeof(type), data); \ |
| } |
| |
| PHB4_PCI_CFG_READ(8, u8) |
| PHB4_PCI_CFG_READ(16, u16) |
| PHB4_PCI_CFG_READ(32, u32) |
| PHB4_PCI_CFG_WRITE(8, u8) |
| PHB4_PCI_CFG_WRITE(16, u16) |
| PHB4_PCI_CFG_WRITE(32, u32) |
| |
| static int64_t phb4_get_reserved_pe_number(struct phb *phb) |
| { |
| struct phb4 *p = phb_to_phb4(phb); |
| |
| return PHB4_RESERVED_PE_NUM(p); |
| } |
| |
| |
| static void phb4_root_port_init(struct phb *phb, struct pci_device *dev, |
| int ecap, int aercap) |
| { |
| struct phb4 *p = phb_to_phb4(phb); |
| struct pci_slot *slot = dev->slot; |
| uint16_t bdfn = dev->bdfn; |
| uint16_t val16; |
| uint32_t val32; |
| |
| /* |
| * Use the PHB's callback so that UTL events will be masked or |
| * unmasked when the link is down or up. |
| */ |
| if (dev->slot && dev->slot->ops.prepare_link_change && |
| phb->slot && phb->slot->ops.prepare_link_change) |
| dev->slot->ops.prepare_link_change = |
| phb->slot->ops.prepare_link_change; |
| |
| // FIXME: check recommended init values for phb4 |
| |
| /* |
| * Enable the bridge slot capability in the root port's config |
| * space. This should probably be done *before* we start |
| * scanning config space, but we need a pci_device struct to |
| * exist before we do a slot lookup so *faaaaaaaaaaaaaart* |
| */ |
| if (slot && slot->pluggable && slot->power_limit) { |
| uint64_t val; |
| |
| val = in_be64(p->regs + PHB_PCIE_SCR); |
| val |= PHB_PCIE_SCR_SLOT_CAP; |
| out_be64(p->regs + PHB_PCIE_SCR, val); |
| |
| /* update the cached slotcap */ |
| pci_cfg_read32(phb, bdfn, ecap + PCICAP_EXP_SLOTCAP, |
| &slot->slot_cap); |
| } |
| |
| /* Enable SERR and parity checking */ |
| pci_cfg_read16(phb, bdfn, PCI_CFG_CMD, &val16); |
| val16 |= (PCI_CFG_CMD_SERR_EN | PCI_CFG_CMD_PERR_RESP | |
| PCI_CFG_CMD_MEM_EN); |
| pci_cfg_write16(phb, bdfn, PCI_CFG_CMD, val16); |
| |
| /* Enable reporting various errors */ |
| if (!ecap) return; |
| pci_cfg_read16(phb, bdfn, ecap + PCICAP_EXP_DEVCTL, &val16); |
| val16 |= (PCICAP_EXP_DEVCTL_CE_REPORT | |
| PCICAP_EXP_DEVCTL_NFE_REPORT | |
| PCICAP_EXP_DEVCTL_FE_REPORT | |
| PCICAP_EXP_DEVCTL_UR_REPORT); |
| pci_cfg_write16(phb, bdfn, ecap + PCICAP_EXP_DEVCTL, val16); |
| |
| if (!aercap) return; |
| |
| /* Mask various unrecoverable errors */ |
| pci_cfg_read32(phb, bdfn, aercap + PCIECAP_AER_UE_MASK, &val32); |
| val32 |= (PCIECAP_AER_UE_MASK_POISON_TLP | |
| PCIECAP_AER_UE_MASK_COMPL_TIMEOUT | |
| PCIECAP_AER_UE_MASK_COMPL_ABORT | |
| PCIECAP_AER_UE_MASK_ECRC); |
| pci_cfg_write32(phb, bdfn, aercap + PCIECAP_AER_UE_MASK, val32); |
| |
| /* Report various unrecoverable errors as fatal errors */ |
| pci_cfg_read32(phb, bdfn, aercap + PCIECAP_AER_UE_SEVERITY, &val32); |
| val32 |= (PCIECAP_AER_UE_SEVERITY_DLLP | |
| PCIECAP_AER_UE_SEVERITY_SURPRISE_DOWN | |
| PCIECAP_AER_UE_SEVERITY_FLOW_CTL_PROT | |
| PCIECAP_AER_UE_SEVERITY_UNEXP_COMPL | |
| PCIECAP_AER_UE_SEVERITY_RECV_OVFLOW | |
| PCIECAP_AER_UE_SEVERITY_MALFORMED_TLP); |
| pci_cfg_write32(phb, bdfn, aercap + PCIECAP_AER_UE_SEVERITY, val32); |
| |
| /* Mask various recoverable errors */ |
| pci_cfg_read32(phb, bdfn, aercap + PCIECAP_AER_CE_MASK, &val32); |
| val32 |= PCIECAP_AER_CE_MASK_ADV_NONFATAL; |
| pci_cfg_write32(phb, bdfn, aercap + PCIECAP_AER_CE_MASK, val32); |
| |
| /* Enable ECRC check */ |
| pci_cfg_read32(phb, bdfn, aercap + PCIECAP_AER_CAPCTL, &val32); |
| val32 |= (PCIECAP_AER_CAPCTL_ECRCG_EN | |
| PCIECAP_AER_CAPCTL_ECRCC_EN); |
| pci_cfg_write32(phb, bdfn, aercap + PCIECAP_AER_CAPCTL, val32); |
| |
| /* Enable all error reporting */ |
| pci_cfg_read32(phb, bdfn, aercap + PCIECAP_AER_RERR_CMD, &val32); |
| val32 |= (PCIECAP_AER_RERR_CMD_FE | |
| PCIECAP_AER_RERR_CMD_NFE | |
| PCIECAP_AER_RERR_CMD_CE); |
| pci_cfg_write32(phb, bdfn, aercap + PCIECAP_AER_RERR_CMD, val32); |
| } |
| |
| static void phb4_switch_port_init(struct phb *phb, |
| struct pci_device *dev, |
| int ecap, int aercap) |
| { |
| uint16_t bdfn = dev->bdfn; |
| uint16_t val16; |
| uint32_t val32; |
| |
| // FIXME: update AER settings for phb4 |
| |
| /* Enable SERR and parity checking and disable INTx */ |
| pci_cfg_read16(phb, bdfn, PCI_CFG_CMD, &val16); |
| val16 |= (PCI_CFG_CMD_PERR_RESP | |
| PCI_CFG_CMD_SERR_EN | |
| PCI_CFG_CMD_INTx_DIS); |
| pci_cfg_write16(phb, bdfn, PCI_CFG_CMD, val16); |
| |
| /* Disable partity error and enable system error */ |
| pci_cfg_read16(phb, bdfn, PCI_CFG_BRCTL, &val16); |
| val16 &= ~PCI_CFG_BRCTL_PERR_RESP_EN; |
| val16 |= PCI_CFG_BRCTL_SERR_EN; |
| pci_cfg_write16(phb, bdfn, PCI_CFG_BRCTL, val16); |
| |
| /* Enable reporting various errors */ |
| if (!ecap) return; |
| pci_cfg_read16(phb, bdfn, ecap + PCICAP_EXP_DEVCTL, &val16); |
| val16 |= (PCICAP_EXP_DEVCTL_CE_REPORT | |
| PCICAP_EXP_DEVCTL_NFE_REPORT | |
| PCICAP_EXP_DEVCTL_FE_REPORT); |
| /* HW279570 - Disable reporting of correctable errors */ |
| val16 &= ~PCICAP_EXP_DEVCTL_CE_REPORT; |
| pci_cfg_write16(phb, bdfn, ecap + PCICAP_EXP_DEVCTL, val16); |
| |
| /* Unmask all unrecoverable errors */ |
| if (!aercap) return; |
| pci_cfg_write32(phb, bdfn, aercap + PCIECAP_AER_UE_MASK, 0x0); |
| |
| /* Severity of unrecoverable errors */ |
| if (dev->dev_type == PCIE_TYPE_SWITCH_UPPORT) |
| val32 = (PCIECAP_AER_UE_SEVERITY_DLLP | |
| PCIECAP_AER_UE_SEVERITY_SURPRISE_DOWN | |
| PCIECAP_AER_UE_SEVERITY_FLOW_CTL_PROT | |
| PCIECAP_AER_UE_SEVERITY_RECV_OVFLOW | |
| PCIECAP_AER_UE_SEVERITY_MALFORMED_TLP | |
| PCIECAP_AER_UE_SEVERITY_INTERNAL); |
| else |
| val32 = (PCIECAP_AER_UE_SEVERITY_FLOW_CTL_PROT | |
| PCIECAP_AER_UE_SEVERITY_INTERNAL); |
| pci_cfg_write32(phb, bdfn, aercap + PCIECAP_AER_UE_SEVERITY, val32); |
| |
| /* |
| * Mask various correctable errors |
| */ |
| val32 = PCIECAP_AER_CE_MASK_ADV_NONFATAL; |
| pci_cfg_write32(phb, bdfn, aercap + PCIECAP_AER_CE_MASK, val32); |
| |
| /* Enable ECRC generation and disable ECRC check */ |
| pci_cfg_read32(phb, bdfn, aercap + PCIECAP_AER_CAPCTL, &val32); |
| val32 |= PCIECAP_AER_CAPCTL_ECRCG_EN; |
| val32 &= ~PCIECAP_AER_CAPCTL_ECRCC_EN; |
| pci_cfg_write32(phb, bdfn, aercap + PCIECAP_AER_CAPCTL, val32); |
| } |
| |
| static void phb4_endpoint_init(struct phb *phb, |
| struct pci_device *dev, |
| int ecap, int aercap) |
| { |
| uint16_t bdfn = dev->bdfn; |
| uint16_t val16; |
| uint32_t val32; |
| |
| /* Enable SERR and parity checking */ |
| pci_cfg_read16(phb, bdfn, PCI_CFG_CMD, &val16); |
| val16 |= (PCI_CFG_CMD_PERR_RESP | |
| PCI_CFG_CMD_SERR_EN); |
| pci_cfg_write16(phb, bdfn, PCI_CFG_CMD, val16); |
| |
| /* Enable reporting various errors */ |
| if (!ecap) return; |
| pci_cfg_read16(phb, bdfn, ecap + PCICAP_EXP_DEVCTL, &val16); |
| val16 &= ~PCICAP_EXP_DEVCTL_CE_REPORT; |
| val16 |= (PCICAP_EXP_DEVCTL_NFE_REPORT | |
| PCICAP_EXP_DEVCTL_FE_REPORT | |
| PCICAP_EXP_DEVCTL_UR_REPORT); |
| pci_cfg_write16(phb, bdfn, ecap + PCICAP_EXP_DEVCTL, val16); |
| |
| /* Enable ECRC generation and check */ |
| if (!aercap) |
| return; |
| |
| pci_cfg_read32(phb, bdfn, aercap + PCIECAP_AER_CAPCTL, &val32); |
| val32 |= (PCIECAP_AER_CAPCTL_ECRCG_EN | |
| PCIECAP_AER_CAPCTL_ECRCC_EN); |
| pci_cfg_write32(phb, bdfn, aercap + PCIECAP_AER_CAPCTL, val32); |
| } |
| |
| static int64_t phb4_pcicfg_no_dstate(void *dev __unused, |
| struct pci_cfg_reg_filter *pcrf, |
| uint32_t offset, uint32_t len __unused, |
| uint32_t *data __unused, bool write) |
| { |
| uint32_t loff = offset - pcrf->start; |
| |
| /* Disable D-state change on children of the PHB. For now we |
| * simply block all writes to the PM control/status |
| */ |
| if (write && loff >= 4 && loff < 6) |
| return OPAL_SUCCESS; |
| |
| return OPAL_PARTIAL; |
| } |
| |
| void phb4_pec2_dma_engine_realloc(struct phb4 *p) |
| { |
| uint64_t reg; |
| |
| /* |
| * Allocate 16 extra dma read engines to stack 0, to boost dma |
| * performance for devices on stack 0 of PEC2, i.e PHB3. |
| * It comes at a price of reduced read engine allocation for |
| * devices on stack 1 and 2. The engine allocation becomes |
| * 48/8/8 instead of the default 32/16/16. |
| * |
| * The reallocation magic value should be 0xffff0000ff008000, |
| * but per the PCI designers, dma engine 32 (bit 0) has a |
| * quirk, and 0x7fff80007F008000 has the same effect (engine |
| * 32 goes to PHB4). |
| */ |
| if (p->index != 3) /* shared slot on PEC2 */ |
| return; |
| |
| PHBINF(p, "Allocating an extra 16 dma read engines on PEC2 stack0\n"); |
| reg = 0x7fff80007F008000ULL; |
| xscom_write(p->chip_id, |
| p->pci_xscom + XPEC_PCI_PRDSTKOVR, reg); |
| xscom_write(p->chip_id, |
| p->pe_xscom + XPEC_NEST_READ_STACK_OVERRIDE, reg); |
| } |
| |
| static void phb4_check_device_quirks(struct pci_device *dev) |
| { |
| /* Some special adapter tweaks for devices directly under the PHB */ |
| if (dev->primary_bus != 1) |
| return; |
| |
| /* PM quirk */ |
| if (!pci_has_cap(dev, PCI_CFG_CAP_ID_PM, false)) |
| return; |
| |
| pci_add_cfg_reg_filter(dev, |
| pci_cap(dev, PCI_CFG_CAP_ID_PM, false), 8, |
| PCI_REG_FLAG_WRITE, |
| phb4_pcicfg_no_dstate); |
| } |
| |
| static int phb4_device_init(struct phb *phb, struct pci_device *dev, |
| void *data __unused) |
| { |
| int ecap, aercap; |
| |
| /* Setup special device quirks */ |
| phb4_check_device_quirks(dev); |
| |
| /* Common initialization for the device */ |
| pci_device_init(phb, dev); |
| |
| ecap = pci_cap(dev, PCI_CFG_CAP_ID_EXP, false); |
| aercap = pci_cap(dev, PCIECAP_ID_AER, true); |
| if (dev->dev_type == PCIE_TYPE_ROOT_PORT) |
| phb4_root_port_init(phb, dev, ecap, aercap); |
| else if (dev->dev_type == PCIE_TYPE_SWITCH_UPPORT || |
| dev->dev_type == PCIE_TYPE_SWITCH_DNPORT) |
| phb4_switch_port_init(phb, dev, ecap, aercap); |
| else |
| phb4_endpoint_init(phb, dev, ecap, aercap); |
| |
| return 0; |
| } |
| |
| static int64_t phb4_pci_reinit(struct phb *phb, uint64_t scope, uint64_t data) |
| { |
| struct pci_device *pd; |
| uint16_t bdfn = data; |
| int ret; |
| |
| if (scope != OPAL_REINIT_PCI_DEV) |
| return OPAL_PARAMETER; |
| |
| pd = pci_find_dev(phb, bdfn); |
| if (!pd) |
| return OPAL_PARAMETER; |
| |
| ret = phb4_device_init(phb, pd, NULL); |
| if (ret) |
| return OPAL_HARDWARE; |
| |
| return OPAL_SUCCESS; |
| } |
| |
| /* Default value for MBT0, see comments in init_ioda_cache() */ |
| static uint64_t phb4_default_mbt0(struct phb4 *p, unsigned int bar_idx) |
| { |
| uint64_t mbt0; |
| |
| switch (p->mbt_size - bar_idx - 1) { |
| case 0: |
| mbt0 = SETFIELD(IODA3_MBT0_MODE, 0ull, IODA3_MBT0_MODE_MDT); |
| mbt0 = SETFIELD(IODA3_MBT0_MDT_COLUMN, mbt0, 3); |
| break; |
| case 1: |
| mbt0 = SETFIELD(IODA3_MBT0_MODE, 0ull, IODA3_MBT0_MODE_MDT); |
| mbt0 = SETFIELD(IODA3_MBT0_MDT_COLUMN, mbt0, 2); |
| break; |
| case 2: |
| mbt0 = SETFIELD(IODA3_MBT0_MODE, 0ull, IODA3_MBT0_MODE_MDT); |
| mbt0 = SETFIELD(IODA3_MBT0_MDT_COLUMN, mbt0, 1); |
| break; |
| default: |
| mbt0 = SETFIELD(IODA3_MBT0_MODE, 0ull, IODA3_MBT0_MODE_PE_SEG); |
| } |
| return mbt0; |
| } |
| |
| /* |
| * Clear the saved (cached) IODA state. |
| * |
| * The caches here are used to save the configuration of the IODA tables |
| * done by the OS. When the PHB is reset it loses all of its internal state |
| * so we need to keep a copy to restore from. This function re-initialises |
| * the saved state to sane defaults. |
| */ |
| static void phb4_init_ioda_cache(struct phb4 *p) |
| { |
| uint32_t i; |
| |
| /* |
| * The RTT entries (RTE) are supposed to be initialised to |
| * 0xFF which indicates an invalid PE# for that RTT index |
| * (the bdfn). However, we set them to 0x00 since Linux |
| * needs to find the devices first by scanning config space |
| * and this occurs before PEs have been assigned. |
| */ |
| for (i = 0; i < RTT_TABLE_ENTRIES; i++) |
| p->tbl_rtt[i] = cpu_to_be16(PHB4_RESERVED_PE_NUM(p)); |
| memset(p->tbl_peltv, 0x0, p->tbl_peltv_size); |
| memset(p->tve_cache, 0x0, sizeof(p->tve_cache)); |
| |
| /* XXX Should we mask them ? */ |
| memset(p->mist_cache, 0x0, sizeof(p->mist_cache)); |
| |
| /* Configure MBT entries 1...N */ |
| |
| /* Column 0 is left 0 and will be used fo M32 and configured |
| * by the OS. We use MDT column 1..3 for the last 3 BARs, thus |
| * allowing Linux to remap those, and setup all the other ones |
| * for now in mode 00 (segment# == PE#). By default those |
| * columns are set to map the same way. |
| */ |
| for (i = 0; i < p->max_num_pes; i++) { |
| p->mdt_cache[i] = SETFIELD(IODA3_MDT_PE_B, 0ull, i); |
| p->mdt_cache[i] |= SETFIELD(IODA3_MDT_PE_C, 0ull, i); |
| p->mdt_cache[i] |= SETFIELD(IODA3_MDT_PE_D, 0ull, i); |
| } |
| |
| /* Initialize MBT entries for BARs 1...N */ |
| for (i = 1; i < p->mbt_size; i++) { |
| p->mbt_cache[i][0] = phb4_default_mbt0(p, i); |
| p->mbt_cache[i][1] = 0; |
| } |
| |
| /* Initialize M32 bar using MBT entry 0, MDT colunm A */ |
| p->mbt_cache[0][0] = SETFIELD(IODA3_MBT0_MODE, 0ull, IODA3_MBT0_MODE_MDT); |
| p->mbt_cache[0][0] |= SETFIELD(IODA3_MBT0_MDT_COLUMN, 0ull, 0); |
| p->mbt_cache[0][0] |= IODA3_MBT0_TYPE_M32 | (p->mm1_base & IODA3_MBT0_BASE_ADDR); |
| p->mbt_cache[0][1] = IODA3_MBT1_ENABLE | ((~(M32_PCI_SIZE - 1)) & IODA3_MBT1_MASK); |
| } |
| |
| static int64_t phb4_wait_bit(struct phb4 *p, uint32_t reg, |
| uint64_t mask, uint64_t want_val) |
| { |
| uint64_t val; |
| |
| /* Wait for all pending TCE kills to complete |
| * |
| * XXX Add timeout... |
| */ |
| /* XXX SIMICS is nasty... */ |
| if ((reg == PHB_TCE_KILL || reg == PHB_DMA_READ_WRITE_SYNC) && |
| chip_quirk(QUIRK_SIMICS)) |
| return OPAL_SUCCESS; |
| |
| for (;;) { |
| val = in_be64(p->regs + reg); |
| if (val == 0xffffffffffffffffull) { |
| /* XXX Fenced ? */ |
| return OPAL_HARDWARE; |
| } |
| if ((val & mask) == want_val) |
| break; |
| |
| } |
| return OPAL_SUCCESS; |
| } |
| |
| static int64_t phb4_tce_kill(struct phb *phb, uint32_t kill_type, |
| uint64_t pe_number, uint32_t tce_size, |
| uint64_t dma_addr, uint32_t npages) |
| { |
| struct phb4 *p = phb_to_phb4(phb); |
| uint64_t val; |
| int64_t rc; |
| |
| /* |
| * HW560152: a page-level kill can be dropped if the |
| * processing queue is backed-up, which can cause data |
| * integrity issues |
| */ |
| if (kill_type == OPAL_PCI_TCE_KILL_PAGES) |
| kill_type = OPAL_PCI_TCE_KILL_PE; |
| |
| sync(); |
| switch(kill_type) { |
| case OPAL_PCI_TCE_KILL_PAGES: |
| while (npages--) { |
| /* Wait for a slot in the HW kill queue */ |
| rc = phb4_wait_bit(p, PHB_TCE_KILL, |
| PHB_TCE_KILL_ALL | |
| PHB_TCE_KILL_PE | |
| PHB_TCE_KILL_ONE, 0); |
| if (rc) |
| return rc; |
| val = SETFIELD(PHB_TCE_KILL_PENUM, dma_addr, pe_number); |
| |
| /* Set appropriate page size */ |
| switch(tce_size) { |
| case 0x1000: |
| if (dma_addr & 0xf000000000000fffull) |
| return OPAL_PARAMETER; |
| break; |
| case 0x10000: |
| if (dma_addr & 0xf00000000000ffffull) |
| return OPAL_PARAMETER; |
| val |= PHB_TCE_KILL_PSEL | PHB_TCE_KILL_64K; |
| break; |
| case 0x200000: |
| if (dma_addr & 0xf0000000001fffffull) |
| return OPAL_PARAMETER; |
| val |= PHB_TCE_KILL_PSEL | PHB_TCE_KILL_2M; |
| break; |
| case 0x40000000: |
| if (dma_addr & 0xf00000003fffffffull) |
| return OPAL_PARAMETER; |
| val |= PHB_TCE_KILL_PSEL | PHB_TCE_KILL_1G; |
| break; |
| default: |
| return OPAL_PARAMETER; |
| } |
| /* Perform kill */ |
| out_be64(p->regs + PHB_TCE_KILL, PHB_TCE_KILL_ONE | val); |
| /* Next page */ |
| dma_addr += tce_size; |
| } |
| break; |
| case OPAL_PCI_TCE_KILL_PE: |
| /* Wait for a slot in the HW kill queue */ |
| rc = phb4_wait_bit(p, PHB_TCE_KILL, |
| PHB_TCE_KILL_ALL | |
| PHB_TCE_KILL_PE | |
| PHB_TCE_KILL_ONE, 0); |
| if (rc) |
| return rc; |
| /* Perform kill */ |
| out_be64(p->regs + PHB_TCE_KILL, PHB_TCE_KILL_PE | |
| SETFIELD(PHB_TCE_KILL_PENUM, 0ull, pe_number)); |
| break; |
| case OPAL_PCI_TCE_KILL_ALL: |
| /* Wait for a slot in the HW kill queue */ |
| rc = phb4_wait_bit(p, PHB_TCE_KILL, |
| PHB_TCE_KILL_ALL | |
| PHB_TCE_KILL_PE | |
| PHB_TCE_KILL_ONE, 0); |
| if (rc) |
| return rc; |
| /* Perform kill */ |
| out_be64(p->regs + PHB_TCE_KILL, PHB_TCE_KILL_ALL); |
| break; |
| default: |
| return OPAL_PARAMETER; |
| } |
| |
| /* Start DMA sync process */ |
| if (is_phb5()){ |
| val = in_be64(p->regs + PHB_DMA_READ_WRITE_SYNC) & |
| (PHB_DMA_READ_SYNC_COMPLETE | |
| PHB_DMA_WRITE_SYNC_COMPLETE); |
| out_be64(p->regs + PHB_DMA_READ_WRITE_SYNC, |
| val | PHB_DMA_READ_SYNC_START); |
| |
| } else { |
| out_be64(p->regs + PHB_DMA_READ_WRITE_SYNC, |
| PHB_DMA_READ_SYNC_START); |
| } |
| |
| /* Wait for kill to complete */ |
| rc = phb4_wait_bit(p, PHB_Q_DMA_R, PHB_Q_DMA_R_TCE_KILL_STATUS, 0); |
| if (rc) |
| return rc; |
| |
| /* Wait for DMA sync to complete */ |
| return phb4_wait_bit(p, PHB_DMA_READ_WRITE_SYNC, |
| PHB_DMA_READ_SYNC_COMPLETE, |
| PHB_DMA_READ_SYNC_COMPLETE); |
| } |
| |
| /* phb4_ioda_reset - Reset the IODA tables |
| * |
| * @purge: If true, the cache is cleared and the cleared values |
| * are applied to HW. If false, the cached values are |
| * applied to HW |
| * |
| * This reset the IODA tables in the PHB. It is called at |
| * initialization time, on PHB reset, and can be called |
| * explicitly from OPAL |
| */ |
| static int64_t phb4_ioda_reset(struct phb *phb, bool purge) |
| { |
| struct phb4 *p = phb_to_phb4(phb); |
| uint32_t i; |
| uint64_t val; |
| |
| if (purge) { |
| PHBDBG(p, "Purging all IODA tables...\n"); |
| if (phb->slot) |
| phb->slot->link_retries = PHB4_LINK_LINK_RETRIES; |
| phb4_init_ioda_cache(p); |
| } |
| |
| /* Init_30..31 - Errata workaround, clear PESTA entry 0 */ |
| phb4_ioda_sel(p, IODA3_TBL_PESTA, 0, false); |
| out_be64(p->regs + PHB_IODA_DATA0, 0); |
| |
| /* Init_32..33 - MIST */ |
| phb4_ioda_sel(p, IODA3_TBL_MIST, 0, true); |
| val = in_be64(p->regs + PHB_IODA_ADDR); |
| val = SETFIELD(PHB_IODA_AD_MIST_PWV, val, 0xf); |
| out_be64(p->regs + PHB_IODA_ADDR, val); |
| for (i = 0; i < (p->num_irqs/4); i++) |
| out_be64(p->regs + PHB_IODA_DATA0, p->mist_cache[i]); |
| |
| /* Init_34..35 - MRT */ |
| phb4_ioda_sel(p, IODA3_TBL_MRT, 0, true); |
| for (i = 0; i < p->mrt_size; i++) |
| out_be64(p->regs + PHB_IODA_DATA0, 0); |
| |
| /* Init_36..37 - TVT */ |
| phb4_ioda_sel(p, IODA3_TBL_TVT, 0, true); |
| for (i = 0; i < p->tvt_size; i++) |
| out_be64(p->regs + PHB_IODA_DATA0, p->tve_cache[i]); |
| |
| /* Init_38..39 - MBT */ |
| phb4_ioda_sel(p, IODA3_TBL_MBT, 0, true); |
| for (i = 0; i < p->mbt_size; i++) { |
| out_be64(p->regs + PHB_IODA_DATA0, p->mbt_cache[i][0]); |
| out_be64(p->regs + PHB_IODA_DATA0, p->mbt_cache[i][1]); |
| } |
| |
| /* Init_40..41 - MDT */ |
| phb4_ioda_sel(p, IODA3_TBL_MDT, 0, true); |
| for (i = 0; i < p->max_num_pes; i++) |
| out_be64(p->regs + PHB_IODA_DATA0, p->mdt_cache[i]); |
| |
| /* Additional OPAL specific inits */ |
| |
| /* Clear PEST & PEEV */ |
| for (i = 0; i < p->max_num_pes; i++) { |
| phb4_ioda_sel(p, IODA3_TBL_PESTA, i, false); |
| out_be64(p->regs + PHB_IODA_DATA0, 0); |
| phb4_ioda_sel(p, IODA3_TBL_PESTB, i, false); |
| out_be64(p->regs + PHB_IODA_DATA0, 0); |
| } |
| |
| phb4_ioda_sel(p, IODA3_TBL_PEEV, 0, true); |
| for (i = 0; i < p->max_num_pes/64; i++) |
| out_be64(p->regs + PHB_IODA_DATA0, 0); |
| |
| /* Invalidate RTE, TCE cache */ |
| out_be64(p->regs + PHB_RTC_INVALIDATE, PHB_RTC_INVALIDATE_ALL); |
| |
| return phb4_tce_kill(&p->phb, OPAL_PCI_TCE_KILL_ALL, 0, 0, 0, 0); |
| } |
| |
| /* |
| * Clear anything we have in PAPR Error Injection registers. Though |
| * the spec says the PAPR error injection should be one-shot without |
| * the "sticky" bit. However, that's false according to the experiments |
| * I had. So we have to clear it at appropriate point in kernel to |
| * avoid endless frozen PE. |
| */ |
| static int64_t phb4_papr_errinjct_reset(struct phb *phb) |
| { |
| struct phb4 *p = phb_to_phb4(phb); |
| |
| out_be64(p->regs + PHB_PAPR_ERR_INJ_CTL, 0x0ul); |
| out_be64(p->regs + PHB_PAPR_ERR_INJ_ADDR, 0x0ul); |
| out_be64(p->regs + PHB_PAPR_ERR_INJ_MASK, 0x0ul); |
| |
| return OPAL_SUCCESS; |
| } |
| |
| static int64_t phb4_set_phb_mem_window(struct phb *phb, |
| uint16_t window_type, |
| uint16_t window_num, |
| uint64_t addr, |
| uint64_t pci_addr __unused, |
| uint64_t size) |
| { |
| struct phb4 *p = phb_to_phb4(phb); |
| uint64_t mbt0, mbt1; |
| |
| /* |
| * We have a unified MBT for all BARs on PHB4. |
| * |
| * So we use it as follow: |
| * |
| * - M32 is hard wired to be MBT[0] and uses MDT column 0 |
| * for remapping. |
| * |
| * - MBT[1..n] are available to the OS, currently only as |
| * fully segmented or single PE (we don't yet expose the |
| * new segmentation modes). |
| * |
| * - We configure the 3 last BARs to columnt 1..3 initially |
| * set to segment# == PE#. We will need to provide some |
| * extensions to the existing APIs to enable remapping of |
| * segments on those BARs (and only those) as the current |
| * API forces single segment mode. |
| */ |
| switch (window_type) { |
| case OPAL_IO_WINDOW_TYPE: |
| case OPAL_M32_WINDOW_TYPE: |
| return OPAL_UNSUPPORTED; |
| case OPAL_M64_WINDOW_TYPE: |
| if (window_num == 0 || window_num >= p->mbt_size) { |
| PHBERR(p, "%s: Invalid window %d\n", |
| __func__, window_num); |
| return OPAL_PARAMETER; |
| } |
| |
| mbt0 = p->mbt_cache[window_num][0]; |
| mbt1 = p->mbt_cache[window_num][1]; |
| |
| /* XXX For now we assume the 4K minimum alignment, |
| * todo: check with the HW folks what the exact limits |
| * are based on the segmentation model. |
| */ |
| if ((addr & 0xFFFul) || (size & 0xFFFul)) { |
| PHBERR(p, "%s: Bad addr/size alignment %llx/%llx\n", |
| __func__, addr, size); |
| return OPAL_PARAMETER; |
| } |
| |
| /* size should be 2^N */ |
| if (!size || size & (size-1)) { |
| PHBERR(p, "%s: size not a power of 2: %llx\n", |
| __func__, size); |
| return OPAL_PARAMETER; |
| } |
| |
| /* address should be size aligned */ |
| if (addr & (size - 1)) { |
| PHBERR(p, "%s: addr not size aligned %llx/%llx\n", |
| __func__, addr, size); |
| return OPAL_PARAMETER; |
| } |
| |
| break; |
| default: |
| return OPAL_PARAMETER; |
| } |
| |
| /* The BAR shouldn't be enabled yet */ |
| if (mbt0 & IODA3_MBT0_ENABLE) |
| return OPAL_PARTIAL; |
| |
| /* Apply the settings */ |
| mbt0 = SETFIELD(IODA3_MBT0_BASE_ADDR, mbt0, addr >> 12); |
| mbt1 = SETFIELD(IODA3_MBT1_MASK, mbt1, ~((size >> 12) -1)); |
| p->mbt_cache[window_num][0] = mbt0; |
| p->mbt_cache[window_num][1] = mbt1; |
| |
| return OPAL_SUCCESS; |
| } |
| |
| /* |
| * For one specific M64 BAR, it can be shared by all PEs, |
| * or owned by single PE exclusively. |
| */ |
| static int64_t phb4_phb_mmio_enable(struct phb __unused *phb, |
| uint16_t window_type, |
| uint16_t window_num, |
| uint16_t enable) |
| { |
| struct phb4 *p = phb_to_phb4(phb); |
| uint64_t mbt0, mbt1, base, mask; |
| |
| /* |
| * By design, PHB4 doesn't support IODT any more. |
| * Besides, we can't enable M32 BAR as well. So |
| * the function is used to do M64 mapping and each |
| * BAR is supposed to be shared by all PEs. |
| * |
| * TODO: Add support for some of the new PHB4 split modes |
| */ |
| switch (window_type) { |
| case OPAL_IO_WINDOW_TYPE: |
| case OPAL_M32_WINDOW_TYPE: |
| return OPAL_UNSUPPORTED; |
| case OPAL_M64_WINDOW_TYPE: |
| /* Window 0 is reserved for M32 */ |
| if (window_num == 0 || window_num >= p->mbt_size || |
| enable > OPAL_ENABLE_M64_NON_SPLIT) { |
| PHBDBG(p, |
| "phb4_phb_mmio_enable wrong args (window %d enable %d)\n", |
| window_num, enable); |
| return OPAL_PARAMETER; |
| } |
| break; |
| default: |
