blob: 5d1dbf384bfe97cc5cb68f9718db72425edaafe7 [file] [log] [blame]
/* IBM_PROLOG_BEGIN_TAG */
/* This is an automatically generated prolog. */
/* */
/* $Source: src/usr/hwpf/hwp/build_winkle_images/p8_slw_build/pgas.h $ */
/* */
/* OpenPOWER HostBoot Project */
/* */
/* COPYRIGHT International Business Machines Corp. 2012,2014 */
/* */
/* Licensed under the Apache License, Version 2.0 (the "License"); */
/* you may not use this file except in compliance with the License. */
/* You may obtain a copy of the License at */
/* */
/* http://www.apache.org/licenses/LICENSE-2.0 */
/* */
/* Unless required by applicable law or agreed to in writing, software */
/* distributed under the License is distributed on an "AS IS" BASIS, */
/* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or */
/* implied. See the License for the specific language governing */
/* permissions and limitations under the License. */
/* */
/* IBM_PROLOG_END_TAG */
#ifndef __PGAS_H__
#define __PGAS_H__
#define __PGAS__
// $Id: pgas.h,v 1.21 2013/11/20 14:06:39 bcbrock Exp $
// ** WARNING : This file is maintained as part of the OCC firmware. Do **
// ** not edit this file in the PMX area, the hardware procedure area, **
// ** or the PoreVe area as any changes will be lost. **
/// \file pgas.h
/// \brief Pore GAS
///
/// PGAS is documented in a separate standalone document entitled <em> PGAS :
/// PORE GAS (GNU Assembler) User's and Reference Manual </em>.
///
/// This file defines support macros for the GNU PORE assembler, and the PORE
/// inline assembler and disassebler which follow the PGAS assembly syntax.
/// If the compile swith PGAS_PPC is defined in the environment then pgas.h
/// includes pgas_ppc.h which transforms a PowerPC assembler into an assembler
/// for PORE.
// These are the opcodes and mnemonics as defined by the PORE hardware
// manual. Many of them will change names slightly in PGAS.
#define PORE_OPCODE_NOP 0x0f
#define PORE_OPCODE_WAIT 0x01
#define PORE_OPCODE_TRAP 0x02
#define PORE_OPCODE_HOOK 0x4f
#define PORE_OPCODE_BRA 0x10
#define PORE_OPCODE_BRAZ 0x12
#define PORE_OPCODE_BRANZ 0x13
#define PORE_OPCODE_BRAI 0x51
#define PORE_OPCODE_BSR 0x14
#define PORE_OPCODE_BRAD 0x1c
#define PORE_OPCODE_BSRD 0x1d
#define PORE_OPCODE_RET 0x15
#define PORE_OPCODE_CMPBRA 0x56
#define PORE_OPCODE_CMPNBRA 0x57
#define PORE_OPCODE_CMPBSR 0x58
#define PORE_OPCODE_LOOP 0x1f
#define PORE_OPCODE_ANDI 0x60
#define PORE_OPCODE_ORI 0x61
#define PORE_OPCODE_XORI 0x62
#define PORE_OPCODE_AND 0x25
#define PORE_OPCODE_OR 0x26
#define PORE_OPCODE_XOR 0x27
#define PORE_OPCODE_ADD 0x23
#define PORE_OPCODE_ADDI 0x24
#define PORE_OPCODE_SUB 0x29
#define PORE_OPCODE_SUBI 0x28
#define PORE_OPCODE_NEG 0x2a
#define PORE_OPCODE_COPY 0x2c
#define PORE_OPCODE_ROL 0x2e
#define PORE_OPCODE_LOAD20 0x30
#define PORE_OPCODE_LOAD64 0x71
#define PORE_OPCODE_SCR1RD 0x32
#define PORE_OPCODE_SCR1RDA 0x73
#define PORE_OPCODE_SCR2RD 0x36
#define PORE_OPCODE_SCR2RDA 0x77
#define PORE_OPCODE_WRI 0x78
#define PORE_OPCODE_BS 0x74
#define PORE_OPCODE_BC 0x75
#define PORE_OPCODE_SCR1WR 0x39
#define PORE_OPCODE_SCR2WR 0x3a
#define PORE_OPCODE_SCAND 0x7c
// These are the PGAS versions of the PORE opcodes used in the legacy PGAS_PPC
// assembler and the current PORE inline assembler/disassembler.
