blob: 0a146c83386d012dcdd8503a1f9c8502fa9a37e2 [file] [log] [blame]
// SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
/*
* Base PCI support
*
* Copyright 2013-2019 IBM Corp.
*/
#include <skiboot.h>
#include <cpu.h>
#include <pci.h>
#include <pci-cfg.h>
#include <pci-slot.h>
#include <pci-quirk.h>
#include <timebase.h>
#include <device.h>
#define MAX_PHB_ID 256
static struct phb *phbs[MAX_PHB_ID];
int last_phb_id = 0;
/*
* Generic PCI utilities
*/
static int64_t __pci_find_cap(struct phb *phb, uint16_t bdfn,
uint8_t want, bool check_cap_indicator)
{
int64_t rc;
uint16_t stat, cap;
uint8_t pos, next;
rc = pci_cfg_read16(phb, bdfn, PCI_CFG_STAT, &stat);
if (rc)
return rc;
if (check_cap_indicator && !(stat & PCI_CFG_STAT_CAP))
return OPAL_UNSUPPORTED;
rc = pci_cfg_read8(phb, bdfn, PCI_CFG_CAP, &pos);
if (rc)
return rc;
pos &= 0xfc;
while(pos) {
rc = pci_cfg_read16(phb, bdfn, pos, &cap);
if (rc)
return rc;
if ((cap & 0xff) == want)
return pos;
next = (cap >> 8) & 0xfc;
if (next == pos) {
PCIERR(phb, bdfn, "pci_find_cap hit a loop !\n");
break;
}
pos = next;
}
return OPAL_UNSUPPORTED;
}
/* pci_find_cap - Find a PCI capability in a device config space
*
* This will return a config space offset (positive) or a negative
* error (OPAL error codes).
*
* OPAL_UNSUPPORTED is returned if the capability doesn't exist
*/
int64_t pci_find_cap(struct phb *phb, uint16_t bdfn, uint8_t want)
{
return __pci_find_cap(phb, bdfn, want, true);
}
/* pci_find_ecap - Find a PCIe extended capability in a device
* config space
*
* This will return a config space offset (positive) or a negative
* error (OPAL error code). Additionally, if the "version" argument
* is non-NULL, the capability version will be returned there.
*
* OPAL_UNSUPPORTED is returned if the capability doesn't exist
*/
int64_t pci_find_ecap(struct phb *phb, uint16_t bdfn, uint16_t want,
uint8_t *version)
{
int64_t rc;
uint32_t cap;
uint16_t off, prev = 0;
for (off = 0x100; off && off < 0x1000; off = (cap >> 20) & 0xffc ) {
if (off == prev) {
PCIERR(phb, bdfn, "pci_find_ecap hit a loop !\n");
break;
}
prev = off;
rc = pci_cfg_read32(phb, bdfn, off, &cap);
if (rc)
return rc;
/* no ecaps supported */
if (cap == 0 || (cap & 0xffff) == 0xffff)
return OPAL_UNSUPPORTED;
if ((cap & 0xffff) == want) {
if (version)
*version = (cap >> 16) & 0xf;
return off;
}
}
return OPAL_UNSUPPORTED;
}
static void pci_init_pcie_cap(struct phb *phb, struct pci_device *pd)
{
int64_t ecap = 0;
uint16_t reg;
uint32_t val;
/* On the upstream port of PLX bridge 8724 (rev ba), PCI_STATUS
* register doesn't have capability indicator though it support
* various PCI capabilities. So we need ignore that bit when
* looking for PCI capabilities on the upstream port, which is
* limited to one that seats directly under root port.
*/
if (pd->vdid == 0x872410b5 && pd->parent && !pd->parent->parent) {
uint8_t rev;
pci_cfg_read8(phb, pd->bdfn, PCI_CFG_REV_ID, &rev);
if (rev == 0xba)
ecap = __pci_find_cap(phb, pd->bdfn,
PCI_CFG_CAP_ID_EXP, false);
else
ecap = pci_find_cap(phb, pd->bdfn, PCI_CFG_CAP_ID_EXP);
} else {
ecap = pci_find_cap(phb, pd->bdfn, PCI_CFG_CAP_ID_EXP);
}
if (ecap <= 0) {
pd->dev_type = PCIE_TYPE_LEGACY;
return;
}
pci_set_cap(pd, PCI_CFG_CAP_ID_EXP, ecap, NULL, NULL, false);
/*
* XXX We observe a problem on some PLX switches where one
* of the downstream ports appears as an upstream port, we
* fix that up here otherwise, other code will misbehave
*/
pci_cfg_read16(phb, pd->bdfn, ecap + PCICAP_EXP_CAPABILITY_REG, &reg);
pd->dev_type = GETFIELD(PCICAP_EXP_CAP_TYPE, reg);
if (pd->parent && pd->parent->dev_type == PCIE_TYPE_SWITCH_UPPORT &&
pd->vdid == 0x874810b5 && pd->dev_type == PCIE_TYPE_SWITCH_UPPORT) {
PCIDBG(phb, pd->bdfn, "Fixing up bad PLX downstream port !\n");
pd->dev_type = PCIE_TYPE_SWITCH_DNPORT;
}
/* XXX Handle ARI */
if (pd->dev_type == PCIE_TYPE_SWITCH_DNPORT ||
pd->dev_type == PCIE_TYPE_ROOT_PORT)
pd->scan_map = 0x1;
/* Read MPS capability, whose maximal size is 4096 */
pci_cfg_read32(phb, pd->bdfn, ecap + PCICAP_EXP_DEVCAP, &val);
pd->mps = (128 << GETFIELD(PCICAP_EXP_DEVCAP_MPSS, val));
if (pd->mps > 4096)
pd->mps = 4096;
}
static void pci_init_aer_cap(struct phb *phb, struct pci_device *pd)
{
int64_t pos;
if (!pci_has_cap(pd, PCI_CFG_CAP_ID_EXP, false))
return;
pos = pci_find_ecap(phb, pd->bdfn, PCIECAP_ID_AER, NULL);
if (pos > 0)
pci_set_cap(pd, PCIECAP_ID_AER, pos, NULL, NULL, true);
}
static void pci_init_pm_cap(struct phb *phb, struct pci_device *pd)
{
int64_t pos;
