blob: 1e826fcca6d08aa2312a5390f4f6f93bafbfa602 [file] [log] [blame]
/* Copyright 2013-2014 IBM Corp.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
* implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* Note about accesses to the AST2400 internal memory map:
*
* There are two ways to genrate accesses to the AHB bus of the AST2400
* from the host. The LPC->AHB bridge and the iLPC->AHB bridge.
*
* LPC->AHB bridge
* ---------------
*
* This bridge directly converts memory or firmware accesses using
* a set of registers for establishing a remapping window. We prefer
* using FW space as normal memory space is limited to byte accesses
* to a fixed 256M window, while FW space allows us to use different
* access sizes and to control the IDSEL bits which essentially enable
* a full 4G address space.
*
* The way FW accesses map onto AHB is controlled via two registers
* in the BMC's LPC host controller:
*
* HICR7 at 0x1e789088 [31:16] : ADRBASE
* [15:00] : HWMBASE
*
* HICR8 at 0x1e78908c [31:16] : ADRMASK
* [15:00] : HWNCARE
*
* All decoding/remapping happens on the top 16 bits of the LPC address
* named LPC_ADDR as follow:
*
* - For decoding, LPC_ADDR bits are compared with HWMBASE if the
* corresponding bit in HWNCARE is 0.
*
* - For remapping, the AHB address is constructed by taking bits
* from LPC_ADDR if the corresponding bit in ADRMASK is 0 or in
* ADRBASE if the corresponding bit in ADRMASK is 1
*
* Example of 2MB SPI flash, LPC 0xFCE00000~0xFCFFFFFF onto
* AHB 0x30000000~0x301FFFFF (SPI flash)
*
* ADRBASE=0x3000 HWMBASE=0xFCE0
* ADRMASK=0xFFE0 HWNCARE=0x001F
*
* This comes pre-configured by the BMC or HostBoot to access the PNOR
* flash from IDSEL 0 as follow:
*
* ADRBASE=0x3000 HWMBASE=0x0e00 for 32MB
* ADRMASK=0xfe00 HWNCARE=0x01ff
*
* Which means mapping of LPC 0x0e000000..0x0fffffff onto
* AHB 0x30000000..0x31ffffff
*
* iLPC->AHB bridge
* ---------------
*
* This bridge is hosted in the SuperIO part of the BMC and is
* controlled by a series of byte-sized registers accessed indirectly
* via IO ports 0x2e and 0x2f.
*
* Via these, byte by byte, we can construct an AHB address and
* fill a data buffer to trigger a write cycle, or we can do a
* read cycle and read back the data, byte after byte.
*
* This is fairly convoluted and slow but works regardless of what
* mapping was established in the LPC->AHB bridge.
*
* For the time being, we use the iLPC->AHB for everything except
* pnor accesses. In the long run, we will reconfigure the LPC->AHB
* to provide more direct access to all of the BMC address space but
* we'll only do that after the boot script/program on the BMC is
* updated to restore the bridge to a state compatible with the SBE
* expectations on boot.