#define PGAS_OPCODE_NOP PORE_OPCODE_NOP
#define PGAS_OPCODE_WAITS PORE_OPCODE_WAIT
#define PGAS_OPCODE_TRAP PORE_OPCODE_TRAP
#define PGAS_OPCODE_HOOKI PORE_OPCODE_HOOK
#define PGAS_OPCODE_BRA PORE_OPCODE_BRA
#define PGAS_OPCODE_BRAZ PORE_OPCODE_BRAZ
#define PGAS_OPCODE_BRANZ PORE_OPCODE_BRANZ
#define PGAS_OPCODE_BRAI PORE_OPCODE_BRAI
#define PGAS_OPCODE_BSR PORE_OPCODE_BSR
#define PGAS_OPCODE_BRAD PORE_OPCODE_BRAD
#define PGAS_OPCODE_BSRD PORE_OPCODE_BSRD
#define PGAS_OPCODE_RET PORE_OPCODE_RET
#define PGAS_OPCODE_CMPIBRAEQ PORE_OPCODE_CMPBRA
#define PGAS_OPCODE_CMPIBRANE PORE_OPCODE_CMPNBRA
#define PGAS_OPCODE_CMPIBSREQ PORE_OPCODE_CMPBSR
#define PGAS_OPCODE_LOOP PORE_OPCODE_LOOP
#define PGAS_OPCODE_ANDI PORE_OPCODE_ANDI
#define PGAS_OPCODE_ORI PORE_OPCODE_ORI
#define PGAS_OPCODE_XORI PORE_OPCODE_XORI
#define PGAS_OPCODE_AND PORE_OPCODE_AND
#define PGAS_OPCODE_OR PORE_OPCODE_OR
#define PGAS_OPCODE_XOR PORE_OPCODE_XOR
#define PGAS_OPCODE_ADD PORE_OPCODE_ADD
#define PGAS_OPCODE_ADDS PORE_OPCODE_ADDI
#define PGAS_OPCODE_SUB PORE_OPCODE_SUB
#define PGAS_OPCODE_SUBS PORE_OPCODE_SUBI
#define PGAS_OPCODE_NEG PORE_OPCODE_NEG
#define PGAS_OPCODE_MR PORE_OPCODE_COPY
#define PGAS_OPCODE_ROLS PORE_OPCODE_ROL
#define PGAS_OPCODE_LS PORE_OPCODE_LOAD20
#define PGAS_OPCODE_LI PORE_OPCODE_LOAD64
#define PGAS_OPCODE_LD0 PORE_OPCODE_SCR1RD /* Used by LD */
#define PGAS_OPCODE_LD0ANDI PORE_OPCODE_SCR1RDA /* Used by LDANDI */
#define PGAS_OPCODE_LD1 PORE_OPCODE_SCR2RD /* Used by LD */
#define PGAS_OPCODE_LD1ANDI PORE_OPCODE_SCR2RDA /* Used by LDANDI */
#define PGAS_OPCODE_STI PORE_OPCODE_WRI
#define PGAS_OPCODE_STD0 PORE_OPCODE_SCR1WR /* Used by STD */
#define PGAS_OPCODE_STD1 PORE_OPCODE_SCR2WR /* Used by STD */
#define PGAS_OPCODE_SCAND PORE_OPCODE_SCAND
#ifdef IGNORE_HW274735
// BSI and BCI are normally redacted due to HW274735. See also pgas.h
#define PGAS_OPCODE_BSI PORE_OPCODE_BS
#define PGAS_OPCODE_BCI PORE_OPCODE_BC
#endif // IGNORE_HW274735
// These are the programmer-visible register names as defined by the PORE
// hardware manual. All of these names (except the PC) appear differently in
// the PGAS syntax, in some cases to reduce confusion, in other cases just to
// have more traditional short mnemonics.