pos = pci_find_cap(phb, pd->bdfn, PCI_CFG_CAP_ID_PM);
if (pos > 0)
pci_set_cap(pd, PCI_CFG_CAP_ID_PM, pos, NULL, NULL, false);
}
void pci_init_capabilities(struct phb *phb, struct pci_device *pd)
{
pci_init_pcie_cap(phb, pd);
pci_init_aer_cap(phb, pd);
pci_init_pm_cap(phb, pd);
}
bool pci_wait_crs(struct phb *phb, uint16_t bdfn, uint32_t *out_vdid)
{
uint32_t retries, vdid;
int64_t rc;
bool had_crs = false;
for (retries = 0; retries < 40; retries++) {
rc = pci_cfg_read32(phb, bdfn, PCI_CFG_VENDOR_ID, &vdid);
if (rc)
return false;
if (vdid == 0xffffffff || vdid == 0x00000000)
return false;
if (vdid != 0xffff0001)
break;
had_crs = true;
time_wait_ms(100);
}
if (vdid == 0xffff0001) {
PCIERR(phb, bdfn, "CRS timeout !\n");
return false;
}
if (had_crs)
PCIDBG(phb, bdfn, "Probe success after %d CRS\n", retries);
if (out_vdid)
*out_vdid = vdid;
return true;
}
static struct pci_device *pci_scan_one(struct phb *phb, struct pci_device *parent,
uint16_t bdfn)
{
struct pci_device *pd = NULL;
uint32_t vdid;
int64_t rc;
uint8_t htype;
if (!pci_wait_crs(phb, bdfn, &vdid))
return NULL;
/* Perform a dummy write to the device in order for it to
* capture it's own bus number, so any subsequent error
* messages will be properly tagged
*/
pci_cfg_write32(phb, bdfn, PCI_CFG_VENDOR_ID, vdid);
pd = zalloc(sizeof(struct pci_device));
if (!pd) {
PCIERR(phb, bdfn,"Failed to allocate structure pci_device !\n");
goto fail;
}
pd->phb = phb;
pd->bdfn = bdfn;
pd->vdid = vdid;
pci_cfg_read32(phb, bdfn, PCI_CFG_SUBSYS_VENDOR_ID, &pd->sub_vdid);
pci_cfg_read32(phb, bdfn, PCI_CFG_REV_ID, &pd->class);
pd->class >>= 8;
pd->parent = parent;
list_head_init(&pd->pcrf);
list_head_init(&pd->children);
rc = pci_cfg_read8(phb, bdfn, PCI_CFG_HDR_TYPE, &htype);
if (rc) {
PCIERR(phb, bdfn, "Failed to read header type !\n");
goto fail;
}
pd->is_multifunction = !!(htype & 0x80);
pd->is_bridge = (htype & 0x7f) != 0;
pd->is_vf = false;
pd->scan_map = 0xffffffff; /* Default */
pd->primary_bus = PCI_BUS_NUM(bdfn);
pci_init_capabilities(phb, pd);
/* If it's a bridge, sanitize the bus numbers to avoid forwarding
*
* This will help when walking down those bridges later on
*/
if (pd->is_bridge) {
pci_cfg_write8(phb, bdfn, PCI_CFG_PRIMARY_BUS, pd->primary_bus);
pci_cfg_write8(phb, bdfn, PCI_CFG_SECONDARY_BUS, 0);
pci_cfg_write8(phb, bdfn, PCI_CFG_SUBORDINATE_BUS, 0);
}
/* XXX Need to do some basic setups, such as MPSS, MRS,
* RCB, etc...
*/
PCIDBG(phb, bdfn, "Found VID:%04x DEV:%04x TYP:%d MF%s BR%s EX%s\n",
vdid & 0xffff, vdid >> 16, pd->dev_type,
pd->is_multifunction ? "+" : "-",
pd->is_bridge ? "+" : "-",
pci_has_cap(pd, PCI_CFG_CAP_ID_EXP, false) ? "+" : "-");
/* Try to get PCI slot behind the device */
if (platform.pci_get_slot_info)
platform.pci_get_slot_info(phb, pd);
/* Put it to the child device of list of PHB or parent */
if (!parent)
list_add_tail(&phb->devices, &pd->link);
else
list_add_tail(&parent->children, &pd->link);
/*
* Call PHB hook
*/
if (phb->ops->device_init)
phb->ops->device_init(phb, pd, NULL);
return pd;
fail:
if (pd)
free(pd);
return NULL;
}
/* pci_check_clear_freeze - Probing empty slot will result in an EEH
* freeze. Currently we have a single PE mapping
* everything (default state of our backend) so
* we just check and clear the state of PE#0
*
* returns true if a freeze was detected
*
* NOTE: We currently only handle simple PE freeze, not PHB fencing
* (or rather our backend does)
*/
bool pci_check_clear_freeze(struct phb *phb)
{
uint8_t freeze_state;
uint16_t pci_error_type, sev;
int64_t pe_number, rc;
/* Retrieve the reserved PE number */
pe_number = OPAL_PARAMETER;
if (phb->ops->get_reserved_pe_number)
pe_number = phb->ops->get_reserved_pe_number(phb);
if (pe_number < 0)
return false;
/* Retrieve the frozen state */
rc = phb->ops->eeh_freeze_status(phb, pe_number, &freeze_state,
&pci_error_type, &sev);
if (rc)
return true; /* phb fence? */
if (freeze_state == OPAL_EEH_STOPPED_NOT_FROZEN)
return false;
/* We can't handle anything worse than an ER here */
if (sev > OPAL_EEH_SEV_NO_ERROR &&
sev < OPAL_EEH_SEV_PE_ER) {
PCIERR(phb, 0, "Fatal probe in %s error !\n", __func__);
return true;
}
phb->ops->eeh_freeze_clear(phb, pe_number,
OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
return true;
}
/*
* Turn off slot's power supply if there are nothing connected for
* 2 purposes: power saving obviously and initialize the slot to
* to initial power-off state for hotplug.
*
* The power should be turned on if the downstream link of the slot
* isn't up.