*/
#include <skiboot.h>
#include <lpc.h>
#include <lock.h>
#include <device.h>
#include "ast.h"
#define BMC_SIO_SCR28 0x28
#define BOOT_FLAGS_VERSION 0x42
#define BMC_SIO_SCR29 0x29
#define BMC_SIO_SCR29_MEMBOOT 0x10
enum {
BMC_SIO_DEV_NONE = -1,
BMC_SIO_DEV_UART1 = 2,
BMC_SIO_DEV_UART2 = 3,
BMC_SIO_DEV_SWC = 4,
BMC_SIO_DEV_KBC = 5,
BMC_SIO_DEV_P80 = 7,
BMC_SIO_DEV_UART3 = 0xb,
BMC_SIO_DEV_UART4 = 0xc,
BMC_SIO_DEV_LPC2AHB = 0xd,
BMC_SIO_DEV_MBOX = 0xe,
};
static struct lock bmc_sio_lock = LOCK_UNLOCKED;
static int bmc_sio_cur_dev = BMC_SIO_DEV_NONE;
/*
* SuperIO indirect accesses
*/
static void bmc_sio_outb(uint8_t val, uint8_t reg)
{
lpc_outb(reg, 0x2e);
lpc_outb(val, 0x2f);
}
static uint8_t bmc_sio_inb(uint8_t reg)
{
lpc_outb(reg, 0x2e);
return lpc_inb(0x2f);
}
static void bmc_sio_get(int dev)
{
lock(&bmc_sio_lock);
if (bmc_sio_cur_dev == dev || dev < 0)
return;
if (bmc_sio_cur_dev == BMC_SIO_DEV_NONE) {
/* Send SuperIO password */
lpc_outb(0xa5, 0x2e);
lpc_outb(0xa5, 0x2e);
}
/* Select logical dev */
bmc_sio_outb(dev, 0x07);
bmc_sio_cur_dev = dev;
}
static void bmc_sio_put(bool lock_sio)
{
if (lock_sio) {
/* Re-lock SuperIO */
lpc_outb(0xaa, 0x2e);
bmc_sio_cur_dev = BMC_SIO_DEV_NONE;
}
unlock(&bmc_sio_lock);
}
/*
* AHB accesses via iLPC->AHB in SuperIO. Works on byteswapped
* values (ie. Little Endian registers)
*/
static void bmc_sio_ahb_prep(uint32_t reg, uint8_t type)
{
/* Enable iLPC->AHB */
bmc_sio_outb(0x01, 0x30);
/* Address */
bmc_sio_outb((reg >> 24) & 0xff, 0xf0);
bmc_sio_outb((reg >> 16) & 0xff, 0xf1);
bmc_sio_outb((reg >> 8) & 0xff, 0xf2);
bmc_sio_outb((reg ) & 0xff, 0xf3);
/* bytes cycle type */
bmc_sio_outb(type, 0xf8);
}
static void bmc_sio_ahb_writel(uint32_t val, uint32_t reg)
{
bmc_sio_get(BMC_SIO_DEV_LPC2AHB);
bmc_sio_ahb_prep(reg, 2);
/* Write data */
bmc_sio_outb(val >> 24, 0xf4);
bmc_sio_outb(val >> 16, 0xf5);
bmc_sio_outb(val >> 8, 0xf6);
bmc_sio_outb(val , 0xf7);
/* Trigger */
bmc_sio_outb(0xcf, 0xfe);
bmc_sio_put(false);
}
static uint32_t bmc_sio_ahb_readl(uint32_t reg)
{
uint32_t val = 0;
bmc_sio_get(BMC_SIO_DEV_LPC2AHB);
bmc_sio_ahb_prep(reg, 2);
/* Trigger */
bmc_sio_inb(0xfe);
/* Read results */
val = (val << 8) | bmc_sio_inb(0xf4);
val = (val << 8) | bmc_sio_inb(0xf5);
val = (val << 8) | bmc_sio_inb(0xf6);
val = (val << 8) | bmc_sio_inb(0xf7);
bmc_sio_put(false);
return val;
}
/*
* External API
*
* We only support 4-byte accesses to all of AHB. We additionally
* support 1-byte accesses to the flash area only.
*
* We could support all access sizes via iLPC but we don't need
* that for now.