#define PORE_REGISTER_PRV_BASE_ADDR0 0x0
#define PORE_REGISTER_PRV_BASE_ADDR1 0x1
#define PORE_REGISTER_OCI_BASE_ADDR0 0x2
#define PORE_REGISTER_OCI_BASE_ADDR1 0x3
#define PORE_REGISTER_SCRATCH0 0x4
#define PORE_REGISTER_SCRATCH1 0x5
#define PORE_REGISTER_SCRATCH2 0x6
#define PORE_REGISTER_ERROR_MASK 0x7
#define PORE_REGISTER_EXE_TRIGGER 0x9
#define PORE_REGISTER_DATA0 0xa
#define PORE_REGISTER_PC 0xe
#define PORE_REGISTER_IBUF_ID 0xf
// PgP IBUF_ID values
#define PORE_ID_GPE0 0x00
#define PORE_ID_GPE1 0x01
#define PORE_ID_SLW 0x08
#define PORE_ID_SBE 0x04
// Condition Codes
#define PORE_CC_UGT 0x8000
#define PORE_CC_ULT 0x4000
#define PORE_CC_SGT 0x2000
#define PORE_CC_SLT 0x1000
#define PORE_CC_C 0x0800
#define PORE_CC_V 0x0400
#define PORE_CC_N 0x0200
#define PORE_CC_Z 0x0100
// Memory Spaces
#define PORE_SPACE_UNDEFINED 0xffff
#define PORE_SPACE_OCI 0x8000
#define PORE_SPACE_PNOR 0x800b
#define PORE_SPACE_OTPROM 0x0001
#define PORE_SPACE_SEEPROM 0x800c
#define PORE_SPACE_PIBMEM 0x0008
#ifdef __ASSEMBLER__
////////////////////////////////////////////////////////////////////////////
// PGAS Base Assembler Support
////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////
// Condition Codes
//////////////////////////////////////////////////////////////////////
.set CC_UGT, PORE_CC_UGT
.set CC_ULT, PORE_CC_ULT
.set CC_SGT, PORE_CC_SGT
.set CC_SLT, PORE_CC_SLT
.set CC_C, PORE_CC_C
.set CC_V, PORE_CC_V
.set CC_N, PORE_CC_N
.set CC_Z, PORE_CC_Z
//////////////////////////////////////////////////////////////////////
// Utility Macros
//////////////////////////////////////////////////////////////////////
// 'Undefine' PowerPC mnemonics to trap programming errors
.macro ..undefppc1, i
.ifnc \i, ignore
.macro \i, args:vararg
.error "This is a PowerPC opcode - NOT a PGAS opcode or extended mnemonic"
.endm
.endif
.endm
.macro .undefppc, i0, i1=ignore, i2=ignore, i3=ignore
..undefppc1 \i0
..undefppc1 \i1
..undefppc1 \i2
..undefppc1 \i3
.endm
//////////////////////////////////////////////////////////////////////
// Argument Checking Macros
//////////////////////////////////////////////////////////////////////
//
// These macros remain in the final pgas.h file because 1) they are
// required for some PGAS pseudo-ops, and 2) to support robust
// assembler macro definitions.
// Check an unsigned immediate for size
.macro ..checku, x:req, bits:req, err="Unsigned value too large"
.if (((\bits) <= 0) || ((\bits) > 63))
.error "The number of bits must be in the range 0 < bits < 64"
.endif
.iflt (\x)
.error "An unsigned value is required here"
.endif
.ifgt ((\x) - (0xffffffffffffffff >> (64 - (\bits))))
.error "\err"
.endif
.endm
// Check unsigned 16/22-bit immediates for size
//
// In general, PGAS can check immediate values for size restrictions,
// but unfortunately is not able to check address offset immediates for
// range.
.macro ..check_u16, u16
..checku (\u16), 16, "Unsigned immediate is larger than 16 bits"
.endm
.macro ..check_u24, u24
..checku (\u24), 24, "Unsigned immediate is larger than 24 bits"
.endm
// Check a 16/20/22-bit signed immediate for size
.macro ..check_s16, s16
.iflt \s16
.iflt \s16 + 0x8000
.error "Immediate value too small for a signed 16-bit field"
.endif
.else
.ifgt \s16 - 0x7fff
.error "Immediate value too large for a signed 16-bit field"
.endif
.endif
.endm
.macro ..check_s20, s20
.iflt \s20
.iflt \s20 + 0x80000
.error "Immediate value too small for a signed 20-bit field"
.endif
.else
.ifgt \s20 - 0x7ffff
.error "Immediate value too large for a signed 20-bit field"
.endif
.endif
.endm
.macro ..check_s22, s22
.iflt \s22
.iflt \s22 + 0x200000
.error "Immediate value too small for a signed 22-bit field"
.endif
.else
.ifgt \s22 - 0x1fffff
.error "Immediate value too large for a signed 22-bit field"
.endif
.endif
.endm
// Check a putative SCOM address for bits 0 and 8:11 == 0.
.macro ..check_scom, address
.if ((\address) & 0x80f00000)
.error "Valid SCOM addresses must have bits 0 and 8:11 equal to 0."