| return OPAL_PARAMETER; |
| } |
| |
| /* |
| * We need check the base/mask while enabling |
| * the M64 BAR. Otherwise, invalid base/mask |
| * might cause fenced AIB unintentionally |
| */ |
| mbt0 = p->mbt_cache[window_num][0]; |
| mbt1 = p->mbt_cache[window_num][1]; |
| |
| if (enable == OPAL_DISABLE_M64) { |
| /* Reset the window to disabled & default mode */ |
| mbt0 = phb4_default_mbt0(p, window_num); |
| mbt1 = 0; |
| } else { |
| /* Verify that the mode is valid and consistent */ |
| if (enable == OPAL_ENABLE_M64_SPLIT) { |
| uint64_t mode = GETFIELD(IODA3_MBT0_MODE, mbt0); |
| if (mode != IODA3_MBT0_MODE_PE_SEG && |
| mode != IODA3_MBT0_MODE_MDT) |
| return OPAL_PARAMETER; |
| } else if (enable == OPAL_ENABLE_M64_NON_SPLIT) { |
| if (GETFIELD(IODA3_MBT0_MODE, mbt0) != |
| IODA3_MBT0_MODE_SINGLE_PE) |
| return OPAL_PARAMETER; |
| } else |
| return OPAL_PARAMETER; |
| |
| base = GETFIELD(IODA3_MBT0_BASE_ADDR, mbt0); |
| base = (base << 12); |
| mask = GETFIELD(IODA3_MBT1_MASK, mbt1); |
| if (base < p->mm0_base || !mask) |
| return OPAL_PARTIAL; |
| |
| mbt0 |= IODA3_MBT0_ENABLE; |
| mbt1 |= IODA3_MBT1_ENABLE; |
| } |
| |
| /* Update HW and cache */ |
| p->mbt_cache[window_num][0] = mbt0; |
| p->mbt_cache[window_num][1] = mbt1; |
| phb4_ioda_sel(p, IODA3_TBL_MBT, window_num << 1, true); |
| out_be64(p->regs + PHB_IODA_DATA0, mbt0); |
| out_be64(p->regs + PHB_IODA_DATA0, mbt1); |
| |
| return OPAL_SUCCESS; |
| } |
| |
| static int64_t phb4_map_pe_mmio_window(struct phb *phb, |
| uint64_t pe_number, |
| uint16_t window_type, |
| uint16_t window_num, |
| uint16_t segment_num) |
| { |
| struct phb4 *p = phb_to_phb4(phb); |
| uint64_t mbt0, mbt1, mdt0; |
| |
| if (pe_number >= p->num_pes) |
| return OPAL_PARAMETER; |
| |
| /* |
| * We support a combined MDT that has 4 columns. We let the OS |
| * use kernel 0 for M32. |
| * |
| * We configure the 3 last BARs to map column 3..1 which by default |
| * are set to map segment# == pe#, but can be remapped here if we |
| * extend this function. |
| * |
| * The problem is that the current API was "hijacked" so that an |
| * attempt at remapping any segment of an M64 has the effect of |
| * turning it into a single-PE mode BAR. So if we want to support |
| * remapping we'll have to play around this for example by creating |
| * a new API or a new window type... |
| */ |
| switch(window_type) { |
| case OPAL_IO_WINDOW_TYPE: |
| return OPAL_UNSUPPORTED; |
| case OPAL_M32_WINDOW_TYPE: |
| if (window_num != 0 || segment_num >= p->num_pes) |
| return OPAL_PARAMETER; |
| |
| mdt0 = p->mdt_cache[segment_num]; |
| mdt0 = SETFIELD(IODA3_MDT_PE_A, mdt0, pe_number); |
| phb4_ioda_sel(p, IODA3_TBL_MDT, segment_num, false); |
| out_be64(p->regs + PHB_IODA_DATA0, mdt0); |
| break; |
| case OPAL_M64_WINDOW_TYPE: |
| if (window_num == 0 || window_num >= p->mbt_size) |
| return OPAL_PARAMETER; |
| |
| mbt0 = p->mbt_cache[window_num][0]; |
| mbt1 = p->mbt_cache[window_num][1]; |
| |
| /* The BAR shouldn't be enabled yet */ |
| if (mbt0 & IODA3_MBT0_ENABLE) |
| return OPAL_PARTIAL; |
| |
| /* Set to single PE mode and configure the PE */ |
| mbt0 = SETFIELD(IODA3_MBT0_MODE, mbt0, |
| IODA3_MBT0_MODE_SINGLE_PE); |
| mbt1 = SETFIELD(IODA3_MBT1_SINGLE_PE_NUM, mbt1, pe_number); |
| p->mbt_cache[window_num][0] = mbt0; |
| p->mbt_cache[window_num][1] = mbt1; |
| break; |
| default: |
| return OPAL_PARAMETER; |
| } |
| |
| return OPAL_SUCCESS; |
| } |
| |
| static int64_t phb4_map_pe_dma_window(struct phb *phb, |
| uint64_t pe_number, |
| uint16_t window_id, |
| uint16_t tce_levels, |
| uint64_t tce_table_addr, |
| uint64_t tce_table_size, |
| uint64_t tce_page_size) |
| { |
| struct phb4 *p = phb_to_phb4(phb); |
| uint64_t tts_encoded; |
| uint64_t data64 = 0; |
| |
| /* |
| * We configure the PHB in 2 TVE per PE mode to match phb3. |
| * Current Linux implementation *requires* the two windows per |
| * PE. |
| * |
| * Note: On DD2.0 this is the normal mode of operation. |
| */ |
| |
| /* |
| * Sanity check. We currently only support "2 window per PE" mode |
| * ie, only bit 59 of the PCI address is used to select the window |
| */ |
| if (pe_number >= p->num_pes || (window_id >> 1) != pe_number) |
| return OPAL_PARAMETER; |
| |
| /* |
| * tce_table_size == 0 is used to disable an entry, in this case |
| * we ignore other arguments |
| */ |
| if (tce_table_size == 0) { |
| phb4_ioda_sel(p, IODA3_TBL_TVT, window_id, false); |
| out_be64(p->regs + PHB_IODA_DATA0, 0); |
| p->tve_cache[window_id] = 0; |
| return OPAL_SUCCESS; |
| } |
| |
| /* Additional arguments validation */ |
| if (tce_levels < 1 || tce_levels > 5 || |
| !is_pow2(tce_table_size) || |
| tce_table_size < 0x1000) |
| return OPAL_PARAMETER; |
| |
| /* Encode TCE table size */ |
| data64 = SETFIELD(IODA3_TVT_TABLE_ADDR, 0ul, tce_table_addr >> 12); |
| tts_encoded = ilog2(tce_table_size) - 11; |
| if (tts_encoded > 31) |
| return OPAL_PARAMETER; |
| data64 = SETFIELD(IODA3_TVT_TCE_TABLE_SIZE, data64, tts_encoded); |
| |
| /* Encode TCE page size */ |
| switch (tce_page_size) { |
| case 0x1000: /* 4K */ |
| data64 = SETFIELD(IODA3_TVT_IO_PSIZE, data64, 1); |
| break; |
| case 0x10000: /* 64K */ |
| data64 = SETFIELD(IODA3_TVT_IO_PSIZE, data64, 5); |
| break; |
| case 0x200000: /* 2M */ |
| data64 = SETFIELD(IODA3_TVT_IO_PSIZE, data64, 10); |
| break; |
| case 0x40000000: /* 1G */ |
| data64 = SETFIELD(IODA3_TVT_IO_PSIZE, data64, 19); |
| break; |
| default: |
| return OPAL_PARAMETER; |
| } |
| |
| /* Encode number of levels */ |
| data64 = SETFIELD(IODA3_TVT_NUM_LEVELS, data64, tce_levels - 1); |
| |
| phb4_ioda_sel(p, IODA3_TBL_TVT, window_id, false); |
| out_be64(p->regs + PHB_IODA_DATA0, data64); |
| p->tve_cache[window_id] = data64; |
| |
| return OPAL_SUCCESS; |
| } |
| |
| static int64_t phb4_map_pe_dma_window_real(struct phb *phb, |
| uint64_t pe_number, |
| uint16_t window_id, |
| uint64_t pci_start_addr, |
| uint64_t pci_mem_size) |
| { |
| struct phb4 *p = phb_to_phb4(phb); |
| uint64_t end = pci_start_addr + pci_mem_size; |
| uint64_t tve; |
| |
| if (pe_number >= p->num_pes || |
| (window_id >> 1) != pe_number) |
| return OPAL_PARAMETER; |
| |
| if (pci_mem_size) { |
| /* Enable */ |
| |
| /* |
| * Check that the start address has the right TVE index, |
| * we only support the 1 bit mode where each PE has 2 |
| * TVEs |
| */ |
| if ((pci_start_addr >> 59) != (window_id & 1)) |
| return OPAL_PARAMETER; |
| pci_start_addr &= ((1ull << 59) - 1); |
| end = pci_start_addr + pci_mem_size; |
| |
| /* We have to be 16M aligned */ |
| if ((pci_start_addr & 0x00ffffff) || |
| (pci_mem_size & 0x00ffffff)) |
| return OPAL_PARAMETER; |
| |
| /* |
| * It *looks* like this is the max we can support (we need |
| * to verify this. Also we are not checking for rollover, |
| * but then we aren't trying too hard to protect ourselves |
| * againt a completely broken OS. |
| */ |
| if (end > 0x0003ffffffffffffull) |
| return OPAL_PARAMETER; |
| |
| /* |
| * Put start address bits 49:24 into TVE[52:53]||[0:23] |
| * and end address bits 49:24 into TVE[54:55]||[24:47] |
| * and set TVE[51] |
| */ |
| tve = (pci_start_addr << 16) & (0xffffffull << 40); |
| tve |= (pci_start_addr >> 38) & (3ull << 10); |
| tve |= (end >> 8) & (0xfffffful << 16); |
| tve |= (end >> 40) & (3ull << 8); |
| tve |= PPC_BIT(51) | IODA3_TVT_NON_TRANSLATE_50; |
| } else { |
| /* Disable */ |
| tve = 0; |
| } |
| |
| phb4_ioda_sel(p, IODA3_TBL_TVT, window_id, false); |
| out_be64(p->regs + PHB_IODA_DATA0, tve); |
| p->tve_cache[window_id] = tve; |
| |
| return OPAL_SUCCESS; |
| } |
| |
| static int64_t phb4_set_option(struct phb *phb, enum OpalPhbOption opt, |
| uint64_t setting) |
| { |
| struct phb4 *p = phb_to_phb4(phb); |
| uint64_t data64; |
| |
| data64 = phb4_read_reg(p, PHB_CTRLR); |
| switch (opt) { |
| case OPAL_PHB_OPTION_TVE1_4GB: |
| if (setting > 1) |
| return OPAL_PARAMETER; |
| |
| PHBDBG(p, "4GB bypass mode = %lld\n", setting); |
| if (setting) |
| data64 |= PPC_BIT(24); |
| else |
| data64 &= ~PPC_BIT(24); |
| break; |
| case OPAL_PHB_OPTION_MMIO_EEH_DISABLE: |
| if (setting > 1) |
| return OPAL_PARAMETER; |
| |
| PHBDBG(p, "MMIO EEH Disable = %lld\n", setting); |
| if (setting) |
| data64 |= PPC_BIT(14); |
| else |
| data64 &= ~PPC_BIT(14); |
| break; |
| default: |
| return OPAL_UNSUPPORTED; |
| } |
| phb4_write_reg(p, PHB_CTRLR, data64); |
| |
| return OPAL_SUCCESS; |
| } |
| |
| static int64_t phb4_get_option(struct phb *phb, enum OpalPhbOption opt, |
| __be64 *setting) |
| { |
| struct phb4 *p = phb_to_phb4(phb); |
| uint64_t data64; |
| |
| data64 = phb4_read_reg(p, PHB_CTRLR); |
| switch (opt) { |
| case OPAL_PHB_OPTION_TVE1_4GB: |
| *setting = cpu_to_be64((data64 & PPC_BIT(24)) ? 1 : 0); |
| break; |
| case OPAL_PHB_OPTION_MMIO_EEH_DISABLE: |
| *setting = cpu_to_be64((data64 & PPC_BIT(14)) ? 1 : 0); |
| break; |
| default: |
| return OPAL_UNSUPPORTED; |
| } |
| |
| return OPAL_SUCCESS; |
| } |
| |
| static int64_t phb4_set_ive_pe(struct phb *phb, |
| uint64_t pe_number, |
| uint32_t ive_num) |
| { |
| struct phb4 *p = phb_to_phb4(phb); |
| uint32_t mist_idx; |
| uint32_t mist_quad; |
| uint32_t mist_shift; |
| uint64_t val; |
| |
| if (pe_number >= p->num_pes || ive_num >= (p->num_irqs - 8)) |
| return OPAL_PARAMETER; |
| |
| mist_idx = ive_num >> 2; |
| mist_quad = ive_num & 3; |
| mist_shift = (3 - mist_quad) << 4; |
| p->mist_cache[mist_idx] &= ~(0x0fffull << mist_shift); |
| p->mist_cache[mist_idx] |= ((uint64_t)pe_number) << mist_shift; |
| |
| /* Note: This has the side effect of clearing P/Q, so this |
| * shouldn't be called while the interrupt is "hot" |
| */ |
| |
| phb4_ioda_sel(p, IODA3_TBL_MIST, mist_idx, false); |
| |
| /* We need to inject the appropriate MIST write enable bit |
| * in the IODA table address register |
| */ |
| val = in_be64(p->regs + PHB_IODA_ADDR); |
| val = SETFIELD(PHB_IODA_AD_MIST_PWV, val, 8 >> mist_quad); |
| out_be64(p->regs + PHB_IODA_ADDR, val); |
| |
| /* Write entry */ |
| out_be64(p->regs + PHB_IODA_DATA0, p->mist_cache[mist_idx]); |
| |
| return OPAL_SUCCESS; |
| } |
| |
| static int64_t phb4_get_msi_32(struct phb *phb, |
| uint64_t pe_number, |
| uint32_t ive_num, |
| uint8_t msi_range, |
| uint32_t *msi_address, |
| uint32_t *message_data) |
| { |
| struct phb4 *p = phb_to_phb4(phb); |
| |
| /* |
| * Sanity check. We needn't check on mve_number (PE#) |
| * on PHB3 since the interrupt source is purely determined |
| * by its DMA address and data, but the check isn't |
| * harmful. |
| */ |
| if (pe_number >= p->num_pes || |
| ive_num >= (p->num_irqs - 8) || |
| msi_range != 1 || !msi_address|| !message_data) |
| return OPAL_PARAMETER; |
| |
| /* |
| * DMA address and data will form the IVE index. |
| * For more details, please refer to IODA2 spec. |
| */ |
| *msi_address = 0xFFFF0000 | ((ive_num << 4) & 0xFFFFFE0F); |
| *message_data = ive_num & 0x1F; |
| |
| return OPAL_SUCCESS; |
| } |
| |
| static int64_t phb4_get_msi_64(struct phb *phb, |
| uint64_t pe_number, |
| uint32_t ive_num, |
| uint8_t msi_range, |
| uint64_t *msi_address, |
| uint32_t *message_data) |
| { |
| struct phb4 *p = phb_to_phb4(phb); |
| |
| /* Sanity check */ |
| if (pe_number >= p->num_pes || |
| ive_num >= (p->num_irqs - 8) || |
| msi_range != 1 || !msi_address || !message_data) |
| return OPAL_PARAMETER; |
| |
| /* |
| * DMA address and data will form the IVE index. |
| * For more details, please refer to IODA2 spec. |
| */ |
| *msi_address = (0x1ul << 60) | ((ive_num << 4) & 0xFFFFFFFFFFFFFE0Ful); |
| *message_data = ive_num & 0x1F; |
| |
| return OPAL_SUCCESS; |
| } |
| |
| static void phb4_rc_err_clear(struct phb4 *p) |
| { |
| /* Init_47 - Clear errors */ |
| phb4_pcicfg_write16(&p->phb, 0, PCI_CFG_SECONDARY_STATUS, 0xffff); |
| |
| if (p->ecap <= 0) |
| return; |
| |
| phb4_pcicfg_write16(&p->phb, 0, p->ecap + PCICAP_EXP_DEVSTAT, |
| PCICAP_EXP_DEVSTAT_CE | |
| PCICAP_EXP_DEVSTAT_NFE | |
| PCICAP_EXP_DEVSTAT_FE | |
| PCICAP_EXP_DEVSTAT_UE); |
| |
| if (p->aercap <= 0) |
| return; |
| |
| /* Clear all UE status */ |
| phb4_pcicfg_write32(&p->phb, 0, p->aercap + PCIECAP_AER_UE_STATUS, |
| 0xffffffff); |
| /* Clear all CE status */ |
| phb4_pcicfg_write32(&p->phb, 0, p->aercap + PCIECAP_AER_CE_STATUS, |
| 0xffffffff); |
| /* Clear root error status */ |
| phb4_pcicfg_write32(&p->phb, 0, p->aercap + PCIECAP_AER_RERR_STA, |
| 0xffffffff); |
| } |
| |
| static void phb4_err_clear_regb(struct phb4 *p) |
| { |
| uint64_t val64; |
| |
| val64 = phb4_read_reg(p, PHB_REGB_ERR_STATUS); |
| phb4_write_reg(p, PHB_REGB_ERR_STATUS, val64); |
| phb4_write_reg(p, PHB_REGB_ERR1_STATUS, 0x0ul); |
| phb4_write_reg(p, PHB_REGB_ERR_LOG_0, 0x0ul); |
| phb4_write_reg(p, PHB_REGB_ERR_LOG_1, 0x0ul); |
| } |
| |
| /* |
| * The function can be called during error recovery for all classes of |
| * errors. This is new to PHB4; previous revisions had separate |
| * sequences for INF/ER/Fatal errors. |
| * |
| * "Rec #" in this function refer to "Recov_#" steps in the |
| * PHB4 INF recovery sequence. |
| */ |
| static void phb4_err_clear(struct phb4 *p) |
| { |
| uint64_t val64; |
| uint64_t fir = phb4_read_reg(p, PHB_LEM_FIR_ACCUM); |
| |
| /* Rec 1: Acquire the PCI config lock (we don't need to do this) */ |
| |
| /* Rec 2...15: Clear error status in RC config space */ |
| phb4_rc_err_clear(p); |
| |
| /* Rec 16...23: Clear PBL errors */ |
| val64 = phb4_read_reg(p, PHB_PBL_ERR_STATUS); |
| phb4_write_reg(p, PHB_PBL_ERR_STATUS, val64); |
| phb4_write_reg(p, PHB_PBL_ERR1_STATUS, 0x0ul); |
| phb4_write_reg(p, PHB_PBL_ERR_LOG_0, 0x0ul); |
| phb4_write_reg(p, PHB_PBL_ERR_LOG_1, 0x0ul); |
| |
| /* Rec 24...31: Clear REGB errors */ |
| phb4_err_clear_regb(p); |
| |
| /* Rec 32...59: Clear PHB error trap */ |
| val64 = phb4_read_reg(p, PHB_TXE_ERR_STATUS); |
| phb4_write_reg(p, PHB_TXE_ERR_STATUS, val64); |
| phb4_write_reg(p, PHB_TXE_ERR1_STATUS, 0x0ul); |
| phb4_write_reg(p, PHB_TXE_ERR_LOG_0, 0x0ul); |
| phb4_write_reg(p, PHB_TXE_ERR_LOG_1, 0x0ul); |
| |
| val64 = phb4_read_reg(p, PHB_RXE_ARB_ERR_STATUS); |
| phb4_write_reg(p, PHB_RXE_ARB_ERR_STATUS, val64); |
| phb4_write_reg(p, PHB_RXE_ARB_ERR1_STATUS, 0x0ul); |
| phb4_write_reg(p, PHB_RXE_ARB_ERR_LOG_0, 0x0ul); |
| phb4_write_reg(p, PHB_RXE_ARB_ERR_LOG_1, 0x0ul); |
| |
| val64 = phb4_read_reg(p, PHB_RXE_MRG_ERR_STATUS); |
| phb4_write_reg(p, PHB_RXE_MRG_ERR_STATUS, val64); |
| phb4_write_reg(p, PHB_RXE_MRG_ERR1_STATUS, 0x0ul); |
| phb4_write_reg(p, PHB_RXE_MRG_ERR_LOG_0, 0x0ul); |
| phb4_write_reg(p, PHB_RXE_MRG_ERR_LOG_1, 0x0ul); |
| |
| val64 = phb4_read_reg(p, PHB_RXE_TCE_ERR_STATUS); |
| phb4_write_reg(p, PHB_RXE_TCE_ERR_STATUS, val64); |
| phb4_write_reg(p, PHB_RXE_TCE_ERR1_STATUS, 0x0ul); |
| phb4_write_reg(p, PHB_RXE_TCE_ERR_LOG_0, 0x0ul); |
| phb4_write_reg(p, PHB_RXE_TCE_ERR_LOG_1, 0x0ul); |
| |
| val64 = phb4_read_reg(p, PHB_ERR_STATUS); |
| phb4_write_reg(p, PHB_ERR_STATUS, val64); |
| phb4_write_reg(p, PHB_ERR1_STATUS, 0x0ul); |
| phb4_write_reg(p, PHB_ERR_LOG_0, 0x0ul); |
| phb4_write_reg(p, PHB_ERR_LOG_1, 0x0ul); |
| |
| /* Rec 61/62: Clear FIR/WOF */ |
| phb4_write_reg(p, PHB_LEM_FIR_AND_MASK, ~fir); |
| phb4_write_reg(p, PHB_LEM_WOF, 0x0ul); |
| |
| /* Rec 63: Update LEM mask to its initial value */ |
| phb4_write_reg(p, PHB_LEM_ERROR_MASK, 0x0ul); |
| |
| /* Rec 64: Clear the PCI config lock (we don't need to do this) */ |
| } |
| |
| static void phb4_read_phb_status(struct phb4 *p, |
| struct OpalIoPhb4ErrorData *stat) |
| { |
| uint32_t i; |
| uint16_t __16; |
| uint32_t __32; |
| uint64_t __64; |
| |
| memset(stat, 0, sizeof(struct OpalIoPhb4ErrorData)); |
| |
| /* Error data common part */ |
| stat->common.version = cpu_to_be32(OPAL_PHB_ERROR_DATA_VERSION_1); |
| stat->common.ioType = cpu_to_be32(OPAL_PHB_ERROR_DATA_TYPE_PHB4); |
| stat->common.len = cpu_to_be32(sizeof(struct OpalIoPhb4ErrorData)); |
| |
| /* Use ASB for config space if the PHB is fenced */ |
| if (p->flags & PHB4_AIB_FENCED) |
| p->flags |= PHB4_CFG_USE_ASB; |
| |
| /* Grab RC bridge control, make it 32-bit */ |
| phb4_pcicfg_read16(&p->phb, 0, PCI_CFG_BRCTL, &__16); |
| stat->brdgCtl = cpu_to_be32(__16); |
| |
| /* |
| * Grab various RC PCIe capability registers. All device, slot |
| * and link status are 16-bit, so we grab the pair control+status |
| * for each of them |
| */ |
| phb4_pcicfg_read32(&p->phb, 0, p->ecap + PCICAP_EXP_DEVCTL, &__32); |
| stat->deviceStatus = cpu_to_be32(__32); |
| phb4_pcicfg_read32(&p->phb, 0, p->ecap + PCICAP_EXP_SLOTCTL, &__32); |
| stat->slotStatus = cpu_to_be32(__32); |
| phb4_pcicfg_read32(&p->phb, 0, p->ecap + PCICAP_EXP_LCTL, &__32); |
| stat->linkStatus = cpu_to_be32(__32); |
| |
| /* |
| * I assume those are the standard config space header, cmd & status |
| * together makes 32-bit. Secondary status is 16-bit so I'll clear |
| * the top on that one |
| */ |
| phb4_pcicfg_read32(&p->phb, 0, PCI_CFG_CMD, &__32); |
| stat->devCmdStatus = cpu_to_be32(__32); |
| phb4_pcicfg_read16(&p->phb, 0, PCI_CFG_SECONDARY_STATUS, &__16); |
| stat->devSecStatus = cpu_to_be32(__16); |
| |
| /* Grab a bunch of AER regs */ |
| phb4_pcicfg_read32(&p->phb, 0, p->aercap + PCIECAP_AER_RERR_STA, &__32); |
| stat->rootErrorStatus = cpu_to_be32(__32); |
| phb4_pcicfg_read32(&p->phb, 0, p->aercap + PCIECAP_AER_UE_STATUS, &__32); |
| stat->uncorrErrorStatus = cpu_to_be32(__32); |
| |
| phb4_pcicfg_read32(&p->phb, 0, p->aercap + PCIECAP_AER_CE_STATUS, &__32); |
| stat->corrErrorStatus = cpu_to_be32(__32); |
| |
| phb4_pcicfg_read32(&p->phb, 0, p->aercap + PCIECAP_AER_HDR_LOG0, &__32); |
| stat->tlpHdr1 = cpu_to_be32(__32); |
| |
| phb4_pcicfg_read32(&p->phb, 0, p->aercap + PCIECAP_AER_HDR_LOG1, &__32); |
| stat->tlpHdr2 = cpu_to_be32(__32); |
| |
| phb4_pcicfg_read32(&p->phb, 0, p->aercap + PCIECAP_AER_HDR_LOG2, &__32); |
| stat->tlpHdr3 = cpu_to_be32(__32); |
| |
| phb4_pcicfg_read32(&p->phb, 0, p->aercap + PCIECAP_AER_HDR_LOG3, &__32); |
| stat->tlpHdr4 = cpu_to_be32(__32); |
| |
| phb4_pcicfg_read32(&p->phb, 0, p->aercap + PCIECAP_AER_SRCID, &__32); |
| stat->sourceId = cpu_to_be32(__32); |
| |
| |
| /* PEC NFIR, same as P8/PHB3 */ |
| xscom_read(p->chip_id, p->pe_stk_xscom + XPEC_NEST_STK_PCI_NFIR, &__64); |
| stat->nFir = cpu_to_be64(__64); |
| xscom_read(p->chip_id, p->pe_stk_xscom + XPEC_NEST_STK_PCI_NFIR_MSK, &__64); |
| stat->nFirMask = cpu_to_be64(__64); |
| xscom_read(p->chip_id, p->pe_stk_xscom + XPEC_NEST_STK_PCI_NFIR_WOF, &__64); |
| stat->nFirWOF = cpu_to_be64(__64); |
| |
| /* PHB4 inbound and outbound error Regs */ |
| stat->phbPlssr = cpu_to_be64(phb4_read_reg_asb(p, PHB_CPU_LOADSTORE_STATUS)); |
| stat->phbCsr = cpu_to_be64(phb4_read_reg_asb(p, PHB_DMA_CHAN_STATUS)); |
| stat->lemFir = cpu_to_be64(phb4_read_reg_asb(p, PHB_LEM_FIR_ACCUM)); |
| stat->lemErrorMask = cpu_to_be64(phb4_read_reg_asb(p, PHB_LEM_ERROR_MASK)); |
| stat->lemWOF = cpu_to_be64(phb4_read_reg_asb(p, PHB_LEM_WOF)); |
| stat->phbErrorStatus = cpu_to_be64(phb4_read_reg_asb(p, PHB_ERR_STATUS)); |
| stat->phbFirstErrorStatus = cpu_to_be64(phb4_read_reg_asb(p, PHB_ERR1_STATUS)); |
| stat->phbErrorLog0 = cpu_to_be64(phb4_read_reg_asb(p, PHB_ERR_LOG_0)); |
| stat->phbErrorLog1 = cpu_to_be64(phb4_read_reg_asb(p, PHB_ERR_LOG_1)); |
| stat->phbTxeErrorStatus = cpu_to_be64(phb4_read_reg_asb(p, PHB_TXE_ERR_STATUS)); |
| stat->phbTxeFirstErrorStatus = cpu_to_be64(phb4_read_reg_asb(p, PHB_TXE_ERR1_STATUS)); |
| stat->phbTxeErrorLog0 = cpu_to_be64(phb4_read_reg_asb(p, PHB_TXE_ERR_LOG_0)); |
| stat->phbTxeErrorLog1 = cpu_to_be64(phb4_read_reg_asb(p, PHB_TXE_ERR_LOG_1)); |
| stat->phbRxeArbErrorStatus = cpu_to_be64(phb4_read_reg_asb(p, PHB_RXE_ARB_ERR_STATUS)); |
| stat->phbRxeArbFirstErrorStatus = cpu_to_be64(phb4_read_reg_asb(p, PHB_RXE_ARB_ERR1_STATUS)); |
| stat->phbRxeArbErrorLog0 = cpu_to_be64(phb4_read_reg_asb(p, PHB_RXE_ARB_ERR_LOG_0)); |
| stat->phbRxeArbErrorLog1 = cpu_to_be64(phb4_read_reg_asb(p, PHB_RXE_ARB_ERR_LOG_1)); |
| stat->phbRxeMrgErrorStatus = cpu_to_be64(phb4_read_reg_asb(p, PHB_RXE_MRG_ERR_STATUS)); |
| stat->phbRxeMrgFirstErrorStatus = cpu_to_be64(phb4_read_reg_asb(p, PHB_RXE_MRG_ERR1_STATUS)); |
| stat->phbRxeMrgErrorLog0 = cpu_to_be64(phb4_read_reg_asb(p, PHB_RXE_MRG_ERR_LOG_0)); |
| stat->phbRxeMrgErrorLog1 = cpu_to_be64(phb4_read_reg_asb(p, PHB_RXE_MRG_ERR_LOG_1)); |
| stat->phbRxeTceErrorStatus = cpu_to_be64(phb4_read_reg_asb(p, PHB_RXE_TCE_ERR_STATUS)); |
| stat->phbRxeTceFirstErrorStatus = cpu_to_be64(phb4_read_reg_asb(p, PHB_RXE_TCE_ERR1_STATUS)); |
| stat->phbRxeTceErrorLog0 = cpu_to_be64(phb4_read_reg_asb(p, PHB_RXE_TCE_ERR_LOG_0)); |
| stat->phbRxeTceErrorLog1 = cpu_to_be64(phb4_read_reg_asb(p, PHB_RXE_TCE_ERR_LOG_1)); |
| |
| /* PHB4 REGB error registers */ |
| stat->phbPblErrorStatus = cpu_to_be64(phb4_read_reg_asb(p, PHB_PBL_ERR_STATUS)); |
| stat->phbPblFirstErrorStatus = cpu_to_be64(phb4_read_reg_asb(p, PHB_PBL_ERR1_STATUS)); |
| stat->phbPblErrorLog0 = cpu_to_be64(phb4_read_reg_asb(p, PHB_PBL_ERR_LOG_0)); |
| stat->phbPblErrorLog1 = cpu_to_be64(phb4_read_reg_asb(p, PHB_PBL_ERR_LOG_1)); |
| |
| stat->phbPcieDlpErrorStatus = cpu_to_be64(phb4_read_reg_asb(p, PHB_PCIE_DLP_ERR_STATUS)); |
| stat->phbPcieDlpErrorLog1 = cpu_to_be64(phb4_read_reg_asb(p, PHB_PCIE_DLP_ERRLOG1)); |
| stat->phbPcieDlpErrorLog2 = cpu_to_be64(phb4_read_reg_asb(p, PHB_PCIE_DLP_ERRLOG2)); |
| |
| stat->phbRegbErrorStatus = cpu_to_be64(phb4_read_reg_asb(p, PHB_REGB_ERR_STATUS)); |
| stat->phbRegbFirstErrorStatus = cpu_to_be64(phb4_read_reg_asb(p, PHB_REGB_ERR1_STATUS)); |
| stat->phbRegbErrorLog0 = cpu_to_be64(phb4_read_reg_asb(p, PHB_REGB_ERR_LOG_0)); |
| stat->phbRegbErrorLog1 = cpu_to_be64(phb4_read_reg_asb(p, PHB_REGB_ERR_LOG_1)); |
| |
| /* |
| * Grab PESTA & B content. The error bit (bit#0) should |
| * be fetched from IODA and the left content from memory |
| * resident tables. |
| */ |
| phb4_ioda_sel(p, IODA3_TBL_PESTA, 0, true); |
| for (i = 0; i < p->max_num_pes; i++) { |
| stat->pestA[i] = cpu_to_be64(phb4_read_reg_asb(p, PHB_IODA_DATA0)); |
| stat->pestA[i] |= p->tbl_pest[2 * i]; |
| } |
| |
| phb4_ioda_sel(p, IODA3_TBL_PESTB, 0, true); |
| for (i = 0; i < p->max_num_pes; i++) { |
| stat->pestB[i] = cpu_to_be64(phb4_read_reg_asb(p, PHB_IODA_DATA0)); |
| stat->pestB[i] |= p->tbl_pest[2 * i + 1]; |
| } |
| } |
| |
| static void __unused phb4_dump_peltv(struct phb4 *p) |
| { |
| int stride = p->max_num_pes / 64; |
| uint64_t *tbl = (void *) p->tbl_peltv; |
| unsigned int pe; |
| |
| PHBERR(p, "PELT-V: base addr: %p size: %llx (%d PEs, stride = %d)\n", |
| tbl, p->tbl_peltv_size, p->max_num_pes, stride); |
| |
| for (pe = 0; pe < p->max_num_pes; pe++) { |
| unsigned int i, j; |
| uint64_t sum = 0; |
| |
| i = pe * stride; |
| |
| /* |
| * Only print an entry if there's bits set in the PE's |
| * PELT-V entry. There's a few hundred possible PEs and |
| * generally only a handful will be in use. |
| */ |
| |
| for (j = 0; j < stride; j++) |
| sum |= tbl[i + j]; |
| if (!sum) |
| continue; /* unused PE, skip it */ |
| |
| if (p->max_num_pes == 512) { |
| PHBERR(p, "PELT-V[%03x] = " |
| "%016llx %016llx %016llx %016llx" |
| "%016llx %016llx %016llx %016llx\n", pe, |
| tbl[i + 0], tbl[i + 1], tbl[i + 2], tbl[i + 3], |
| tbl[i + 4], tbl[i + 5], tbl[i + 6], tbl[i + 7]); |
| } else if (p->max_num_pes == 256) { |
| PHBERR(p, "PELT-V[%03x] = " |
| "%016llx %016llx %016llx %016llx\n", pe, |