*/
static void pci_slot_set_power_state(struct phb *phb,
struct pci_device *pd,
uint8_t state)
{
struct pci_slot *slot;
uint8_t cur_state;
int32_t wait = 100;
int64_t rc;
if (!pd || !pd->slot)
return;
slot = pd->slot;
if (!slot->pluggable ||
!slot->ops.get_power_state ||
!slot->ops.set_power_state)
return;
if (state == PCI_SLOT_POWER_OFF) {
/* Bail if there're something connected */
if (!list_empty(&pd->children)) {
PCIERR(phb, pd->bdfn, "Attempted to power off slot with attached devices!\n");
return;
}
pci_slot_add_flags(slot, PCI_SLOT_FLAG_BOOTUP);
rc = slot->ops.get_power_state(slot, &cur_state);
if (rc != OPAL_SUCCESS) {
PCINOTICE(phb, pd->bdfn, "Error %lld getting slot power state\n", rc);
cur_state = PCI_SLOT_POWER_OFF;
}
pci_slot_remove_flags(slot, PCI_SLOT_FLAG_BOOTUP);
if (cur_state == PCI_SLOT_POWER_OFF)
return;
}
pci_slot_add_flags(slot,
(PCI_SLOT_FLAG_BOOTUP | PCI_SLOT_FLAG_ENFORCE));
rc = slot->ops.set_power_state(slot, state);
if (rc == OPAL_SUCCESS)
goto success;
if (rc != OPAL_ASYNC_COMPLETION) {
PCINOTICE(phb, pd->bdfn, "Error %lld powering %s slot\n",
rc, state == PCI_SLOT_POWER_ON ? "on" : "off");
goto error;
}
/* Wait until the operation is completed */
do {
if (slot->state == PCI_SLOT_STATE_SPOWER_DONE)
break;
check_timers(false);
time_wait_ms(10);
} while (--wait >= 0);
if (wait < 0) {
PCINOTICE(phb, pd->bdfn, "Timeout powering %s slot\n",
state == PCI_SLOT_POWER_ON ? "on" : "off");
goto error;
}
success:
PCIDBG(phb, pd->bdfn, "Powering %s hotpluggable slot\n",
state == PCI_SLOT_POWER_ON ? "on" : "off");
error:
pci_slot_remove_flags(slot,
(PCI_SLOT_FLAG_BOOTUP | PCI_SLOT_FLAG_ENFORCE));
pci_slot_set_state(slot, PCI_SLOT_STATE_NORMAL);
}
static bool pci_bridge_power_on(struct phb *phb, struct pci_device *pd)
{
int32_t ecap;
uint16_t pcie_cap, slot_sts, slot_ctl, link_ctl;
uint32_t slot_cap;
int64_t rc;
/*
* If there is a PCI slot associated with the bridge, to use
* the PCI slot's facality to power it on.
*/
if (pd->slot) {
struct pci_slot *slot = pd->slot;
uint8_t presence;
/*
* We assume the presence state is OPAL_PCI_SLOT_PRESENT
* by default. In this way, we won't miss anything when
* the operation isn't supported or hitting error upon
* retrieving it.
*/
if (slot->ops.get_presence_state) {
rc = slot->ops.get_presence_state(slot, &presence);
if (rc == OPAL_SUCCESS &&
presence == OPAL_PCI_SLOT_EMPTY)
return false;
}
/* To power it on */
pci_slot_set_power_state(phb, pd, PCI_SLOT_POWER_ON);
return true;
}
if (!pci_has_cap(pd, PCI_CFG_CAP_ID_EXP, false))
return true;
/* Check if slot is supported */
ecap = pci_cap(pd, PCI_CFG_CAP_ID_EXP, false);
pci_cfg_read16(phb, pd->bdfn,
ecap + PCICAP_EXP_CAPABILITY_REG, &pcie_cap);
if (!(pcie_cap & PCICAP_EXP_CAP_SLOT))
return true;
/* Check presence */
pci_cfg_read16(phb, pd->bdfn,
ecap + PCICAP_EXP_SLOTSTAT, &slot_sts);
if (!(slot_sts & PCICAP_EXP_SLOTSTAT_PDETECTST))
return false;
/* Ensure that power control is supported */
pci_cfg_read32(phb, pd->bdfn,
ecap + PCICAP_EXP_SLOTCAP, &slot_cap);
if (!(slot_cap & PCICAP_EXP_SLOTCAP_PWCTRL))
return true;
/* Read the slot control register, check if the slot is off */
pci_cfg_read16(phb, pd->bdfn, ecap + PCICAP_EXP_SLOTCTL, &slot_ctl);
PCITRACE(phb, pd->bdfn, " SLOT_CTL=%04x\n", slot_ctl);
if (slot_ctl & PCICAP_EXP_SLOTCTL_PWRCTLR) {
PCIDBG(phb, pd->bdfn, "Bridge power is off, turning on ...\n");
slot_ctl &= ~PCICAP_EXP_SLOTCTL_PWRCTLR;
slot_ctl |= SETFIELD(PCICAP_EXP_SLOTCTL_PWRI, 0, PCIE_INDIC_ON);
pci_cfg_write16(phb, pd->bdfn,
ecap + PCICAP_EXP_SLOTCTL, slot_ctl);
/* Wait a couple of seconds */
time_wait_ms(2000);
}
/* Enable link */
pci_cfg_read16(phb, pd->bdfn, ecap + PCICAP_EXP_LCTL, &link_ctl);
PCITRACE(phb, pd->bdfn, " LINK_CTL=%04x\n", link_ctl);
link_ctl &= ~PCICAP_EXP_LCTL_LINK_DIS;
pci_cfg_write16(phb, pd->bdfn, ecap + PCICAP_EXP_LCTL, link_ctl);
return true;
}
static bool pci_bridge_wait_link(struct phb *phb,
struct pci_device *pd,
bool was_reset)
{
int32_t ecap = 0;
uint32_t link_cap = 0, retries = 100;
uint16_t link_sts;
if (pci_has_cap(pd, PCI_CFG_CAP_ID_EXP, false)) {
ecap = pci_cap(pd, PCI_CFG_CAP_ID_EXP, false);
pci_cfg_read32(phb, pd->bdfn, ecap + PCICAP_EXP_LCAP, &link_cap);
}
/*
* If link state reporting isn't supported, wait 1 second
* if the downstream link was ever resetted.
*/
if (!(link_cap & PCICAP_EXP_LCAP_DL_ACT_REP)) {
if (was_reset)
time_wait_ms(1000);
return true;
}
/*
* Link state reporting is supported, wait for the link to
* come up until timeout.