.endif
.endm
// A register required to be D0
.macro ..d0, reg
.if (\reg != D0)
.error "Data register D0 is required here"
.endif
.endm
// A register pair required to be D0, D1 in order
.macro ..d0d1, reg1, reg2
.if (((\reg1) != D0) && ((\reg2) != D1))
.error "Register-Register ALU operations are only defined on the source pair D0, D1"
.endif
.endm
// A register pair required to be D0, D1 in any order
.macro ..dxdy, reg1, reg2, err="Expecting D0, D1 in either order"
.if !((((\reg1) == D0) && ((\reg2) == D1)) || \
(((\reg1) == D1) && ((\reg2) == D0)))
.error "\err"
.endif
.endm
// A register pair required to be A0, A1 in any order
.macro ..axay, reg1, reg2, err="Expecting A0, A1 in either order"
.if !((((\reg1) == A0) && ((\reg2) == A1)) || \
(((\reg1) == A1) && ((\reg2) == A0)))
.error "\err"
.endif
.endm
// A register pair required to be the same register
.macro ..same, dest, src
.if ((\dest) != (\src))
.error "PGAS requires the src and dest register of ADDS/SUBS to be explicit and identical"
.endif
.endm
// A "Data" register
.macro ..data, reg:req, err="Expecting a 'Data' register"
.if (\reg != D0)
.if (\reg != D1)
.error "\err"
.endif
.endif
.endm
// An "Address" register
.macro ..address, reg:req, err=:"Expecting an 'Address' register"
.if (\reg != A0)
.if (\reg != A1)
.error "\err"
.endif
.endif
.endm
// A "Pervasive Chiplet ID" register
.macro ..pervasive_chiplet_id, reg:req, err="Expecting a 'Pervasive Chiplet ID' register"
.if (\reg != P0)
.if (\reg != P1)
.error "\err"
.endif
.endif
.endm
// A "Branch Compare Data" register
.macro ..branch_compare_data, reg
.if (\reg != D0)
.if (\reg != D1)
.if (\reg != CTR)
.error "Expecting a 'Branch Compare Data' register"
.endif
.endif
.endif
.endm
// An "LS Destination" register; Also the set for ADDS/SUBS
.macro ..ls_destination, reg
.if (\reg != D0)
.if (\reg != D1)
.if (\reg != A0)
.if (\reg != A1)
.if (\reg != P0)
.if (\reg != P1)
.if (\reg != CTR)
.error "Expecting an 'LS Destination' register"
.endif
.endif
.endif
.endif
.endif
.endif
.endif
.endm
// An "LI Destination" register
.macro ..li_destination, reg
.if (\reg != D0)
.if (\reg != D1)
.if (\reg != A0)
.if (\reg != A1)
.if (\reg != CTR)
.error "Expecting an 'LI Destination' register"
.endif
.endif
.endif
.endif
.endif
.endm
// An "LIA Destination" register
.macro ..lia_destination, reg
.if (\reg != D0)
.if (\reg != D1)
.if (\reg != A0)
.if (\reg != A1)
.if (\reg != TBAR)
.error "Expecting an 'LIA Destination' register"
.endif
.endif
.endif
.endif
.endif
.endm
// An "MR Source" register
.macro ..mr_source, reg
.if (\reg != D0)
.if (\reg != D1)
.if (\reg != A0)
.if (\reg != A1)
.if (\reg != P0)
.if (\reg != P1)
.if (\reg != CTR)
.if (\reg != PC)
.if (\reg != ETR)
.if (\reg != SPRG0)
.if (\reg != IFR)
.if (\reg != EMR)
.error "Expecting an 'MR Source' register"
.endif
.endif
.endif
.endif
.endif
.endif
.endif
.endif
.endif
.endif
.endif
.endif
.endm
// An "MR Destination" register
.macro ..mr_destination, reg
.if (\reg != D0)
.if (\reg != D1)
.if (\reg != A0)
.if (\reg != A1)
.if (\reg != P0)
.if (\reg != P1)
.if (\reg != CTR)
.if (\reg != PC)
.if (\reg != ETR)
.if (\reg != SPRG0)
.if (\reg != EMR)
.error "Expecting an 'MR Destination' register"
.endif
.endif
.endif
.endif
.endif
.endif
.endif
.endif
.endif
.endif
.endif
.endm
//////////////////////////////////////////////////////////////////////
// PORE address spaces
//////////////////////////////////////////////////////////////////////
// The ..set_address_space pseudo-op defines the default address
// space. It must be defined in order to use BRAA, BRAIA, BSR and
// CMPIBSR. Pseudo-ops are provided to set the default space of the
// program. Note that code assembled for PNOR will also work in the
// OCI space in the Sleep/Winkle engine.