| tbl[i + 0], tbl[i + 1], tbl[i + 2], tbl[i + 3]); |
| } |
| } |
| } |
| |
| static void __unused phb4_dump_ioda_table(struct phb4 *p, int table) |
| { |
| const char *name; |
| int entries, i; |
| |
| switch (table) { |
| case IODA3_TBL_LIST: |
| name = "LIST"; |
| entries = 8; |
| break; |
| case IODA3_TBL_MIST: |
| name = "MIST"; |
| entries = 1024; |
| break; |
| case IODA3_TBL_RCAM: |
| name = "RCAM"; |
| entries = 128; |
| break; |
| case IODA3_TBL_MRT: |
| name = "MRT"; |
| entries = 16; |
| break; |
| case IODA3_TBL_PESTA: |
| name = "PESTA"; |
| entries = 512; |
| break; |
| case IODA3_TBL_PESTB: |
| name = "PESTB"; |
| entries = 512; |
| break; |
| case IODA3_TBL_TVT: |
| name = "TVT"; |
| entries = 512; |
| break; |
| case IODA3_TBL_TCAM: |
| name = "TCAM"; |
| entries = 1024; |
| break; |
| case IODA3_TBL_TDR: |
| name = "TDR"; |
| entries = 1024; |
| break; |
| case IODA3_TBL_MBT: /* special case, see below */ |
| name = "MBT"; |
| entries = 64; |
| break; |
| case IODA3_TBL_MDT: |
| name = "MDT"; |
| entries = 512; |
| break; |
| case IODA3_TBL_PEEV: |
| name = "PEEV"; |
| entries = 8; |
| break; |
| default: |
| PHBERR(p, "Invalid IODA table %d!\n", table); |
| return; |
| } |
| |
| PHBERR(p, "Start %s dump (only non-zero entries are printed):\n", name); |
| |
| phb4_ioda_sel(p, table, 0, true); |
| |
| /* |
| * Each entry in the MBT is 16 bytes. Every other table has 8 byte |
| * entries so we special case the MDT to keep the output readable. |
| */ |
| if (table == IODA3_TBL_MBT) { |
| for (i = 0; i < 32; i++) { |
| uint64_t v1 = phb4_read_reg_asb(p, PHB_IODA_DATA0); |
| uint64_t v2 = phb4_read_reg_asb(p, PHB_IODA_DATA0); |
| |
| if (!v1 && !v2) |
| continue; |
| PHBERR(p, "MBT[%03x] = %016llx %016llx\n", i, v1, v2); |
| } |
| } else { |
| for (i = 0; i < entries; i++) { |
| uint64_t v = phb4_read_reg_asb(p, PHB_IODA_DATA0); |
| |
| if (!v) |
| continue; |
| PHBERR(p, "%s[%03x] = %016llx\n", name, i, v); |
| } |
| } |
| |
| PHBERR(p, "End %s dump\n", name); |
| } |
| |
| static void phb4_eeh_dump_regs(struct phb4 *p) |
| { |
| struct OpalIoPhb4ErrorData *s; |
| uint16_t reg; |
| unsigned int i; |
| |
| if (!verbose_eeh) |
| return; |
| |
| s = zalloc(sizeof(struct OpalIoPhb4ErrorData)); |
| if (!s) { |
| PHBERR(p, "Failed to allocate error info !\n"); |
| return; |
| } |
| phb4_read_phb_status(p, s); |
| |
| PHBERR(p, " brdgCtl = %08x\n", be32_to_cpu(s->brdgCtl)); |
| |
| /* PHB4 cfg regs */ |
| PHBERR(p, " deviceStatus = %08x\n", be32_to_cpu(s->deviceStatus)); |
| PHBERR(p, " slotStatus = %08x\n", be32_to_cpu(s->slotStatus)); |
| PHBERR(p, " linkStatus = %08x\n", be32_to_cpu(s->linkStatus)); |
| PHBERR(p, " devCmdStatus = %08x\n", be32_to_cpu(s->devCmdStatus)); |
| PHBERR(p, " devSecStatus = %08x\n", be32_to_cpu(s->devSecStatus)); |
| PHBERR(p, " rootErrorStatus = %08x\n", be32_to_cpu(s->rootErrorStatus)); |
| PHBERR(p, " corrErrorStatus = %08x\n", be32_to_cpu(s->corrErrorStatus)); |
| PHBERR(p, " uncorrErrorStatus = %08x\n", be32_to_cpu(s->uncorrErrorStatus)); |
| |
| /* Two non OPAL API registers that are useful */ |
| phb4_pcicfg_read16(&p->phb, 0, p->ecap + PCICAP_EXP_DEVCTL, ®); |
| PHBERR(p, " devctl = %08x\n", reg); |
| phb4_pcicfg_read16(&p->phb, 0, p->ecap + PCICAP_EXP_DEVSTAT, |
| ®); |
| PHBERR(p, " devStat = %08x\n", reg); |
| |
| /* Byte swap TLP headers so they are the same as the PCIe spec */ |
| PHBERR(p, " tlpHdr1 = %08x\n", cpu_to_le32(be32_to_cpu(s->tlpHdr1))); |
| PHBERR(p, " tlpHdr2 = %08x\n", cpu_to_le32(be32_to_cpu(s->tlpHdr2))); |
| PHBERR(p, " tlpHdr3 = %08x\n", cpu_to_le32(be32_to_cpu(s->tlpHdr3))); |
| PHBERR(p, " tlpHdr4 = %08x\n", cpu_to_le32(be32_to_cpu(s->tlpHdr4))); |
| PHBERR(p, " sourceId = %08x\n", be32_to_cpu(s->sourceId)); |
| PHBERR(p, " nFir = %016llx\n", be64_to_cpu(s->nFir)); |
| PHBERR(p, " nFirMask = %016llx\n", be64_to_cpu(s->nFirMask)); |
| PHBERR(p, " nFirWOF = %016llx\n", be64_to_cpu(s->nFirWOF)); |
| PHBERR(p, " phbPlssr = %016llx\n", be64_to_cpu(s->phbPlssr)); |
| PHBERR(p, " phbCsr = %016llx\n", be64_to_cpu(s->phbCsr)); |
| PHBERR(p, " lemFir = %016llx\n", be64_to_cpu(s->lemFir)); |
| PHBERR(p, " lemErrorMask = %016llx\n", be64_to_cpu(s->lemErrorMask)); |
| PHBERR(p, " lemWOF = %016llx\n", be64_to_cpu(s->lemWOF)); |
| PHBERR(p, " phbErrorStatus = %016llx\n", be64_to_cpu(s->phbErrorStatus)); |
| PHBERR(p, " phbFirstErrorStatus = %016llx\n", be64_to_cpu(s->phbFirstErrorStatus)); |
| PHBERR(p, " phbErrorLog0 = %016llx\n", be64_to_cpu(s->phbErrorLog0)); |
| PHBERR(p, " phbErrorLog1 = %016llx\n", be64_to_cpu(s->phbErrorLog1)); |
| PHBERR(p, " phbTxeErrorStatus = %016llx\n", be64_to_cpu(s->phbTxeErrorStatus)); |
| PHBERR(p, " phbTxeFirstErrorStatus = %016llx\n", be64_to_cpu(s->phbTxeFirstErrorStatus)); |
| PHBERR(p, " phbTxeErrorLog0 = %016llx\n", be64_to_cpu(s->phbTxeErrorLog0)); |
| PHBERR(p, " phbTxeErrorLog1 = %016llx\n", be64_to_cpu(s->phbTxeErrorLog1)); |
| PHBERR(p, " phbRxeArbErrorStatus = %016llx\n", be64_to_cpu(s->phbRxeArbErrorStatus)); |
| PHBERR(p, "phbRxeArbFrstErrorStatus = %016llx\n", be64_to_cpu(s->phbRxeArbFirstErrorStatus)); |
| PHBERR(p, " phbRxeArbErrorLog0 = %016llx\n", be64_to_cpu(s->phbRxeArbErrorLog0)); |
| PHBERR(p, " phbRxeArbErrorLog1 = %016llx\n", be64_to_cpu(s->phbRxeArbErrorLog1)); |
| PHBERR(p, " phbRxeMrgErrorStatus = %016llx\n", be64_to_cpu(s->phbRxeMrgErrorStatus)); |
| PHBERR(p, "phbRxeMrgFrstErrorStatus = %016llx\n", be64_to_cpu(s->phbRxeMrgFirstErrorStatus)); |
| PHBERR(p, " phbRxeMrgErrorLog0 = %016llx\n", be64_to_cpu(s->phbRxeMrgErrorLog0)); |
| PHBERR(p, " phbRxeMrgErrorLog1 = %016llx\n", be64_to_cpu(s->phbRxeMrgErrorLog1)); |
| PHBERR(p, " phbRxeTceErrorStatus = %016llx\n", be64_to_cpu(s->phbRxeTceErrorStatus)); |
| PHBERR(p, "phbRxeTceFrstErrorStatus = %016llx\n", be64_to_cpu(s->phbRxeTceFirstErrorStatus)); |
| PHBERR(p, " phbRxeTceErrorLog0 = %016llx\n", be64_to_cpu(s->phbRxeTceErrorLog0)); |
| PHBERR(p, " phbRxeTceErrorLog1 = %016llx\n", be64_to_cpu(s->phbRxeTceErrorLog1)); |
| PHBERR(p, " phbPblErrorStatus = %016llx\n", be64_to_cpu(s->phbPblErrorStatus)); |
| PHBERR(p, " phbPblFirstErrorStatus = %016llx\n", be64_to_cpu(s->phbPblFirstErrorStatus)); |
| PHBERR(p, " phbPblErrorLog0 = %016llx\n", be64_to_cpu(s->phbPblErrorLog0)); |
| PHBERR(p, " phbPblErrorLog1 = %016llx\n", be64_to_cpu(s->phbPblErrorLog1)); |
| PHBERR(p, " phbPcieDlpErrorLog1 = %016llx\n", be64_to_cpu(s->phbPcieDlpErrorLog1)); |
| PHBERR(p, " phbPcieDlpErrorLog2 = %016llx\n", be64_to_cpu(s->phbPcieDlpErrorLog2)); |
| PHBERR(p, " phbPcieDlpErrorStatus = %016llx\n", be64_to_cpu(s->phbPcieDlpErrorStatus)); |
| |
| PHBERR(p, " phbRegbErrorStatus = %016llx\n", be64_to_cpu(s->phbRegbErrorStatus)); |
| PHBERR(p, " phbRegbFirstErrorStatus = %016llx\n", be64_to_cpu(s->phbRegbFirstErrorStatus)); |
| PHBERR(p, " phbRegbErrorLog0 = %016llx\n", be64_to_cpu(s->phbRegbErrorLog0)); |
| PHBERR(p, " phbRegbErrorLog1 = %016llx\n", be64_to_cpu(s->phbRegbErrorLog1)); |
| |
| for (i = 0; i < p->max_num_pes; i++) { |
| if (!s->pestA[i] && !s->pestB[i]) |
| continue; |
| PHBERR(p, " PEST[%03x] = %016llx %016llx\n", |
| i, be64_to_cpu(s->pestA[i]), be64_to_cpu(s->pestB[i])); |
| } |
| free(s); |
| } |
| |
| static int64_t phb4_set_pe(struct phb *phb, |
| uint64_t pe_number, |
| uint64_t bdfn, |
| uint8_t bcompare, |
| uint8_t dcompare, |
| uint8_t fcompare, |
| uint8_t action) |
| { |
| struct phb4 *p = phb_to_phb4(phb); |
| uint64_t mask, idx; |
| |
| /* Sanity check */ |
| if (action != OPAL_MAP_PE && action != OPAL_UNMAP_PE) |
| return OPAL_PARAMETER; |
| if (pe_number >= p->num_pes || bdfn > 0xffff || |
| bcompare > OpalPciBusAll || |
| dcompare > OPAL_COMPARE_RID_DEVICE_NUMBER || |
| fcompare > OPAL_COMPARE_RID_FUNCTION_NUMBER) |
| return OPAL_PARAMETER; |
| |
| /* match everything by default */ |
| mask = 0; |
| |
| /* Figure out the RID range */ |
| if (bcompare != OpalPciBusAny) |
| mask = ((0x1 << (bcompare + 1)) - 1) << (15 - bcompare); |
| |
| if (dcompare == OPAL_COMPARE_RID_DEVICE_NUMBER) |
| mask |= 0xf8; |
| |
| if (fcompare == OPAL_COMPARE_RID_FUNCTION_NUMBER) |
| mask |= 0x7; |
| |
| if (action == OPAL_UNMAP_PE) |
| pe_number = PHB4_RESERVED_PE_NUM(p); |
| |
| /* Map or unmap the RTT range */ |
| for (idx = 0; idx < RTT_TABLE_ENTRIES; idx++) |
| if ((idx & mask) == (bdfn & mask)) |
| p->tbl_rtt[idx] = cpu_to_be16(pe_number); |
| |
| /* Invalidate the RID Translation Cache (RTC) inside the PHB */ |
| out_be64(p->regs + PHB_RTC_INVALIDATE, PHB_RTC_INVALIDATE_ALL); |
| |
| return OPAL_SUCCESS; |
| } |
| |
| static int64_t phb4_set_peltv(struct phb *phb, |
| uint32_t parent_pe, |
| uint32_t child_pe, |
| uint8_t state) |
| { |
| struct phb4 *p = phb_to_phb4(phb); |
| uint32_t idx, mask; |
| |
| /* Sanity check */ |
| if (parent_pe >= p->num_pes || child_pe >= p->num_pes) |
| return OPAL_PARAMETER; |
| |
| /* Find index for parent PE */ |
| idx = parent_pe * (p->max_num_pes / 8); |
| idx += (child_pe / 8); |
| mask = 0x1 << (7 - (child_pe % 8)); |
| |
| if (state) |
| p->tbl_peltv[idx] |= mask; |
| else |
| p->tbl_peltv[idx] &= ~mask; |
| |
| return OPAL_SUCCESS; |
| } |
| |
| static void phb4_prepare_link_change(struct pci_slot *slot, bool is_up) |
| { |
| struct phb4 *p = phb_to_phb4(slot->phb); |
| uint32_t reg32; |
| |
| p->has_link = is_up; |
| |
| if (is_up) { |
| /* Clear AER receiver error status */ |
| phb4_pcicfg_write32(&p->phb, 0, p->aercap + |
| PCIECAP_AER_CE_STATUS, |
| PCIECAP_AER_CE_RECVR_ERR); |
| /* Unmask receiver error status in AER */ |
| phb4_pcicfg_read32(&p->phb, 0, p->aercap + |
| PCIECAP_AER_CE_MASK, ®32); |
| reg32 &= ~PCIECAP_AER_CE_RECVR_ERR; |
| phb4_pcicfg_write32(&p->phb, 0, p->aercap + |
| PCIECAP_AER_CE_MASK, reg32); |
| |
| /* Don't block PCI-CFG */ |
| p->flags &= ~PHB4_CFG_BLOCKED; |
| |
| /* Re-enable link down errors */ |
| out_be64(p->regs + PHB_PCIE_MISC_STRAP, |
| 0x0000060000000000ull); |
| |
| /* Re-enable error status indicators that trigger irqs */ |
| out_be64(p->regs + PHB_REGB_ERR_INF_ENABLE, |
| 0x2130006efca8bc00ull); |
| out_be64(p->regs + PHB_REGB_ERR_ERC_ENABLE, |
| 0x0080000000000000ull); |
| out_be64(p->regs + PHB_REGB_ERR_FAT_ENABLE, |
| 0xde0fff91035743ffull); |
| |
| } else { |
| /* Mask AER receiver error */ |
| phb4_pcicfg_read32(&p->phb, 0, p->aercap + |
| PCIECAP_AER_CE_MASK, ®32); |
| reg32 |= PCIECAP_AER_CE_RECVR_ERR; |
| phb4_pcicfg_write32(&p->phb, 0, p->aercap + |
| PCIECAP_AER_CE_MASK, reg32); |
| |
| /* Clear error link enable & error link down kill enable */ |
| out_be64(p->regs + PHB_PCIE_MISC_STRAP, 0); |
| |
| /* Disable all error status indicators that trigger irqs */ |
| out_be64(p->regs + PHB_REGB_ERR_INF_ENABLE, 0); |
| out_be64(p->regs + PHB_REGB_ERR_ERC_ENABLE, 0); |
| out_be64(p->regs + PHB_REGB_ERR_FAT_ENABLE, 0); |
| |
| /* Block PCI-CFG access */ |
| p->flags |= PHB4_CFG_BLOCKED; |
| } |
| } |
| |
| static int64_t phb4_get_presence_state(struct pci_slot *slot, uint8_t *val) |
| { |
| struct phb4 *p = phb_to_phb4(slot->phb); |
| uint64_t hps, dtctl; |
| |
| /* Test for PHB in error state ? */ |
| if (p->broken) |
| return OPAL_HARDWARE; |
| |
| /* Check hotplug status */ |
| hps = in_be64(p->regs + PHB_PCIE_HOTPLUG_STATUS); |
| if (!(hps & PHB_PCIE_HPSTAT_PRESENCE)) { |
| *val = OPAL_PCI_SLOT_PRESENT; |
| } else { |
| /* |
| * If it says not present but link is up, then we assume |
| * we are on a broken simulation environment and still |
| * return a valid presence. Otherwise, not present. |
| */ |
| dtctl = in_be64(p->regs + PHB_PCIE_DLP_TRAIN_CTL); |
| if (dtctl & PHB_PCIE_DLP_TL_LINKACT) { |
| PHBERR(p, "Presence detect 0 but link set !\n"); |
| *val = OPAL_PCI_SLOT_PRESENT; |
| } else { |
| *val = OPAL_PCI_SLOT_EMPTY; |
| } |
| } |
| |
| return OPAL_SUCCESS; |
| } |
| |
| static int64_t phb4_get_link_info(struct pci_slot *slot, uint8_t *speed, |
| uint8_t *width) |
| { |
| struct phb4 *p = phb_to_phb4(slot->phb); |
| uint64_t reg; |
| uint16_t state; |
| int64_t rc; |
| uint8_t s; |
| |
| /* Link is up, let's find the actual speed */ |
| reg = in_be64(p->regs + PHB_PCIE_DLP_TRAIN_CTL); |
| if (!(reg & PHB_PCIE_DLP_TL_LINKACT)) { |
| *width = 0; |
| if (speed) |
| *speed = 0; |
| return OPAL_SUCCESS; |
| } |
| |
| rc = phb4_pcicfg_read16(&p->phb, 0, |
| p->ecap + PCICAP_EXP_LSTAT, &state); |
| if (rc != OPAL_SUCCESS) { |
| PHBERR(p, "%s: Error %lld getting link state\n", __func__, rc); |
| return OPAL_HARDWARE; |
| } |
| |
| if (state & PCICAP_EXP_LSTAT_DLLL_ACT) { |
| *width = ((state & PCICAP_EXP_LSTAT_WIDTH) >> 4); |
| s = state & PCICAP_EXP_LSTAT_SPEED; |
| } else { |
| *width = 0; |
| s = 0; |
| } |
| |
| if (speed) |
| *speed = s; |
| |
| return OPAL_SUCCESS; |
| } |
| |
| static int64_t phb4_get_link_state(struct pci_slot *slot, uint8_t *val) |
| { |
| return phb4_get_link_info(slot, NULL, val); |
| } |
| |
| static int64_t phb4_retry_state(struct pci_slot *slot) |
| { |
| struct phb4 *p = phb_to_phb4(slot->phb); |
| |
| /* Mark link as down */ |
| phb4_prepare_link_change(slot, false); |
| |
| /* Last attempt to activate link */ |
| if (slot->link_retries == 1) { |
| if (slot->state == PHB4_SLOT_LINK_WAIT) { |
| PHBERR(p, "Falling back to GEN1 training\n"); |
| p->max_link_speed = 1; |
| } |
| } |
| |
| if (!slot->link_retries--) { |
| switch (slot->state) { |
| case PHB4_SLOT_LINK_WAIT_ELECTRICAL: |
| PHBERR(p, "Presence detected but no electrical link\n"); |
| break; |
| case PHB4_SLOT_LINK_WAIT: |
| PHBERR(p, "Electrical link detected but won't train\n"); |
| break; |
| case PHB4_SLOT_LINK_STABLE: |
| PHBERR(p, "Linked trained but was degraded or unstable\n"); |
| break; |
| default: |
| PHBERR(p, "Unknown link issue\n"); |
| } |
| return OPAL_HARDWARE; |
| } |
| |
| pci_slot_set_state(slot, PHB4_SLOT_CRESET_START); |
| return pci_slot_set_sm_timeout(slot, msecs_to_tb(1)); |
| } |
| |
| static uint64_t phb4_train_info(struct phb4 *p, uint64_t reg, unsigned long dt) |
| { |
| uint64_t ltssm_state = GETFIELD(PHB_PCIE_DLP_LTSSM_TRC, reg); |
| char s[80]; |
| |
| snprintf(s, sizeof(s), "TRACE:0x%016llx % 2lims", |
| reg, tb_to_msecs(dt)); |
| |
| if (reg & PHB_PCIE_DLP_TL_LINKACT) |
| snprintf(s, sizeof(s), "%s trained ", s); |
| else if (reg & PHB_PCIE_DLP_TRAINING) |
| snprintf(s, sizeof(s), "%s training", s); |
| else if (reg & PHB_PCIE_DLP_INBAND_PRESENCE) |
| snprintf(s, sizeof(s), "%s presence", s); |
| else |
| snprintf(s, sizeof(s), "%s ", s); |
| |
| snprintf(s, sizeof(s), "%s GEN%lli:x%02lli:", s, |
| GETFIELD(PHB_PCIE_DLP_LINK_SPEED, reg), |
| GETFIELD(PHB_PCIE_DLP_LINK_WIDTH, reg)); |
| |
| switch (ltssm_state) { |
| case PHB_PCIE_DLP_LTSSM_RESET: |
| snprintf(s, sizeof(s), "%sreset", s); |
| break; |
| case PHB_PCIE_DLP_LTSSM_DETECT: |
| snprintf(s, sizeof(s), "%sdetect", s); |
| break; |
| case PHB_PCIE_DLP_LTSSM_POLLING: |
| snprintf(s, sizeof(s), "%spolling", s); |
| break; |
| case PHB_PCIE_DLP_LTSSM_CONFIG: |
| snprintf(s, sizeof(s), "%sconfig", s); |
| break; |
| case PHB_PCIE_DLP_LTSSM_L0: |
| snprintf(s, sizeof(s), "%sL0", s); |
| break; |
| case PHB_PCIE_DLP_LTSSM_REC: |
| snprintf(s, sizeof(s), "%srecovery", s); |
| break; |
| case PHB_PCIE_DLP_LTSSM_L1: |
| snprintf(s, sizeof(s), "%sL1", s); |
| break; |
| case PHB_PCIE_DLP_LTSSM_L2: |
| snprintf(s, sizeof(s), "%sL2", s); |
| break; |
| case PHB_PCIE_DLP_LTSSM_HOTRESET: |
| snprintf(s, sizeof(s), "%shotreset", s); |
| break; |
| case PHB_PCIE_DLP_LTSSM_DISABLED: |
| snprintf(s, sizeof(s), "%sdisabled", s); |
| break; |
| case PHB_PCIE_DLP_LTSSM_LOOPBACK: |
| snprintf(s, sizeof(s), "%sloopback", s); |
| break; |
| default: |
| snprintf(s, sizeof(s), "%sunvalid", s); |
| } |
| PHBNOTICE(p, "%s\n", s); |
| |
| return ltssm_state; |
| } |
| |
| static void phb4_dump_pec_err_regs(struct phb4 *p) |
| { |
| uint64_t nfir_p_wof, nfir_n_wof, err_aib; |
| uint64_t err_rpt0, err_rpt1; |
| |
| /* Read the PCI and NEST FIRs and dump them. Also cache PCI/NEST FIRs */ |
| xscom_read(p->chip_id, |
| p->pci_stk_xscom + XPEC_PCI_STK_PCI_FIR, &p->pfir_cache); |
| xscom_read(p->chip_id, |
| p->pci_stk_xscom + XPEC_PCI_STK_PCI_FIR_WOF, &nfir_p_wof); |
| xscom_read(p->chip_id, |
| p->pe_stk_xscom + XPEC_NEST_STK_PCI_NFIR, &p->nfir_cache); |
| xscom_read(p->chip_id, |
| p->pe_stk_xscom + XPEC_NEST_STK_PCI_NFIR_WOF, &nfir_n_wof); |
| xscom_read(p->chip_id, |
| p->pe_stk_xscom + XPEC_NEST_STK_ERR_RPT0, &err_rpt0); |
| xscom_read(p->chip_id, |
| p->pe_stk_xscom + XPEC_NEST_STK_ERR_RPT1, &err_rpt1); |
| xscom_read(p->chip_id, |
| p->pci_stk_xscom + XPEC_PCI_STK_PBAIB_ERR_REPORT, &err_aib); |
| |
| PHBERR(p, " PCI FIR=%016llx\n", p->pfir_cache); |
| PHBERR(p, " PCI FIR WOF=%016llx\n", nfir_p_wof); |
| PHBERR(p, " NEST FIR=%016llx\n", p->nfir_cache); |
| PHBERR(p, " NEST FIR WOF=%016llx\n", nfir_n_wof); |
| PHBERR(p, " ERR RPT0=%016llx\n", err_rpt0); |
| PHBERR(p, " ERR RPT1=%016llx\n", err_rpt1); |
| PHBERR(p, " AIB ERR=%016llx\n", err_aib); |
| } |
| |
| static void phb4_dump_capp_err_regs(struct phb4 *p) |
| { |
| uint64_t fir, apc_master_err, snoop_err, transport_err; |
| uint64_t tlbi_err, capp_err_status; |
| uint64_t offset = PHB4_CAPP_REG_OFFSET(p); |
| |
| xscom_read(p->chip_id, CAPP_FIR + offset, &fir); |
| xscom_read(p->chip_id, CAPP_APC_MASTER_ERR_RPT + offset, |
| &apc_master_err); |
| xscom_read(p->chip_id, CAPP_SNOOP_ERR_RTP + offset, &snoop_err); |
| xscom_read(p->chip_id, CAPP_TRANSPORT_ERR_RPT + offset, &transport_err); |
| xscom_read(p->chip_id, CAPP_TLBI_ERR_RPT + offset, &tlbi_err); |
| xscom_read(p->chip_id, CAPP_ERR_STATUS_CTRL + offset, &capp_err_status); |
| |
| PHBERR(p, " CAPP FIR=%016llx\n", fir); |
| PHBERR(p, "CAPP APC MASTER ERR=%016llx\n", apc_master_err); |
| PHBERR(p, " CAPP SNOOP ERR=%016llx\n", snoop_err); |
| PHBERR(p, " CAPP TRANSPORT ERR=%016llx\n", transport_err); |
| PHBERR(p, " CAPP TLBI ERR=%016llx\n", tlbi_err); |
| PHBERR(p, " CAPP ERR STATUS=%016llx\n", capp_err_status); |
| } |
| |
| /* Check if AIB is fenced via PBCQ NFIR */ |
| static bool phb4_fenced(struct phb4 *p) |
| { |
| |
| /* Already fenced ? */ |
| if (p->flags & PHB4_AIB_FENCED) |
| return true; |
| |
| /* |
| * An all 1's from the PHB indicates a PHB freeze/fence. We |
| * don't really differenciate them at this point. |
| */ |
| if (in_be64(p->regs + PHB_CPU_LOADSTORE_STATUS)!= 0xfffffffffffffffful) |
| return false; |
| |
| /* Mark ourselves fenced */ |
| p->flags |= PHB4_AIB_FENCED; |
| |
| PHBERR(p, "PHB Freeze/Fence detected !\n"); |
| phb4_dump_pec_err_regs(p); |
| |
| /* |
| * dump capp error registers in case phb was fenced due to capp. |
| * Expect p->nfir_cache already updated in phb4_dump_pec_err_regs() |
| */ |
| if (p->nfir_cache & XPEC_NEST_STK_PCI_NFIR_CXA_PE_CAPP) |
| phb4_dump_capp_err_regs(p); |
| |
| phb4_eeh_dump_regs(p); |
| |
| return true; |
| } |
| |
| static bool phb4_check_reg(struct phb4 *p, uint64_t reg) |
| { |
| if (reg == 0xffffffffffffffffUL) |
| return !phb4_fenced(p); |
| return true; |
| } |
| |
| static void phb4_get_info(struct phb *phb, uint16_t bdfn, uint8_t *speed, |
| uint8_t *width) |
| { |
| int32_t ecap; |
| uint32_t cap; |
| |
| ecap = pci_find_cap(phb, bdfn, PCI_CFG_CAP_ID_EXP); |
| pci_cfg_read32(phb, bdfn, ecap + PCICAP_EXP_LCAP, &cap); |
| *width = (cap & PCICAP_EXP_LCAP_MAXWDTH) >> 4; |
| *speed = cap & PCICAP_EXP_LCAP_MAXSPD; |
| } |
| |
| #define PVR_POWER9_CUMULUS 0x00002000 |
| |
| static bool phb4_chip_retry_workaround(void) |
| { |
| unsigned int pvr; |
| |
| if (pci_retry_all) |
| return true; |
| |
| /* Chips that need this retry are: |
| * - CUMULUS DD1.0 |
| * - NIMBUS DD2.0 (and DD1.0, but it is unsupported so no check). |
| */ |
| pvr = mfspr(SPR_PVR); |
| if (pvr & PVR_POWER9_CUMULUS) { |
| if ((PVR_VERS_MAJ(pvr) == 1) && (PVR_VERS_MIN(pvr) == 0)) |
| return true; |
| } else { /* NIMBUS */ |
| if ((PVR_VERS_MAJ(pvr) == 2) && (PVR_VERS_MIN(pvr) == 0)) |
| return true; |
| } |
| return false; |
| } |
| |
| struct pci_card_id { |
| uint16_t vendor; |
| uint16_t device; |
| }; |
| |
| static struct pci_card_id retry_allowlist[] = { |
| { 0x1000, 0x005d }, /* LSI Logic MegaRAID SAS-3 3108 */ |
| { 0x1000, 0x00c9 }, /* LSI MPT SAS-3 */ |
| { 0x104c, 0x8241 }, /* TI xHCI USB */ |
| { 0x1077, 0x2261 }, /* QLogic ISP2722-based 16/32Gb FC */ |
| { 0x10b5, 0x8725 }, /* PLX Switch: p9dsu, witherspoon */ |
| { 0x10b5, 0x8748 }, /* PLX Switch: ZZ */ |
| { 0x11f8, 0xf117 }, /* PMC-Sierra/MicroSemi NV1604 */ |
| { 0x15b3, 0x1013 }, /* Mellanox ConnectX-4 */ |
| { 0x15b3, 0x1017 }, /* Mellanox ConnectX-5 */ |
| { 0x15b3, 0x1019 }, /* Mellanox ConnectX-5 Ex */ |
| { 0x1a03, 0x1150 }, /* ASPEED AST2500 Switch */ |
| { 0x8086, 0x10fb }, /* Intel x520 10G Eth */ |
| { 0x9005, 0x028d }, /* MicroSemi PM8069 */ |
| }; |
| |
| #define VENDOR(vdid) ((vdid) & 0xffff) |
| #define DEVICE(vdid) (((vdid) >> 16) & 0xffff) |
| |
| static bool phb4_adapter_in_allowlist(uint32_t vdid) |
| { |
| int i; |
| |
| if (pci_retry_all) |
| return true; |
| |
| for (i = 0; i < ARRAY_SIZE(retry_allowlist); i++) |
| if ((retry_allowlist[i].vendor == VENDOR(vdid)) && |
| (retry_allowlist[i].device == DEVICE(vdid))) |
| return true; |
| |
| return false; |
| } |
| |
| static struct pci_card_id lane_eq_disable[] = { |
| { 0x10de, 0x17fd }, /* Nvidia GM200GL [Tesla M40] */ |
| { 0x10de, 0x1db4 }, /* Nvidia GV100 */ |
| }; |
| |
| static bool phb4_lane_eq_retry_allowlist(uint32_t vdid) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(lane_eq_disable); i++) |
| if ((lane_eq_disable[i].vendor == VENDOR(vdid)) && |
| (lane_eq_disable[i].device == DEVICE(vdid))) |
| return true; |
| return false; |
| } |
| |
| static void phb4_lane_eq_change(struct phb4 *p, uint32_t vdid) |
| { |
| p->lane_eq_en = !phb4_lane_eq_retry_allowlist(vdid); |
| } |
| |
| static bool phb4_link_optimal(struct pci_slot *slot, uint32_t *vdid) |
| { |
| struct phb4 *p = phb_to_phb4(slot->phb); |
| uint64_t reg; |
| uint32_t id; |
| uint16_t bdfn, lane_errs; |
| uint8_t trained_speed, dev_speed, target_speed, rx_errs; |
| uint8_t trained_width, dev_width, target_width; |
| bool optimal_speed, optimal_width, optimal, retry_enabled, rx_err_ok; |
| |
| |
| /* Current trained state */ |
| phb4_get_link_info(slot, &trained_speed, &trained_width); |
| |
| /* Get device capability */ |
| bdfn = 0x0100; /* bus=1 dev=0 device=0 */ |
| /* Since this is the first access, we need to wait for CRS */ |
| if (!pci_wait_crs(slot->phb, bdfn , &id)) |
| return true; |
| phb4_get_info(slot->phb, bdfn, &dev_speed, &dev_width); |
| |
| /* Work out if we are optimally trained */ |
| target_speed = MIN(p->max_link_speed, dev_speed); |
| optimal_speed = (trained_speed >= target_speed); |
| target_width = MIN(p->max_link_width, dev_width); |
| optimal_width = (trained_width >= target_width); |
| optimal = optimal_width && optimal_speed; |
| retry_enabled = (phb4_chip_retry_workaround() && |
| phb4_adapter_in_allowlist(id)) || |
| phb4_lane_eq_retry_allowlist(id); |
| reg = in_be64(p->regs + PHB_PCIE_DLP_ERR_COUNTERS); |
| rx_errs = GETFIELD(PHB_PCIE_DLP_RX_ERR_CNT, reg); |
| rx_err_ok = (rx_errs < rx_err_max); |
| reg = in_be64(p->regs + PHB_PCIE_DLP_ERR_STATUS); |
| lane_errs = GETFIELD(PHB_PCIE_DLP_LANE_ERR, reg); |
| |
| PHBDBG(p, "LINK: Card [%04x:%04x] %s Retry:%s\n", VENDOR(id), |
| DEVICE(id), optimal ? "Optimal" : "Degraded", |
| retry_enabled ? "enabled" : "disabled"); |
| PHBDBG(p, "LINK: Speed Train:GEN%i PHB:GEN%i DEV:GEN%i%s\n", |