*/
PCIDBG(phb, pd->bdfn, "waiting for link... \n");
while (retries--) {
pci_cfg_read16(phb, pd->bdfn,
ecap + PCICAP_EXP_LSTAT, &link_sts);
if (link_sts & PCICAP_EXP_LSTAT_DLLL_ACT)
break;
time_wait_ms(100);
}
if (!(link_sts & PCICAP_EXP_LSTAT_DLLL_ACT)) {
PCIERR(phb, pd->bdfn, "Timeout waiting for downstream link\n");
return false;
}
/* Need another 100ms before touching the config space */
time_wait_ms(100);
PCIDBG(phb, pd->bdfn, "link is up\n");
return true;
}
/* pci_enable_bridge - Called before scanning a bridge
*
* Ensures error flags are clean, disable master abort, and
* check if the subordinate bus isn't reset, the slot is enabled
* on PCIe, etc...
*/
static bool pci_enable_bridge(struct phb *phb, struct pci_device *pd)
{
uint16_t bctl;
bool was_reset = false;
/* Disable master aborts, clear errors */
pci_cfg_read16(phb, pd->bdfn, PCI_CFG_BRCTL, &bctl);
bctl &= ~PCI_CFG_BRCTL_MABORT_REPORT;
pci_cfg_write16(phb, pd->bdfn, PCI_CFG_BRCTL, bctl);
/* PCI-E bridge, check the slot state. We don't do that on the
* root complex as this is handled separately and not all our
* RCs implement the standard register set.
*/
if ((pd->dev_type == PCIE_TYPE_ROOT_PORT && pd->primary_bus > 0) ||
pd->dev_type == PCIE_TYPE_SWITCH_DNPORT) {
if (pci_has_cap(pd, PCI_CFG_CAP_ID_EXP, false)) {
int32_t ecap;
uint32_t link_cap = 0;
uint16_t link_sts = 0;
ecap = pci_cap(pd, PCI_CFG_CAP_ID_EXP, false);
pci_cfg_read32(phb, pd->bdfn,
ecap + PCICAP_EXP_LCAP, &link_cap);
/*
* No need to touch the power supply if the PCIe link has
* been up. Further more, the slot presence bit is lost while
* the PCIe link is up on the specific PCI topology. In that
* case, we need ignore the slot presence bit and go ahead for
* probing. Otherwise, the NVMe adapter won't be probed.
*
* PHB3 root port, PLX switch 8748 (10b5:8748), PLX swich 9733
* (10b5:9733), PMC 8546 swtich (11f8:8546), NVMe adapter
* (1c58:0023).
*/
ecap = pci_cap(pd, PCI_CFG_CAP_ID_EXP, false);
pci_cfg_read32(phb, pd->bdfn,
ecap + PCICAP_EXP_LCAP, &link_cap);
pci_cfg_read16(phb, pd->bdfn,
ecap + PCICAP_EXP_LSTAT, &link_sts);
if ((link_cap & PCICAP_EXP_LCAP_DL_ACT_REP) &&
(link_sts & PCICAP_EXP_LSTAT_DLLL_ACT))
return true;
}
/* Power on the downstream slot or link */
if (!pci_bridge_power_on(phb, pd))
return false;
}
/* Clear secondary reset */
if (bctl & PCI_CFG_BRCTL_SECONDARY_RESET) {
PCIDBG(phb, pd->bdfn,
"Bridge secondary reset is on, clearing it ...\n");
bctl &= ~PCI_CFG_BRCTL_SECONDARY_RESET;
pci_cfg_write16(phb, pd->bdfn, PCI_CFG_BRCTL, bctl);
time_wait_ms(1000);
was_reset = true;
}
/* PCI-E bridge, wait for link */
if (pd->dev_type == PCIE_TYPE_ROOT_PORT ||
pd->dev_type == PCIE_TYPE_SWITCH_DNPORT) {
if (!pci_bridge_wait_link(phb, pd, was_reset))
return false;
}
/* Clear error status */
pci_cfg_write16(phb, pd->bdfn, PCI_CFG_STAT, 0xffff);
return true;
}
/* Clear up bridge resources */
static void pci_cleanup_bridge(struct phb *phb, struct pci_device *pd)
{
uint16_t cmd;
pci_cfg_write16(phb, pd->bdfn, PCI_CFG_IO_BASE_U16, 0xffff);
pci_cfg_write8(phb, pd->bdfn, PCI_CFG_IO_BASE, 0xf0);
pci_cfg_write16(phb, pd->bdfn, PCI_CFG_IO_LIMIT_U16, 0);
pci_cfg_write8(phb, pd->bdfn, PCI_CFG_IO_LIMIT, 0);
pci_cfg_write16(phb, pd->bdfn, PCI_CFG_MEM_BASE, 0xfff0);
pci_cfg_write16(phb, pd->bdfn, PCI_CFG_MEM_LIMIT, 0);
pci_cfg_write32(phb, pd->bdfn, PCI_CFG_PREF_MEM_BASE_U32, 0xffffffff);
pci_cfg_write16(phb, pd->bdfn, PCI_CFG_PREF_MEM_BASE, 0xfff0);
pci_cfg_write32(phb, pd->bdfn, PCI_CFG_PREF_MEM_LIMIT_U32, 0);
pci_cfg_write16(phb, pd->bdfn, PCI_CFG_PREF_MEM_LIMIT, 0);
/* Note: This is a bit fishy but since we have closed all the
* bridge windows above, it shouldn't be a problem. Basically
* we enable Memory, IO and Bus Master on the bridge because
* some versions of Linux will fail to do it themselves.