.macro ..set_default_space, s
..check_u16 (\s)
.set _PGAS_DEFAULT_SPACE, (\s)
.endm
.macro ..check_default_space
.if (_PGAS_DEFAULT_SPACE == PORE_SPACE_UNDEFINED)
.error "The PGAS default address space has not been defined"
.endif
.endm
..set_default_space PORE_SPACE_UNDEFINED
.macro .oci
..set_default_space PORE_SPACE_OCI
.endm
.macro .pnor
..set_default_space PORE_SPACE_PNOR
.endm
.macro .seeprom
..set_default_space PORE_SPACE_SEEPROM
.endm
.macro .otprom
..set_default_space PORE_SPACE_OTPROM
.endm
.macro .pibmem
..set_default_space PORE_SPACE_PIBMEM
#ifndef PGAS_PPC
.pibmem_port (PORE_SPACE_PIBMEM & 0xf)
#else
// NB: PGAS_PPC does not support relocatable PIBMEM addressing
#endif
.endm
//////////////////////////////////////////////////////////////////////
// Address-Generation Pseudo Ops
//////////////////////////////////////////////////////////////////////
// .QUADA, .QUADIA
.macro .quada, offset:req
..check_default_space
.long _PGAS_DEFAULT_SPACE
.long (\offset)
.endm
.macro .quadia, space:req, offset:req
..check_u16 (\space)
.long (\space)
.long (\offset)
.endm
//////////////////////////////////////////////////////////////////////
// Bug workarounds
//////////////////////////////////////////////////////////////////////
#ifndef IGNORE_HW274735
// HW274735 documents that BC and BS are broken for the PORE-GPE0/1
// pair. This bug is unfixed in POWER8, and by default we require BSI
// and BCI to be implemented as macros on all engines. For
// compatibility we continue to require that dx == D0.
.macro bsi, dx:req, offset:req, base:req, imm:req
..d0 (\dx)
ld D0, (\offset), (\base)
ori D0, D0, (\imm)
std D0, (\offset), (\base)
.endm
.macro bci, dx:req, offset:req, base:req, imm:req
..d0 (\dx)
ldandi D0, (\offset), (\base), ~(\imm)
std D0, (\offset), (\base)
.endm
#endif // IGNORE_HW274735
//////////////////////////////////////////////////////////////////////
// "A"- and "IA"-form Instructions
//////////////////////////////////////////////////////////////////////
// BRAA (Branch Address) is a 'long branch' to an address in the
// default memory space.
.macro braa, offset:req
braia _PGAS_DEFAULT_SPACE, (\offset)
.endm
// LA (Load Address) loads the full address of an address in the
// default memory space.
.macro la, dest:req, offset:req
lia (\dest), _PGAS_DEFAULT_SPACE, (\offset)
.endm
// STA (Store Address) stores the full address of an address in the
// default memory space.
.macro sta, mem_offset:req, base:req, addr_offset:req
stia (\mem_offset), (\base), _PGAS_DEFAULT_SPACE, (\addr_offset)
.endm
// BSRIA is a subroutine branch into another memory space. This has to
// be emulated by a local subroutine branch and a BRAIA.
.macro bsria, space:req, offset:req
bsr 27742f
bra 27743f
27742:
braia (\space), (\offset)
27743:
.endm
////////////////////////////////////////////////////////////////////////////
// Extended Mnemonics, Macros and Special Cases
////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////
// TFB<c> - Test flags and branch conditionally
//////////////////////////////////////////////////////////////////////'
.macro ..tfb, dest, target, flags
..data (\dest)
mr (\dest), IFR
andi (\dest), (\dest), (\flags)
branz (\dest), (\target)
.endm
.macro ..tfbn dest, target, flags
..data (\dest)
mr (\dest), IFR
andi (\dest), (\dest), (\flags)
braz (\dest), (\target)
.endm
.macro tfbcs, dest:req, target:req
..tfb (\dest), (\target), CC_C
.endm
.macro tfbcc, dest:req, target:req
..tfbn (\dest), (\target), CC_C
.endm
.macro tfbvs, dest:req, target:req
..tfb (\dest), (\target), CC_V
.endm
.macro tfbvc, dest:req, target:req
..tfbn (\dest), (\target), CC_V
.endm
.macro tfbns, dest:req, target:req
..tfb (\dest), (\target), CC_N
.endm
.macro tfbnc, dest:req, target:req
..tfbn (\dest), (\target), CC_N
.endm
.macro tfbeq, dest:req, target:req
..tfb (\dest), (\target), CC_Z
.endm
.macro tfbne, dest:req, target:req
..tfbn (\dest), (\target), CC_Z
.endm
.macro tfbult, dest:req, target:req
..tfb (\dest), (\target), CC_ULT
.endm
.macro tfbule, dest:req, target:req
..tfbn (\dest), (\target), CC_UGT
.endm
.macro tfbuge, dest:req, target:req
..tfbn (\dest), (\target), CC_ULT
.endm
.macro tfbugt, dest:req, target:req
..tfb (\dest), (\target), CC_UGT
.endm
.macro tfbslt, dest:req, target:req
..tfb (\dest), (\target), CC_SLT
.endm
.macro tfbsle, dest:req, target:req
..tfbn (\dest), (\target), CC_SGT
.endm
.macro tfbsge, dest:req, target:req
..tfbn (\dest), (\target), CC_SLT
.endm
.macro tfbsgt, dest:req, target:req
..tfb (\dest), (\target), CC_SGT
.endm
//////////////////////////////////////////////////////////////////////
// TEB[N]<eng> - Test Engine and branch if [not] engine.
