blob: 59f9fcc9afaa0cc33a3247a135cd2f33d37890b9 [file] [log] [blame]
// SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
/* Copyright 2013-2019 IBM Corp. */
#ifndef __PCI_H
#define __PCI_H
#include <opal.h>
#include <device.h>
#include <lock.h>
#include <bitmap.h>
#include <ccan/list/list.h>
#define PCITRACE(_p, _bdfn, fmt, a...) \
prlog(PR_TRACE, "PHB#%04x:%02x:%02x.%x " fmt, \
(_p)->opal_id, \
PCI_BUS_NUM(_bdfn), \
PCI_DEV(_bdfn), PCI_FUNC(_bdfn), ## a)
#define PCIDBG(_p, _bdfn, fmt, a...) \
prlog(PR_DEBUG, "PHB#%04x:%02x:%02x.%x " fmt, \
(_p)->opal_id, \
PCI_BUS_NUM(_bdfn), \
PCI_DEV(_bdfn), PCI_FUNC(_bdfn), ## a)
#define PCINOTICE(_p, _bdfn, fmt, a...) \
prlog(PR_NOTICE, "PHB#%04x:%02x:%02x.%x " fmt, \
(_p)->opal_id, \
PCI_BUS_NUM(_bdfn), \
PCI_DEV(_bdfn), PCI_FUNC(_bdfn), ## a)
#define PCIERR(_p, _bdfn, fmt, a...) \
prlog(PR_ERR, "PHB#%04x:%02x:%02x.%x " fmt, \
(_p)->opal_id, \
PCI_BUS_NUM(_bdfn), \
PCI_DEV(_bdfn), PCI_FUNC(_bdfn), ## a)
struct pci_device;
struct pci_cfg_reg_filter;
typedef int64_t (*pci_cfg_reg_func)(void *dev,
struct pci_cfg_reg_filter *pcrf,
uint32_t offset, uint32_t len,
uint32_t *data, bool write);
typedef void (*pci_cap_free_data_func)(void *data);
struct pci_cfg_reg_filter {
uint32_t flags;
#define PCI_REG_FLAG_READ 0x1
#define PCI_REG_FLAG_WRITE 0x2
#define PCI_REG_FLAG_MASK 0x3
uint32_t start;
uint32_t len;
uint8_t *data;
pci_cfg_reg_func func;
struct list_node link;
};
/*
* While this might not be necessary in the long run, the existing
* Linux kernels expect us to provide a device-tree that contains
* a representation of all PCI devices below the host bridge. Thus
* we need to perform a bus scan. We don't need to assign MMIO/IO
* resources, but we do need to assign bus numbers in a way that
* is going to be compatible with the HW constraints for PE filtering
* that is naturally aligned power of twos for ranges below a bridge.
*
* Thus the structure pci_device is used for the tracking of the
* detected devices and the later generation of the device-tree.
*
* We do not keep a separate structure for a bus, however a device
* can have children in which case a device is a bridge.
*
* Because this is likely to change, we avoid putting too much
* information in that structure nor relying on it for anything
* else but the construction of the flat device-tree.
*/
struct pci_device {
uint16_t bdfn;
bool is_bridge;
bool is_multifunction;
bool is_vf;
uint8_t dev_type; /* PCIE */
uint8_t primary_bus;
uint8_t secondary_bus;
uint8_t subordinate_bus;
uint32_t scan_map;
uint32_t vdid;
uint32_t sub_vdid;
#define PCI_VENDOR_ID(x) ((x) & 0xFFFF)
#define PCI_DEVICE_ID(x) ((x) >> 16)
uint32_t class;
uint64_t cap_list;
struct {
uint32_t pos;
void *data;
pci_cap_free_data_func free_func;
} cap[64];
uint32_t mps; /* Max payload size capability */
uint32_t pcrf_start;
uint32_t pcrf_end;
struct list_head pcrf;
/*
* Relaxed ordering is a feature which allows PCIe devices accessing GPU
* memory to bypass the normal PCIe ordering rules to increase
* performance. It is enabled on a per-PEC basis so every device on a
* PEC must support it before we can enable it.