*/
pci_cfg_read16(phb, pd->bdfn, PCI_CFG_CMD, &cmd);
cmd |= PCI_CFG_CMD_IO_EN | PCI_CFG_CMD_MEM_EN;
cmd |= PCI_CFG_CMD_BUS_MASTER_EN;
pci_cfg_write16(phb, pd->bdfn, PCI_CFG_CMD, cmd);
}
/* Remove all subordinate PCI devices leading from the indicated
* PCI bus. It's used to remove all PCI devices behind one PCI
* slot at unplugging time
*/
void pci_remove_bus(struct phb *phb, struct list_head *list)
{
struct pci_device *pd, *tmp;
list_for_each_safe(list, pd, tmp, link) {
pci_remove_bus(phb, &pd->children);
if (phb->ops->device_remove)
phb->ops->device_remove(phb, pd);
/* Release device node and PCI slot */
if (pd->dn)
dt_free(pd->dn);
if (pd->slot)
free(pd->slot);
/* Remove from parent list and release itself */
list_del(&pd->link);
free(pd);
}
}
static void pci_set_power_limit(struct pci_device *pd)
{
uint32_t offset, val;
uint16_t caps;
offset = pci_cap(pd, PCI_CFG_CAP_ID_EXP, false);
if (!offset)
return; /* legacy dev */
pci_cfg_read16(pd->phb, pd->bdfn,
offset + PCICAP_EXP_CAPABILITY_REG, &caps);
if (!(caps & PCICAP_EXP_CAP_SLOT))
return; /* bridge has no slot capabilities */
if (!pd->slot || !pd->slot->power_limit)
return;
pci_cfg_read32(pd->phb, pd->bdfn, offset + PCICAP_EXP_SLOTCAP, &val);
val = SETFIELD(PCICAP_EXP_SLOTCAP_SPLSC, val, 0); /* 1W scale */
val = SETFIELD(PCICAP_EXP_SLOTCAP_SPLVA, val, pd->slot->power_limit);
pci_cfg_write32(pd->phb, pd->bdfn, offset + PCICAP_EXP_SLOTCAP, val);
/* update the cached copy in the slot */
pd->slot->slot_cap = val;
PCIDBG(pd->phb, pd->bdfn, "Slot power limit set to %dW\n",
pd->slot->power_limit);
}
/* Perform a recursive scan of the bus at bus_number populating
* the list passed as an argument. This also performs the bus
* numbering, so it returns the largest bus number that was
* assigned.
*
* Note: Eventually this might want to access some VPD information
* in order to know what slots to scan and what not etc..
*
* XXX NOTE: We might want to enable ARI along the way...
*
* XXX NOTE: We might also want to setup the PCIe MPS/MRSS properly
* here as Linux may or may not do it
*/
uint8_t pci_scan_bus(struct phb *phb, uint8_t bus, uint8_t max_bus,
struct list_head *list, struct pci_device *parent,
bool scan_downstream)
{
struct pci_device *pd = NULL, *rc = NULL;
uint8_t dev, fn, next_bus, max_sub;
uint32_t scan_map;
/* Decide what to scan */
scan_map = parent ? parent->scan_map : phb->scan_map;
/* Do scan */
for (dev = 0; dev < 32; dev++) {
if (!(scan_map & (1ul << dev)))
continue;
/* Scan the device */
pd = pci_scan_one(phb, parent, (bus << 8) | (dev << 3));
pci_check_clear_freeze(phb);
if (!pd)
continue;
/* Record RC when its downstream link is down */
if (!scan_downstream && dev == 0 && !rc)
rc = pd;
/* XXX Handle ARI */
if (!pd->is_multifunction)
continue;
for (fn = 1; fn < 8; fn++) {
pd = pci_scan_one(phb, parent,
((uint16_t)bus << 8) | (dev << 3) | fn);
pci_check_clear_freeze(phb);
}
}
/* Reserve all possible buses if RC's downstream link is down
* if PCI hotplug is supported.
*/
if (rc && rc->slot && rc->slot->pluggable) {
next_bus = bus + 1;
rc->secondary_bus = next_bus;
rc->subordinate_bus = max_bus;
pci_cfg_write8(phb, rc->bdfn, PCI_CFG_SECONDARY_BUS,
rc->secondary_bus);
pci_cfg_write8(phb, rc->bdfn, PCI_CFG_SUBORDINATE_BUS,
rc->subordinate_bus);
}
/* set the power limit for any downstream slots while we're here */
list_for_each(list, pd, link) {
if (pd->is_bridge)
pci_set_power_limit(pd);
}
/*
* We only scan downstream if instructed to do so by the
* caller. Typically we avoid the scan when we know the
* link is down already, which happens for the top level
* root complex, and avoids a long secondary timeout
*/
if (!scan_downstream) {
list_for_each(list, pd, link)
pci_slot_set_power_state(phb, pd, PCI_SLOT_POWER_OFF);
return bus;
}
next_bus = bus + 1;
max_sub = bus;
/* Scan down bridges */
list_for_each(list, pd, link) {
bool do_scan;
if (!pd->is_bridge)
continue;
/* Configure the bridge with the returned values */
if (next_bus <= bus) {
PCIERR(phb, pd->bdfn, "Out of bus numbers !\n");
max_bus = next_bus = 0; /* Failure case */
}
pd->secondary_bus = next_bus;
pd->subordinate_bus = max_bus;
pci_cfg_write8(phb, pd->bdfn, PCI_CFG_SECONDARY_BUS, next_bus);
pci_cfg_write8(phb, pd->bdfn, PCI_CFG_SUBORDINATE_BUS, max_bus);
if (!next_bus)
break;
PCIDBG(phb, pd->bdfn, "Bus %02x..%02x scanning...\n",
next_bus, max_bus);
/* Clear up bridge resources */
pci_cleanup_bridge(phb, pd);
/* Configure the bridge. This will enable power to the slot
* if it's currently disabled, lift reset, etc...
*
* Return false if we know there's nothing behind the bridge
*/
do_scan = pci_enable_bridge(phb, pd);
/* Perform recursive scan */
if (do_scan) {
max_sub = pci_scan_bus(phb, next_bus, max_bus,
&pd->children, pd, true);
} else {
/* Empty bridge. We leave room for hotplug
* slots if the downstream port is pluggable.