| trained_speed, p->max_link_speed, dev_speed, |
| optimal_speed ? "" : " *"); |
| PHBDBG(p, "LINK: Width Train:x%02i PHB:x%02i DEV:x%02i%s\n", |
| trained_width, p->max_link_width, dev_width, |
| optimal_width ? "" : " *"); |
| PHBDBG(p, "LINK: RX Errors Now:%i Max:%i Lane:0x%04x%s\n", |
| rx_errs, rx_err_max, lane_errs, rx_err_ok ? "" : " *"); |
| |
| if (vdid) |
| *vdid = id; |
| |
| /* Always do RX error retry irrespective of chip and card */ |
| if (!rx_err_ok) |
| return false; |
| |
| if (!retry_enabled) |
| return true; |
| |
| return optimal; |
| } |
| |
| /* |
| * This is a trace function to watch what's happening duing pcie link |
| * training. If any errors are detected it simply returns so the |
| * normal code can deal with it. |
| */ |
| static void phb4_link_trace(struct phb4 *p, uint64_t target_state, int max_ms) |
| { |
| unsigned long now, end, start = mftb(), state = 0; |
| uint64_t trwctl, reg, reglast = -1; |
| bool enabled; |
| |
| /* |
| * Enable the DLP trace outputs. If we don't the LTSSM state in |
| * PHB_PCIE_DLP_TRAIN_CTL won't be updated and always reads zero. |
| */ |
| trwctl = phb4_read_reg(p, PHB_PCIE_DLP_TRWCTL); |
| enabled = !!(trwctl & PHB_PCIE_DLP_TRWCTL_EN); |
| if (!enabled) { |
| phb4_write_reg(p, PHB_PCIE_DLP_TRWCTL, |
| trwctl | PHB_PCIE_DLP_TRWCTL_EN); |
| } |
| |
| end = start + msecs_to_tb(max_ms); |
| now = start; |
| |
| do { |
| reg = in_be64(p->regs + PHB_PCIE_DLP_TRAIN_CTL); |
| if (reg != reglast) |
| state = phb4_train_info(p, reg, now - start); |
| reglast = reg; |
| |
| if (!phb4_check_reg(p, reg)) { |
| PHBNOTICE(p, "TRACE: PHB fenced.\n"); |
| goto out; |
| } |
| |
| if (tb_compare(now, end) == TB_AAFTERB) { |
| PHBNOTICE(p, "TRACE: Timed out after %dms\n", max_ms); |
| goto out; |
| } |
| |
| now = mftb(); |
| } while (state != target_state); |
| |
| PHBNOTICE(p, "TRACE: Reached target state\n"); |
| |
| out: |
| /* |
| * The trace enable bit is a clock gate for the tracing logic. Turn |
| * it off to save power if we're not using it otherwise. |
| */ |
| if (!enabled) |
| phb4_write_reg(p, PHB_PCIE_DLP_TRWCTL, trwctl); |
| } |
| |
| /* |
| * This helper is called repeatedly by the host sync notifier mechanism, which |
| * relies on the kernel to regularly poll the OPAL_SYNC_HOST_REBOOT call as it |
| * shuts down. |
| */ |
| static bool phb4_host_sync_reset(void *data) |
| { |
| struct phb4 *p = (struct phb4 *)data; |
| struct phb *phb = &p->phb; |
| int64_t rc = 0; |
| |
| /* Make sure no-one modifies the phb flags while we are active */ |
| phb_lock(phb); |
| |
| /* Make sure CAPP is attached to the PHB */ |
| if (p->capp) |
| /* Call phb ops to disable capi */ |
| rc = phb->ops->set_capi_mode(phb, OPAL_PHB_CAPI_MODE_PCIE, |
| p->capp->attached_pe); |
| else |
| rc = OPAL_SUCCESS; |
| |
| /* Continue kicking state-machine if in middle of a mode transition */ |
| if (rc == OPAL_BUSY) |
| rc = phb->slot->ops.run_sm(phb->slot); |
| |
| phb_unlock(phb); |
| |
| return rc <= OPAL_SUCCESS; |
| } |
| |
| /* |
| * Notification from the pci-core that a pci slot state machine completed. |
| * We use this callback to mark the CAPP disabled if we were waiting for it. |
| */ |
| static int64_t phb4_slot_sm_run_completed(struct pci_slot *slot, uint64_t err) |
| { |
| struct phb4 *p = phb_to_phb4(slot->phb); |
| |
| /* Check if we are disabling the capp */ |
| if (p->flags & PHB4_CAPP_DISABLE) { |
| |
| /* Unset struct capp so that we dont fall into a creset loop */ |
| p->flags &= ~(PHB4_CAPP_DISABLE); |
| p->capp->phb = NULL; |
| p->capp->attached_pe = phb4_get_reserved_pe_number(&p->phb); |
| |
| /* Remove the host sync notifier is we are done.*/ |
| opal_del_host_sync_notifier(phb4_host_sync_reset, p); |
| if (err) { |
| /* Force a CEC ipl reboot */ |
| disable_fast_reboot("CAPP: reset failed"); |
| PHBERR(p, "CAPP: Unable to reset. Error=%lld\n", err); |
| } else { |
| PHBINF(p, "CAPP: reset complete\n"); |
| } |
| } |
| |
| return OPAL_SUCCESS; |
| } |
| |
| static int64_t phb4_poll_link(struct pci_slot *slot) |
| { |
| struct phb4 *p = phb_to_phb4(slot->phb); |
| uint64_t reg; |
| uint32_t vdid; |
| |
| switch (slot->state) { |
| case PHB4_SLOT_NORMAL: |
| case PHB4_SLOT_LINK_START: |
| PHBDBG(p, "LINK: Start polling\n"); |
| slot->retries = PHB4_LINK_ELECTRICAL_RETRIES; |
| pci_slot_set_state(slot, PHB4_SLOT_LINK_WAIT_ELECTRICAL); |
| /* Polling early here has no chance of a false positive */ |
| return pci_slot_set_sm_timeout(slot, msecs_to_tb(1)); |
| case PHB4_SLOT_LINK_WAIT_ELECTRICAL: |
| /* |
| * Wait for the link electrical connection to be |
| * established (shorter timeout). This allows us to |
| * workaround spurrious presence detect on some machines |
| * without waiting 10s each time |
| * |
| * Note: We *also* check for the full link up bit here |
| * because simics doesn't seem to implement the electrical |
| * link bit at all |
| */ |
| reg = in_be64(p->regs + PHB_PCIE_DLP_TRAIN_CTL); |
| if (!phb4_check_reg(p, reg)) { |
| PHBERR(p, "PHB fence waiting for electrical link\n"); |
| return phb4_retry_state(slot); |
| } |
| |
| if (reg & (PHB_PCIE_DLP_INBAND_PRESENCE | |
| PHB_PCIE_DLP_TL_LINKACT)) { |
| PHBDBG(p, "LINK: Electrical link detected\n"); |
| pci_slot_set_state(slot, PHB4_SLOT_LINK_WAIT); |
| slot->retries = PHB4_LINK_WAIT_RETRIES; |
| /* No wait here since already have an elec link */ |
| return pci_slot_set_sm_timeout(slot, msecs_to_tb(1)); |
| } |
| |
| if (slot->retries-- == 0) { |
| PHBDBG(p, "LINK: No in-band presence\n"); |
| return OPAL_SUCCESS; |
| } |
| /* Retry */ |
| return pci_slot_set_sm_timeout(slot, msecs_to_tb(10)); |
| case PHB4_SLOT_LINK_WAIT: |
| reg = in_be64(p->regs + PHB_PCIE_DLP_TRAIN_CTL); |
| if (!phb4_check_reg(p, reg)) { |
| PHBERR(p, "LINK: PHB fence waiting for link training\n"); |
| return phb4_retry_state(slot); |
| } |
| if (reg & PHB_PCIE_DLP_TL_LINKACT) { |
| PHBDBG(p, "LINK: Link is up\n"); |
| phb4_prepare_link_change(slot, true); |
| pci_slot_set_state(slot, PHB4_SLOT_LINK_STABLE); |
| return pci_slot_set_sm_timeout(slot, secs_to_tb(1)); |
| } |
| |
| if (slot->retries-- == 0) { |
| PHBERR(p, "LINK: Timeout waiting for link up\n"); |
| PHBDBG(p, "LINK: DLP train control: 0x%016llx\n", reg); |
| return phb4_retry_state(slot); |
| } |
| /* Retry */ |
| return pci_slot_set_sm_timeout(slot, msecs_to_tb(10)); |
| case PHB4_SLOT_LINK_STABLE: |
| /* Sanity check link */ |
| if (phb4_fenced(p)) { |
| PHBERR(p, "LINK: PHB fenced waiting for stabilty\n"); |
| return phb4_retry_state(slot); |
| } |
| reg = in_be64(p->regs + PHB_PCIE_DLP_TRAIN_CTL); |
| if (!phb4_check_reg(p, reg)) { |
| PHBERR(p, "LINK: PHB fence reading training control\n"); |
| return phb4_retry_state(slot); |
| } |
| if (reg & PHB_PCIE_DLP_TL_LINKACT) { |
| PHBDBG(p, "LINK: Link is stable\n"); |
| if (!phb4_link_optimal(slot, &vdid)) { |
| PHBDBG(p, "LINK: Link degraded\n"); |
| if (slot->link_retries) { |
| phb4_lane_eq_change(p, vdid); |
| return phb4_retry_state(slot); |
| } |
| /* |
| * Link is degraded but no more retries, so |
| * settle for what we have :-( |
| */ |
| PHBERR(p, "LINK: Degraded but no more retries\n"); |
| } |
| pci_restore_slot_bus_configs(slot); |
| pci_slot_set_state(slot, PHB4_SLOT_NORMAL); |
| return OPAL_SUCCESS; |
| } |
| PHBERR(p, "LINK: Went down waiting for stabilty\n"); |
| PHBDBG(p, "LINK: DLP train control: 0x%016llx\n", reg); |
| return phb4_retry_state(slot); |
| default: |
| PHBERR(p, "LINK: Unexpected slot state %08x\n", |
| slot->state); |
| } |
| |
| pci_slot_set_state(slot, PHB4_SLOT_NORMAL); |
| return OPAL_HARDWARE; |
| } |
| |
| static unsigned int phb4_get_max_link_speed(struct phb4 *p, struct dt_node *np) |
| { |
| unsigned int max_link_speed, hw_max_link_speed; |
| struct proc_chip *chip; |
| chip = get_chip(p->chip_id); |
| |
| hw_max_link_speed = 4; |
| if (is_phb5() && (p->index == 0 || p->index == 3)) |
| hw_max_link_speed = 5; |
| |
| /* Priority order: NVRAM -> dt -> GEN3 dd2.00 -> hw default */ |
| max_link_speed = hw_max_link_speed; |
| if (p->rev == PHB4_REV_NIMBUS_DD20 && |
| ((0xf & chip->ec_level) == 0) && chip->ec_rev == 0) |
| max_link_speed = 3; |
| if (np) { |
| if (dt_has_node_property(np, "ibm,max-link-speed", NULL)) { |
| max_link_speed = dt_prop_get_u32(np, "ibm,max-link-speed"); |
| p->dt_max_link_speed = max_link_speed; |
| } |
| else { |
| p->dt_max_link_speed = 0; |
| } |
| } |
| else { |
| if (p->dt_max_link_speed > 0) { |
| max_link_speed = p->dt_max_link_speed; |
| } |
| } |
| if (pcie_max_link_speed) |
| max_link_speed = pcie_max_link_speed; |
| if (max_link_speed > hw_max_link_speed) |
| max_link_speed = hw_max_link_speed; |
| |
| return max_link_speed; |
| } |
| |
| static unsigned int __phb4_get_max_link_width(struct phb4 *p) |
| { |
| uint64_t addr, reg; |
| unsigned int lane_config, width = 16; |
| |
| /* |
| * On P9, only PEC2 is configurable (no-/bi-/tri-furcation) |
| */ |
| switch (p->pec) { |
| case 0: |
| width = 16; |
| break; |
| case 1: |
| width = 8; |
| break; |
| case 2: |
| addr = XPEC_P9_PCI_CPLT_CONF1 + 2 * XPEC_PCI_CPLT_OFFSET; |
| xscom_read(p->chip_id, addr, ®); |
| lane_config = GETFIELD(XPEC_P9_PCI_LANE_CFG, reg); |
| |
| if (lane_config == 0b10 && p->index >= 4) |
| width = 4; |
| else |
| width = 8; |
| } |
| return width; |
| } |
| |
| static unsigned int __phb5_get_max_link_width(struct phb4 *p) |
| { |
| uint64_t addr, reg; |
| unsigned int lane_config, width = 16; |
| |
| /* |
| * On P10, the 2 PECs are identical and each can have a |
| * different furcation, so we always need to check the PEC |
| * config |
| */ |
| addr = XPEC_P10_PCI_CPLT_CONF1 + p->pec * XPEC_PCI_CPLT_OFFSET; |
| xscom_read(p->chip_id, addr, ®); |
| lane_config = GETFIELD(XPEC_P10_PCI_LANE_CFG, reg); |
| |
| switch (lane_config) { |
| case 0b00: |
| width = 16; |
| break; |
| case 0b01: |
| width = 8; |
| break; |
| case 0b10: |
| if (p->index == 0 || p->index == 3) |
| width = 8; |
| else |
| width = 4; |
| break; |
| default: |
| PHBERR(p, "Unexpected PEC lane config value %#x\n", |
| lane_config); |
| } |
| return width; |
| } |
| |
| static unsigned int phb4_get_max_link_width(struct phb4 *p) |
| { |
| if (is_phb5()) |
| return __phb5_get_max_link_width(p); |
| else |
| return __phb4_get_max_link_width(p); |
| } |
| |
| static void phb4_assert_perst(struct pci_slot *slot, bool assert) |
| { |
| struct phb4 *p = phb_to_phb4(slot->phb); |
| uint16_t linkctl; |
| uint64_t reg; |
| |
| /* |
| * Disable the link before asserting PERST. The Cursed RAID card |
| * in ozrom1 (9005:028c) has problems coming back if PERST is asserted |
| * while link is active. To work around the problem we assert the link |
| * disable bit before asserting PERST. Asserting the secondary reset |
| * bit in the btctl register also works. |
| */ |
| phb4_pcicfg_read16(&p->phb, 0, p->ecap + PCICAP_EXP_LCTL, &linkctl); |
| reg = phb4_read_reg(p, PHB_PCIE_CRESET); |
| |
| if (assert) { |
| linkctl |= PCICAP_EXP_LCTL_LINK_DIS; |
| reg &= ~PHB_PCIE_CRESET_PERST_N; |
| } else { |
| linkctl &= ~PCICAP_EXP_LCTL_LINK_DIS; |
| reg |= PHB_PCIE_CRESET_PERST_N; |
| } |
| |
| phb4_write_reg(p, PHB_PCIE_CRESET, reg); |
| phb4_pcicfg_write16(&p->phb, 0, p->ecap + PCICAP_EXP_LCTL, linkctl); |
| } |
| |
| static void set_sys_disable_detect(struct phb4 *p, bool set) |
| { |
| uint64_t val; |
| |
| val = in_be64(p->regs + PHB_PCIE_DLP_TRAIN_CTL); |
| if (set) |
| val |= PHB_PCIE_DLP_SYS_DISABLEDETECT; |
| else |
| val &= ~PHB_PCIE_DLP_SYS_DISABLEDETECT; |
| out_be64(p->regs + PHB_PCIE_DLP_TRAIN_CTL, val); |
| } |
| |
| static int64_t phb4_hreset(struct pci_slot *slot) |
| { |
| struct phb4 *p = phb_to_phb4(slot->phb); |
| uint16_t brctl; |
| uint8_t presence = 1; |
| |
| switch (slot->state) { |
| case PHB4_SLOT_NORMAL: |
| PHBDBG(p, "HRESET: Starts\n"); |
| if (slot->ops.get_presence_state) |
| slot->ops.get_presence_state(slot, &presence); |
| if (!presence) { |
| PHBDBG(p, "HRESET: No device\n"); |
| return OPAL_SUCCESS; |
| } |
| |
| /* circumvention for HW551382 */ |
| if (is_phb5()) { |
| PHBINF(p, "HRESET: Workaround for HW551382\n"); |
| set_sys_disable_detect(p, true); |
| } |
| |
| PHBDBG(p, "HRESET: Prepare for link down\n"); |
| phb4_prepare_link_change(slot, false); |
| /* fall through */ |
| case PHB4_SLOT_HRESET_START: |
| PHBDBG(p, "HRESET: Assert\n"); |
| |
| phb4_pcicfg_read16(&p->phb, 0, PCI_CFG_BRCTL, &brctl); |
| brctl |= PCI_CFG_BRCTL_SECONDARY_RESET; |
| phb4_pcicfg_write16(&p->phb, 0, PCI_CFG_BRCTL, brctl); |
| pci_slot_set_state(slot, PHB4_SLOT_HRESET_DELAY); |
| |
| return pci_slot_set_sm_timeout(slot, secs_to_tb(1)); |
| case PHB4_SLOT_HRESET_DELAY: |
| PHBDBG(p, "HRESET: Deassert\n"); |
| |
| /* Clear link errors before we deassert reset */ |
| phb4_err_clear_regb(p); |
| |
| phb4_pcicfg_read16(&p->phb, 0, PCI_CFG_BRCTL, &brctl); |
| brctl &= ~PCI_CFG_BRCTL_SECONDARY_RESET; |
| phb4_pcicfg_write16(&p->phb, 0, PCI_CFG_BRCTL, brctl); |
| |
| /* |
| * Due to some oddball adapters bouncing the link |
| * training a couple of times, we wait for a full second |
| * before we start checking the link status, otherwise |
| * we can get a spurrious link down interrupt which |
| * causes us to EEH immediately. |
| */ |
| pci_slot_set_state(slot, PHB4_SLOT_HRESET_DELAY2); |
| return pci_slot_set_sm_timeout(slot, secs_to_tb(1)); |
| case PHB4_SLOT_HRESET_DELAY2: |
| if (is_phb5()) |
| set_sys_disable_detect(p, false); |
| pci_slot_set_state(slot, PHB4_SLOT_LINK_START); |
| return slot->ops.poll_link(slot); |
| default: |
| PHBERR(p, "Unexpected slot state %08x\n", slot->state); |
| } |
| |
| pci_slot_set_state(slot, PHB4_SLOT_NORMAL); |
| return OPAL_HARDWARE; |
| } |
| |
| static int64_t phb4_freset(struct pci_slot *slot) |
| { |
| struct phb4 *p = phb_to_phb4(slot->phb); |
| |
| switch(slot->state) { |
| case PHB4_SLOT_NORMAL: |
| case PHB4_SLOT_FRESET_START: |
| PHBDBG(p, "FRESET: Starts\n"); |
| |
| /* Reset max link speed for training */ |
| p->max_link_speed = phb4_get_max_link_speed(p, NULL); |
| |
| PHBDBG(p, "FRESET: Prepare for link down\n"); |
| phb4_prepare_link_change(slot, false); |
| |
| if (!p->skip_perst) { |
| /* circumvention for HW551382 */ |
| if (is_phb5()) { |
| PHBINF(p, "FRESET: Workaround for HW551382\n"); |
| set_sys_disable_detect(p, true); |
| } |
| |
| PHBDBG(p, "FRESET: Assert\n"); |
| phb4_assert_perst(slot, true); |
| pci_slot_set_state(slot, PHB4_SLOT_FRESET_ASSERT_DELAY); |
| |
| /* 250ms assert time aligns with powernv */ |
| return pci_slot_set_sm_timeout(slot, msecs_to_tb(250)); |
| } |
| |
| /* To skip the assert during boot time */ |
| PHBDBG(p, "FRESET: Assert skipped\n"); |
| pci_slot_set_state(slot, PHB4_SLOT_FRESET_ASSERT_DELAY); |
| p->skip_perst = false; |
| /* fall through */ |
| case PHB4_SLOT_FRESET_ASSERT_DELAY: |
| /* Clear link errors before we deassert PERST */ |
| phb4_err_clear_regb(p); |
| |
| PHBDBG(p, "FRESET: Deassert\n"); |
| phb4_assert_perst(slot, false); |
| |
| if (pci_tracing) |
| phb4_link_trace(p, PHB_PCIE_DLP_LTSSM_L0, 3000); |
| |
| if (is_phb5()) |
| set_sys_disable_detect(p, false); |
| |
| pci_slot_set_state(slot, PHB4_SLOT_LINK_START); |
| return slot->ops.poll_link(slot); |
| default: |
| PHBERR(p, "Unexpected slot state %08x\n", slot->state); |
| } |
| |
| pci_slot_set_state(slot, PHB4_SLOT_NORMAL); |
| return OPAL_HARDWARE; |
| } |
| |
| static int64_t load_capp_ucode(struct phb4 *p) |
| { |
| int64_t rc; |
| |
| if (p->index != CAPP0_PHB_INDEX && p->index != CAPP1_PHB_INDEX) |
| return OPAL_HARDWARE; |
| |
| /* 0x434150504c494448 = 'CAPPLIDH' in ASCII */ |
| rc = capp_load_ucode(p->chip_id, p->phb.opal_id, p->index, |
| 0x434150504c494448UL, PHB4_CAPP_REG_OFFSET(p), |
| CAPP_APC_MASTER_ARRAY_ADDR_REG, |
| CAPP_APC_MASTER_ARRAY_WRITE_REG, |
| CAPP_SNP_ARRAY_ADDR_REG, |
| CAPP_SNP_ARRAY_WRITE_REG); |
| return rc; |
| } |
| |
| static int do_capp_recovery_scoms(struct phb4 *p) |
| { |
| uint64_t rc, reg, end; |
| uint64_t offset = PHB4_CAPP_REG_OFFSET(p); |
| |
| |
| /* Get the status of CAPP recovery */ |
| xscom_read(p->chip_id, CAPP_ERR_STATUS_CTRL + offset, ®); |
| |
| /* No recovery in progress ignore */ |
| if ((reg & PPC_BIT(0)) == 0) { |
| PHBDBG(p, "CAPP: No recovery in progress\n"); |
| return OPAL_SUCCESS; |
| } |
| |
| PHBDBG(p, "CAPP: Waiting for recovery to complete\n"); |
| /* recovery timer failure period 168ms */ |
| end = mftb() + msecs_to_tb(168); |
| while ((reg & (PPC_BIT(1) | PPC_BIT(5) | PPC_BIT(9))) == 0) { |
| |
| time_wait_ms(5); |
| xscom_read(p->chip_id, CAPP_ERR_STATUS_CTRL + offset, ®); |
| |
| if (tb_compare(mftb(), end) != TB_ABEFOREB) { |
| PHBERR(p, "CAPP: Capp recovery Timed-out.\n"); |
| end = 0; |
| break; |
| } |
| } |
| |
| /* Check if the recovery failed or passed */ |
| if (reg & PPC_BIT(1)) { |
| uint64_t act0, act1, mask, fir; |
| |
| /* Use the Action0/1 and mask to only clear the bits |
| * that cause local checkstop. Other bits needs attention |
| * of the PRD daemon. |
| */ |
| xscom_read(p->chip_id, CAPP_FIR_ACTION0 + offset, &act0); |
| xscom_read(p->chip_id, CAPP_FIR_ACTION1 + offset, &act1); |
| xscom_read(p->chip_id, CAPP_FIR_MASK + offset, &mask); |
| xscom_read(p->chip_id, CAPP_FIR + offset, &fir); |
| |
| fir = ~(fir & ~mask & act0 & act1); |
| PHBDBG(p, "Doing CAPP recovery scoms\n"); |
| |
| /* update capp fir clearing bits causing local checkstop */ |
| PHBDBG(p, "Resetting CAPP Fir with mask 0x%016llX\n", fir); |
| xscom_write(p->chip_id, CAPP_FIR_CLEAR + offset, fir); |
| |
| /* disable snoops */ |
| xscom_write(p->chip_id, SNOOP_CAPI_CONFIG + offset, 0); |
| load_capp_ucode(p); |
| |
| /* clear err rpt reg*/ |
| xscom_write(p->chip_id, CAPP_ERR_RPT_CLR + offset, 0); |
| |
| /* clear capp fir */ |
| xscom_write(p->chip_id, CAPP_FIR + offset, 0); |
| |
| /* Just reset Bit-0,1 and dont touch any other bit */ |
| xscom_read(p->chip_id, CAPP_ERR_STATUS_CTRL + offset, ®); |
| reg &= ~(PPC_BIT(0) | PPC_BIT(1)); |
| xscom_write(p->chip_id, CAPP_ERR_STATUS_CTRL + offset, reg); |
| |
| PHBDBG(p, "CAPP recovery complete\n"); |
| rc = OPAL_SUCCESS; |
| |
| } else { |
| /* Most likely will checkstop here due to FIR ACTION for |
| * failed recovery. So this message would never be logged. |
| * But if we still enter here then return an error forcing a |
| * fence of the PHB. |
| */ |
| if (reg & PPC_BIT(5)) |
| PHBERR(p, "CAPP: Capp recovery Failed\n"); |
| else if (reg & PPC_BIT(9)) |
| PHBERR(p, "CAPP: Capp recovery hang detected\n"); |
| else if (end != 0) |
| PHBERR(p, "CAPP: Unknown recovery failure\n"); |
| |
| PHBDBG(p, "CAPP: Err/Status-reg=0x%016llx\n", reg); |
| rc = OPAL_HARDWARE; |
| } |
| |
| return rc; |
| } |
| |
| /* |
| * Disable CAPI mode on a PHB. Must be done while PHB is fenced and |
| * not in recovery. |
| */ |
| static void disable_capi_mode(struct phb4 *p) |
| { |
| uint64_t reg; |
| struct capp *capp = p->capp; |
| |
| PHBINF(p, "CAPP: Deactivating\n"); |
| |
| /* Check if CAPP attached to the PHB and active */ |
| if (!capp || capp->phb != &p->phb) { |
| PHBDBG(p, "CAPP: Not attached to this PHB!\n"); |
| return; |
| } |
| |
| xscom_read(p->chip_id, p->pe_xscom + XPEC_NEST_CAPP_CNTL, ®); |
| if (!(reg & PPC_BIT(0))) { |
| /* Not in CAPI mode, no action required */ |
| PHBERR(p, "CAPP: Not enabled!\n"); |
| return; |
| } |
| |
| /* CAPP should already be out of recovery in this function */ |
| capp_xscom_read(capp, CAPP_ERR_STATUS_CTRL, ®); |
| if (reg & PPC_BIT(0)) { |
| PHBERR(p, "CAPP: Can't disable while still in recovery!\n"); |
| return; |
| } |
| |
| PHBINF(p, "CAPP: Disabling CAPI mode\n"); |
| |
| /* First Phase Reset CAPP Registers */ |
| /* CAPP about to be disabled mark TLBI_FENCED and tlbi_psl_is_dead */ |
| capp_xscom_write(capp, CAPP_ERR_STATUS_CTRL, PPC_BIT(3) | PPC_BIT(4)); |
| |
| /* Flush SUE uOP1 Register */ |
| if (p->rev != PHB4_REV_NIMBUS_DD10) |
| capp_xscom_write(capp, FLUSH_SUE_UOP1, 0); |
| |
| /* Release DMA/STQ engines */ |
| capp_xscom_write(capp, APC_FSM_READ_MASK, 0ull); |
| capp_xscom_write(capp, XPT_FSM_RMM, 0ull); |
| |
| /* Disable snoop */ |
| capp_xscom_write(capp, SNOOP_CAPI_CONFIG, 0); |
| |
| /* Clear flush SUE state map register */ |
| capp_xscom_write(capp, FLUSH_SUE_STATE_MAP, 0); |
| |
| /* Disable epoch timer */ |
| capp_xscom_write(capp, EPOCH_RECOVERY_TIMERS_CTRL, 0); |
| |
| /* CAPP Transport Control Register */ |
| capp_xscom_write(capp, TRANSPORT_CONTROL, PPC_BIT(15)); |
| |
| /* Disable snooping */ |
| capp_xscom_write(capp, SNOOP_CONTROL, 0); |
| capp_xscom_write(capp, SNOOP_CAPI_CONFIG, 0); |
| |
| /* APC Master PB Control Register - disable examining cResps */ |
| capp_xscom_write(capp, APC_MASTER_PB_CTRL, 0); |
| |
| /* APC Master Config Register - de-select PHBs */ |
| xscom_write_mask(p->chip_id, capp->capp_xscom_offset + |
| APC_MASTER_CAPI_CTRL, 0, PPC_BITMASK(2, 3)); |
| |
| /* Clear all error registers */ |
| capp_xscom_write(capp, CAPP_ERR_RPT_CLR, 0); |
| capp_xscom_write(capp, CAPP_FIR, 0); |
| capp_xscom_write(capp, CAPP_FIR_ACTION0, 0); |
| capp_xscom_write(capp, CAPP_FIR_ACTION1, 0); |
| capp_xscom_write(capp, CAPP_FIR_MASK, 0); |
| |
| /* Second Phase Reset PEC/PHB Registers */ |
| |
| /* Reset the stack overrides if any */ |
| xscom_write(p->chip_id, p->pci_xscom + XPEC_PCI_PRDSTKOVR, 0); |
| xscom_write(p->chip_id, p->pe_xscom + |
| XPEC_NEST_READ_STACK_OVERRIDE, 0); |
| |
| /* PE Bus AIB Mode Bits. Disable Tracing. Leave HOL Blocking as it is */ |
| if (!(p->rev == PHB4_REV_NIMBUS_DD10) && p->index == CAPP1_PHB_INDEX) |
| xscom_write_mask(p->chip_id, |
| p->pci_xscom + XPEC_PCI_PBAIB_HW_CONFIG, 0, |
| PPC_BIT(30)); |
| |
| /* Reset for PCI to PB data movement */ |
| xscom_write_mask(p->chip_id, p->pe_xscom + XPEC_NEST_PBCQ_HW_CONFIG, |
| 0, XPEC_NEST_PBCQ_HW_CONFIG_PBINIT); |
| |
| /* Disable CAPP mode in PEC CAPP Control Register */ |
| xscom_write(p->chip_id, p->pe_xscom + XPEC_NEST_CAPP_CNTL, 0ull); |
| } |
| |
| static int64_t phb4_creset(struct pci_slot *slot) |
| { |
| struct phb4 *p = phb_to_phb4(slot->phb); |
| struct capp *capp = p->capp; |
| uint64_t pbcq_status; |
| uint64_t creset_time, wait_time; |
| |
| /* Don't even try fixing a broken PHB */ |
| if (p->broken) |
| return OPAL_HARDWARE; |
| |
| switch (slot->state) { |
| case PHB4_SLOT_NORMAL: |
| case PHB4_SLOT_CRESET_START: |
| PHBDBG(p, "CRESET: Starts\n"); |
| |
| p->creset_start_time = mftb(); |
| |
| /* circumvention for HW551382 */ |
| if (is_phb5()) { |
| PHBINF(p, "CRESET: Workaround for HW551382\n"); |
| set_sys_disable_detect(p, true); |
| } |
| |
| phb4_prepare_link_change(slot, false); |
| /* Clear error inject register, preventing recursive errors */ |
| xscom_write(p->chip_id, p->pe_xscom + XPEC_NEST_PBCQ_ERR_INJECT, |
| 0x0); |
| |
| /* Prevent HMI when PHB gets fenced as we are disabling CAPP */ |
| if (p->flags & PHB4_CAPP_DISABLE && |
| capp && capp->phb == slot->phb) { |
| /* Since no HMI, So set the recovery flag manually. */ |
| p->flags |= PHB4_CAPP_RECOVERY; |
| xscom_write_mask(p->chip_id, capp->capp_xscom_offset + |
| CAPP_FIR_MASK, |
| PPC_BIT(31), PPC_BIT(31)); |
| } |
| |
| /* Force fence on the PHB to work around a non-existent PE */ |
| if (!phb4_fenced(p)) |
| xscom_write(p->chip_id, |
| p->pe_stk_xscom + XPEC_NEST_STK_PCI_NFIR_SET, |
| 0x0000002000000000UL); |
| |
| /* |
| * Force use of ASB for register access until the PHB has |
| * been fully reset. |
| */ |