*/
bool allow_relaxed_ordering;
struct dt_node *dn;
struct pci_slot *slot;
struct pci_device *parent;
struct phb *phb;
struct list_head children;
struct list_node link;
};
static inline void pci_set_cap(struct pci_device *pd, int id, int pos,
void *data, pci_cap_free_data_func free_func,
bool ext)
{
if (!ext) {
pd->cap_list |= (0x1ul << id);
pd->cap[id].pos = pos;
pd->cap[id].data = data;
pd->cap[id].free_func = free_func;
} else {
pd->cap_list |= (0x1ul << (id + 32));
pd->cap[id + 32].pos = pos;
pd->cap[id + 32].data = data;
pd->cap[id + 32].free_func = free_func;
}
}
static inline bool pci_has_cap(struct pci_device *pd,
int id, bool ext)
{
if (!ext)
return !!(pd->cap_list & (0x1ul << id));
else
return !!(pd->cap_list & (0x1ul << (id + 32)));
}
static inline int pci_cap(struct pci_device *pd,
int id, bool ext)
{
if (!ext)
return pd->cap[id].pos;
else
return pd->cap[id + 32].pos;
}
static inline void *pci_cap_data(struct pci_device *pd, int id, bool ext)
{
if (!ext)
return pd->cap[id].data;
else
return pd->cap[id + 32].data;
}
/*
* When generating the device-tree, we need to keep track of
* the LSI mapping & swizzle it. This state structure is
* passed by the PHB to pci_add_nodes() and will be used
* internally.
*
* We assume that the interrupt parent (PIC) #address-cells
* is 0 and #interrupt-cells has a max value of 2.
*/
struct pci_lsi_state {
#define MAX_INT_SIZE 2
uint32_t int_size; /* #cells */
uint32_t int_val[4][MAX_INT_SIZE]; /* INTA...INTD */
uint32_t int_parent[4];
};
/*
* NOTE: All PCI functions return negative OPAL error codes
*
* In addition, some functions may return a positive timeout
* value or some other state information, see the description
* of individual functions. If nothing is specified, it's
* just an error code or 0 (success).
*
* Functions that operate asynchronously will return a positive
* delay value and will require the ->poll() op to be called after
* that delay. ->poll() will then return success, a negative error
* code, or another delay.
*
* Note: If an asynchronous function returns 0, it has completed
* successfully and does not require a call to ->poll(). Similarly
* if ->poll() is called while no operation is in progress, it will
* simply return 0 (success)
*
* Note that all functions except ->lock() itself assume that the
* caller is holding the PHB lock.
*
* TODO: Add more interfaces to control things like link width
* reduction for power savings etc...
*/
struct phb;
extern int last_phb_id;
struct phb_ops {
/*
* Config space ops
*/
int64_t (*cfg_read8)(struct phb *phb, uint32_t bdfn,
uint32_t offset, uint8_t *data);
int64_t (*cfg_read16)(struct phb *phb, uint32_t bdfn,
uint32_t offset, uint16_t *data);
int64_t (*cfg_read32)(struct phb *phb, uint32_t bdfn,
uint32_t offset, uint32_t *data);
int64_t (*cfg_write8)(struct phb *phb, uint32_t bdfn,
uint32_t offset, uint8_t data);
int64_t (*cfg_write16)(struct phb *phb, uint32_t bdfn,
uint32_t offset, uint16_t data);
int64_t (*cfg_write32)(struct phb *phb, uint32_t bdfn,
uint32_t offset, uint32_t data);
int64_t (*get_reserved_pe_number)(struct phb *phb);
/*
* Device init method is called after a device has been detected
* and before probing further. It can alter things like scan_map
* for bridge ports etc...