//////////////////////////////////////////////////////////////////////
//
// All but GPE0 use a 1-hot code.
.macro tebgpe0, dest:req, target:req
mr (\dest), IFR
andi (\dest), (\dest), 0xf
braz (\dest), (\target)
.endm
.macro tebgpe1, dest:req, target:req
mr (\dest), IFR
andi (\dest), (\dest), PORE_ID_GPE1
branz (\dest), (\target)
.endm
.macro tebslw, dest:req, target:req
mr (\dest), IFR
andi (\dest), (\dest), PORE_ID_SLW
branz (\dest), (\target)
.endm
.macro tebsbe, dest:req, target:req
mr (\dest), IFR
andi (\dest), (\dest), PORE_ID_SBE
branz (\dest), (\target)
.endm
.macro tebngpe0, dest:req, target:req
mr (\dest), IFR
andi (\dest), (\dest), 0xf
branz (\dest), (\target)
.endm
.macro tebngpe1, dest:req, target:req
mr (\dest), IFR
andi (\dest), (\dest), PORE_ID_GPE1
braz (\dest), (\target)
.endm
.macro tebnslw, dest:req, target:req
mr (\dest), IFR
andi (\dest), (\dest), PORE_ID_SLW
braz (\dest), (\target)
.endm
.macro tebnsbe, dest:req, target:req
mr (\dest), IFR
andi (\dest), (\dest), PORE_ID_SBE
braz (\dest), (\target)
.endm
//////////////////////////////////////////////////////////////////////
// EXTRPRC - Extract and right-justify the PIB/PCB return code
// TPRCB[N]Z - Test PIB return code and branch if [not] zero
// TPRCBGT - Test PIB return code and branch if greater-than
// TPRCBLE - Test PIB return code and branch if less-then or equal
//////////////////////////////////////////////////////////////////////
//
// To support cases where PORE code expects or must explicitly handle
// non-0 PIB return codes, the PIB return code and parity indication
// are stored in bits 32 (parity) and 33-35 (return code) of the IFR.
// These macros extract the four PIB/PCB status bits from the IFR and
// right-justifies them into the data register provided. For EXTRPRC
// that is the total function of the macro. The TPRCB[N]Z macros
// provide a simple non-destructive test and branch for zero (success)
// and non-zero (potential problem) codes after the extraction.
//
// In complex error handling scenarios one would typically compare the
// PIB return code against an upper-bound, e.g., the offline response
// (0x2), and then take further action. If the parity error bit is set
// then this would produce an aggregate "return code" higher than any
// that one would typically want to ignore. The TPRCBGT/TPRCBLE macros
// provide this function; however the test destroys the extracted
// return code so that if further analysis is required the code will
// need to be a extracted again.
//////////////////////////////////////////////////////////////////////
.macro extrprc, dest:req
..data (\dest)
mr (\dest), IFR
extrdi (\dest), (\dest), 4, 32
.endm
.macro tprcbz, dest:req, target:req
extrprc (\dest)
braz (\dest), (\target)
.endm
.macro tprcbnz, dest:req, target:req
extrprc (\dest)
branz (\dest), (\target)
.endm
.macro tprcbgt, dest:req, target:req, bound:req
extrprc (\dest)
subs (\dest), (\dest), (\bound)
tfbugt (\dest), (\target)
.endm
.macro tprcble, dest:req, target:req, bound:req
extrprc (\dest)
subs (\dest), (\dest), (\bound)
tfbule (\dest), (\target)
.endm
//////////////////////////////////////////////////////////////////////
// LPCS - Load Pervasive Chiplet from Scom address
//////////////////////////////////////////////////////////////////////
.macro lpcs, dest:req, scom:req
..pervasive_chiplet_id (\dest)
..check_scom (\scom)
ls (\dest), (((\scom) >> 24) & 0x7f)
.endm
//////////////////////////////////////////////////////////////////////
// Shift/Mask extended mnemonics
//////////////////////////////////////////////////////////////////////
// All of the 'dot-dot' macros assume that error and identity
// checking has been done on the arguments already.
// The initial register-register rotate. If the incoming shift amount
// is 0 then the instruction generated is a simple MR.