*/
#define PNOR_AHB_ADDR 0x30000000
static uint32_t pnor_lpc_offset;
void ast_ahb_writel(uint32_t val, uint32_t reg)
{
/* For now, always use iLPC->AHB, it will byteswap */
bmc_sio_ahb_writel(val, reg);
}
uint32_t ast_ahb_readl(uint32_t reg)
{
/* For now, always use iLPC->AHB, it will byteswap */
return bmc_sio_ahb_readl(reg);
}
int ast_copy_to_ahb(uint32_t reg, const void *src, uint32_t len)
{
/* Check we don't cross IDSEL segments */
if ((reg ^ (reg + len - 1)) >> 28)
return -EINVAL;
/* SPI flash, use LPC->AHB bridge */
if ((reg >> 28) == (PNOR_AHB_ADDR >> 28)) {
uint32_t chunk, off = reg - PNOR_AHB_ADDR + pnor_lpc_offset;
int64_t rc;
while(len) {
/* Chose access size */
if (len > 3 && !(off & 3)) {
rc = lpc_write(OPAL_LPC_FW, off,
*(uint32_t *)src, 4);
chunk = 4;
} else {
rc = lpc_write(OPAL_LPC_FW, off,
*(uint8_t *)src, 1);
chunk = 1;
}
if (rc) {
prerror("AST_IO: lpc_write.sb failure %lld"
" to FW 0x%08x\n", rc, off);
return rc;
}
len -= chunk;
off += chunk;
src += chunk;
}
return 0;
}
/* Otherwise we don't do byte access (... yet) */
prerror("AST_IO: Attempted write bytes access to %08x\n", reg);
return -EINVAL;
}
int ast_copy_from_ahb(void *dst, uint32_t reg, uint32_t len)
{
/* Check we don't cross IDSEL segments */
if ((reg ^ (reg + len - 1)) >> 28)
return -EINVAL;
/* SPI flash, use LPC->AHB bridge */
if ((reg >> 28) == (PNOR_AHB_ADDR >> 28)) {
uint32_t chunk, off = reg - PNOR_AHB_ADDR + pnor_lpc_offset;
int64_t rc;
while(len) {
uint32_t dat;
/* Chose access size */
if (len > 3 && !(off & 3)) {
rc = lpc_read(OPAL_LPC_FW, off, &dat, 4);
if (!rc)
*(uint32_t *)dst = dat;
chunk = 4;
} else {
rc = lpc_read(OPAL_LPC_FW, off, &dat, 1);
if (!rc)
*(uint8_t *)dst = dat;
chunk = 1;
}
if (rc) {
prerror("AST_IO: lpc_read.sb failure %lld"
" to FW 0x%08x\n", rc, off);
return rc;
}
len -= chunk;
off += chunk;
dst += chunk;
}
return 0;
}
/* Otherwise we don't do byte access (... yet) */
prerror("AST_IO: Attempted read bytes access to %08x\n", reg);
return -EINVAL;
}
static void ast_setup_sio_irq_polarity(void)
{
/* Select logical dev 2 */
bmc_sio_get(BMC_SIO_DEV_UART1);
bmc_sio_outb(0x01, 0x71); /* level low */
bmc_sio_put(false);
/* Select logical dev 3 */
bmc_sio_get(BMC_SIO_DEV_UART2);
bmc_sio_outb(0x01, 0x71); /* irq level low */
bmc_sio_put(false);
/* Select logical dev 4 */
bmc_sio_get(BMC_SIO_DEV_SWC);
bmc_sio_outb(0x01, 0x71); /* irq level low */
bmc_sio_put(false);
/* Select logical dev 5 */
bmc_sio_get(BMC_SIO_DEV_KBC);
bmc_sio_outb(0x01, 0x71); /* irq level low */
bmc_sio_outb(0x01, 0x73); /* irq level low */
bmc_sio_put(false);
/* Select logical dev 7 */
bmc_sio_get(BMC_SIO_DEV_P80);
bmc_sio_outb(0x01, 0x71); /* irq level low */
bmc_sio_put(false);
/* Select logical dev d */
bmc_sio_get(BMC_SIO_DEV_UART3);
bmc_sio_outb(0x01, 0x71); /* irq level low */
bmc_sio_put(false);