| p->flags |= PHB4_CFG_USE_ASB | PHB4_AIB_FENCED; |
| |
| /* Assert PREST before clearing errors */ |
| phb4_assert_perst(slot, true); |
| |
| /* Clear errors, following the proper sequence */ |
| phb4_err_clear(p); |
| |
| /* Actual reset */ |
| p->flags |= PHB4_ETU_IN_RESET; |
| xscom_write(p->chip_id, p->pci_stk_xscom + XPEC_PCI_STK_ETU_RESET, |
| 0x8000000000000000UL); |
| |
| /* Read errors in PFIR and NFIR */ |
| xscom_read(p->chip_id, p->pci_stk_xscom + XPEC_PCI_STK_PCI_FIR, |
| &p->pfir_cache); |
| xscom_read(p->chip_id, p->pe_stk_xscom + XPEC_NEST_STK_PCI_NFIR, |
| &p->nfir_cache); |
| |
| pci_slot_set_state(slot, PHB4_SLOT_CRESET_WAIT_CQ); |
| slot->retries = 500; |
| return pci_slot_set_sm_timeout(slot, msecs_to_tb(10)); |
| case PHB4_SLOT_CRESET_WAIT_CQ: |
| |
| // Wait until operations are complete |
| xscom_read(p->chip_id, |
| p->pe_stk_xscom + XPEC_NEST_STK_PBCQ_STAT, |
| &pbcq_status); |
| if (!(pbcq_status & 0xC000000000000000UL)) { |
| PHBDBG(p, "CRESET: No pending transactions\n"); |
| |
| /* capp recovery */ |
| if ((p->flags & PHB4_CAPP_RECOVERY) && |
| (do_capp_recovery_scoms(p) != OPAL_SUCCESS)) |
| goto error; |
| |
| if (p->flags & PHB4_CAPP_DISABLE) |
| disable_capi_mode(p); |
| |
| /* Clear errors in PFIR and NFIR */ |
| xscom_write(p->chip_id, p->pci_stk_xscom + |
| XPEC_PCI_STK_PCI_FIR_CLR, ~p->pfir_cache); |
| xscom_write(p->chip_id, p->pe_stk_xscom + |
| XPEC_NEST_STK_PCI_NFIR_CLR, ~p->nfir_cache); |
| |
| /* Clear PHB from reset */ |
| xscom_write(p->chip_id, |
| p->pci_stk_xscom + XPEC_PCI_STK_ETU_RESET, 0x0); |
| p->flags &= ~PHB4_ETU_IN_RESET; |
| |
| /* |
| * Re-read errors in PFIR and NFIR and reset |
| * any new error reported while the ETU was in |
| * reset. |
| * A xscom access when the ETU is in reset |
| * will set PFIR bit 3 and the OCC is known to |
| * access PHB performance counters, so such an |
| * error is not uncommon. |
| */ |
| xscom_read(p->chip_id, p->pci_stk_xscom + |
| XPEC_PCI_STK_PCI_FIR, &p->pfir_cache); |
| xscom_read(p->chip_id, p->pe_stk_xscom + |
| XPEC_NEST_STK_PCI_NFIR, &p->nfir_cache); |
| |
| if (p->pfir_cache || p->nfir_cache) { |
| xscom_write(p->chip_id, p->pci_stk_xscom + |
| XPEC_PCI_STK_PCI_FIR_CLR, |
| ~p->pfir_cache); |
| xscom_write(p->chip_id, p->pe_stk_xscom + |
| XPEC_NEST_STK_PCI_NFIR_CLR, |
| ~p->nfir_cache); |
| } |
| |
| pci_slot_set_state(slot, PHB4_SLOT_CRESET_REINIT); |
| /* After lifting PHB reset, wait while logic settles */ |
| return pci_slot_set_sm_timeout(slot, msecs_to_tb(10)); |
| } |
| |
| if (slot->retries-- == 0) { |
| PHBERR(p, "Timeout waiting for pending transaction\n"); |
| goto error; |
| } |
| return pci_slot_set_sm_timeout(slot, msecs_to_tb(100)); |
| case PHB4_SLOT_CRESET_REINIT: |
| PHBDBG(p, "CRESET: Reinitialization\n"); |
| p->flags &= ~PHB4_AIB_FENCED; |
| p->flags &= ~PHB4_CAPP_RECOVERY; |
| p->flags &= ~PHB4_CFG_USE_ASB; |
| phb4_init_hw(p); |
| pci_slot_set_state(slot, PHB4_SLOT_CRESET_FRESET); |
| |
| /* |
| * The PERST is sticky across resets, but LINK_DIS isn't. |
| * Re-assert it here now that we've reset the PHB. |
| */ |
| phb4_assert_perst(slot, true); |
| |
| /* |
| * wait either 100ms (for the ETU logic) or until we've had |
| * PERST asserted for 250ms. |
| */ |
| creset_time = tb_to_msecs(mftb() - p->creset_start_time); |
| if (creset_time < 250) |
| wait_time = MAX(100, 250 - creset_time); |
| else |
| wait_time = 100; |
| PHBDBG(p, "CRESET: wait_time = %lld\n", wait_time); |
| return pci_slot_set_sm_timeout(slot, msecs_to_tb(wait_time)); |
| |
| case PHB4_SLOT_CRESET_FRESET: |
| /* |
| * We asserted PERST at the beginning of the CRESET and we |
| * have waited long enough, so we can skip it in the freset |
| * procedure. |
| */ |
| p->skip_perst = true; |
| pci_slot_set_state(slot, PHB4_SLOT_NORMAL); |
| return slot->ops.freset(slot); |
| default: |
| PHBERR(p, "CRESET: Unexpected slot state %08x, resetting...\n", |
| slot->state); |
| pci_slot_set_state(slot, PHB4_SLOT_NORMAL); |
| return slot->ops.creset(slot); |
| |
| } |
| |
| error: |
| /* Mark the PHB as dead and expect it to be removed */ |
| p->broken = true; |
| return OPAL_HARDWARE; |
| } |
| |
| /* |
| * Initialize root complex slot, which is mainly used to |
| * do fundamental reset before PCI enumeration in PCI core. |
| * When probing root complex and building its real slot, |
| * the operations will be copied over. |
| */ |
| static struct pci_slot *phb4_slot_create(struct phb *phb) |
| { |
| struct pci_slot *slot; |
| |
| slot = pci_slot_alloc(phb, NULL); |
| if (!slot) |
| return slot; |
| |
| /* Elementary functions */ |
| slot->ops.get_presence_state = phb4_get_presence_state; |
| slot->ops.get_link_state = phb4_get_link_state; |
| slot->ops.get_power_state = NULL; |
| slot->ops.get_attention_state = NULL; |
| slot->ops.get_latch_state = NULL; |
| slot->ops.set_power_state = NULL; |
| slot->ops.set_attention_state = NULL; |
| |
| /* |
| * For PHB slots, we have to split the fundamental reset |
| * into 2 steps. We might not have the first step which |
| * is to power off/on the slot, or it's controlled by |
| * individual platforms. |
| */ |
| slot->ops.prepare_link_change = phb4_prepare_link_change; |
| slot->ops.poll_link = phb4_poll_link; |
| slot->ops.hreset = phb4_hreset; |
| slot->ops.freset = phb4_freset; |
| slot->ops.creset = phb4_creset; |
| slot->ops.completed_sm_run = phb4_slot_sm_run_completed; |
| slot->link_retries = PHB4_LINK_LINK_RETRIES; |
| |
| return slot; |
| } |
| |
| static void phb4_int_unmask_all(struct phb4 *p) |
| { |
| /* Init_126..130 - Re-enable error interrupts */ |
| out_be64(p->regs + PHB_ERR_IRQ_ENABLE, 0xca8880cc00000000ull); |
| |
| if (is_phb5()) |
| out_be64(p->regs + PHB_TXE_ERR_IRQ_ENABLE, 0x200850be08200020ull); |
| else |
| out_be64(p->regs + PHB_TXE_ERR_IRQ_ENABLE, 0x2008400e08200000ull); |
| out_be64(p->regs + PHB_RXE_ARB_ERR_IRQ_ENABLE, 0xc40038fc01804070ull); |
| out_be64(p->regs + PHB_RXE_MRG_ERR_IRQ_ENABLE, 0x00006100008000a8ull); |
| out_be64(p->regs + PHB_RXE_TCE_ERR_IRQ_ENABLE, 0x60510050c0000000ull); |
| } |
| |
| /* |
| * Mask the IRQ for any currently set error bits. This prevents the PHB's ERR |
| * and INF interrupts from being re-fired before the kernel can handle the |
| * underlying condition. |
| */ |
| static void phb4_int_mask_active(struct phb4 *p) |
| { |
| const uint64_t error_regs[] = { |
| PHB_ERR_STATUS, |
| PHB_TXE_ERR_STATUS, |
| PHB_RXE_ARB_ERR_STATUS, |
| PHB_RXE_MRG_ERR_STATUS, |
| PHB_RXE_TCE_ERR_STATUS |
| }; |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(error_regs); i++) { |
| uint64_t stat, mask; |
| |
| /* The IRQ mask reg is always offset 0x20 from the status reg */ |
| stat = phb4_read_reg(p, error_regs[i]); |
| mask = phb4_read_reg(p, error_regs[i] + 0x20); |
| |
| phb4_write_reg(p, error_regs[i] + 0x20, mask & ~stat); |
| } |
| } |
| |
| static uint64_t phb4_get_pesta(struct phb4 *p, uint64_t pe_number) |
| { |
| uint64_t pesta; |
| |
| phb4_ioda_sel(p, IODA3_TBL_PESTA, pe_number, false); |
| pesta = phb4_read_reg(p, PHB_IODA_DATA0); |
| if (pesta & IODA3_PESTA_MMIO_FROZEN) |
| pesta |= be64_to_cpu(p->tbl_pest[2*pe_number]); |
| |
| return pesta; |
| } |
| |
| /* Check if the chip requires escalating a freeze to fence on MMIO loads */ |
| static bool phb4_escalation_required(void) |
| { |
| uint64_t pvr = mfspr(SPR_PVR); |
| |
| /* Only on Power9 */ |
| if (proc_gen != proc_gen_p9) |
| return false; |
| |
| /* |
| * Escalation is required on the following chip versions: |
| * - Cumulus DD1.0 |
| * - Nimbus DD2.0, DD2.1 (and DD1.0, but it is unsupported so no check). |
| */ |
| if (pvr & PVR_POWER9_CUMULUS) { |
| if (PVR_VERS_MAJ(pvr) == 1 && PVR_VERS_MIN(pvr) == 0) |
| return true; |
| } else { /* Nimbus */ |
| if (PVR_VERS_MAJ(pvr) == 2 && PVR_VERS_MIN(pvr) < 2) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static bool phb4_freeze_escalate(uint64_t pesta) |
| { |
| if ((GETFIELD(IODA3_PESTA_TRANS_TYPE, pesta) == |
| IODA3_PESTA_TRANS_TYPE_MMIOLOAD) && |
| (pesta & (IODA3_PESTA_CA_CMPLT_TMT | IODA3_PESTA_UR))) |
| return true; |
| return false; |
| } |
| |
| static int64_t phb4_eeh_freeze_status(struct phb *phb, uint64_t pe_number, |
| uint8_t *freeze_state, |
| uint16_t *pci_error_type, |
| uint16_t *severity) |
| { |
| struct phb4 *p = phb_to_phb4(phb); |
| uint64_t peev_bit = PPC_BIT(pe_number & 0x3f); |
| uint64_t peev, pesta, pestb; |
| |
| /* Defaults: not frozen */ |
| *freeze_state = OPAL_EEH_STOPPED_NOT_FROZEN; |
| *pci_error_type = OPAL_EEH_NO_ERROR; |
| |
| /* Check dead */ |
| if (p->broken) { |
| *freeze_state = OPAL_EEH_STOPPED_MMIO_DMA_FREEZE; |
| *pci_error_type = OPAL_EEH_PHB_ERROR; |
| if (severity) |
| *severity = OPAL_EEH_SEV_PHB_DEAD; |
| return OPAL_HARDWARE; |
| } |
| |
| /* Check fence and CAPP recovery */ |
| if (phb4_fenced(p) || (p->flags & PHB4_CAPP_RECOVERY)) { |
| *freeze_state = OPAL_EEH_STOPPED_MMIO_DMA_FREEZE; |
| *pci_error_type = OPAL_EEH_PHB_ERROR; |
| if (severity) |
| *severity = OPAL_EEH_SEV_PHB_FENCED; |
| return OPAL_SUCCESS; |
| } |
| |
| /* Check the PEEV */ |
| phb4_ioda_sel(p, IODA3_TBL_PEEV, pe_number / 64, false); |
| peev = in_be64(p->regs + PHB_IODA_DATA0); |
| if (!(peev & peev_bit)) |
| return OPAL_SUCCESS; |
| |
| /* Indicate that we have an ER pending */ |
| phb4_set_err_pending(p, true); |
| if (severity) |
| *severity = OPAL_EEH_SEV_PE_ER; |
| |
| /* Read the full PESTA */ |
| pesta = phb4_get_pesta(p, pe_number); |
| /* Check if we need to escalate to fence */ |
| if (phb4_escalation_required() && phb4_freeze_escalate(pesta)) { |
| PHBERR(p, "Escalating freeze to fence PESTA[%lli]=%016llx\n", |
| pe_number, pesta); |
| *severity = OPAL_EEH_SEV_PHB_FENCED; |
| *pci_error_type = OPAL_EEH_PHB_ERROR; |
| } |
| |
| /* Read the PESTB in the PHB */ |
| phb4_ioda_sel(p, IODA3_TBL_PESTB, pe_number, false); |
| pestb = phb4_read_reg(p, PHB_IODA_DATA0); |
| |
| /* Convert PESTA/B to freeze_state */ |
| if (pesta & IODA3_PESTA_MMIO_FROZEN) |
| *freeze_state |= OPAL_EEH_STOPPED_MMIO_FREEZE; |
| if (pestb & IODA3_PESTB_DMA_STOPPED) |
| *freeze_state |= OPAL_EEH_STOPPED_DMA_FREEZE; |
| |
| return OPAL_SUCCESS; |
| } |
| |
| static int64_t phb4_eeh_freeze_clear(struct phb *phb, uint64_t pe_number, |
| uint64_t eeh_action_token) |
| { |
| struct phb4 *p = phb_to_phb4(phb); |
| uint64_t err, peev; |
| int32_t i; |
| bool frozen_pe = false; |
| |
| if (p->broken) |
| return OPAL_HARDWARE; |
| |
| /* Summary. If nothing, move to clearing the PESTs which can |
| * contain a freeze state from a previous error or simply set |
| * explicitely by the user |
| */ |
| err = in_be64(p->regs + PHB_ETU_ERR_SUMMARY); |
| if (err == 0xffffffffffffffffUL) { |
| if (phb4_fenced(p)) { |
| PHBERR(p, "eeh_freeze_clear on fenced PHB\n"); |
| return OPAL_HARDWARE; |
| } |
| } |
| if (err != 0) |
| phb4_err_clear(p); |
| |
| /* |
| * We have PEEV in system memory. It would give more performance |
| * to access that directly. |
| */ |
| if (eeh_action_token & OPAL_EEH_ACTION_CLEAR_FREEZE_MMIO) { |
| phb4_ioda_sel(p, IODA3_TBL_PESTA, pe_number, false); |
| out_be64(p->regs + PHB_IODA_DATA0, 0); |
| } |
| if (eeh_action_token & OPAL_EEH_ACTION_CLEAR_FREEZE_DMA) { |
| phb4_ioda_sel(p, IODA3_TBL_PESTB, pe_number, false); |
| out_be64(p->regs + PHB_IODA_DATA0, 0); |
| } |
| |
| |
| /* Update ER pending indication */ |
| phb4_ioda_sel(p, IODA3_TBL_PEEV, 0, true); |
| for (i = 0; i < p->num_pes/64; i++) { |
| peev = in_be64(p->regs + PHB_IODA_DATA0); |
| if (peev) { |
| frozen_pe = true; |
| break; |
| } |
| } |
| if (frozen_pe) { |
| p->err.err_src = PHB4_ERR_SRC_PHB; |
| p->err.err_class = PHB4_ERR_CLASS_ER; |
| p->err.err_bit = -1; |
| phb4_set_err_pending(p, true); |
| } else |
| phb4_set_err_pending(p, false); |
| |
| return OPAL_SUCCESS; |
| } |
| |
| static int64_t phb4_eeh_freeze_set(struct phb *phb, uint64_t pe_number, |
| uint64_t eeh_action_token) |
| { |
| struct phb4 *p = phb_to_phb4(phb); |
| uint64_t data; |
| |
| if (p->broken) |
| return OPAL_HARDWARE; |
| |
| if (pe_number >= p->num_pes) |
| return OPAL_PARAMETER; |
| |
| if (eeh_action_token != OPAL_EEH_ACTION_SET_FREEZE_MMIO && |
| eeh_action_token != OPAL_EEH_ACTION_SET_FREEZE_DMA && |
| eeh_action_token != OPAL_EEH_ACTION_SET_FREEZE_ALL) |
| return OPAL_PARAMETER; |
| |
| if (eeh_action_token & OPAL_EEH_ACTION_SET_FREEZE_MMIO) { |
| phb4_ioda_sel(p, IODA3_TBL_PESTA, pe_number, false); |
| data = in_be64(p->regs + PHB_IODA_DATA0); |
| data |= IODA3_PESTA_MMIO_FROZEN; |
| out_be64(p->regs + PHB_IODA_DATA0, data); |
| } |
| |
| if (eeh_action_token & OPAL_EEH_ACTION_SET_FREEZE_DMA) { |
| phb4_ioda_sel(p, IODA3_TBL_PESTB, pe_number, false); |
| data = in_be64(p->regs + PHB_IODA_DATA0); |
| data |= IODA3_PESTB_DMA_STOPPED; |
| out_be64(p->regs + PHB_IODA_DATA0, data); |
| } |
| |
| return OPAL_SUCCESS; |
| } |
| |
| static int64_t phb4_eeh_next_error(struct phb *phb, |
| uint64_t *first_frozen_pe, |
| uint16_t *pci_error_type, |
| uint16_t *severity) |
| { |
| struct phb4 *p = phb_to_phb4(phb); |
| uint64_t peev, pesta; |
| uint32_t peev_size = p->num_pes/64; |
| int32_t i, j; |
| |
| /* If the PHB is broken, we needn't go forward */ |
| if (p->broken) { |
| *pci_error_type = OPAL_EEH_PHB_ERROR; |
| *severity = OPAL_EEH_SEV_PHB_DEAD; |
| return OPAL_SUCCESS; |
| } |
| |
| if ((p->flags & PHB4_CAPP_RECOVERY)) { |
| *pci_error_type = OPAL_EEH_PHB_ERROR; |
| *severity = OPAL_EEH_SEV_PHB_FENCED; |
| return OPAL_SUCCESS; |
| } |
| |
| /* |
| * Check if we already have pending errors. If that's |
| * the case, then to get more information about the |
| * pending errors. Here we try PBCQ prior to PHB. |
| */ |
| if (phb4_err_pending(p) /*&& |
| !phb4_err_check_pbcq(p) && |
| !phb4_err_check_lem(p) */) |
| phb4_set_err_pending(p, false); |
| |
| /* Clear result */ |
| *pci_error_type = OPAL_EEH_NO_ERROR; |
| *severity = OPAL_EEH_SEV_NO_ERROR; |
| *first_frozen_pe = (uint64_t)-1; |
| |
| /* Check frozen PEs */ |
| if (!phb4_err_pending(p)) { |
| phb4_ioda_sel(p, IODA3_TBL_PEEV, 0, true); |
| for (i = 0; i < peev_size; i++) { |
| peev = in_be64(p->regs + PHB_IODA_DATA0); |
| if (peev) { |
| p->err.err_src = PHB4_ERR_SRC_PHB; |
| p->err.err_class = PHB4_ERR_CLASS_ER; |
| p->err.err_bit = -1; |
| phb4_set_err_pending(p, true); |
| break; |
| } |
| } |
| } |
| |
| if (!phb4_err_pending(p)) |
| return OPAL_SUCCESS; |
| /* |
| * If the frozen PE is caused by a malfunctioning TLP, we |
| * need reset the PHB. So convert ER to PHB-fatal error |
| * for the case. |
| */ |
| if (p->err.err_class == PHB4_ERR_CLASS_ER) { |
| for (i = peev_size - 1; i >= 0; i--) { |
| phb4_ioda_sel(p, IODA3_TBL_PEEV, i, false); |
| peev = in_be64(p->regs + PHB_IODA_DATA0); |
| for (j = 0; j < 64; j++) { |
| if (peev & PPC_BIT(j)) { |
| *first_frozen_pe = i * 64 + j; |
| break; |
| } |
| } |
| if (*first_frozen_pe != (uint64_t)(-1)) |
| break; |
| } |
| } |
| |
| if (*first_frozen_pe != (uint64_t)(-1)) { |
| pesta = phb4_get_pesta(p, *first_frozen_pe); |
| if (phb4_escalation_required() && phb4_freeze_escalate(pesta)) { |
| PHBINF(p, "Escalating freeze to fence. PESTA[%lli]=%016llx\n", |
| *first_frozen_pe, pesta); |
| p->err.err_class = PHB4_ERR_CLASS_FENCED; |
| } |
| } |
| |
| switch (p->err.err_class) { |
| case PHB4_ERR_CLASS_DEAD: |
| *pci_error_type = OPAL_EEH_PHB_ERROR; |
| *severity = OPAL_EEH_SEV_PHB_DEAD; |
| break; |
| case PHB4_ERR_CLASS_FENCED: |
| *pci_error_type = OPAL_EEH_PHB_ERROR; |
| *severity = OPAL_EEH_SEV_PHB_FENCED; |
| break; |
| case PHB4_ERR_CLASS_ER: |
| *pci_error_type = OPAL_EEH_PE_ERROR; |
| *severity = OPAL_EEH_SEV_PE_ER; |
| |
| /* No frozen PE ? */ |
| if (*first_frozen_pe == (uint64_t)-1) { |
| *pci_error_type = OPAL_EEH_NO_ERROR; |
| *severity = OPAL_EEH_SEV_NO_ERROR; |
| phb4_set_err_pending(p, false); |
| } |
| |
| break; |
| case PHB4_ERR_CLASS_INF: |
| *pci_error_type = OPAL_EEH_PHB_ERROR; |
| *severity = OPAL_EEH_SEV_INF; |
| break; |
| default: |
| *pci_error_type = OPAL_EEH_NO_ERROR; |
| *severity = OPAL_EEH_SEV_NO_ERROR; |
| phb4_set_err_pending(p, false); |
| } |
| |
| /* |
| * Unmask all our error interrupts once all pending errors |
| * have been handled. |
| */ |
| if (!phb4_err_pending(p)) |
| phb4_int_unmask_all(p); |
| |
| return OPAL_SUCCESS; |
| } |
| |
| static int64_t phb4_err_inject_finalize(struct phb4 *phb, uint64_t addr, |
| uint64_t mask, uint64_t ctrl, |
| bool is_write) |
| { |
| if (is_write) |
| ctrl |= PHB_PAPR_ERR_INJ_CTL_WR; |
| else |
| ctrl |= PHB_PAPR_ERR_INJ_CTL_RD; |
| |
| out_be64(phb->regs + PHB_PAPR_ERR_INJ_ADDR, addr); |
| out_be64(phb->regs + PHB_PAPR_ERR_INJ_MASK, mask); |
| out_be64(phb->regs + PHB_PAPR_ERR_INJ_CTL, ctrl); |
| |
| return OPAL_SUCCESS; |
| } |
| |
| static int64_t phb4_err_inject_mem32(struct phb4 *phb __unused, |
| uint64_t pe_number __unused, |
| uint64_t addr __unused, |
| uint64_t mask __unused, |
| bool is_write __unused) |
| { |
| return OPAL_UNSUPPORTED; |
| } |
| |
| static int64_t phb4_err_inject_mem64(struct phb4 *phb __unused, |
| uint64_t pe_number __unused, |
| uint64_t addr __unused, |
| uint64_t mask __unused, |
| bool is_write __unused) |
| { |
| return OPAL_UNSUPPORTED; |
| } |
| |
| static int64_t phb4_err_inject_cfg(struct phb4 *phb, uint64_t pe_number, |
| uint64_t addr, uint64_t mask, |
| bool is_write) |
| { |
| uint64_t a, m, prefer, ctrl; |
| int bdfn; |
| bool is_bus_pe = false; |
| |
| a = 0xffffull; |
| prefer = 0xffffull; |
| m = PHB_PAPR_ERR_INJ_MASK_CFG_ALL; |
| ctrl = PHB_PAPR_ERR_INJ_CTL_CFG; |
| |
| for (bdfn = 0; bdfn < RTT_TABLE_ENTRIES; bdfn++) { |
| if (be16_to_cpu(phb->tbl_rtt[bdfn]) != pe_number) |
| continue; |
| |
| /* The PE can be associated with PCI bus or device */ |
| is_bus_pe = false; |
| if ((bdfn + 8) < RTT_TABLE_ENTRIES && |
| be16_to_cpu(phb->tbl_rtt[bdfn + 8]) == pe_number) |
| is_bus_pe = true; |
| |
| /* Figure out the PCI config address */ |
| if (prefer == 0xffffull) { |
| if (is_bus_pe) { |
| m = PHB_PAPR_ERR_INJ_MASK_CFG; |
| prefer = SETFIELD(m, 0x0ull, PCI_BUS_NUM(bdfn)); |
| } else { |
| m = PHB_PAPR_ERR_INJ_MASK_CFG_ALL; |
| prefer = SETFIELD(m, 0x0ull, bdfn); |
| } |
| } |
| |
| /* Check the input address is valid or not */ |
| if (!is_bus_pe && |
| GETFIELD(PHB_PAPR_ERR_INJ_MASK_CFG_ALL, addr) == bdfn) { |
| a = addr; |
| break; |
| } |
| |
| if (is_bus_pe && |
| GETFIELD(PHB_PAPR_ERR_INJ_MASK_CFG, addr) == PCI_BUS_NUM(bdfn)) { |
| a = addr; |
| break; |
| } |
| } |
| |
| /* Invalid PE number */ |
| if (prefer == 0xffffull) |
| return OPAL_PARAMETER; |
| |
| /* Specified address is out of range */ |
| if (a == 0xffffull) |
| a = prefer; |
| else |
| m = mask; |
| |
| return phb4_err_inject_finalize(phb, a, m, ctrl, is_write); |
| } |
| |
| static int64_t phb4_err_inject_dma(struct phb4 *phb __unused, |
| uint64_t pe_number __unused, |
| uint64_t addr __unused, |
| uint64_t mask __unused, |
| bool is_write __unused, |
| bool is_64bits __unused) |
| { |
| return OPAL_UNSUPPORTED; |
| } |
| |
| static int64_t phb4_err_inject_dma32(struct phb4 *phb, uint64_t pe_number, |
| uint64_t addr, uint64_t mask, |
| bool is_write) |
| { |
| return phb4_err_inject_dma(phb, pe_number, addr, mask, is_write, false); |
| } |
| |
| static int64_t phb4_err_inject_dma64(struct phb4 *phb, uint64_t pe_number, |
| uint64_t addr, uint64_t mask, |
| bool is_write) |
| { |
| return phb4_err_inject_dma(phb, pe_number, addr, mask, is_write, true); |
| } |
| |
| |
| static int64_t phb4_err_inject(struct phb *phb, uint64_t pe_number, |
| uint32_t type, uint32_t func, |
| uint64_t addr, uint64_t mask) |
| { |
| struct phb4 *p = phb_to_phb4(phb); |
| int64_t (*handler)(struct phb4 *p, uint64_t pe_number, |
| uint64_t addr, uint64_t mask, bool is_write); |
| bool is_write; |
| |
| /* We can't inject error to the reserved PE */ |
| if (pe_number == PHB4_RESERVED_PE_NUM(p) || pe_number >= p->num_pes) |
| return OPAL_PARAMETER; |
| |
| /* Clear leftover from last time */ |
| out_be64(p->regs + PHB_PAPR_ERR_INJ_CTL, 0x0ul); |
| |
| switch (func) { |
| case OPAL_ERR_INJECT_FUNC_IOA_LD_MEM_ADDR: |
| case OPAL_ERR_INJECT_FUNC_IOA_LD_MEM_DATA: |
| is_write = false; |
| if (type == OPAL_ERR_INJECT_TYPE_IOA_BUS_ERR64) |
| handler = phb4_err_inject_mem64; |
| else |
| handler = phb4_err_inject_mem32; |
| break; |
| case OPAL_ERR_INJECT_FUNC_IOA_ST_MEM_ADDR: |
| case OPAL_ERR_INJECT_FUNC_IOA_ST_MEM_DATA: |
| is_write = true; |
| if (type == OPAL_ERR_INJECT_TYPE_IOA_BUS_ERR64) |
| handler = phb4_err_inject_mem64; |
| else |
| handler = phb4_err_inject_mem32; |
| break; |
| case OPAL_ERR_INJECT_FUNC_IOA_LD_CFG_ADDR: |
| case OPAL_ERR_INJECT_FUNC_IOA_LD_CFG_DATA: |
| is_write = false; |
| handler = phb4_err_inject_cfg; |
| break; |
| case OPAL_ERR_INJECT_FUNC_IOA_ST_CFG_ADDR: |
| case OPAL_ERR_INJECT_FUNC_IOA_ST_CFG_DATA: |
| is_write = true; |
| handler = phb4_err_inject_cfg; |
| break; |
| case OPAL_ERR_INJECT_FUNC_IOA_DMA_RD_ADDR: |
| case OPAL_ERR_INJECT_FUNC_IOA_DMA_RD_DATA: |
| case OPAL_ERR_INJECT_FUNC_IOA_DMA_RD_MASTER: |
| case OPAL_ERR_INJECT_FUNC_IOA_DMA_RD_TARGET: |
| is_write = false; |
| if (type == OPAL_ERR_INJECT_TYPE_IOA_BUS_ERR64) |
| handler = phb4_err_inject_dma64; |
| else |
| handler = phb4_err_inject_dma32; |
| break; |
| case OPAL_ERR_INJECT_FUNC_IOA_DMA_WR_ADDR: |
| case OPAL_ERR_INJECT_FUNC_IOA_DMA_WR_DATA: |
| case OPAL_ERR_INJECT_FUNC_IOA_DMA_WR_MASTER: |
| case OPAL_ERR_INJECT_FUNC_IOA_DMA_WR_TARGET: |
| is_write = true; |
| if (type == OPAL_ERR_INJECT_TYPE_IOA_BUS_ERR64) |
| handler = phb4_err_inject_dma64; |
| else |
| handler = phb4_err_inject_dma32; |
| break; |
| default: |
| return OPAL_PARAMETER; |
| } |
| |
| return handler(p, pe_number, addr, mask, is_write); |
| } |
| |
| static int64_t phb4_get_diag_data(struct phb *phb, |
| void *diag_buffer, |
| uint64_t diag_buffer_len) |
| { |
| bool fenced; |
| struct phb4 *p = phb_to_phb4(phb); |
| struct OpalIoPhb4ErrorData *data = diag_buffer; |
| |
| if (diag_buffer_len < sizeof(struct OpalIoPhb4ErrorData)) |
| return OPAL_PARAMETER; |
| if (p->broken) |
| return OPAL_HARDWARE; |
| |
| /* |
| * Dummy check for fence so that phb4_read_phb_status knows |
| * whether to use ASB or AIB |
| */ |
| fenced = phb4_fenced(p); |
| phb4_read_phb_status(p, data); |
| |
| if (!fenced) |
| phb4_eeh_dump_regs(p); |
| |
| /* |
| * We're running to here probably because of errors |
| * (INF class). For that case, we need clear the error |
| * explicitly. |
| */ |
| if (phb4_err_pending(p) && |
| p->err.err_class == PHB4_ERR_CLASS_INF && |
| p->err.err_src == PHB4_ERR_SRC_PHB) { |
| phb4_err_clear(p); |
| phb4_set_err_pending(p, false); |
| } |
| |
| return OPAL_SUCCESS; |
| } |
| |
| static uint64_t tve_encode_50b_noxlate(uint64_t start_addr, uint64_t end_addr) |
| { |
| uint64_t tve; |
| |
| /* |
| * Put start address bits 49:24 into TVE[52:53]||[0:23] |
| * and end address bits 49:24 into TVE[54:55]||[24:47] |
| * and set TVE[51] |
| */ |
| tve = (start_addr << 16) & (0xffffffull << 40); |
| tve |= (start_addr >> 38) & (3ull << 10); |
| tve |= (end_addr >> 8) & (0xfffffful << 16); |
| tve |= (end_addr >> 40) & (3ull << 8); |
| tve |= PPC_BIT(51) | IODA3_TVT_NON_TRANSLATE_50; |
| return tve; |
| } |
| |
| static bool phb4_is_dd20(struct phb4 *p) |
| { |
| struct proc_chip *chip = get_chip(p->chip_id); |
| |
| if (p->rev == PHB4_REV_NIMBUS_DD20 && ((0xf & chip->ec_level) == 0)) |
| return true; |