.macro ..rotlrr, ra, rs, sh
.if (\sh) >= 32
rols (\ra), (\rs), 32
..rotlr (\ra), ((\sh) - 32)
.elseif (\sh) >= 16
rols (\ra), (\rs), 16
..rotlr (\ra), ((\sh) - 16)
.elseif (\sh) >= 8
rols (\ra), (\rs), 8
..rotlr (\ra), ((\sh) - 8)
.elseif (\sh) >= 4
rols (\ra), (\rs), 4
..rotlr (\ra), ((\sh) - 4)
.elseif (\sh) >= 1
rols (\ra), (\rs), 1
..rotlr (\ra), ((\sh) - 1)
.else
mr (\ra), (\rs)
.endif
.endm
// Subsequent rotation of the same register. The SH should never be 0
// here.
.macro ..rotlr, ra, sh
.if (\sh) >= 32
rols (\ra), (\ra), 32
..rotlr (\ra), ((\sh) - 32)
.elseif (\sh) >= 16
rols (\ra), (\ra), 16
..rotlr (\ra), ((\sh) - 16)
.elseif (\sh) >= 8
rols (\ra), (\ra), 8
..rotlr (\ra), ((\sh) - 8)
.elseif (\sh) >= 4
rols (\ra), (\ra), 4
..rotlr (\ra), ((\sh) - 4)
.elseif (\sh) >= 1
rols (\ra), (\ra), 1
..rotlr (\ra), ((\sh) - 1)
.endif
.endm
// RLDINM RA, RS, SH, MB, ME
//
// Defined as if there were an equivalent PowerPC instruction. The
// 'word' forms of the PowerPC instructions and extended mnemonics are
// undefined in order to catch programming typos.
.undefppc rlwinm, extrwi, rotlwi, rotrwi
.undefppc slwi, srwi
.macro rldinm, ra:req, rs:req, sh:req, mb:req, me:req
.if ((\sh) < 0) || ((\sh) > 63)
.error "SH must be in the range 0..63"
.endif
.if ((\mb) < 0) || ((\mb) > 63)
.error "MB must be in the range 0..63"
.endif
.if ((\me) < 0) || ((\me) > 63)
.error "ME must be in the range 0..63"
.endif
.if (((\mb) == 0) && ((\me) == 63) || ((\me) == ((\mb) - 1)))
// The mask is effectively 0..63, i.e., no mask. This is a
// simple rotate.
..rotlrr (\ra), (\rs), (\sh)
.else
// We need a mask step. However if SH == 0 and RA == RS we can
// bypass the rotate step.
.if ((\sh) != 0) || ((\ra) != (\rs))
..rotlrr (\ra), (\rs), (\sh)
.endif
.if ((\mb) <= (\me))
// This is a straightforward masking operation with a
// single mask.
andi (\ra), (\ra), ((0xffffffffffffffff >> (\mb)) & (0xffffffffffffffff << (63 - (\me))))
.else
// This is a wrapped mask.
// It is created as 2 masks OR-ed together - 0-ME and MB-63
andi (\ra), (\ra), (((0xffffffffffffffff >> 0) & (0xffffffffffffffff << (63 - (\me)))) | ((0xffffffffffffffff >> (\mb)) & (0xffffffffffffffff << (63 - 63))))
.endif
.endif
.endm
// RLDINM Extended Mnemonics
//
// Defined as if they were equivalent to PowerPC 32-bit extended
// mnemonics
.macro extldi, ra:req, rs:req, n:req, b:req
.if ((\n) < 0)
.error "EXTLDI requires N > 0"
.endif
rldinm (\ra), (\rs), (\b), 0, ((\n) - 1)
.endm
.macro extrdi, ra:req, rs:req, n:req, b:req
.if ((\n) < 0)
.error "EXTRDI requires N > 0"
.endif
rldinm (\ra), (\rs), (((\b) + (\n)) % 64), (64 - (\n)), 63
.endm
.macro rotldi, ra:req, rs:req, n:req
rldinm (\ra), (\rs), (\n), 0, 63
.endm
.macro rotrdi, ra:req, rs:req, n:req
rldinm (\ra), (\rs), (64 - (\n)), 0, 63
.endm
.macro sldi, ra:req, rs:req, n:req
rldinm (\ra), (\rs), (\n), 0, (63 - (\n))
.endm
.macro srdi, ra:req, rs:req, n:req
rldinm (\ra), (\rs), (64 - (\n)), (\n), 63
.endm
// RLDIMI RA, RS, SH, MB, ME
//
// Defined as if there were an equivalent PowerPC instruction. The
// 'word' forms of the PowerPC instructions and extended mnemonics are
// undefined in order to catch programming typos.
//
// Note that unlike the PowerPC instructions, here RLDIMI must destroy
// RS by masking and shifting it, and RA and RS may not be the same
// register.