*/
if (pd->slot && !pd->slot->pluggable)
max_sub = next_bus;
else {
max_sub = next_bus + 4;
if (max_sub > max_bus)
max_sub = max_bus;
}
}
pd->subordinate_bus = max_sub;
pci_cfg_write8(phb, pd->bdfn, PCI_CFG_SUBORDINATE_BUS, max_sub);
next_bus = max_sub + 1;
/* power off the slot if there's nothing below it */
if (list_empty(&pd->children))
pci_slot_set_power_state(phb, pd, PCI_SLOT_POWER_OFF);
}
return max_sub;
}
static int pci_get_mps(struct phb *phb,
struct pci_device *pd, void *userdata)
{
uint32_t *mps = (uint32_t *)userdata;
/* Only check PCI device that had MPS capacity */
if (phb && pd && pd->mps && *mps > pd->mps)
*mps = pd->mps;
return 0;
}
static int pci_configure_mps(struct phb *phb,
struct pci_device *pd,
void *userdata __unused)
{
uint32_t ecap, aercap, mps;
uint16_t val;
assert(phb);
assert(pd);
/* If the MPS isn't acceptable one, bail immediately */
mps = phb->mps;
if (mps < 128 || mps > 4096)
return 1;
/* Retrieve PCIe and AER capability */
ecap = pci_cap(pd, PCI_CFG_CAP_ID_EXP, false);
aercap = pci_cap(pd, PCIECAP_ID_AER, true);
/* PCIe device always has MPS capacity */
if (pd->mps) {
mps = ilog2(mps) - 7;
pci_cfg_read16(phb, pd->bdfn, ecap + PCICAP_EXP_DEVCTL, &val);
val = SETFIELD(PCICAP_EXP_DEVCTL_MPS, val, mps);
pci_cfg_write16(phb, pd->bdfn, ecap + PCICAP_EXP_DEVCTL, val);
}
/* Changing MPS on upstream PCI bridge might cause some error
* bits in PCIe and AER capability. To clear them to avoid
* confusion.
*/
if (aercap) {
pci_cfg_write32(phb, pd->bdfn, aercap + PCIECAP_AER_UE_STATUS,
0xffffffff);
pci_cfg_write32(phb, pd->bdfn, aercap + PCIECAP_AER_CE_STATUS,
0xffffffff);
}
if (ecap)
pci_cfg_write16(phb, pd->bdfn, ecap + PCICAP_EXP_DEVSTAT, 0xf);
return 0;
}
static void pci_disable_completion_timeout(struct phb *phb, struct pci_device *pd)
{
uint32_t ecap, val;
uint16_t pcie_cap;
/* PCIE capability required */
if (!pci_has_cap(pd, PCI_CFG_CAP_ID_EXP, false))
return;
/* Check PCIe capability version */
ecap = pci_cap(pd, PCI_CFG_CAP_ID_EXP, false);
pci_cfg_read16(phb, pd->bdfn,
ecap + PCICAP_EXP_CAPABILITY_REG, &pcie_cap);
if ((pcie_cap & PCICAP_EXP_CAP_VERSION) <= 1)
return;
/* Check if it has capability to disable completion timeout */
pci_cfg_read32(phb, pd->bdfn, ecap + PCIECAP_EXP_DCAP2, &val);
if (!(val & PCICAP_EXP_DCAP2_CMPTOUT_DIS))
return;
/* Disable completion timeout without more check */
pci_cfg_read32(phb, pd->bdfn, ecap + PCICAP_EXP_DCTL2, &val);
val |= PCICAP_EXP_DCTL2_CMPTOUT_DIS;
pci_cfg_write32(phb, pd->bdfn, ecap + PCICAP_EXP_DCTL2, val);
}
void pci_device_init(struct phb *phb, struct pci_device *pd)
{
pci_configure_mps(phb, pd, NULL);
pci_disable_completion_timeout(phb, pd);
}
static void pci_reset_phb(void *data)
{
struct phb *phb = data;
struct pci_slot *slot = phb->slot;
int64_t rc;
if (!slot || !slot->ops.run_sm) {
PCINOTICE(phb, 0, "Cannot issue reset\n");
return;
}
pci_slot_add_flags(slot, PCI_SLOT_FLAG_BOOTUP);
rc = slot->ops.run_sm(slot);
while (rc > 0) {
PCITRACE(phb, 0, "Waiting %ld ms\n", tb_to_msecs(rc));
time_wait(rc);
rc = slot->ops.run_sm(slot);
}
pci_slot_remove_flags(slot, PCI_SLOT_FLAG_BOOTUP);
if (rc < 0)
PCIDBG(phb, 0, "Error %lld resetting\n", rc);
}
static void pci_scan_phb(void *data)
{
struct phb *phb = data;
struct pci_slot *slot = phb->slot;
uint8_t link;
uint32_t mps = 0xffffffff;
int64_t rc;
if (!slot || !slot->ops.get_link_state) {
PCIERR(phb, 0, "Cannot query link status\n");
link = 0;
} else {
rc = slot->ops.get_link_state(slot, &link);
if (rc != OPAL_SUCCESS) {
PCIERR(phb, 0, "Error %lld querying link status\n",
rc);
link = 0;
}
}
if (!link)
PCIDBG(phb, 0, "Link down\n");
else
PCIDBG(phb, 0, "Link up at x%d width\n", link);
/* Scan root port and downstream ports if applicable */
PCIDBG(phb, 0, "Scanning (upstream%s)...\n",
link ? "+downsteam" : " only");
pci_scan_bus(phb, 0, 0xff, &phb->devices, NULL, link);
/* Configure MPS (Max Payload Size) for PCIe domain */
pci_walk_dev(phb, NULL, pci_get_mps, &mps);
phb->mps = mps;
pci_walk_dev(phb, NULL, pci_configure_mps, NULL);
}
int64_t pci_register_phb(struct phb *phb, int opal_id)
{
/* The user didn't specify an opal_id, allocate one */
if (opal_id == OPAL_DYNAMIC_PHB_ID) {
/* This is called at init time in non-concurrent way, so no lock needed */
for (opal_id = 0; opal_id < ARRAY_SIZE(phbs); opal_id++)
if (!phbs[opal_id])
break;
if (opal_id >= ARRAY_SIZE(phbs)) {
prerror("PHB: Failed to find a free ID slot\n");
return OPAL_RESOURCE;
}
} else {
if (opal_id >= ARRAY_SIZE(phbs)) {
prerror("PHB: ID %x out of range !\n", opal_id);
return OPAL_PARAMETER;
}
/* The user did specify an opal_id, check it's free */
if (phbs[opal_id]) {
prerror("PHB: Duplicate registration of ID %x\n", opal_id);
return OPAL_PARAMETER;
}
}
phbs[opal_id] = phb;
phb->opal_id = opal_id;
if (opal_id > last_phb_id)
last_phb_id = opal_id;
dt_add_property_cells(phb->dt_node, "ibm,opal-phbid", 0, phb->opal_id);
PCIDBG(phb, 0, "PCI: Registered PHB\n");
init_lock(&phb->lock);
list_head_init(&phb->devices);
phb->filter_map = zalloc(BITMAP_BYTES(0x10000));
assert(phb->filter_map);
return OPAL_SUCCESS;
}
int64_t pci_unregister_phb(struct phb *phb)
{
/* XXX We want some kind of RCU or RWlock to make things
* like that happen while no OPAL callback is in progress,
* that way we avoid taking a lock in each of them.