| return false; |
| } |
| |
| static int64_t phb4_get_capp_info(int chip_id, struct phb *phb, |
| struct capp_info *info) |
| { |
| struct phb4 *p = phb_to_phb4(phb); |
| uint32_t offset; |
| |
| /* Not even supposed to be here on P10, but doesn't hurt */ |
| if (is_phb5()) |
| return OPAL_UNSUPPORTED; |
| |
| if (chip_id != p->chip_id) |
| return OPAL_PARAMETER; |
| |
| /* Check is CAPP is attached to the PHB */ |
| if (p->capp == NULL || p->capp->phb != phb) |
| return OPAL_PARAMETER; |
| |
| offset = PHB4_CAPP_REG_OFFSET(p); |
| |
| if (p->index == CAPP0_PHB_INDEX) |
| info->capp_index = 0; |
| if (p->index == CAPP1_PHB_INDEX) |
| info->capp_index = 1; |
| info->phb_index = p->index; |
| info->capp_fir_reg = CAPP_FIR + offset; |
| info->capp_fir_mask_reg = CAPP_FIR_MASK + offset; |
| info->capp_fir_action0_reg = CAPP_FIR_ACTION0 + offset; |
| info->capp_fir_action1_reg = CAPP_FIR_ACTION1 + offset; |
| info->capp_err_status_ctrl_reg = CAPP_ERR_STATUS_CTRL + offset; |
| |
| return OPAL_SUCCESS; |
| } |
| |
| static void phb4_init_capp_regs(struct phb4 *p, uint32_t capp_eng) |
| { |
| uint64_t addr, reg; |
| uint32_t offset; |
| uint8_t link_width_x16 = 1; |
| |
| offset = PHB4_CAPP_REG_OFFSET(p); |
| |
| /* Calculate the phb link width if card is attached to PEC2 */ |
| if (p->index == CAPP1_PHB_INDEX) { |
| /* Check if PEC2 is in x8 or x16 mode. |
| * PEC0 is always in x16 |
| */ |
| addr = XPEC_P9_PCI_CPLT_CONF1 + 2 * XPEC_PCI_CPLT_OFFSET; |
| xscom_read(p->chip_id, addr, ®); |
| link_width_x16 = ((reg & XPEC_P9_PCI_IOVALID_MASK) == |
| XPEC_P9_PCI_IOVALID_X16); |
| } |
| |
| /* APC Master PowerBus Control Register */ |
| xscom_read(p->chip_id, APC_MASTER_PB_CTRL + offset, ®); |
| reg |= PPC_BIT(0); /* enable cResp exam */ |
| reg |= PPC_BIT(3); /* disable vg not sys */ |
| reg |= PPC_BIT(12);/* HW417025: disable capp virtual machines */ |
| reg |= PPC_BIT(2); /* disable nn rn */ |
| reg |= PPC_BIT(4); /* disable g */ |
| reg |= PPC_BIT(5); /* disable ln */ |
| xscom_write(p->chip_id, APC_MASTER_PB_CTRL + offset, reg); |
| |
| /* Set PHB mode, HPC Dir State and P9 mode */ |
| xscom_write(p->chip_id, APC_MASTER_CAPI_CTRL + offset, |
| 0x1772000000000000UL); |
| PHBINF(p, "CAPP: port attached\n"); |
| |
| /* Set snoop ttype decoding , dir size to 512K */ |
| xscom_write(p->chip_id, SNOOP_CAPI_CONFIG + offset, 0x9000000000000000UL); |
| |
| /* Use Read Epsilon Tier2 for all scopes. |
| * Set Tier2 Read Epsilon. |
| */ |
| xscom_read(p->chip_id, SNOOP_CONTROL + offset, ®); |
| reg |= PPC_BIT(0); |
| reg |= PPC_BIT(35); |
| reg |= PPC_BIT(45); |
| reg |= PPC_BIT(46); |
| reg |= PPC_BIT(47); |
| reg |= PPC_BIT(50); |
| xscom_write(p->chip_id, SNOOP_CONTROL + offset, reg); |
| |
| /* Transport Control Register */ |
| xscom_read(p->chip_id, TRANSPORT_CONTROL + offset, ®); |
| if (p->index == CAPP0_PHB_INDEX) { |
| reg |= PPC_BIT(1); /* Send Packet Timer Value */ |
| reg |= PPC_BITMASK(10, 13); /* Send Packet Timer Value */ |
| reg &= ~PPC_BITMASK(14, 17); /* Set Max LPC CI store buffer to zeros */ |
| reg &= ~PPC_BITMASK(18, 21); /* Set Max tlbi divider */ |
| if (capp_eng & CAPP_MIN_STQ_ENGINES) { |
| /* 2 CAPP msg engines */ |
| reg |= PPC_BIT(58); |
| reg |= PPC_BIT(59); |
| reg |= PPC_BIT(60); |
| } |
| if (capp_eng & CAPP_MAX_STQ_ENGINES) { |
| /* 14 CAPP msg engines */ |
| reg |= PPC_BIT(60); |
| } |
| reg |= PPC_BIT(62); |
| } |
| if (p->index == CAPP1_PHB_INDEX) { |
| reg |= PPC_BIT(4); /* Send Packet Timer Value */ |
| reg &= ~PPC_BIT(10); /* Set CI Store Buffer Threshold=5 */ |
| reg |= PPC_BIT(11); /* Set CI Store Buffer Threshold=5 */ |
| reg &= ~PPC_BIT(12); /* Set CI Store Buffer Threshold=5 */ |
| reg |= PPC_BIT(13); /* Set CI Store Buffer Threshold=5 */ |
| reg &= ~PPC_BITMASK(14, 17); /* Set Max LPC CI store buffer to zeros */ |
| reg &= ~PPC_BITMASK(18, 21); /* Set Max tlbi divider */ |
| if (capp_eng & CAPP_MIN_STQ_ENGINES) { |
| /* 2 CAPP msg engines */ |
| reg |= PPC_BIT(59); |
| reg |= PPC_BIT(60); |
| |
| } else if (capp_eng & CAPP_MAX_STQ_ENGINES) { |
| |
| if (link_width_x16) |
| /* 14 CAPP msg engines */ |
| reg |= PPC_BIT(60) | PPC_BIT(62); |
| else |
| /* 6 CAPP msg engines */ |
| reg |= PPC_BIT(60); |
| } |
| } |
| xscom_write(p->chip_id, TRANSPORT_CONTROL + offset, reg); |
| |
| /* The transport control register needs to be loaded in two |
| * steps. Once the register values have been set, we have to |
| * write bit 63 to a '1', which loads the register values into |
| * the ci store buffer logic. |
| */ |
| xscom_read(p->chip_id, TRANSPORT_CONTROL + offset, ®); |
| reg |= PPC_BIT(63); |
| xscom_write(p->chip_id, TRANSPORT_CONTROL + offset, reg); |
| |
| /* Enable epoch timer */ |
| xscom_write(p->chip_id, EPOCH_RECOVERY_TIMERS_CTRL + offset, |
| 0xC0000000FFF8FFE0UL); |
| |
| /* Flush SUE State Map Register */ |
| xscom_write(p->chip_id, FLUSH_SUE_STATE_MAP + offset, |
| 0x08020A0000000000UL); |
| |
| /* Flush SUE uOP1 Register */ |
| xscom_write(p->chip_id, FLUSH_SUE_UOP1 + offset, |
| 0xDCE0280428000000); |
| |
| /* capp owns PHB read buffers */ |
| if (p->index == CAPP0_PHB_INDEX) { |
| /* max PHB read buffers 0-47 */ |
| reg = 0xFFFFFFFFFFFF0000UL; |
| if (capp_eng & CAPP_MAX_DMA_READ_ENGINES) |
| reg = 0xF000000000000000UL; |
| xscom_write(p->chip_id, APC_FSM_READ_MASK + offset, reg); |
| xscom_write(p->chip_id, XPT_FSM_RMM + offset, reg); |
| } |
| if (p->index == CAPP1_PHB_INDEX) { |
| |
| if (capp_eng & CAPP_MAX_DMA_READ_ENGINES) { |
| reg = 0xF000000000000000ULL; |
| } else if (link_width_x16) { |
| /* 0-47 (Read machines) are available for |
| * capp use |
| */ |
| reg = 0x0000FFFFFFFFFFFFULL; |
| } else { |
| /* Set 30 Read machines for CAPP Minus |
| * 20-27 for DMA |
| */ |
| reg = 0xFFFFF00E00000000ULL; |
| } |
| xscom_write(p->chip_id, APC_FSM_READ_MASK + offset, reg); |
| xscom_write(p->chip_id, XPT_FSM_RMM + offset, reg); |
| } |
| |
| /* CAPP FIR Action 0 */ |
| xscom_write(p->chip_id, CAPP_FIR_ACTION0 + offset, 0x0b1c000104060000UL); |
| |
| /* CAPP FIR Action 1 */ |
| xscom_write(p->chip_id, CAPP_FIR_ACTION1 + offset, 0x2b9c0001240E0000UL); |
| |
| /* CAPP FIR MASK */ |
| xscom_write(p->chip_id, CAPP_FIR_MASK + offset, 0x80031f98d8717000UL); |
| |
| /* Mask the CAPP PSL Credit Timeout Register error */ |
| xscom_write_mask(p->chip_id, CAPP_FIR_MASK + offset, |
| PPC_BIT(46), PPC_BIT(46)); |
| |
| /* Deassert TLBI_FENCED and tlbi_psl_is_dead */ |
| xscom_write(p->chip_id, CAPP_ERR_STATUS_CTRL + offset, 0); |
| } |
| |
| /* override some inits with CAPI defaults */ |
| static void phb4_init_capp_errors(struct phb4 *p) |
| { |
| /* Init_77: TXE Error AIB Fence Enable Register */ |
| if (phb4_is_dd20(p)) |
| out_be64(p->regs + 0x0d30, 0xdfffbf0ff7ddfff0ull); |
| else |
| out_be64(p->regs + 0x0d30, 0xdff7bf0ff7ddfff0ull); |
| /* Init_86: RXE_ARB Error AIB Fence Enable Register */ |
| out_be64(p->regs + 0x0db0, 0xfbffd7bbfb7fbfefull); |
| |
| /* Init_95: RXE_MRG Error AIB Fence Enable Register */ |
| out_be64(p->regs + 0x0e30, 0xfffffeffff7fff57ull); |
| |
| /* Init_104: RXE_TCE Error AIB Fence Enable Register */ |
| out_be64(p->regs + 0x0eb0, 0xffaeffafffffffffull); |
| |
| /* Init_113: PHB Error AIB Fence Enable Register */ |
| out_be64(p->regs + 0x0cb0, 0x35777073ff000000ull); |
| } |
| |
| /* |
| * The capi, NBW and ASN indicators are used only on P9 to flag some |
| * types of incoming traffic for the PHB and have been removed on P10. |
| * |
| * The capi indicator is over the 8 most significant bits (and |
| * not 16). We stay away from bits 59 (TVE select), 60 and 61 (MSI) |
| * |
| * For the mask, we keep bit 59 in, as capi messages must hit TVE#0. |
| * Bit 56 is not part of the mask, so that a NBW message (see below) |
| * is also considered a capi message. |
| */ |
| #define CAPIIND 0x0200 |
| #define CAPIMASK 0xFE00 |
| |
| /* |
| * Non-Blocking Write messages are a subset of capi messages, so the |
| * indicator is the same as capi + an extra bit (56) to differentiate. |
| * Mask is the same as capi + the extra bit |
| */ |
| #define NBWIND 0x0300 |
| #define NBWMASK 0xFF00 |
| |
| /* |
| * The ASN indicator is used for tunneled operations (as_notify and |
| * atomics). Tunneled operation messages can be sent in PCI mode as |
| * well as CAPI mode. |
| * |
| * The format of those messages is specific and, for as_notify |
| * messages, the address field is hijacked to encode the LPID/PID/TID |
| * of the target thread, so those messages should not go through |
| * translation. They must hit TVE#1. Therefore bit 59 is part of the |
| * indicator. |
| */ |
| #define ASNIND 0x0C00 |
| #define ASNMASK 0xFF00 |
| |
| /* Power Bus Common Queue Registers |
| * All PBCQ and PBAIB registers are accessed via SCOM |
| * NestBase = 4010C00 for PEC0 |
| * 4011000 for PEC1 |
| * 4011400 for PEC2 |
| * PCIBase = D010800 for PE0 |
| * E010800 for PE1 |
| * F010800 for PE2 |
| * |
| * Some registers are shared amongst all of the stacks and will only |
| * have 1 copy. Other registers are implemented one per stack. |
| * Registers that are duplicated will have an additional offset |
| * of “StackBase” so that they have a unique address. |
| * Stackoffset = 00000040 for Stack0 |
| * = 00000080 for Stack1 |
| * = 000000C0 for Stack2 |
| */ |
| static int64_t enable_capi_mode(struct phb4 *p, uint64_t pe_number, |
| uint32_t capp_eng) |
| { |
| uint64_t addr, reg, start_addr, end_addr, stq_eng, dma_eng; |
| uint64_t mbt0, mbt1; |
| int i, window_num = -1; |
| |
| /* CAPP Control Register */ |
| xscom_read(p->chip_id, p->pe_xscom + XPEC_NEST_CAPP_CNTL, ®); |
| if (reg & PPC_BIT(0)) { |
| PHBDBG(p, "Already in CAPP mode\n"); |
| } |
| |
| for (i = 0; i < 500000; i++) { |
| /* PBCQ General Status Register */ |
| xscom_read(p->chip_id, |
| p->pe_stk_xscom + XPEC_NEST_STK_PBCQ_STAT, |
| ®); |
| if (!(reg & 0xC000000000000000UL)) |
| break; |
| time_wait_us(10); |
| } |
| if (reg & 0xC000000000000000UL) { |
| PHBERR(p, "CAPP: Timeout waiting for pending transaction\n"); |
| return OPAL_HARDWARE; |
| } |
| |
| stq_eng = 0x0000000000000000ULL; |
| dma_eng = 0x0000000000000000ULL; |
| if (p->index == CAPP0_PHB_INDEX) { |
| /* PBCQ is operating as a x16 stack |
| * - The maximum number of engines give to CAPP will be |
| * 14 and will be assigned in the order of STQ 15 to 2. |
| * - 0-47 (Read machines) are available for capp use. |
| */ |
| stq_eng = 0x000E000000000000ULL; /* 14 CAPP msg engines */ |
| dma_eng = 0x0000FFFFFFFFFFFFULL; /* 48 CAPP Read machines */ |
| } |
| |
| if (p->index == CAPP1_PHB_INDEX) { |
| /* Check if PEC is in x8 or x16 mode */ |
| addr = XPEC_P9_PCI_CPLT_CONF1 + 2 * XPEC_PCI_CPLT_OFFSET; |
| xscom_read(p->chip_id, addr, ®); |
| if ((reg & XPEC_P9_PCI_IOVALID_MASK) == XPEC_P9_PCI_IOVALID_X16) { |
| /* PBCQ is operating as a x16 stack |
| * - The maximum number of engines give to CAPP will be |
| * 14 and will be assigned in the order of STQ 15 to 2. |
| * - 0-47 (Read machines) are available for capp use. |
| */ |
| stq_eng = 0x000E000000000000ULL; |
| dma_eng = 0x0000FFFFFFFFFFFFULL; |
| } else { |
| |
| /* PBCQ is operating as a x8 stack |
| * - The maximum number of engines given to CAPP should |
| * be 6 and will be assigned in the order of 7 to 2. |
| * - 0-30 (Read machines) are available for capp use. |
| */ |
| stq_eng = 0x0006000000000000ULL; |
| /* 30 Read machines for CAPP Minus 20-27 for DMA */ |
| dma_eng = 0x0000FFFFF00E0000ULL; |
| } |
| } |
| |
| if (capp_eng & CAPP_MIN_STQ_ENGINES) |
| stq_eng = 0x0002000000000000ULL; /* 2 capp msg engines */ |
| |
| /* CAPP Control Register. Enable CAPP Mode */ |
| reg = 0x8000000000000000ULL; /* PEC works in CAPP Mode */ |
| reg |= stq_eng; |
| if (capp_eng & CAPP_MAX_DMA_READ_ENGINES) |
| dma_eng = 0x0000F00000000000ULL; /* 4 CAPP Read machines */ |
| reg |= dma_eng; |
| xscom_write(p->chip_id, p->pe_xscom + XPEC_NEST_CAPP_CNTL, reg); |
| |
| /* PEC2 has 3 ETU's + 16 pci lanes that can operate as x16, |
| * x8+x8 (bifurcated) or x8+x4+x4 (trifurcated) mode. When |
| * Mellanox CX5 card is attached to stack0 of this PEC, indicated by |
| * request to allocate CAPP_MAX_DMA_READ_ENGINES; we tweak the default |
| * dma-read engines allocations to maximize the DMA read performance |
| */ |
| if ((p->index == CAPP1_PHB_INDEX) && |
| (capp_eng & CAPP_MAX_DMA_READ_ENGINES)) |
| phb4_pec2_dma_engine_realloc(p); |
| |
| /* PCI to PB data movement ignores the PB init signal. */ |
| xscom_write_mask(p->chip_id, p->pe_xscom + XPEC_NEST_PBCQ_HW_CONFIG, |
| XPEC_NEST_PBCQ_HW_CONFIG_PBINIT, |
| XPEC_NEST_PBCQ_HW_CONFIG_PBINIT); |
| |
| /* If pump mode is enabled don't do nodal broadcasts. |
| */ |
| xscom_read(p->chip_id, PB_CENT_HP_MODE_CURR, ®); |
| if (reg & PB_CFG_PUMP_MODE) { |
| reg = XPEC_NEST_PBCQ_HW_CONFIG_DIS_NODAL; |
| reg |= XPEC_NEST_PBCQ_HW_CONFIG_DIS_RNNN; |
| xscom_write_mask(p->chip_id, |
| p->pe_xscom + XPEC_NEST_PBCQ_HW_CONFIG, |
| reg, reg); |
| } |
| |
| /* PEC Phase 4 (PHB) registers adjustment |
| * Inbound CAPP traffic: The CAPI can send both CAPP packets and |
| * I/O packets. A PCIe packet is indentified as a CAPP packet in |
| * the PHB if the PCIe address matches either the CAPI |
| * Compare/Mask register or its NBW Compare/Mask register. |
| */ |
| |
| /* |
| * Bit [0:7] XSL_DSNCTL[capiind] |
| * Init_26 - CAPI Compare/Mask |
| */ |
| out_be64(p->regs + PHB_CAPI_CMPM, |
| ((u64)CAPIIND << 48) | |
| ((u64)CAPIMASK << 32) | PHB_CAPI_CMPM_ENABLE); |
| |
| /* PB AIB Hardware Control Register |
| * Wait 32 PCI clocks for a credit to become available |
| * before rejecting. |
| */ |
| xscom_read(p->chip_id, p->pci_xscom + XPEC_PCI_PBAIB_HW_CONFIG, ®); |
| reg |= PPC_BITMASK(40, 42); |
| if (p->index == CAPP1_PHB_INDEX) |
| reg |= PPC_BIT(30); |
| xscom_write(p->chip_id, p->pci_xscom + XPEC_PCI_PBAIB_HW_CONFIG, reg); |
| |
| /* non-translate/50-bit mode */ |
| out_be64(p->regs + PHB_NXLATE_PREFIX, 0x0000000000000000Ull); |
| |
| /* set tve no translate mode allow mmio window */ |
| memset(p->tve_cache, 0x0, sizeof(p->tve_cache)); |
| |
| /* |
| * In 50-bit non-translate mode, the fields of the TVE are |
| * used to perform an address range check. In this mode TCE |
| * Table Size(0) must be a '1' (TVE[51] = 1) |
| * PCI Addr(49:24) >= TVE[52:53]+TVE[0:23] and |
| * PCI Addr(49:24) < TVE[54:55]+TVE[24:47] |
| * |
| * TVE[51] = 1 |
| * TVE[56] = 1: 50-bit Non-Translate Mode Enable |
| * TVE[0:23] = 0x000000 |
| * TVE[24:47] = 0xFFFFFF |
| * |
| * capi dma mode: CAPP DMA mode needs access to all of memory |
| * capi mode: Allow address range (bit 14 = 1) |
| * 0x0002000000000000: 0x0002FFFFFFFFFFFF |
| * TVE[52:53] = '10' and TVE[54:55] = '10' |
| */ |
| |
| /* TVT#0: CAPI window + DMA, all memory */ |
| start_addr = 0ull; |
| end_addr = 0x0003ffffffffffffull; |
| p->tve_cache[pe_number * 2] = |
| tve_encode_50b_noxlate(start_addr, end_addr); |
| |
| /* TVT#1: CAPI window + DMA, all memory, in bypass mode */ |
| start_addr = (1ull << 59); |
| end_addr = start_addr + 0x0003ffffffffffffull; |
| p->tve_cache[pe_number * 2 + 1] = |
| tve_encode_50b_noxlate(start_addr, end_addr); |
| |
| phb4_ioda_sel(p, IODA3_TBL_TVT, 0, true); |
| for (i = 0; i < p->tvt_size; i++) |
| out_be64(p->regs + PHB_IODA_DATA0, p->tve_cache[i]); |
| |
| /* |
| * Since TVT#0 is in by-pass mode, disable 32-bit MSI, as a |
| * DMA write targeting 0x00000000FFFFxxxx would be interpreted |
| * as a 32-bit MSI |
| */ |
| reg = in_be64(p->regs + PHB_PHB4_CONFIG); |
| reg &= ~PHB_PHB4C_32BIT_MSI_EN; |
| out_be64(p->regs + PHB_PHB4_CONFIG, reg); |
| |
| /* set mbt bar to pass capi mmio window and keep the other |
| * mmio values |
| */ |
| mbt0 = IODA3_MBT0_ENABLE | IODA3_MBT0_TYPE_M64 | |
| SETFIELD(IODA3_MBT0_MODE, 0ull, IODA3_MBT0_MODE_SINGLE_PE) | |
| SETFIELD(IODA3_MBT0_MDT_COLUMN, 0ull, 0) | |
| (0x0002000000000000ULL & IODA3_MBT0_BASE_ADDR); |
| |
| mbt1 = IODA3_MBT1_ENABLE | |
| (0x00ff000000000000ULL & IODA3_MBT1_MASK) | |
| SETFIELD(IODA3_MBT1_SINGLE_PE_NUM, 0ull, pe_number); |
| |
| for (i = 0; i < p->mbt_size; i++) { |
| /* search if the capi mmio window is already present */ |
| if ((p->mbt_cache[i][0] == mbt0) && |
| (p->mbt_cache[i][1] == mbt1)) |
| break; |
| |
| /* search a free entry */ |
| if ((window_num == -1) && |
| ((!(p->mbt_cache[i][0] & IODA3_MBT0_ENABLE)) && |
| (!(p->mbt_cache[i][1] & IODA3_MBT1_ENABLE)))) |
| window_num = i; |
| } |
| |
| if (window_num >= 0 && i == p->mbt_size) { |
| /* no capi mmio window found, so add it */ |
| p->mbt_cache[window_num][0] = mbt0; |
| p->mbt_cache[window_num][1] = mbt1; |
| |
| phb4_ioda_sel(p, IODA3_TBL_MBT, window_num << 1, true); |
| out_be64(p->regs + PHB_IODA_DATA0, mbt0); |
| out_be64(p->regs + PHB_IODA_DATA0, mbt1); |
| } else if (i == p->mbt_size) { |
| /* mbt cache full, this case should never happen */ |
| PHBERR(p, "CAPP: Failed to add CAPI mmio window\n"); |
| } else { |
| /* duplicate entry. Nothing to do */ |
| } |
| |
| phb4_init_capp_errors(p); |
| |
| phb4_init_capp_regs(p, capp_eng); |
| |
| if (!chiptod_capp_timebase_sync(p->chip_id, CAPP_TFMR, |
| CAPP_TB, |
| PHB4_CAPP_REG_OFFSET(p))) |
| PHBERR(p, "CAPP: Failed to sync timebase\n"); |
| |
| /* set callbacks to handle HMI events */ |
| capi_ops.get_capp_info = &phb4_get_capp_info; |
| |
| return OPAL_SUCCESS; |
| } |
| |
| |
| static int64_t phb4_init_capp(struct phb4 *p) |
| { |
| struct capp *capp; |
| int rc; |
| |
| if (p->index != CAPP0_PHB_INDEX && |
| p->index != CAPP1_PHB_INDEX) |
| return OPAL_UNSUPPORTED; |
| |
| capp = zalloc(sizeof(struct capp)); |
| if (capp == NULL) |
| return OPAL_NO_MEM; |
| |
| if (p->index == CAPP0_PHB_INDEX) { |
| capp->capp_index = 0; |
| capp->capp_xscom_offset = 0; |
| |
| } else if (p->index == CAPP1_PHB_INDEX) { |
| capp->capp_index = 1; |
| capp->capp_xscom_offset = CAPP1_REG_OFFSET; |
| } |
| |
| capp->attached_pe = phb4_get_reserved_pe_number(&p->phb); |
| capp->chip_id = p->chip_id; |
| |
| /* Load capp microcode into the capp unit */ |
| rc = load_capp_ucode(p); |
| |
| if (rc == OPAL_SUCCESS) |
| p->capp = capp; |
| else |
| free(capp); |
| |
| return rc; |
| } |
| |
| static int64_t phb4_set_capi_mode(struct phb *phb, uint64_t mode, |
| uint64_t pe_number) |
| { |
| struct phb4 *p = phb_to_phb4(phb); |
| struct proc_chip *chip = get_chip(p->chip_id); |
| struct capp *capp = p->capp; |
| uint64_t reg, ret; |
| |
| /* No CAPI on P10. OpenCAPI only */ |
| if (is_phb5()) |
| return OPAL_UNSUPPORTED; |
| |
| /* cant do a mode switch when capp is in recovery mode */ |
| ret = capp_xscom_read(capp, CAPP_ERR_STATUS_CTRL, ®); |
| if (ret != OPAL_SUCCESS) |
| return ret; |
| |
| if ((reg & PPC_BIT(0)) && (!(reg & PPC_BIT(1)))) { |
| PHBDBG(p, "CAPP: recovery in progress\n"); |
| return OPAL_BUSY; |
| } |
| |
| |
| switch (mode) { |
| |
| case OPAL_PHB_CAPI_MODE_DMA: /* Enabled by default on p9 */ |
| case OPAL_PHB_CAPI_MODE_SNOOP_ON: |
| /* nothing to do on P9 if CAPP is already enabled */ |
| ret = p->capp->phb ? OPAL_SUCCESS : OPAL_UNSUPPORTED; |
| break; |
| |
| case OPAL_PHB_CAPI_MODE_SNOOP_OFF: |
| ret = p->capp->phb ? OPAL_UNSUPPORTED : OPAL_SUCCESS; |
| break; |
| |
| case OPAL_PHB_CAPI_MODE_PCIE: |
| if (p->flags & PHB4_CAPP_DISABLE) { |
| /* We are in middle of a CAPP disable */ |
| ret = OPAL_BUSY; |
| |
| } else if (capp->phb) { |
| /* Kick start a creset */ |
| p->flags |= PHB4_CAPP_DISABLE; |
| PHBINF(p, "CAPP: PCIE mode needs a cold-reset\n"); |
| /* Kick off the pci state machine */ |
| ret = phb4_creset(phb->slot); |
| ret = ret > 0 ? OPAL_BUSY : ret; |
| |
| } else { |
| /* PHB already in PCI mode */ |
| ret = OPAL_SUCCESS; |
| } |
| break; |
| |
| case OPAL_PHB_CAPI_MODE_CAPI: /* Fall Through */ |
| case OPAL_PHB_CAPI_MODE_DMA_TVT1: |
| /* Make sure that PHB is not disabling CAPP */ |
| if (p->flags & PHB4_CAPP_DISABLE) { |
| PHBERR(p, "CAPP: Disable in progress\n"); |
| ret = OPAL_BUSY; |
| break; |
| } |
| |
| /* Check if ucode is available */ |
| if (!capp_ucode_loaded(chip, p->index)) { |
| PHBERR(p, "CAPP: ucode not loaded\n"); |
| ret = OPAL_RESOURCE; |
| break; |
| } |
| |
| /* |
| * Mark the CAPP attached to the PHB right away so that |
| * if a MCE happens during CAPP init we can handle it. |
| * In case of an error in CAPP init we remove the PHB |
| * from the attached_mask later. |
| */ |
| capp->phb = phb; |
| capp->attached_pe = pe_number; |
| |
| if (mode == OPAL_PHB_CAPI_MODE_DMA_TVT1) |
| ret = enable_capi_mode(p, pe_number, |
| CAPP_MIN_STQ_ENGINES | |
| CAPP_MAX_DMA_READ_ENGINES); |
| |
| else |
| ret = enable_capi_mode(p, pe_number, |
| CAPP_MAX_STQ_ENGINES | |
| CAPP_MIN_DMA_READ_ENGINES); |
| if (ret == OPAL_SUCCESS) { |
| /* register notification on system shutdown */ |
| opal_add_host_sync_notifier(&phb4_host_sync_reset, p); |
| |
| } else { |
| /* In case of an error mark the PHB detached */ |
| capp->phb = NULL; |
| capp->attached_pe = phb4_get_reserved_pe_number(phb); |
| } |
| break; |
| |
| default: |
| ret = OPAL_UNSUPPORTED; |
| break; |
| }; |
| |
| return ret; |
| } |
| |
| static void phb4_p2p_set_initiator(struct phb4 *p, uint16_t pe_number) |
| { |
| uint64_t tve; |
| uint16_t window_id = (pe_number << 1) + 1; |
| |
| /* |
| * Initiator needs access to the MMIO space of the target, |
| * which is well beyond the 'normal' memory area. Set its TVE |
| * with no range checking. |
| */ |
| PHBDBG(p, "Setting TVE#1 for peer-to-peer for pe %d\n", pe_number); |
| tve = PPC_BIT(51); |
| phb4_ioda_sel(p, IODA3_TBL_TVT, window_id, false); |
| out_be64(p->regs + PHB_IODA_DATA0, tve); |
| p->tve_cache[window_id] = tve; |
| } |
| |
| static void phb4_p2p_set_target(struct phb4 *p, bool enable) |
| { |
| uint64_t val; |
| |
| /* |
| * Enabling p2p on a target PHB reserves an outbound (as seen |
| * from the CPU) store queue for p2p |
| */ |
| PHBDBG(p, "%s peer-to-peer\n", (enable ? "Enabling" : "Disabling")); |
| xscom_read(p->chip_id, |
| p->pe_stk_xscom + XPEC_NEST_STK_PBCQ_MODE, &val); |
| if (enable) |
| val |= XPEC_NEST_STK_PBCQ_MODE_P2P; |
| else |
| val &= ~XPEC_NEST_STK_PBCQ_MODE_P2P; |
| xscom_write(p->chip_id, |
| p->pe_stk_xscom + XPEC_NEST_STK_PBCQ_MODE, val); |
| } |
| |
| static void phb4_set_p2p(struct phb *phb, uint64_t mode, uint64_t flags, |
| uint16_t pe_number) |
| { |
| struct phb4 *p = phb_to_phb4(phb); |
| |
| switch (mode) { |
| case OPAL_PCI_P2P_INITIATOR: |
| if (flags & OPAL_PCI_P2P_ENABLE) |
| phb4_p2p_set_initiator(p, pe_number); |
| /* |
| * When disabling p2p on the initiator, we should |
| * reset the TVE to its default bypass setting, but it |
| * is more easily done from the OS, as it knows the |
| * the start and end address and there's already an |
| * opal call for it, so let linux handle it. |
| */ |
| break; |
| case OPAL_PCI_P2P_TARGET: |
| phb4_p2p_set_target(p, !!(flags & OPAL_PCI_P2P_ENABLE)); |
| break; |
| default: |
| assert(0); |
| } |
| } |
| |
| static int64_t phb4_set_capp_recovery(struct phb *phb) |
| { |
| struct phb4 *p = phb_to_phb4(phb); |
| |
| if (p->flags & PHB4_CAPP_RECOVERY) |
| return 0; |
| |
| /* set opal event flag to indicate eeh condition */ |
| opal_update_pending_evt(OPAL_EVENT_PCI_ERROR, |
| OPAL_EVENT_PCI_ERROR); |
| |
| p->flags |= PHB4_CAPP_RECOVERY; |
| |
| return 0; |
| } |
| |
| /* |
| * Return the address out of a PBCQ Tunnel Bar register. |
| */ |
| static void phb4_get_tunnel_bar(struct phb *phb, uint64_t *addr) |
| { |
| struct phb4 *p = phb_to_phb4(phb); |