/* Select logical dev c */
bmc_sio_get(BMC_SIO_DEV_UART4);
bmc_sio_outb(0x01, 0x71); /* irq level low */
bmc_sio_put(false);
/* Select logical dev d */
bmc_sio_get(BMC_SIO_DEV_LPC2AHB);
bmc_sio_outb(0x01, 0x71); /* irq level low */
bmc_sio_put(false);
/* Select logical dev e */
bmc_sio_get(BMC_SIO_DEV_MBOX);
bmc_sio_outb(0x01, 0x71); /* irq level low */
bmc_sio_put(true);
}
void ast_io_init(void)
{
uint32_t hicr7;
/* Read the configuration of the LPC->AHB bridge for PNOR
* to extract the PNOR LPC offset which can be different
* depending on flash size
*/
hicr7 = bmc_sio_ahb_readl(LPC_HICR7);
pnor_lpc_offset = (hicr7 & 0xffffu) << 16;
prlog(PR_DEBUG, "AST: PNOR LPC offset: 0x%08x\n", pnor_lpc_offset);
/* Configure all AIO interrupts to level low */
ast_setup_sio_irq_polarity();
}
bool ast_is_mbox_pnor(void)
{
return dt_find_compatible_node(dt_root, NULL, "mbox");
}
bool ast_is_ahb_lpc_pnor(void)
{
uint8_t boot_version;
uint8_t boot_flags;
boot_version = bmc_sio_inb(BMC_SIO_SCR28);
if (boot_version != BOOT_FLAGS_VERSION)
return true;
boot_flags = bmc_sio_inb(BMC_SIO_SCR29);
return !(boot_flags & BMC_SIO_SCR29_MEMBOOT);
}
void ast_setup_ibt(uint16_t io_base, uint8_t irq)
{
uint32_t v;
v = bmc_sio_ahb_readl(LPC_iBTCR0);
v = v & ~(0xfffffc00u);
v = v | (((uint32_t)io_base) << 16);
v = v | (((uint32_t)irq) << 12);
bmc_sio_ahb_writel(v, LPC_iBTCR0);
}
bool ast_is_vuart1_enabled(void)
{
uint32_t v;
v = bmc_sio_ahb_readl(VUART1_GCTRLA);
return !!(v & 1);
}
void ast_setup_vuart1(uint16_t io_base, uint8_t irq)
{
uint32_t v;
/* IRQ level low */
v = bmc_sio_ahb_readl(VUART1_GCTRLA);
v = v & ~2u;
bmc_sio_ahb_writel(v, VUART1_GCTRLA);
v = bmc_sio_ahb_readl(VUART1_GCTRLA);
/* IRQ number */
v = bmc_sio_ahb_readl(VUART1_GCTRLB);
v = (v & ~0xf0u) | (irq << 4);
bmc_sio_ahb_writel(v, VUART1_GCTRLB);
/* Address */
bmc_sio_ahb_writel(io_base & 0xff, VUART1_ADDRL);
bmc_sio_ahb_writel(io_base >> 8, VUART1_ADDRH);
}
/* Setup SuperIO UART 1 */
void ast_setup_sio_uart1(uint16_t io_base, uint8_t irq)
{
bmc_sio_get(BMC_SIO_DEV_UART1);
/* Disable UART1 for configuration */
bmc_sio_outb(0x00, 0x30);
/* Configure base and interrupt */
bmc_sio_outb(io_base >> 8, 0x60);
bmc_sio_outb(io_base & 0xff, 0x61);
bmc_sio_outb(irq, 0x70);
bmc_sio_outb(0x01, 0x71); /* level low */
/* Enable UART1 */
bmc_sio_outb(0x01, 0x30);
bmc_sio_put(true);
}
void ast_disable_sio_uart1(void)
{
bmc_sio_get(BMC_SIO_DEV_UART1);
/* Disable UART1 */
bmc_sio_outb(0x00, 0x30);
bmc_sio_put(true);
}
void ast_setup_sio_mbox(uint16_t io_base, uint8_t irq)
{
bmc_sio_get(BMC_SIO_DEV_MBOX);
/* Disable for configuration */
bmc_sio_outb(0x00, 0x30);
bmc_sio_outb(io_base >> 8, 0x60);
bmc_sio_outb(io_base & 0xff, 0x61);
bmc_sio_outb(irq, 0x70);
bmc_sio_outb(0x01, 0x71); /* level low */
/* Enable MailBox */
bmc_sio_outb(0x01, 0x30);
bmc_sio_put(true);
}