*/
int (*device_init)(struct phb *phb, struct pci_device *device,
void *data);
void (*device_remove)(struct phb *phb, struct pci_device *pd);
/* PHB final fixup is called after PCI probing is completed */
void (*phb_final_fixup)(struct phb *phb);
/*
* EEH methods
*
* The various arguments are identical to the corresponding
* OPAL functions
*/
int64_t (*eeh_freeze_status)(struct phb *phb, uint64_t pe_number,
uint8_t *freeze_state,
uint16_t *pci_error_type,
uint16_t *severity);
int64_t (*eeh_freeze_clear)(struct phb *phb, uint64_t pe_number,
uint64_t eeh_action_token);
int64_t (*eeh_freeze_set)(struct phb *phb, uint64_t pe_number,
uint64_t eeh_action_token);
int64_t (*err_inject)(struct phb *phb, uint64_t pe_number,
uint32_t type, uint32_t func, uint64_t addr,
uint64_t mask);
int64_t (*get_diag_data2)(struct phb *phb, void *diag_buffer,
uint64_t diag_buffer_len);
int64_t (*next_error)(struct phb *phb, uint64_t *first_frozen_pe,
uint16_t *pci_error_type, uint16_t *severity);
/*
* Other IODA methods
*
* The various arguments are identical to the corresponding
* OPAL functions
*/
int64_t (*pci_reinit)(struct phb *phb, uint64_t scope, uint64_t data);
int64_t (*phb_mmio_enable)(struct phb *phb, uint16_t window_type,
uint16_t window_num, uint16_t enable);
int64_t (*set_phb_mem_window)(struct phb *phb, uint16_t window_type,
uint16_t window_num, uint64_t addr,
uint64_t pci_addr, uint64_t size);
int64_t (*map_pe_mmio_window)(struct phb *phb, uint64_t pe_number,
uint16_t window_type, uint16_t window_num,
uint16_t segment_num);
int64_t (*set_pe)(struct phb *phb, uint64_t pe_number,
uint64_t bus_dev_func, uint8_t bus_compare,
uint8_t dev_compare, uint8_t func_compare,
uint8_t pe_action);
int64_t (*set_peltv)(struct phb *phb, uint32_t parent_pe,
uint32_t child_pe, uint8_t state);
int64_t (*map_pe_dma_window)(struct phb *phb, uint64_t pe_number,
uint16_t window_id, uint16_t tce_levels,
uint64_t tce_table_addr,
uint64_t tce_table_size,
uint64_t tce_page_size);
int64_t (*map_pe_dma_window_real)(struct phb *phb, uint64_t pe_number,
uint16_t dma_window_number,
uint64_t pci_start_addr,
uint64_t pci_mem_size);
int64_t (*set_option)(struct phb *phb, enum OpalPhbOption opt,
uint64_t setting);
int64_t (*get_option)(struct phb *phb, enum OpalPhbOption opt,
__be64 *setting);
int64_t (*set_xive_pe)(struct phb *phb, uint64_t pe_number,
uint32_t xive_num);
int64_t (*get_msi_32)(struct phb *phb, uint64_t mve_number,
uint32_t xive_num, uint8_t msi_range,
uint32_t *msi_address, uint32_t *message_data);
int64_t (*get_msi_64)(struct phb *phb, uint64_t mve_number,
uint32_t xive_num, uint8_t msi_range,
uint64_t *msi_address, uint32_t *message_data);
int64_t (*ioda_reset)(struct phb *phb, bool purge);
int64_t (*papr_errinjct_reset)(struct phb *phb);
/*
* IODA2 PCI interfaces
*/
int64_t (*pci_msi_eoi)(struct phb *phb, uint32_t hwirq);
/* TCE Kill abstraction */
int64_t (*tce_kill)(struct phb *phb, uint32_t kill_type,
uint64_t pe_number, uint32_t tce_size,
uint64_t dma_addr, uint32_t npages);
/* Put phb in capi mode or pcie mode */
int64_t (*set_capi_mode)(struct phb *phb, uint64_t mode,
uint64_t pe_number);
int64_t (*set_capp_recovery)(struct phb *phb);
/* PCI peer-to-peer setup */
void (*set_p2p)(struct phb *phb, uint64_t mode, uint64_t flags,
uint16_t pe_number);
/* Get/set PBCQ Tunnel BAR register */
void (*get_tunnel_bar)(struct phb *phb, uint64_t *addr);
int64_t (*set_tunnel_bar)(struct phb *phb, uint64_t addr);
};
enum phb_type {
phb_type_pci,
phb_type_pcix_v1,
phb_type_pcix_v2,
phb_type_pcie_v1,
phb_type_pcie_v2,
phb_type_pcie_v3,
phb_type_pcie_v4,
phb_type_npu_v2,
phb_type_npu_v2_opencapi,
phb_type_pau_opencapi,
};
/* Generic PCI NVRAM flags */
extern bool verbose_eeh;
extern bool pci_tracing;
void pci_nvram_init(void);
struct phb {
struct dt_node *dt_node;
int opal_id;
uint32_t scan_map;
enum phb_type phb_type;
struct lock lock;
struct list_head devices;
struct list_head virt_devices;
const struct phb_ops *ops;