*
* Right now we don't unregister so we are fine
*/
phbs[phb->opal_id] = phb;
return OPAL_SUCCESS;
}
struct phb *pci_get_phb(uint64_t phb_id)
{
if (phb_id >= ARRAY_SIZE(phbs))
return NULL;
/* XXX See comment in pci_unregister_phb() about locking etc... */
return phbs[phb_id];
}
static const char *pci_class_name(uint32_t class_code)
{
uint8_t class = class_code >> 16;
uint8_t sub = (class_code >> 8) & 0xff;
uint8_t pif = class_code & 0xff;
switch(class) {
case 0x00:
switch(sub) {
case 0x00: return "device";
case 0x01: return "vga";
}
break;
case 0x01:
switch(sub) {
case 0x00: return "scsi";
case 0x01: return "ide";
case 0x02: return "fdc";
case 0x03: return "ipi";
case 0x04: return "raid";
case 0x05: return "ata";
case 0x06: return "sata";
case 0x07: return "sas";
default: return "mass-storage";
}
case 0x02:
switch(sub) {
case 0x00: return "ethernet";
case 0x01: return "token-ring";
case 0x02: return "fddi";
case 0x03: return "atm";
case 0x04: return "isdn";
case 0x05: return "worldfip";
case 0x06: return "picmg";
default: return "network";
}
case 0x03:
switch(sub) {
case 0x00: return "vga";
case 0x01: return "xga";
case 0x02: return "3d-controller";
default: return "display";
}
case 0x04:
switch(sub) {
case 0x00: return "video";
case 0x01: return "sound";
case 0x02: return "telephony";
default: return "multimedia-device";
}
case 0x05:
switch(sub) {
case 0x00: return "memory";
case 0x01: return "flash";
default: return "memory-controller";
}
case 0x06:
switch(sub) {
case 0x00: return "host";
case 0x01: return "isa";
case 0x02: return "eisa";
case 0x03: return "mca";
case 0x04: return "pci";
case 0x05: return "pcmcia";
case 0x06: return "nubus";
case 0x07: return "cardbus";
case 0x08: return "raceway";
case 0x09: return "semi-transparent-pci";
case 0x0a: return "infiniband";
default: return "unknown-bridge";
}
case 0x07:
switch(sub) {
case 0x00:
switch(pif) {
case 0x01: return "16450-serial";
case 0x02: return "16550-serial";
case 0x03: return "16650-serial";
case 0x04: return "16750-serial";
case 0x05: return "16850-serial";
case 0x06: return "16950-serial";
default: return "serial";
}
case 0x01:
switch(pif) {
case 0x01: return "bi-directional-parallel";
case 0x02: return "ecp-1.x-parallel";
case 0x03: return "ieee1284-controller";
case 0xfe: return "ieee1284-device";
default: return "parallel";
}
case 0x02: return "multiport-serial";
case 0x03:
switch(pif) {
case 0x01: return "16450-modem";
case 0x02: return "16550-modem";
case 0x03: return "16650-modem";
case 0x04: return "16750-modem";
default: return "modem";
}
case 0x04: return "gpib";
case 0x05: return "smart-card";
default: return "communication-controller";
}
case 0x08:
switch(sub) {
case 0x00:
switch(pif) {
case 0x01: return "isa-pic";
case 0x02: return "eisa-pic";
case 0x10: return "io-apic";
case 0x20: return "iox-apic";
default: return "interrupt-controller";
}
case 0x01:
switch(pif) {
case 0x01: return "isa-dma";
case 0x02: return "eisa-dma";
default: return "dma-controller";
}
case 0x02:
switch(pif) {
case 0x01: return "isa-system-timer";
case 0x02: return "eisa-system-timer";
default: return "timer";
}
case 0x03:
switch(pif) {
case 0x01: return "isa-rtc";
default: return "rtc";
}
case 0x04: return "hotplug-controller";
case 0x05: return "sd-host-controller";
default: return "system-peripheral";
}
case 0x09:
switch(sub) {
case 0x00: return "keyboard";
case 0x01: return "pen";
case 0x02: return "mouse";
case 0x03: return "scanner";
case 0x04: return "gameport";
default: return "input-controller";
}
case 0x0a:
switch(sub) {
case 0x00: return "clock";
default: return "docking-station";
}
case 0x0b:
switch(sub) {
case 0x00: return "386";
case 0x01: return "486";
case 0x02: return "pentium";
case 0x10: return "alpha";
case 0x20: return "powerpc";
case 0x30: return "mips";
case 0x40: return "co-processor";
default: return "cpu";
}
case 0x0c:
switch(sub) {
case 0x00: return "firewire";
case 0x01: return "access-bus";
case 0x02: return "ssa";
case 0x03:
switch(pif) {
case 0x00: return "usb-uhci";
case 0x10: return "usb-ohci";
case 0x20: return "usb-ehci";
case 0x30: return "usb-xhci";
case 0xfe: return "usb-device";
default: return "usb";
}
case 0x04: return "fibre-channel";
case 0x05: return "smb";
case 0x06: return "infiniband";
case 0x07:
switch(pif) {
case 0x00: return "impi-smic";
case 0x01: return "impi-kbrd";
case 0x02: return "impi-bltr";
default: return "impi";
}
case 0x08: return "secos";
case 0x09: return "canbus";
default: return "serial-bus";
}
case 0x0d:
switch(sub) {
case 0x00: return "irda";
case 0x01: return "consumer-ir";
case 0x10: return "rf-controller";
case 0x11: return "bluetooth";
case 0x12: return "broadband";
case 0x20: return "enet-802.11a";
case 0x21: return "enet-802.11b";
default: return "wireless-controller";
}
case 0x0e: return "intelligent-controller";
case 0x0f:
switch(sub) {
case 0x01: return "satellite-tv";
case 0x02: return "satellite-audio";
case 0x03: return "satellite-voice";