| uint64_t val; |
| |
| xscom_read(p->chip_id, p->pe_stk_xscom + XPEC_NEST_STK_TUNNEL_BAR, |
| &val); |
| *addr = val >> 8; |
| } |
| |
| /* |
| * Set PBCQ Tunnel Bar register. |
| * Store addr bits [8:50] in PBCQ Tunnel Bar register bits [0:42]. |
| * Note that addr bits [8:50] must also match PSL_TNR_ADDR[8:50]. |
| * Reset register if val == 0. |
| * |
| * This interface is required to let device drivers set the Tunnel Bar |
| * value of their choice. |
| * |
| * Compatibility with older versions of linux, that do not set the |
| * Tunnel Bar with phb4_set_tunnel_bar(), is ensured by enable_capi_mode(), |
| * that will set the default value that used to be assumed. |
| */ |
| static int64_t phb4_set_tunnel_bar(struct phb *phb, uint64_t addr) |
| { |
| struct phb4 *p = phb_to_phb4(phb); |
| uint64_t mask = 0x00FFFFFFFFFFE000ULL; |
| |
| if (!addr) { |
| /* Reset register */ |
| xscom_write(p->chip_id, |
| p->pe_stk_xscom + XPEC_NEST_STK_TUNNEL_BAR, addr); |
| return OPAL_SUCCESS; |
| } |
| if ((addr & ~mask)) |
| return OPAL_PARAMETER; |
| if (!(addr & mask)) |
| return OPAL_PARAMETER; |
| |
| xscom_write(p->chip_id, p->pe_stk_xscom + XPEC_NEST_STK_TUNNEL_BAR, |
| (addr & mask) << 8); |
| return OPAL_SUCCESS; |
| } |
| |
| static const struct phb_ops phb4_ops = { |
| .cfg_read8 = phb4_pcicfg_read8, |
| .cfg_read16 = phb4_pcicfg_read16, |
| .cfg_read32 = phb4_pcicfg_read32, |
| .cfg_write8 = phb4_pcicfg_write8, |
| .cfg_write16 = phb4_pcicfg_write16, |
| .cfg_write32 = phb4_pcicfg_write32, |
| .get_reserved_pe_number = phb4_get_reserved_pe_number, |
| .device_init = phb4_device_init, |
| .device_remove = NULL, |
| .ioda_reset = phb4_ioda_reset, |
| .papr_errinjct_reset = phb4_papr_errinjct_reset, |
| .pci_reinit = phb4_pci_reinit, |
| .set_phb_mem_window = phb4_set_phb_mem_window, |
| .phb_mmio_enable = phb4_phb_mmio_enable, |
| .map_pe_mmio_window = phb4_map_pe_mmio_window, |
| .map_pe_dma_window = phb4_map_pe_dma_window, |
| .map_pe_dma_window_real = phb4_map_pe_dma_window_real, |
| .set_option = phb4_set_option, |
| .get_option = phb4_get_option, |
| .set_xive_pe = phb4_set_ive_pe, |
| .get_msi_32 = phb4_get_msi_32, |
| .get_msi_64 = phb4_get_msi_64, |
| .set_pe = phb4_set_pe, |
| .set_peltv = phb4_set_peltv, |
| .eeh_freeze_status = phb4_eeh_freeze_status, |
| .eeh_freeze_clear = phb4_eeh_freeze_clear, |
| .eeh_freeze_set = phb4_eeh_freeze_set, |
| .next_error = phb4_eeh_next_error, |
| .err_inject = phb4_err_inject, |
| .get_diag_data2 = phb4_get_diag_data, |
| .tce_kill = phb4_tce_kill, |
| .set_capi_mode = phb4_set_capi_mode, |
| .set_p2p = phb4_set_p2p, |
| .set_capp_recovery = phb4_set_capp_recovery, |
| .get_tunnel_bar = phb4_get_tunnel_bar, |
| .set_tunnel_bar = phb4_set_tunnel_bar, |
| }; |
| |
| static void phb4_init_ioda3(struct phb4 *p) |
| { |
| if (is_phb5()) { |
| /* |
| * When ABT is on, the MSIs on the PHB use the PQ state bits |
| * of the IC and MSI triggers from the PHB are forwarded |
| * directly to the IC ESB page. However, the LSIs are still |
| * controlled locally on the PHB and LSI triggers use a |
| * special offset for trigger injection. |
| */ |
| if (phb_abt_mode(p)) { |
| uint64_t mmio_base = xive2_get_esb_base(p->base_msi); |
| |
| PHBDBG(p, "Using ABT mode. ESB: 0x%016llx\n", mmio_base); |
| |
| /* Init_18 - Interrupt Notify Base Address */ |
| out_be64(p->regs + PHB_INT_NOTIFY_ADDR, |
| PHB_INT_NOTIFY_ADDR_64K | mmio_base); |
| |
| /* Interrupt Notify Base Index is unused */ |
| } else { |
| p->irq_port = xive2_get_notify_port(p->chip_id, |
| XIVE_HW_SRC_PHBn(p->index)); |
| |
| PHBDBG(p, "Using IC notif page at 0x%016llx\n", |
| p->irq_port); |
| |
| /* Init_18 - Interrupt Notify Base Address */ |
| out_be64(p->regs + PHB_INT_NOTIFY_ADDR, p->irq_port); |
| |
| /* Init_19 - Interrupt Notify Base Index */ |
| out_be64(p->regs + PHB_INT_NOTIFY_INDEX, |
| xive2_get_notify_base(p->base_msi)); |
| } |
| |
| } else { /* p9 */ |
| p->irq_port = xive_get_notify_port(p->chip_id, |
| XIVE_HW_SRC_PHBn(p->index)); |
| /* Init_18 - Interrupt Notify Base Address */ |
| out_be64(p->regs + PHB_INT_NOTIFY_ADDR, p->irq_port); |
| |
| /* Init_19 - Interrupt Notify Base Index */ |
| out_be64(p->regs + PHB_INT_NOTIFY_INDEX, |
| xive_get_notify_base(p->base_msi)); |
| } |
| |
| /* Init_19x - Not in spec: Initialize source ID */ |
| PHBDBG(p, "Reset state SRC_ID: %016llx\n", |
| in_be64(p->regs + PHB_LSI_SOURCE_ID)); |
| out_be64(p->regs + PHB_LSI_SOURCE_ID, |
| SETFIELD(PHB_LSI_SRC_ID, 0ull, (p->num_irqs - 1) >> 3)); |
| |
| /* Init_20 - RTT BAR */ |
| out_be64(p->regs + PHB_RTT_BAR, (u64) p->tbl_rtt | PHB_RTT_BAR_ENABLE); |
| |
| /* Init_21 - PELT-V BAR */ |
| out_be64(p->regs + PHB_PELTV_BAR, |
| (u64) p->tbl_peltv | PHB_PELTV_BAR_ENABLE); |
| |
| /* Init_22 - Setup M32 starting address */ |
| out_be64(p->regs + PHB_M32_START_ADDR, M32_PCI_START); |
| |
| /* Init_23 - Setup PEST BAR */ |
| out_be64(p->regs + PHB_PEST_BAR, |
| (u64)p->tbl_pest | PHB_PEST_BAR_ENABLE); |
| |
| /* Init_24 - CRW Base Address Reg */ |
| /* See enable_capi_mode() */ |
| |
| if (is_phb4()) { |
| /* Init_25 - ASN Compare/Mask - P9 only */ |
| out_be64(p->regs + PHB_ASN_CMPM, ((u64)ASNIND << 48) | |
| ((u64)ASNMASK << 32) | PHB_ASN_CMPM_ENABLE); |
| } |
| |
| /* Init_26 - CAPI Compare/Mask */ |
| /* See enable_capi_mode() */ |
| /* if CAPP being disabled then reset CAPI Compare/Mask Register */ |
| if (p->flags & PHB4_CAPP_DISABLE) |
| out_be64(p->regs + PHB_CAPI_CMPM, 0); |
| |
| /* Init_27 - PCIE Outbound upper address */ |
| out_be64(p->regs + PHB_M64_UPPER_BITS, 0); |
| |
| /* Init_28 - PHB4 Configuration */ |
| out_be64(p->regs + PHB_PHB4_CONFIG, |
| PHB_PHB4C_32BIT_MSI_EN | |
| PHB_PHB4C_64BIT_MSI_EN); |
| |
| /* Init_29 - At least 256ns delay according to spec. Do a dummy |
| * read first to flush posted writes |
| */ |
| in_be64(p->regs + PHB_PHB4_CONFIG); |
| time_wait_us(2); |
| |
| /* Init_30..41 - On-chip IODA tables init */ |
| phb4_ioda_reset(&p->phb, false); |
| } |
| |
| /* phb4_init_rc - Initialize the Root Complex config space |
| */ |
| static bool phb4_init_rc_cfg(struct phb4 *p) |
| { |
| int64_t ecap, aercap; |
| |
| /* XXX Handle errors ? */ |
| |
| /* Init_46: |
| * |
| * Set primary bus to 0, secondary to 1 and subordinate to 0xff |
| */ |
| phb4_pcicfg_write32(&p->phb, 0, PCI_CFG_PRIMARY_BUS, 0x00ff0100); |
| |
| /* Init_47 - Clear errors */ |
| /* see phb4_rc_err_clear() called below */ |
| |
| /* Init_48 |
| * |
| * PCIE Device control/status, enable error reporting, disable relaxed |
| * ordering, set MPS to 128 (see note), clear errors. |
| * |
| * Note: The doc recommends to set MPS to 512. This has proved to have |
| * some issues as it requires specific clamping of MRSS on devices and |
| * we've found devices in the field that misbehave when doing that. |
| * |
| * We currently leave it all to 128 bytes (minimum setting) at init |
| * time. The generic PCIe probing later on might apply a different |
| * value, or the kernel will, but we play it safe at early init |
| */ |
| if (p->ecap <= 0) { |
| ecap = pci_find_cap(&p->phb, 0, PCI_CFG_CAP_ID_EXP); |
| if (ecap < 0) { |
| PHBERR(p, "Can't locate PCI-E capability\n"); |
| return false; |
| } |
| p->ecap = ecap; |
| } else { |
| ecap = p->ecap; |
| } |
| |
| phb4_pcicfg_write16(&p->phb, 0, ecap + PCICAP_EXP_DEVCTL, |
| PCICAP_EXP_DEVCTL_CE_REPORT | |
| PCICAP_EXP_DEVCTL_NFE_REPORT | |
| PCICAP_EXP_DEVCTL_FE_REPORT | |
| PCICAP_EXP_DEVCTL_UR_REPORT | |
| SETFIELD(PCICAP_EXP_DEVCTL_MPS, 0, PCIE_MPS_128B)); |
| |
| /* Init_49 - Device Control/Status 2 */ |
| phb4_pcicfg_write16(&p->phb, 0, ecap + PCICAP_EXP_DCTL2, |
| SETFIELD(PCICAP_EXP_DCTL2_CMPTOUT, 0, 0x5) | |
| PCICAP_EXP_DCTL2_ARI_FWD); |
| |
| /* Init_50..54 |
| * |
| * AER inits |
| */ |
| if (p->aercap <= 0) { |
| aercap = pci_find_ecap(&p->phb, 0, PCIECAP_ID_AER, NULL); |
| if (aercap < 0) { |
| PHBERR(p, "Can't locate AER capability\n"); |
| return false; |
| } |
| p->aercap = aercap; |
| } else { |
| aercap = p->aercap; |
| } |
| |
| /* Disable some error reporting as per the PHB4 spec */ |
| phb4_pcicfg_write32(&p->phb, 0, aercap + PCIECAP_AER_UE_MASK, |
| PCIECAP_AER_UE_POISON_TLP | |
| PCIECAP_AER_UE_COMPL_TIMEOUT | |
| PCIECAP_AER_UE_COMPL_ABORT); |
| |
| /* Enable ECRC generation & checking */ |
| phb4_pcicfg_write32(&p->phb, 0, aercap + PCIECAP_AER_CAPCTL, |
| PCIECAP_AER_CAPCTL_ECRCG_EN | |
| PCIECAP_AER_CAPCTL_ECRCC_EN); |
| |
| phb4_rc_err_clear(p); |
| |
| return true; |
| } |
| |
| static void phb4_init_errors(struct phb4 *p) |
| { |
| /* Init_55..63 - PBL errors */ |
| out_be64(p->regs + 0x1900, 0xffffffffffffffffull); |
| out_be64(p->regs + 0x1908, 0x0000000000000000ull); |
| out_be64(p->regs + 0x1920, 0x000000004d1780f8ull); |
| out_be64(p->regs + 0x1928, 0x0000000000000000ull); |
| out_be64(p->regs + 0x1930, 0xffffffffb2f87f07ull); |
| out_be64(p->regs + 0x1940, 0x0000000000000000ull); |
| out_be64(p->regs + 0x1948, 0x0000000000000000ull); |
| out_be64(p->regs + 0x1950, 0x0000000000000000ull); |
| out_be64(p->regs + 0x1958, 0x0000000000000000ull); |
| |
| /* Init_64..72 - REGB errors */ |
| out_be64(p->regs + 0x1c00, 0xffffffffffffffffull); |
| out_be64(p->regs + 0x1c08, 0x0000000000000000ull); |
| /* Enable/disable error status indicators that trigger irqs */ |
| if (p->has_link) { |
| out_be64(p->regs + 0x1c20, 0x2130006efca8bc00ull); |
| out_be64(p->regs + 0x1c30, 0xde1fff91035743ffull); |
| } else { |
| out_be64(p->regs + 0x1c20, 0x0000000000000000ull); |
| out_be64(p->regs + 0x1c30, 0x0000000000000000ull); |
| } |
| out_be64(p->regs + 0x1c28, 0x0080000000000000ull); |
| out_be64(p->regs + 0x1c40, 0x0000000000000000ull); |
| out_be64(p->regs + 0x1c48, 0x0000000000000000ull); |
| out_be64(p->regs + 0x1c50, 0x0000000000000000ull); |
| out_be64(p->regs + 0x1c58, 0x0040000000000000ull); |
| |
| /* Init_73..81 - TXE errors */ |
| out_be64(p->regs + 0x0d08, 0x0000000000000000ull); |
| |
| /* Errata: Clear bit 17, otherwise a CFG write UR/CA will incorrectly |
| * freeze a "random" PE (whatever last PE did an MMIO) |
| */ |
| if (is_phb5()) { |
| out_be64(p->regs + 0x0d28, 0x0000500a00000000ull); |
| out_be64(p->regs + 0x0d00, 0xffffffffffffffffull); |
| out_be64(p->regs + 0x0d18, 0xffffff0fffffffffull); |
| out_be64(p->regs + 0x0d30, 0xdff7af41f7ddffdfull); |
| } else { |
| out_be64(p->regs + 0x0d28, 0x0000000a00000000ull); |
| if (phb4_is_dd20(p)) { |
| out_be64(p->regs + 0x0d00, 0xf3acff0ff7ddfff0ull); |
| out_be64(p->regs + 0x0d18, 0xf3acff0ff7ddfff0ull); |
| out_be64(p->regs + 0x0d30, 0xdfffbd05f7ddfff0ull); /* XXX CAPI has diff. value */ |
| } else { |
| out_be64(p->regs + 0x0d00, 0xffffffffffffffffull); |
| out_be64(p->regs + 0x0d18, 0xffffff0fffffffffull); |
| out_be64(p->regs + 0x0d30, 0xdff7bd05f7ddfff0ull); |
| } |
| } |
| |
| out_be64(p->regs + 0x0d40, 0x0000000000000000ull); |
| out_be64(p->regs + 0x0d48, 0x0000000000000000ull); |
| out_be64(p->regs + 0x0d50, 0x0000000000000000ull); |
| out_be64(p->regs + 0x0d58, 0x0000000000000000ull); |
| |
| /* Init_82..90 - RXE_ARB errors */ |
| out_be64(p->regs + 0x0d80, 0xffffffffffffffffull); |
| out_be64(p->regs + 0x0d88, 0x0000000000000000ull); |
| out_be64(p->regs + 0x0d98, 0xfffffffffbffffffull); |
| out_be64(p->regs + 0x0da8, 0xc00018b801000060ull); |
| /* |
| * Errata ER20161123 says we should set the top two bits in |
| * 0x0db0 but this causes config space accesses which don't |
| * get a response to fence the PHB. This breaks probing, |
| * hence we don't set them here. |
| */ |
| out_be64(p->regs + 0x0db0, 0x3bffd703fa7fbf8full); /* XXX CAPI has diff. value */ |
| out_be64(p->regs + 0x0dc0, 0x0000000000000000ull); |
| out_be64(p->regs + 0x0dc8, 0x0000000000000000ull); |
| out_be64(p->regs + 0x0dd0, 0x0000000000000000ull); |
| out_be64(p->regs + 0x0dd8, 0x0000000004000000ull); |
| |
| /* Init_91..99 - RXE_MRG errors */ |
| out_be64(p->regs + 0x0e00, 0xffffffffffffffffull); |
| out_be64(p->regs + 0x0e08, 0x0000000000000000ull); |
| out_be64(p->regs + 0x0e18, 0xffffffffffffffffull); |
| out_be64(p->regs + 0x0e28, 0x0000600000000000ull); |
| out_be64(p->regs + 0x0e30, 0xfffffeffff7fff57ull); |
| out_be64(p->regs + 0x0e40, 0x0000000000000000ull); |
| out_be64(p->regs + 0x0e48, 0x0000000000000000ull); |
| out_be64(p->regs + 0x0e50, 0x0000000000000000ull); |
| out_be64(p->regs + 0x0e58, 0x0000000000000000ull); |
| |
| /* Init_100..108 - RXE_TCE errors */ |
| out_be64(p->regs + 0x0e80, 0xffffffffffffffffull); |
| out_be64(p->regs + 0x0e88, 0x0000000000000000ull); |
| out_be64(p->regs + 0x0e98, 0xffffffffffffffffull); |
| out_be64(p->regs + 0x0ea8, 0x60000000c0000000ull); |
| out_be64(p->regs + 0x0eb0, 0x9faeffaf3fffffffull); /* XXX CAPI has diff. value */ |
| out_be64(p->regs + 0x0ec0, 0x0000000000000000ull); |
| out_be64(p->regs + 0x0ec8, 0x0000000000000000ull); |
| out_be64(p->regs + 0x0ed0, 0x0000000000000000ull); |
| out_be64(p->regs + 0x0ed8, 0x0000000000000000ull); |
| |
| /* Init_109..117 - RXPHB errors */ |
| out_be64(p->regs + 0x0c80, 0xffffffffffffffffull); |
| out_be64(p->regs + 0x0c88, 0x0000000000000000ull); |
| out_be64(p->regs + 0x0c98, 0xffffffffffffffffull); |
| out_be64(p->regs + 0x0ca8, 0x0000004000000000ull); |
| out_be64(p->regs + 0x0cb0, 0x35777033ff000000ull); /* XXX CAPI has diff. value */ |
| out_be64(p->regs + 0x0cc0, 0x0000000000000000ull); |
| out_be64(p->regs + 0x0cc8, 0x0000000000000000ull); |
| out_be64(p->regs + 0x0cd0, 0x0000000000000000ull); |
| out_be64(p->regs + 0x0cd8, 0x0000000000000000ull); |
| |
| /* Init_118..121 - LEM */ |
| out_be64(p->regs + 0x0c00, 0x0000000000000000ull); |
| if (phb4_is_dd20(p)) { |
| out_be64(p->regs + 0x0c30, 0xf3ffffffffffffffull); |
| out_be64(p->regs + 0x0c38, 0xf3ffffffffffffffull); |
| } else { |
| out_be64(p->regs + 0x0c30, 0xffffffffffffffffull); |
| out_be64(p->regs + 0x0c38, 0xffffffffffffffffull); |
| } |
| out_be64(p->regs + 0x0c40, 0x0000000000000000ull); |
| } |
| |
| |
| static bool phb4_wait_dlp_reset(struct phb4 *p) |
| { |
| unsigned int i; |
| uint64_t val; |
| |
| /* |
| * Firmware cannot access the UTL core regs or PCI config space |
| * until the cores are out of DL_PGRESET. |
| * DL_PGRESET should be polled until it is inactive with a value |
| * of '0'. The recommended polling frequency is once every 1ms. |
| * Firmware should poll at least 200 attempts before giving up. |
| * MMIO Stores to the link are silently dropped by the UTL core if |
| * the link is down. |
| * MMIO Loads to the link will be dropped by the UTL core and will |
| * eventually time-out and will return an all ones response if the |
| * link is down. |
| */ |
| #define DLP_RESET_ATTEMPTS 200 |
| |
| PHBDBG(p, "Waiting for DLP PG reset to complete...\n"); |
| for (i = 0; i < DLP_RESET_ATTEMPTS; i++) { |
| val = in_be64(p->regs + PHB_PCIE_DLP_TRAIN_CTL); |
| if (!(val & PHB_PCIE_DLP_DL_PGRESET)) |
| break; |
| time_wait_ms(1); |
| } |
| if (val & PHB_PCIE_DLP_DL_PGRESET) { |
| PHBERR(p, "Timeout waiting for DLP PG reset !\n"); |
| return false; |
| } |
| return true; |
| } |
| static void phb4_init_hw(struct phb4 *p) |
| { |
| uint64_t val, creset; |
| |
| PHBDBG(p, "Initializing PHB...\n"); |
| |
| /* Init_1 - Sync reset |
| * |
| * At this point we assume the PHB has already been reset. |
| */ |
| |
| /* Init_2 - Mask FIRs */ |
| out_be64(p->regs + PHB_LEM_ERROR_MASK, 0xffffffffffffffffull); |
| |
| /* Init_3 - TCE tag enable */ |
| out_be64(p->regs + PHB_TCE_TAG_ENABLE, 0xffffffffffffffffull); |
| |
| /* Init_4 - PCIE System Configuration Register |
| * |
| * Adjust max speed based on system config |
| */ |
| val = in_be64(p->regs + PHB_PCIE_SCR); |
| PHBDBG(p, "Default system config: 0x%016llx\n", val); |
| val = SETFIELD(PHB_PCIE_SCR_MAXLINKSPEED, val, p->max_link_speed); |
| out_be64(p->regs + PHB_PCIE_SCR, val); |
| PHBDBG(p, "New system config : 0x%016llx\n", |
| in_be64(p->regs + PHB_PCIE_SCR)); |
| |
| /* Init_5 - deassert CFG reset */ |
| creset = in_be64(p->regs + PHB_PCIE_CRESET); |
| PHBDBG(p, "Initial PHB CRESET is 0x%016llx\n", creset); |
| creset &= ~PHB_PCIE_CRESET_CFG_CORE; |
| out_be64(p->regs + PHB_PCIE_CRESET, creset); |
| |
| /* Init_6..13 - PCIE DLP Lane EQ control */ |
| if (p->lane_eq) { |
| out_be64(p->regs + PHB_PCIE_LANE_EQ_CNTL0, be64_to_cpu(p->lane_eq[0])); |
| out_be64(p->regs + PHB_PCIE_LANE_EQ_CNTL1, be64_to_cpu(p->lane_eq[1])); |
| out_be64(p->regs + PHB_PCIE_LANE_EQ_CNTL2, be64_to_cpu(p->lane_eq[2])); |
| out_be64(p->regs + PHB_PCIE_LANE_EQ_CNTL3, be64_to_cpu(p->lane_eq[3])); |
| out_be64(p->regs + PHB_PCIE_LANE_EQ_CNTL40, be64_to_cpu(p->lane_eq[4])); |
| out_be64(p->regs + PHB_PCIE_LANE_EQ_CNTL41, be64_to_cpu(p->lane_eq[5])); |
| if (is_phb5()) { |
| out_be64(p->regs + PHB_PCIE_LANE_EQ_CNTL50, be64_to_cpu(p->lane_eq[6])); |
| out_be64(p->regs + PHB_PCIE_LANE_EQ_CNTL51, be64_to_cpu(p->lane_eq[7])); |
| } |
| } |
| if (!p->lane_eq_en) { |
| /* Read modify write and set to 2 bits */ |
| PHBDBG(p, "LINK: Disabling Lane EQ\n"); |
| val = in_be64(p->regs + PHB_PCIE_DLP_CTL); |
| val |= PHB_PCIE_DLP_CTL_BYPASS_PH2 | PHB_PCIE_DLP_CTL_BYPASS_PH3; |
| out_be64(p->regs + PHB_PCIE_DLP_CTL, val); |
| } |
| |
| if (is_phb5()) { |
| /* disable scaled flow control for now. SW527785 */ |
| PHBDBG(p, "LINK: Disabling scaled flow control\n"); |
| val = in_be64(p->regs + PHB_PCIE_DLP_CTL); |
| val |= PHB_PCIE_DLP_CTL_SFC_DISABLE; |
| out_be64(p->regs + PHB_PCIE_DLP_CTL, val); |
| |
| /* lane equalization settings need to be tuned on P10 */ |
| out_be64(p->regs + PHB_PCIE_PDL_PHY_EQ_CNTL, |
| 0x80F4FFFFFF0F9C00); |
| } |
| |
| /* Init_14 - Clear link training */ |
| phb4_pcicfg_write32(&p->phb, 0, 0x78, |
| 0x07FE0000 | p->max_link_speed); |
| |
| /* Init_15 - deassert cores reset */ |
| /* |
| * Lift the PHB resets but not PERST, this will be lifted |
| * later by the initial PERST state machine |
| */ |
| creset &= ~(PHB_PCIE_CRESET_TLDLP | PHB_PCIE_CRESET_PBL); |
| creset |= PHB_PCIE_CRESET_PIPE_N; |
| out_be64(p->regs + PHB_PCIE_CRESET, creset); |
| |
| /* Init_16 - Wait for DLP PGRESET to clear */ |
| if (!phb4_wait_dlp_reset(p)) |
| goto failed; |
| |
| /* Init_17 - PHB Control */ |
| val = PHB_CTRLR_IRQ_PGSZ_64K; |
| val |= PHB_CTRLR_TCE_CLB_DISABLE; // HW557787 circumvention |
| val |= SETFIELD(PHB_CTRLR_TVT_ADDR_SEL, 0ull, TVT_2_PER_PE); |
| if (phb_pq_disable(p)) |
| val |= PHB_CTRLR_IRQ_PQ_DISABLE; |
| if (phb_abt_mode(p)) |
| val |= PHB_CTRLR_IRQ_ABT_MODE; |
| if (phb_can_store_eoi(p)) { |
| val |= PHB_CTRLR_IRQ_STORE_EOI; |
| PHBDBG(p, "store EOI is enabled\n"); |
| } |
| |
| if (!pci_eeh_mmio) |
| val |= PHB_CTRLR_MMIO_EEH_DISABLE; |
| |
| out_be64(p->regs + PHB_CTRLR, val); |
| |
| /* Init_18..41 - Architected IODA3 inits */ |
| phb4_init_ioda3(p); |
| |
| /* Init_42..45 - Clear DLP error logs */ |
| out_be64(p->regs + 0x1aa0, 0xffffffffffffffffull); |
| out_be64(p->regs + 0x1aa8, 0xffffffffffffffffull); |
| out_be64(p->regs + 0x1ab0, 0xffffffffffffffffull); |
| out_be64(p->regs + 0x1ab8, 0x0); |
| |
| |
| /* Init_46..54 : Init root complex config space */ |
| if (!phb4_init_rc_cfg(p)) |
| goto failed; |
| |
| /* Init_55..121 : Setup error registers */ |
| phb4_init_errors(p); |
| |
| /* Init_122..123 : Wait for link |
| * NOTE: At this point the spec waits for the link to come up. We |
| * don't bother as we are doing a PERST soon. |
| */ |
| |
| /* Init_124 : NBW. XXX TODO */ |
| /* See enable_capi_mode() */ |
| |
| /* Init_125 : Setup PCI command/status on root complex |
| * I don't know why the spec does this now and not earlier, so |
| * to be sure to get it right we might want to move it to the freset |
| * state machine, though the generic PCI layer will probably do |
| * this anyway (ie, enable MEM, etc... in the RC) |
| |
| */ |
| phb4_pcicfg_write16(&p->phb, 0, PCI_CFG_CMD, |
| PCI_CFG_CMD_MEM_EN | |
| PCI_CFG_CMD_BUS_MASTER_EN); |
| |
| /* Clear errors */ |
| phb4_pcicfg_write16(&p->phb, 0, PCI_CFG_STAT, |
| PCI_CFG_STAT_SENT_TABORT | |
| PCI_CFG_STAT_RECV_TABORT | |
| PCI_CFG_STAT_RECV_MABORT | |
| PCI_CFG_STAT_SENT_SERR | |
| PCI_CFG_STAT_RECV_PERR); |
| |
| /* Init_126..130 - Re-enable error interrupts */ |
| phb4_int_unmask_all(p); |
| |
| /* Init_131 - Re-enable LEM error mask */ |
| out_be64(p->regs + PHB_LEM_ERROR_MASK, 0x0000000000000000ull); |
| |
| |
| /* Init_132 - Enable DMA address speculation */ |
| out_be64(p->regs + PHB_TCE_SPEC_CTL, 0x0000000000000000ull); |
| |
| /* Init_133 - Timeout Control Register 1 */ |
| out_be64(p->regs + PHB_TIMEOUT_CTRL1, 0x0015150000150000ull); |
| |
| /* Init_134 - Timeout Control Register 2 */ |
| out_be64(p->regs + PHB_TIMEOUT_CTRL2, 0x0000151500000000ull); |
| |
| /* Init_135 - PBL Timeout Control Register */ |
| out_be64(p->regs + PHB_PBL_TIMEOUT_CTRL, 0x2013000000000000ull); |
| |
| /* Mark the PHB as functional which enables all the various sequences */ |
| p->broken = false; |
| |
| PHBDBG(p, "Initialization complete\n"); |
| |
| return; |
| |
| failed: |
| PHBERR(p, "Initialization failed\n"); |
| p->broken = true; |
| } |
| |
| /* FIXME: Use scoms rather than MMIO incase we are fenced */ |
| static bool phb4_read_capabilities(struct phb4 *p) |
| { |
| uint64_t val; |
| |
| /* XXX Should make sure ETU is out of reset ! */ |
| |
| /* Grab version and fit it in an int */ |
| val = phb4_read_reg_asb(p, PHB_VERSION); |
| if (val == 0 || val == 0xffffffffffffffffUL) { |
| PHBERR(p, "Failed to read version, PHB appears broken\n"); |
| return false; |
| } |
| |
| p->rev = ((val >> 16) & 0x00ff0000) | (val & 0xffff); |
| PHBDBG(p, "Core revision 0x%x\n", p->rev); |
| |
| /* Read EEH capabilities */ |
| val = in_be64(p->regs + PHB_PHB4_EEH_CAP); |
| if (val == 0xffffffffffffffffUL) { |
| PHBERR(p, "Failed to read EEH cap, PHB appears broken\n"); |
| return false; |
| } |
| p->max_num_pes = val >> 52; |
| if (p->max_num_pes >= 512) { |
| p->mrt_size = 16; |
| p->mbt_size = 32; |
| p->tvt_size = 1024; |
| } else { |
| p->mrt_size = 8; |
| p->mbt_size = 16; |
| p->tvt_size = 512; |
| } |
| |
| val = in_be64(p->regs + PHB_PHB4_IRQ_CAP); |
| if (val == 0xffffffffffffffffUL) { |
| PHBERR(p, "Failed to read IRQ cap, PHB appears broken\n"); |
| return false; |
| } |
| p->num_irqs = val & 0xffff; |
| |
| /* This works for 512 PEs. FIXME calculate for any hardware |
| * size returned above |
| */ |
| p->tbl_peltv_size = PELTV_TABLE_SIZE_MAX; |
| |
| p->tbl_pest_size = p->max_num_pes*16; |
| |
| PHBDBG(p, "Found %d max PEs and %d IRQs \n", |
| p->max_num_pes, p->num_irqs); |
| |
| return true; |
| } |
| |
| static void phb4_allocate_tables(struct phb4 *p) |
| { |
| uint32_t i; |
| |
| /* XXX Our current memalign implementation sucks, |
| * |
| * It will do the job, however it doesn't support freeing |
| * the memory and wastes space by always allocating twice |
| * as much as requested (size + alignment) |
| */ |
| p->tbl_rtt = local_alloc(p->chip_id, RTT_TABLE_SIZE, RTT_TABLE_SIZE); |
| assert(p->tbl_rtt); |
| for (i = 0; i < RTT_TABLE_ENTRIES; i++) |
| p->tbl_rtt[i] = cpu_to_be16(PHB4_RESERVED_PE_NUM(p)); |
| |
| p->tbl_peltv = local_alloc(p->chip_id, p->tbl_peltv_size, p->tbl_peltv_size); |
| assert(p->tbl_peltv); |
| memset(p->tbl_peltv, 0, p->tbl_peltv_size); |
| |
| p->tbl_pest = local_alloc(p->chip_id, p->tbl_pest_size, p->tbl_pest_size); |
| assert(p->tbl_pest); |
| memset(p->tbl_pest, 0, p->tbl_pest_size); |
| } |
| |
| static void phb4_add_properties(struct phb4 *p) |