struct pci_lsi_state lstate;
uint32_t mps;
bitmap_t *filter_map;
/* PCI-X only slot info, for PCI-E this is in the RC bridge */
struct pci_slot *slot;
/* Base location code used to generate the children one */
const char *base_loc_code;
/* Additional data the platform might need to attach */
void *platform_data;
};
static inline void phb_lock(struct phb *phb)
{
lock(&phb->lock);
}
static inline bool phb_try_lock(struct phb *phb)
{
return try_lock(&phb->lock);
}
static inline void phb_unlock(struct phb *phb)
{
unlock(&phb->lock);
}
bool pci_check_clear_freeze(struct phb *phb);
/* Config space ops wrappers */
static inline int64_t pci_cfg_read8(struct phb *phb, uint32_t bdfn,
uint32_t offset, uint8_t *data)
{
return phb->ops->cfg_read8(phb, bdfn, offset, data);
}
static inline int64_t pci_cfg_read16(struct phb *phb, uint32_t bdfn,
uint32_t offset, uint16_t *data)
{
return phb->ops->cfg_read16(phb, bdfn, offset, data);
}
static inline int64_t pci_cfg_read32(struct phb *phb, uint32_t bdfn,
uint32_t offset, uint32_t *data)
{
return phb->ops->cfg_read32(phb, bdfn, offset, data);
}
static inline int64_t pci_cfg_write8(struct phb *phb, uint32_t bdfn,
uint32_t offset, uint8_t data)
{
return phb->ops->cfg_write8(phb, bdfn, offset, data);
}
static inline int64_t pci_cfg_write16(struct phb *phb, uint32_t bdfn,
uint32_t offset, uint16_t data)
{
return phb->ops->cfg_write16(phb, bdfn, offset, data);
}
static inline int64_t pci_cfg_write32(struct phb *phb, uint32_t bdfn,
uint32_t offset, uint32_t data)
{
return phb->ops->cfg_write32(phb, bdfn, offset, data);
}
/* Utilities */
extern void pci_remove_bus(struct phb *phb, struct list_head *list);
extern uint8_t pci_scan_bus(struct phb *phb, uint8_t bus, uint8_t max_bus,
struct list_head *list, struct pci_device *parent,
bool scan_downstream);
extern void pci_add_device_nodes(struct phb *phb,
struct list_head *list,
struct dt_node *parent_node,
struct pci_lsi_state *lstate,
uint8_t swizzle);
extern int64_t pci_find_cap(struct phb *phb, uint16_t bdfn, uint8_t cap);
extern int64_t pci_find_ecap(struct phb *phb, uint16_t bdfn, uint16_t cap,
uint8_t *version);
extern void pci_init_capabilities(struct phb *phb, struct pci_device *pd);
extern bool pci_wait_crs(struct phb *phb, uint16_t bdfn, uint32_t *out_vdid);
extern void pci_restore_slot_bus_configs(struct pci_slot *slot);
extern void pci_device_init(struct phb *phb, struct pci_device *pd);
extern struct pci_device *pci_walk_dev(struct phb *phb,
struct pci_device *pd,
int (*cb)(struct phb *,
struct pci_device *,
void *),
void *userdata);
extern struct pci_device *pci_find_dev(struct phb *phb, uint16_t bdfn);
extern void pci_restore_bridge_buses(struct phb *phb, struct pci_device *pd);
extern struct pci_cfg_reg_filter *pci_find_cfg_reg_filter(struct pci_device *pd,
uint32_t start, uint32_t len);
extern int64_t pci_handle_cfg_filters(struct phb *phb, uint32_t bdfn,
uint32_t offset, uint32_t len,
uint32_t *data, bool write);
extern struct pci_cfg_reg_filter *pci_add_cfg_reg_filter(struct pci_device *pd,
uint32_t start, uint32_t len,
uint32_t flags, pci_cfg_reg_func func);
/* Manage PHBs */
#define OPAL_DYNAMIC_PHB_ID (~0)
extern int64_t pci_register_phb(struct phb *phb, int opal_id);
extern int64_t pci_unregister_phb(struct phb *phb);
extern struct phb *pci_get_phb(uint64_t phb_id);
static inline struct phb *__pci_next_phb_idx(uint64_t *phb_id) {
struct phb *phb = NULL;
while (phb == NULL && *phb_id <= last_phb_id) {
phb = pci_get_phb((*phb_id)++);
}
return phb;
}
#define for_each_phb(phb) \
for (uint64_t __phb_idx = 0; \
(phb = __pci_next_phb_idx(&__phb_idx)) ; )
/* Device tree */
extern void pci_std_swizzle_irq_map(struct dt_node *dt_node,
struct pci_device *pd,
struct pci_lsi_state *lstate,
uint8_t swizzle);
/* Initialize all PCI slots */
extern void pci_init_slots(void);
extern int64_t pci_reset(void);
extern void opal_pci_eeh_set_evt(uint64_t phb_id);
extern void opal_pci_eeh_clear_evt(uint64_t phb_id);
#endif /* __PCI_H */