.undefppc rlwimi, inslwi, insrwi
.macro rldimi, ra:req, rs:req, sh:req, mb:req, me:req
..dxdy (\ra), (\rs)
// SH error checks are done by rldinm
.if (((\mb) == 0) && ((\me) == 63) || ((\me) == ((\mb) - 1)))
// The mask is effectively 0..63, i.e., no mask. This is a
// simple rotate of RS into RA
rotldi (\ra), (\rs), (\sh)
.else
// Rotate RS and AND with mask
rldinm (\rs), (\rs), (\sh), (\mb), (\me)
// Mask out the significant bits of RS, clear that section of
// RA, and logical OR RS into RA
.if ((\mb) <= (\me))
// This is a straightforward masking operation with a
// single mask.
andi (\ra), (\ra), \
(~((0xffffffffffffffff >> (\mb)) & (0xffffffffffffffff << (63 - (\me)))))
.else
// This is a wrapped mask.
// It is created as 2 masks OR-ed together - 0-ME and MB-63
andi (\ra), (\ra), \
(~(((0xffffffffffffffff >> 0) & (0xffffffffffffffff << (63 - (\me)))) | \
((0xffffffffffffffff >> (\mb)) & (0xffffffffffffffff << (63 - 63)))))
.endif
or (\ra), D0, D1
.endif
.endm
// RLDIMI Extended Mnemonics
//
// Defined as if they were equivalent to PowerPC 32-bit extended
// mnemonics
.macro insldi, ra:req, rs:req, n:req, b:req
.if ((\n) < 0)
.error "INSLDI requires N > 0"
.endif
rldimi (\ra), (\rs), (64 - (\b)), (\b), ((\b) + (\n) - 1)
.endm
.macro insrdi, ra:req, rs:req, n:req, b:req
.if ((\n) < 0)
.error "INSRDI requires N > 0"
.endif
rldimi (\ra), (\rs), (64 - (\b) - (\n)), (\b), ((\b) + (\n) - 1)
.endm
//////////////////////////////////////////////////////////////////////
// .HOOK
//////////////////////////////////////////////////////////////////////
// The PoreVe (PORE Virtual Environment) is a PORE simulation
// environment that allows the programmer to embed C/C++ code into the
// PORE assembler source code, and arranges for the C/C++ code to be
// executed in-line with the PORE assembly code. Instances of the
// .hook macro are inserted into the assembler input by the
// hook_extractor script, to mark the locations where hooks are
// present. The hook reference is a string that combines the source
// file name with an index number to uniquely identify the hook.
//
// .hook <file name>_<sequence number>
//
// The .hook macro marks the location of each hook in the relocatable
// binaries with special symbols. The symbol name includes the hook
// reference, which is used to locate the hook in the HookManager
// symbol table. Because hooks can be defined in macros, a hook that
// appears once in a source file may appear multiple times in the
// final binary. For this reason each hook must also be tagged with a
// unique index number to avoid symbol name collisions. The
// complexity of the .hook macro is due to the necessity to decode a
// dynamic symbol value (_PGAS_HOOK_INDEX) into its binary string form
// to create the unique symbol name. The final hook symbol has the
// form:
//
// __hook__<unique>_<reference>
//
// where <unique> is a binary string. It is then straightforward to
// locate these symbols in the 'nm' output of the final link and
// create a map of final addresses to the hook routine to call (the
// <reference>) before executing the instruction at that address.
//
// Note: The maximum nesting depth of the recursive ..hook_helper
// macro is log2(index), and the assembler supports nesting of at
// least 32 which is much more than sufficient.
.set _PGAS_HOOK_INDEX, 0
.macro .hook, reference:req
.set _PGAS_HOOK_INDEX, (_PGAS_HOOK_INDEX + 1)
..hook_helper _PGAS_HOOK_INDEX, "", \reference
.endm
.macro ..hook_helper, index, unique, reference
.ifeq \index
__hook__\unique\()_\reference\():
.elseif (\index % 2)
..hook_helper (\index / 2), 1\unique, \reference
.else
..hook_helper (\index / 2), 0\unique, \reference
.endif
.endm
////////////////////////////////////////////////////////////////////////////
// Help for Conversion from Old to New PGAS syntax
////////////////////////////////////////////////////////////////////////////
.macro loadp, arg:vararg
.error "PGAS now implements 'lpcs' rather then 'loadp'"
.endm
.macro loadx, arg:vararg
.error "PGAS now implements 'la' rather than 'loadx'"
.endm
#endif // __ASSEMBLER__
#ifdef PGAS_PPC
#include "pgas_ppc.h"
#endif
#endif // __PGAS_H__