| { |
| struct dt_node *np = p->phb.dt_node; |
| uint32_t lsibase, icsp = get_ics_phandle(); |
| uint64_t m32b, m64b, m64s; |
| |
| /* Add various properties that HB doesn't have to |
| * add, some of them simply because they result from |
| * policy decisions made in skiboot rather than in HB |
| * such as the MMIO windows going to PCI, interrupts, |
| * etc... |
| */ |
| dt_add_property_cells(np, "#address-cells", 3); |
| dt_add_property_cells(np, "#size-cells", 2); |
| dt_add_property_cells(np, "#interrupt-cells", 1); |
| dt_add_property_cells(np, "bus-range", 0, 0xff); |
| dt_add_property_cells(np, "clock-frequency", 0x200, 0); /* ??? */ |
| |
| dt_add_property_cells(np, "interrupt-parent", icsp); |
| |
| /* XXX FIXME: add slot-name */ |
| //dt_property_cell("bus-width", 8); /* Figure it out from VPD ? */ |
| |
| /* "ranges", we only expose M32 (PHB4 doesn't do IO) |
| * |
| * Note: The kernel expects us to have chopped of 64k from the |
| * M32 size (for the 32-bit MSIs). If we don't do that, it will |
| * get confused (OPAL does it) |
| */ |
| m32b = cleanup_addr(p->mm1_base); |
| m64b = cleanup_addr(p->mm0_base); |
| m64s = p->mm0_size; |
| dt_add_property_cells(np, "ranges", |
| /* M32 space */ |
| 0x02000000, 0x00000000, M32_PCI_START, |
| hi32(m32b), lo32(m32b), 0, M32_PCI_SIZE - 0x10000); |
| |
| /* XXX FIXME: add opal-memwin32, dmawins, etc... */ |
| dt_add_property_u64s(np, "ibm,opal-m64-window", m64b, m64b, m64s); |
| dt_add_property(np, "ibm,opal-single-pe", NULL, 0); |
| dt_add_property_cells(np, "ibm,opal-num-pes", p->num_pes); |
| dt_add_property_cells(np, "ibm,opal-reserved-pe", |
| PHB4_RESERVED_PE_NUM(p)); |
| dt_add_property_cells(np, "ibm,opal-msi-ranges", |
| p->base_msi, p->num_irqs - 8); |
| /* M64 ranges start at 1 as MBT0 is used for M32 */ |
| dt_add_property_cells(np, "ibm,opal-available-m64-ranges", |
| 1, p->mbt_size - 1); |
| dt_add_property_cells(np, "ibm,supported-tce-sizes", |
| 12, // 4K |
| 16, // 64K |
| 21, // 2M |
| 30); // 1G |
| |
| /* Tell Linux about alignment limits for segment splits. |
| * |
| * XXX We currently only expose splits of 1 and "num PEs", |
| */ |
| dt_add_property_cells(np, "ibm,opal-m64-segment-splits", |
| /* Full split, number of segments: */ |
| p->num_pes, |
| /* Encoding passed to the enable call */ |
| OPAL_ENABLE_M64_SPLIT, |
| /* Alignement/size restriction in #bits*/ |
| /* XXX VERIFY VALUE */ |
| 12, |
| /* Unused */ |
| 0, |
| /* single PE, number of segments: */ |
| 1, |
| /* Encoding passed to the enable call */ |
| OPAL_ENABLE_M64_NON_SPLIT, |
| /* Alignement/size restriction in #bits*/ |
| /* XXX VERIFY VALUE */ |
| 12, |
| /* Unused */ |
| 0); |
| |
| /* The interrupt maps will be generated in the RC node by the |
| * PCI code based on the content of this structure: |
| */ |
| lsibase = p->base_lsi; |
| p->phb.lstate.int_size = 2; |
| p->phb.lstate.int_val[0][0] = lsibase + PHB4_LSI_PCIE_INTA; |
| p->phb.lstate.int_val[0][1] = 1; |
| p->phb.lstate.int_val[1][0] = lsibase + PHB4_LSI_PCIE_INTB; |
| p->phb.lstate.int_val[1][1] = 1; |
| p->phb.lstate.int_val[2][0] = lsibase + PHB4_LSI_PCIE_INTC; |
| p->phb.lstate.int_val[2][1] = 1; |
| p->phb.lstate.int_val[3][0] = lsibase + PHB4_LSI_PCIE_INTD; |
| p->phb.lstate.int_val[3][1] = 1; |
| p->phb.lstate.int_parent[0] = icsp; |
| p->phb.lstate.int_parent[1] = icsp; |
| p->phb.lstate.int_parent[2] = icsp; |
| p->phb.lstate.int_parent[3] = icsp; |
| |
| /* Indicators for variable tables */ |
| dt_add_property_cells(np, "ibm,opal-rtt-table", |
| hi32((u64) p->tbl_rtt), lo32((u64) p->tbl_rtt), RTT_TABLE_SIZE); |
| |
| dt_add_property_cells(np, "ibm,opal-peltv-table", |
| hi32((u64) p->tbl_peltv), lo32((u64) p->tbl_peltv), |
| p->tbl_peltv_size); |
| |
| dt_add_property_cells(np, "ibm,opal-pest-table", |
| hi32((u64)p->tbl_pest), lo32((u64)p->tbl_pest), p->tbl_pest_size); |
| |
| dt_add_property_cells(np, "ibm,phb-diag-data-size", |
| sizeof(struct OpalIoPhb4ErrorData)); |
| |
| if (is_phb4()) { |
| /* Indicate to Linux that CAPP timebase sync is supported */ |
| dt_add_property_string(np, "ibm,capp-timebase-sync", NULL); |
| |
| /* Tell Linux Compare/Mask indication values */ |
| dt_add_property_cells(np, "ibm,phb-indications", CAPIIND, ASNIND, |
| NBWIND); |
| } |
| } |
| |
| static bool phb4_calculate_windows(struct phb4 *p) |
| { |
| const struct dt_property *prop; |
| |
| /* Get PBCQ MMIO windows from device-tree */ |
| prop = dt_require_property(p->phb.dt_node, |
| "ibm,mmio-windows", -1); |
| assert(prop->len >= (2 * sizeof(uint64_t))); |
| |
| p->mm0_base = dt_property_get_u64(prop, 0); |
| p->mm0_size = dt_property_get_u64(prop, 1); |
| if (prop->len > 16) { |
| p->mm1_base = dt_property_get_u64(prop, 2); |
| p->mm1_size = dt_property_get_u64(prop, 3); |
| } |
| |
| /* Sort them so that 0 is big and 1 is small */ |
| if (p->mm1_size && p->mm1_size > p->mm0_size) { |
| uint64_t b = p->mm0_base; |
| uint64_t s = p->mm0_size; |
| p->mm0_base = p->mm1_base; |
| p->mm0_size = p->mm1_size; |
| p->mm1_base = b; |
| p->mm1_size = s; |
| } |
| |
| /* If 1 is too small, ditch it */ |
| if (p->mm1_size < M32_PCI_SIZE) |
| p->mm1_size = 0; |
| |
| /* If 1 doesn't exist, carve it out of 0 */ |
| if (p->mm1_size == 0) { |
| p->mm0_size /= 2; |
| p->mm1_base = p->mm0_base + p->mm0_size; |
| p->mm1_size = p->mm0_size; |
| } |
| |
| /* Crop mm1 to our desired size */ |
| if (p->mm1_size > M32_PCI_SIZE) |
| p->mm1_size = M32_PCI_SIZE; |
| |
| return true; |
| } |
| |
| static void phb4_err_interrupt(struct irq_source *is, uint32_t isn) |
| { |
| struct phb4 *p = is->data; |
| |
| PHBDBG(p, "Got interrupt 0x%08x\n", isn); |
| |
| /* mask the interrupt conditions to prevent it from re-firing */ |
| phb4_int_mask_active(p); |
| |
| /* Update pending event */ |
| opal_update_pending_evt(OPAL_EVENT_PCI_ERROR, |
| OPAL_EVENT_PCI_ERROR); |
| |
| /* If the PHB is broken, go away */ |
| if (p->broken) |
| return; |
| |
| /* |
| * Mark the PHB has pending error so that the OS |
| * can handle it at late point. |
| */ |
| phb4_set_err_pending(p, true); |
| } |
| |
| static uint64_t phb4_lsi_attributes(struct irq_source *is __unused, |
| uint32_t isn __unused) |
| { |
| #ifndef DISABLE_ERR_INTS |
| struct phb4 *p = is->data; |
| uint32_t idx = isn - p->base_lsi; |
| |
| if (idx == PHB4_LSI_PCIE_INF || idx == PHB4_LSI_PCIE_ER) |
| return IRQ_ATTR_TARGET_OPAL | IRQ_ATTR_TARGET_RARE | IRQ_ATTR_TYPE_LSI; |
| #endif |
| return IRQ_ATTR_TARGET_LINUX; |
| } |
| |
| static char *phb4_lsi_name(struct irq_source *is, uint32_t isn) |
| { |
| struct phb4 *p = is->data; |
| uint32_t idx = isn - p->base_lsi; |
| char buf[32]; |
| |
| if (idx == PHB4_LSI_PCIE_INF) |
| snprintf(buf, 32, "phb#%04x-inf", p->phb.opal_id); |
| else if (idx == PHB4_LSI_PCIE_ER) |
| snprintf(buf, 32, "phb#%04x-err", p->phb.opal_id); |
| else |
| assert(0); /* PCIe LSIs should never be directed to OPAL */ |
| |
| return strdup(buf); |
| } |
| |
| static const struct irq_source_ops phb4_lsi_ops = { |
| .interrupt = phb4_err_interrupt, |
| .attributes = phb4_lsi_attributes, |
| .name = phb4_lsi_name, |
| }; |
| |
| static __be64 lane_eq_default[8] = { |
| CPU_TO_BE64(0x5454545454545454UL), CPU_TO_BE64(0x5454545454545454UL), |
| CPU_TO_BE64(0x5454545454545454UL), CPU_TO_BE64(0x5454545454545454UL), |
| CPU_TO_BE64(0x7777777777777777UL), CPU_TO_BE64(0x7777777777777777UL), |
| CPU_TO_BE64(0x7777777777777777UL), CPU_TO_BE64(0x7777777777777777UL), |
| }; |
| |
| static __be64 lane_eq_phb5_default[8] = { |
| CPU_TO_BE64(0x4444444444444444UL), CPU_TO_BE64(0x4444444444444444UL), |
| CPU_TO_BE64(0x4444444444444444UL), CPU_TO_BE64(0x4444444444444444UL), |
| CPU_TO_BE64(0x4444444444444444UL), CPU_TO_BE64(0x4444444444444444UL), |
| CPU_TO_BE64(0x9999999999999999UL), CPU_TO_BE64(0x9999999999999999UL), |
| }; |
| |
| static void phb4_create(struct dt_node *np) |
| { |
| const struct dt_property *prop; |
| struct phb4 *p; |
| struct pci_slot *slot; |
| size_t lane_eq_len, lane_eq_len_req; |
| struct dt_node *iplp; |
| char *path; |
| uint32_t irq_base, irq_flags; |
| int i, eq_reg_count; |
| int chip_id; |
| |
| chip_id = dt_prop_get_u32(np, "ibm,chip-id"); |
| p = local_alloc(chip_id, sizeof(struct phb4), 8); |
| assert(p); |
| memset(p, 0x0, sizeof(struct phb4)); |
| |
| /* Populate base stuff */ |
| p->index = dt_prop_get_u32(np, "ibm,phb-index"); |
| p->chip_id = chip_id; |
| p->pec = dt_prop_get_u32(np, "ibm,phb-pec-index"); |
| p->regs = (void *)dt_get_address(np, 0, NULL); |
| p->int_mmio = (void *)dt_get_address(np, 1, NULL); |
| p->phb.dt_node = np; |
| p->phb.ops = &phb4_ops; |
| p->phb.phb_type = phb_type_pcie_v4; |
| p->phb.scan_map = 0x1; /* Only device 0 to scan */ |
| |
| if (!phb4_calculate_windows(p)) |
| return; |
| |
| /* Get the various XSCOM register bases from the device-tree */ |
| prop = dt_require_property(np, "ibm,xscom-bases", 5 * sizeof(uint32_t)); |
| p->pe_xscom = dt_property_get_cell(prop, 0); |
| p->pe_stk_xscom = dt_property_get_cell(prop, 1); |
| p->pci_xscom = dt_property_get_cell(prop, 2); |
| p->pci_stk_xscom = dt_property_get_cell(prop, 3); |
| p->etu_xscom = dt_property_get_cell(prop, 4); |
| |
| /* |
| * We skip the initial PERST assertion requested by the generic code |
| * when doing a cold boot because we are coming out of cold boot already |
| * so we save boot time that way. The PERST state machine will still |
| * handle waiting for the link to come up, it will just avoid actually |
| * asserting & deasserting the PERST output |
| * |
| * For a hot IPL, we still do a PERST |
| * |
| * Note: In absence of property (ie, FSP-less), we stick to the old |
| * behaviour and set skip_perst to true |
| */ |
| p->skip_perst = true; /* Default */ |
| |
| iplp = dt_find_by_path(dt_root, "ipl-params/ipl-params"); |
| if (iplp) { |
| const char *ipl_type = dt_prop_get_def(iplp, "cec-major-type", NULL); |
| if (ipl_type && (!strcmp(ipl_type, "hot"))) |
| p->skip_perst = false; |
| } |
| |
| /* By default link is assumed down */ |
| p->has_link = false; |
| |
| /* We register the PHB before we initialize it so we |
| * get a useful OPAL ID for it |
| */ |
| pci_register_phb(&p->phb, phb4_get_opal_id(p->chip_id, p->index)); |
| |
| /* Create slot structure */ |
| slot = phb4_slot_create(&p->phb); |
| if (!slot) |
| PHBERR(p, "Cannot create PHB slot\n"); |
| |
| /* Hello ! */ |
| path = dt_get_path(np); |
| PHBINF(p, "Found %s @%p\n", path, p->regs); |
| PHBINF(p, " M32 [0x%016llx..0x%016llx]\n", |
| p->mm1_base, p->mm1_base + p->mm1_size - 1); |
| PHBINF(p, " M64 [0x%016llx..0x%016llx]\n", |
| p->mm0_base, p->mm0_base + p->mm0_size - 1); |
| free(path); |
| |
| /* Find base location code from root node */ |
| p->phb.base_loc_code = dt_prop_get_def(dt_root, |
| "ibm,io-base-loc-code", NULL); |
| if (!p->phb.base_loc_code) |
| PHBDBG(p, "Base location code not found !\n"); |
| |
| /* |
| * Grab CEC IO VPD load info from the root of the device-tree, |
| * on P8 there's a single such VPD for the whole machine |
| */ |
| prop = dt_find_property(dt_root, "ibm,io-vpd"); |
| if (!prop) { |
| /* LX VPD Lid not already loaded */ |
| if (platform.vpd_iohub_load) |
| platform.vpd_iohub_load(dt_root); |
| } |
| |
| /* Obtain informatin about the PHB from the hardware directly */ |
| if (!phb4_read_capabilities(p)) |
| goto failed; |
| |
| p->max_link_speed = phb4_get_max_link_speed(p, np); |
| p->max_link_width = phb4_get_max_link_width(p); |
| PHBINF(p, "Max link speed: GEN%i, max link width %i\n", |
| p->max_link_speed, p->max_link_width); |
| |
| /* Check for lane equalization values from HB or HDAT */ |
| p->lane_eq_en = true; |
| p->lane_eq = dt_prop_get_def_size(np, "ibm,lane-eq", NULL, &lane_eq_len); |
| if (is_phb5()) |
| eq_reg_count = 8; |
| else |
| eq_reg_count = 6; |
| lane_eq_len_req = eq_reg_count * 8; |
| if (p->lane_eq) { |
| if (lane_eq_len < lane_eq_len_req) { |
| PHBERR(p, "Device-tree has ibm,lane-eq too short: %ld" |
| " (want %ld)\n", lane_eq_len, lane_eq_len_req); |
| p->lane_eq = NULL; |
| } |
| } else { |
| PHBDBG(p, "Using default lane equalization settings\n"); |
| if (is_phb5()) |
| p->lane_eq = lane_eq_phb5_default; |
| else |
| p->lane_eq = lane_eq_default; |
| } |
| if (p->lane_eq) { |
| PHBDBG(p, "Override lane equalization settings:\n"); |
| for (i = 0 ; i < lane_eq_len_req/(8 * 2) ; i++) |
| PHBDBG(p, " 0x%016llx 0x%016llx\n", |
| be64_to_cpu(p->lane_eq[2 * i]), |
| be64_to_cpu(p->lane_eq[2 * i + 1])); |
| } |
| |
| /* Allocate a block of interrupts. We need to know if it needs |
| * 2K or 4K interrupts ... for now we just use 4K but that |
| * needs to be fixed |
| */ |
| if (is_phb5()) |
| irq_base = xive2_alloc_hw_irqs(p->chip_id, p->num_irqs, p->num_irqs); |
| else |
| irq_base = xive_alloc_hw_irqs(p->chip_id, p->num_irqs, p->num_irqs); |
| if (irq_base == XIVE_IRQ_ERROR) { |
| PHBERR(p, "Failed to allocate %d interrupt sources\n", |
| p->num_irqs); |
| goto failed; |
| } |
| p->base_msi = irq_base; |
| p->base_lsi = irq_base + p->num_irqs - 8; |
| p->num_pes = p->max_num_pes; |
| |
| /* Allocate the SkiBoot internal in-memory tables for the PHB */ |
| phb4_allocate_tables(p); |
| |
| phb4_add_properties(p); |
| |
| /* Clear IODA3 cache */ |
| phb4_init_ioda_cache(p); |
| |
| /* Get the HW up and running */ |
| phb4_init_hw(p); |
| |
| /* init capp that might get attached to the phb */ |
| if (is_phb4()) |
| phb4_init_capp(p); |
| |
| /* Compute XIVE source flags depending on PHB revision */ |
| irq_flags = 0; |
| if (phb_can_store_eoi(p)) |
| irq_flags |= XIVE_SRC_STORE_EOI; |
| else |
| irq_flags |= XIVE_SRC_TRIGGER_PAGE; |
| |
| if (is_phb5()) { |
| /* |
| * Register sources with XIVE. If offloading is on, use the |
| * ESB pages of the XIVE IC for the MSI sources instead of the |
| * ESB pages of the PHB. |
| */ |
| if (phb_pq_disable(p) || phb_abt_mode(p)) { |
| xive2_register_esb_source(p->base_msi, p->num_irqs - 8); |
| } else { |
| xive2_register_hw_source(p->base_msi, |
| p->num_irqs - 8, 16, |
| p->int_mmio, irq_flags, |
| NULL, NULL); |
| } |
| |
| /* |
| * LSI sources always use the ESB pages of the PHB. |
| */ |
| xive2_register_hw_source(p->base_lsi, 8, 16, |
| p->int_mmio + ((p->num_irqs - 8) << 16), |
| XIVE_SRC_LSI | irq_flags, p, &phb4_lsi_ops); |
| } else { |
| /* Register all interrupt sources with XIVE */ |
| xive_register_hw_source(p->base_msi, p->num_irqs - 8, 16, |
| p->int_mmio, irq_flags, NULL, NULL); |
| |
| xive_register_hw_source(p->base_lsi, 8, 16, |
| p->int_mmio + ((p->num_irqs - 8) << 16), |
| XIVE_SRC_LSI, p, &phb4_lsi_ops); |
| } |
| |
| /* Platform additional setup */ |
| if (platform.pci_setup_phb) |
| platform.pci_setup_phb(&p->phb, p->index); |
| |
| dt_add_property_string(np, "status", "okay"); |
| |
| return; |
| |
| failed: |
| p->broken = true; |
| |
| /* Tell Linux it's broken */ |
| dt_add_property_string(np, "status", "error"); |
| } |
| |
| static void phb4_probe_stack(struct dt_node *stk_node, uint32_t pec_index, |
| uint32_t nest_base, uint32_t pci_base) |
| { |
| enum phys_map_type phys_mmio64, phys_mmio32, phys_xive_esb, phys_reg_spc; |
| uint32_t pci_stack, nest_stack, etu_base, gcid, phb_num, stk_index; |
| uint64_t val, phb_bar = 0, irq_bar = 0, bar_en; |
| uint64_t mmio0_bar = 0, mmio0_bmask, mmio0_sz; |
| uint64_t mmio1_bar = 0, mmio1_bmask, mmio1_sz; |
| void *foo; |
| __be64 mmio_win[4]; |
| unsigned int mmio_win_sz; |
| struct dt_node *np; |
| char *path; |
| uint64_t capp_ucode_base; |
| unsigned int max_link_speed; |
| int rc; |
| |
| assert(is_phb5() || is_phb4()); /* Sanity check */ |
| |
| gcid = dt_get_chip_id(stk_node); |
| stk_index = dt_prop_get_u32(stk_node, "reg"); |
| phb_num = dt_prop_get_u32(stk_node, "ibm,phb-index"); |
| path = dt_get_path(stk_node); |
| if (is_phb5()) { |
| phys_mmio64 = PHB5_64BIT_MMIO; |
| phys_mmio32 = PHB5_32BIT_MMIO; |
| phys_xive_esb = PHB5_XIVE_ESB; |
| phys_reg_spc = PHB5_REG_SPC; |
| prlog(PR_INFO, "PHB: Chip %d Found PHB5 PBCQ%d Stack %d at %s\n", |
| gcid, pec_index, stk_index, path); |
| } else { |
| phys_mmio64 = PHB4_64BIT_MMIO; |
| phys_mmio32 = PHB4_32BIT_MMIO; |
| phys_xive_esb = PHB4_XIVE_ESB; |
| phys_reg_spc = PHB4_REG_SPC; |
| prlog(PR_INFO, "PHB: Chip %d Found PHB4 PBCQ%d Stack %d at %s\n", |
| gcid, pec_index, stk_index, path); |
| } |
| free(path); |
| |
| pci_stack = pci_base + 0x40 * (stk_index + 1); |
| nest_stack = nest_base + 0x40 * (stk_index + 1); |
| etu_base = pci_base + 0x100 + 0x40 * stk_index; |
| |
| prlog(PR_DEBUG, "PHB[%d:%d] X[PE]=0x%08x/0x%08x X[PCI]=0x%08x/0x%08x X[ETU]=0x%08x\n", |
| gcid, phb_num, nest_base, nest_stack, pci_base, pci_stack, etu_base); |
| |
| /* Default BAR enables */ |
| bar_en = 0; |
| |
| /* Initialize PHB register BAR */ |
| phys_map_get(gcid, phys_reg_spc, phb_num, &phb_bar, NULL); |
| rc = xscom_write(gcid, nest_stack + XPEC_NEST_STK_PHB_REG_BAR, |
| phb_bar << 8); |
| |
| /* A scom error here probably indicates a defective/garded PHB */ |
| if (rc != OPAL_SUCCESS) { |
| prerror("PHB[%d:%d] Unable to set PHB BAR. Error=%d\n", |
| gcid, phb_num, rc); |
| return; |
| } |
| |
| bar_en |= XPEC_NEST_STK_BAR_EN_PHB; |
| |
| /* Same with INT BAR (ESB) */ |
| phys_map_get(gcid, phys_xive_esb, phb_num, &irq_bar, NULL); |
| xscom_write(gcid, nest_stack + XPEC_NEST_STK_IRQ_BAR, irq_bar << 8); |
| bar_en |= XPEC_NEST_STK_BAR_EN_INT; |
| |
| |
| /* Same with MMIO windows */ |
| phys_map_get(gcid, phys_mmio64, phb_num, &mmio0_bar, &mmio0_sz); |
| mmio0_bmask = (~(mmio0_sz - 1)) & 0x00FFFFFFFFFFFFFFULL; |
| xscom_write(gcid, nest_stack + XPEC_NEST_STK_MMIO_BAR0, mmio0_bar << 8); |
| xscom_write(gcid, nest_stack + XPEC_NEST_STK_MMIO_BAR0_MASK, mmio0_bmask << 8); |
| |
| phys_map_get(gcid, phys_mmio32, phb_num, &mmio1_bar, &mmio1_sz); |
| mmio1_bmask = (~(mmio1_sz - 1)) & 0x00FFFFFFFFFFFFFFULL; |
| xscom_write(gcid, nest_stack + XPEC_NEST_STK_MMIO_BAR1, mmio1_bar << 8); |
| xscom_write(gcid, nest_stack + XPEC_NEST_STK_MMIO_BAR1_MASK, mmio1_bmask << 8); |
| |
| /* Build MMIO windows list */ |
| mmio_win_sz = 0; |
| if (mmio0_bar) { |
| mmio_win[mmio_win_sz++] = cpu_to_be64(mmio0_bar); |
| mmio_win[mmio_win_sz++] = cpu_to_be64(mmio0_sz); |
| bar_en |= XPEC_NEST_STK_BAR_EN_MMIO0; |
| } |
| if (mmio1_bar) { |
| mmio_win[mmio_win_sz++] = cpu_to_be64(mmio1_bar); |
| mmio_win[mmio_win_sz++] = cpu_to_be64(mmio1_sz); |
| bar_en |= XPEC_NEST_STK_BAR_EN_MMIO1; |
| } |
| |
| /* Set the appropriate enables */ |
| xscom_read(gcid, nest_stack + XPEC_NEST_STK_BAR_EN, &val); |
| val |= bar_en; |
| xscom_write(gcid, nest_stack + XPEC_NEST_STK_BAR_EN, val); |
| |
| /* No MMIO windows ? Barf ! */ |
| if (mmio_win_sz == 0) { |
| prerror("PHB[%d:%d] No MMIO windows enabled !\n", gcid, phb_num); |
| return; |
| } |
| |
| /* Clear errors in PFIR and NFIR */ |
| xscom_write(gcid, pci_stack + XPEC_PCI_STK_PCI_FIR, 0); |
| xscom_write(gcid, nest_stack + XPEC_NEST_STK_PCI_NFIR, 0); |
| |
| /* Check ETU reset */ |
| xscom_read(gcid, pci_stack + XPEC_PCI_STK_ETU_RESET, &val); |
| prlog_once(PR_DEBUG, "ETU reset: %llx\n", val); |
| xscom_write(gcid, pci_stack + XPEC_PCI_STK_ETU_RESET, 0); |
| time_wait_ms(1); |
| |
| // show we can read phb mmio space |
| foo = (void *)(phb_bar + 0x800); // phb version register |
| prlog_once(PR_DEBUG, "Version reg: 0x%016llx\n", in_be64(foo)); |
| |
| /* Create PHB node */ |
| np = dt_new_addr(dt_root, "pciex", phb_bar); |
| if (!np) |
| return; |
| |
| if (is_phb5()) |
| dt_add_property_strings(np, "compatible", "ibm,power10-pciex", "ibm,ioda3-phb"); |
| else |
| dt_add_property_strings(np, "compatible", "ibm,power9-pciex", "ibm,ioda3-phb"); |
| dt_add_property_strings(np, "device_type", "pciex"); |
| dt_add_property_u64s(np, "reg", |
| phb_bar, 0x1000, |
| irq_bar, 0x10000000); |
| |
| /* Everything else is handled later by skiboot, we just |
| * stick a few hints here |
| */ |
| dt_add_property_cells(np, "ibm,xscom-bases", |
| nest_base, nest_stack, pci_base, pci_stack, etu_base); |
| dt_add_property(np, "ibm,mmio-windows", mmio_win, 8 * mmio_win_sz); |
| dt_add_property_cells(np, "ibm,phb-index", phb_num); |
| dt_add_property_cells(np, "ibm,phb-pec-index", pec_index); |
| dt_add_property_cells(np, "ibm,phb-stack", stk_node->phandle); |
| dt_add_property_cells(np, "ibm,phb-stack-index", stk_index); |
| dt_add_property_cells(np, "ibm,chip-id", gcid); |
| |
| /* read the hub-id out of the pbcq node */ |
| if (dt_has_node_property(stk_node->parent, "ibm,hub-id", NULL)) { |
| uint32_t hub_id; |
| |
| hub_id = dt_prop_get_u32(stk_node->parent, "ibm,hub-id"); |
| dt_add_property_cells(np, "ibm,hub-id", hub_id); |
| } |
| |
| if (dt_has_node_property(stk_node->parent, "ibm,loc-code", NULL)) { |
| const char *lc = dt_prop_get(stk_node->parent, "ibm,loc-code"); |
| dt_add_property_string(np, "ibm,loc-code", lc); |
| } |
| if (dt_has_node_property(stk_node, "ibm,lane-eq", NULL)) { |
| size_t leq_size; |
| const void *leq = dt_prop_get_def_size(stk_node, "ibm,lane-eq", |
| NULL, &leq_size); |
| if (leq != NULL && leq_size >= 6 * 8) |
| dt_add_property(np, "ibm,lane-eq", leq, leq_size); |
| } |
| if (dt_has_node_property(stk_node, "ibm,capp-ucode", NULL)) { |
| capp_ucode_base = dt_prop_get_u32(stk_node, "ibm,capp-ucode"); |
| dt_add_property_cells(np, "ibm,capp-ucode", capp_ucode_base); |
| } |
| if (dt_has_node_property(stk_node, "ibm,max-link-speed", NULL)) { |
| max_link_speed = dt_prop_get_u32(stk_node, "ibm,max-link-speed"); |
| dt_add_property_cells(np, "ibm,max-link-speed", max_link_speed); |
| } |
| if (is_phb4()) |
| dt_add_property_cells(np, "ibm,capi-flags", |
| OPAL_PHB_CAPI_FLAG_SNOOP_CONTROL); |
| |
| add_chip_dev_associativity(np); |
| } |
| |
| static void phb4_probe_pbcq(struct dt_node *pbcq) |
| { |
| uint32_t nest_base, pci_base, pec_index; |
| struct dt_node *stk; |
| |
| /* REMOVEME: force this for now until we stabalise PCIe */ |
| verbose_eeh = 1; |
| |
| nest_base = dt_get_address(pbcq, 0, NULL); |
| pci_base = dt_get_address(pbcq, 1, NULL); |
| pec_index = dt_prop_get_u32(pbcq, "ibm,pec-index"); |
| |
| dt_for_each_child(pbcq, stk) { |
| if (dt_node_is_enabled(stk)) |
| phb4_probe_stack(stk, pec_index, nest_base, pci_base); |
| } |
| } |
| |
| static void probe_phb4(void) |
| { |
| struct dt_node *np; |
| const char *s; |
| |
| pci_eeh_mmio = !nvram_query_eq_dangerous("pci-eeh-mmio", "disabled"); |
| pci_retry_all = nvram_query_eq_dangerous("pci-retry-all", "true"); |
| s = nvram_query_dangerous("phb-rx-err-max"); |
| if (s) { |
| rx_err_max = atoi(s); |
| |
| /* Clip to uint8_t used by hardware */ |
| rx_err_max = MAX(rx_err_max, 0); |
| rx_err_max = MIN(rx_err_max, 255); |
| } |
| |
| if (is_phb5()) { |
| prlog(PR_DEBUG, "PHB5: Maximum RX errors during training: %d\n", rx_err_max); |
| /* Look for PBCQ XSCOM nodes */ |
| dt_for_each_compatible(dt_root, np, "ibm,power10-pbcq") |
| phb4_probe_pbcq(np); |
| |
| /* Look for newly created PHB nodes */ |
| dt_for_each_compatible(dt_root, np, "ibm,power10-pciex") |
| phb4_create(np); |
| } else { |
| prlog(PR_DEBUG, "PHB4: Maximum RX errors during training: %d\n", rx_err_max); |
| /* Look for PBCQ XSCOM nodes */ |
| dt_for_each_compatible(dt_root, np, "ibm,power9-pbcq") |
| phb4_probe_pbcq(np); |
| |
| /* Look for newly created PHB nodes */ |
| dt_for_each_compatible(dt_root, np, "ibm,power9-pciex") |
| phb4_create(np); |
| } |
| } |
| |
| DEFINE_HWPROBE(phb4, probe_phb4); |