case 0x04: return "satellite-data";
default: return "satellite-device";
}
case 0x10:
switch(sub) {
case 0x00: return "network-encryption";
case 0x01: return "entertainment-encryption";
default: return "encryption";
}
case 0x011:
switch(sub) {
case 0x00: return "dpio";
case 0x01: return "counter";
case 0x10: return "measurement";
case 0x20: return "management-card";
default: return "data-processing";
}
}
return "device";
}
void pci_std_swizzle_irq_map(struct dt_node *np,
struct pci_device *pd,
struct pci_lsi_state *lstate,
uint8_t swizzle)
{
__be32 *p, *map;
int dev, irq, esize, edevcount;
size_t map_size;
/* Some emulated setups don't use standard interrupts
* representation
*/
if (lstate->int_size == 0)
return;
/* Calculate the size of a map entry:
*
* 3 cells : PCI Address
* 1 cell : PCI IRQ
* 1 cell : PIC phandle
* n cells : PIC irq (n = lstate->int_size)
*
* Assumption: PIC address is 0-size
*/
esize = 3 + 1 + 1 + lstate->int_size;
/* Number of map "device" entries
*
* A PCI Express root or downstream port needs only one
* entry for device 0. Anything else will get a full map
* for all possible 32 child device numbers
*
* If we have been passed a host bridge (pd == NULL) we also
* do a simple per-pin map
*/
if (!pd || (pd->dev_type == PCIE_TYPE_ROOT_PORT ||
pd->dev_type == PCIE_TYPE_SWITCH_DNPORT)) {
edevcount = 1;
dt_add_property_cells(np, "interrupt-map-mask", 0, 0, 0, 7);
} else {
edevcount = 32;
dt_add_property_cells(np, "interrupt-map-mask",
0xf800, 0, 0, 7);
}
map_size = esize * edevcount * 4 * sizeof(u32);
map = p = zalloc(map_size);
if (!map) {
prerror("Failed to allocate interrupt-map-mask !\n");
return;
}
for (dev = 0; dev < edevcount; dev++) {
for (irq = 0; irq < 4; irq++) {
/* Calculate pin */
size_t i;
uint32_t new_irq = (irq + dev + swizzle) % 4;
/* PCI address portion */
*(p++) = cpu_to_be32(dev << (8 + 3));
*(p++) = 0;
*(p++) = 0;
/* PCI interrupt portion */
*(p++) = cpu_to_be32(irq + 1);
/* Parent phandle */
*(p++) = cpu_to_be32(lstate->int_parent[new_irq]);
/* Parent desc */
for (i = 0; i < lstate->int_size; i++)
*(p++) = cpu_to_be32(lstate->int_val[new_irq][i]);
}
}
dt_add_property(np, "interrupt-map", map, map_size);
free(map);
}
static void pci_add_loc_code(struct dt_node *np)
{
struct dt_node *p;
const char *lcode = NULL;
for (p = np->parent; p; p = p->parent) {
/* prefer slot-label by default */
lcode = dt_prop_get_def(p, "ibm,slot-label", NULL);
if (lcode)
break;
/* otherwise use the fully qualified location code */
lcode = dt_prop_get_def(p, "ibm,slot-location-code", NULL);
if (lcode)
break;
}
if (!lcode)
lcode = dt_prop_get_def(np, "ibm,slot-location-code", NULL);
if (!lcode) {
/* Fall back to finding a ibm,loc-code */
for (p = np->parent; p; p = p->parent) {
lcode = dt_prop_get_def(p, "ibm,loc-code", NULL);
if (lcode)
break;
}
}
if (!lcode)
return;
dt_add_property_string(np, "ibm,loc-code", lcode);
}
static void pci_print_summary_line(struct phb *phb, struct pci_device *pd,
struct dt_node *np, u32 rev_class,
const char *cname)
{
const char *label, *dtype, *s;
#define MAX_SLOTSTR 80
char slotstr[MAX_SLOTSTR + 1] = { 0, };
/* If it's a slot, it has a slot-label */
label = dt_prop_get_def(np, "ibm,slot-label", NULL);
if (label) {
u32 lanes = dt_prop_get_u32_def(np, "ibm,slot-wired-lanes", 0);
static const char *lanestrs[] = {
"", " x1", " x2", " x4", " x8", "x16", "x32", "32b", "64b"
};
const char *lstr = lanes > PCI_SLOT_WIRED_LANES_PCIX_64 ? "" : lanestrs[lanes];
snprintf(slotstr, MAX_SLOTSTR, "SLOT=%3s %s", label, lstr);
/* XXX Add more slot info */
} else {
/*
* No label, ignore downstream switch legs and root complex,
* Those would essentially be non-populated
*/
if (pd->dev_type != PCIE_TYPE_ROOT_PORT &&
pd->dev_type != PCIE_TYPE_SWITCH_DNPORT) {
/* It's a mere device, get loc code */
s = dt_prop_get_def(np, "ibm,loc-code", NULL);
if (s)
snprintf(slotstr, MAX_SLOTSTR, "LOC_CODE=%s", s);
}
}
if (pci_has_cap(pd, PCI_CFG_CAP_ID_EXP, false)) {
static const char *pcie_types[] = {
"EP ", "LGCY", "????", "????", "ROOT", "SWUP", "SWDN",
"ETOX", "XTOE", "RINT", "EVTC" };
if (pd->dev_type >= ARRAY_SIZE(pcie_types))
dtype = "????";
else
dtype = pcie_types[pd->dev_type];
} else
dtype = pd->is_bridge ? "PCIB" : "PCID";
if (pd->is_bridge)
PCINOTICE(phb, pd->bdfn,
"[%s] %04x %04x R:%02x C:%06x B:%02x..%02x %s\n",
dtype, PCI_VENDOR_ID(pd->vdid),
PCI_DEVICE_ID(pd->vdid),
rev_class & 0xff, rev_class >> 8, pd->secondary_bus,
pd->subordinate_bus, slotstr);
else
PCINOTICE(phb, pd->bdfn,
"[%s] %04x %04x R:%02x C:%06x (%14s) %s\n",
dtype, PCI_VENDOR_ID(pd->vdid),
PCI_DEVICE_ID(pd->vdid),
rev_class & 0xff, rev_class >> 8, cname, slotstr);
}
static void __noinline pci_add_one_device_node(struct phb *phb,
struct pci_device *pd,
struct dt_node *parent_node,
struct pci_lsi_state *lstate,
uint8_t swizzle)
{
struct dt_node *np;
const char *cname;
#define MAX_NAME 256
char name[MAX_NAME];
char compat[MAX_NAME];
uint32_t rev_class;
uint8_t intpin;
bool is_pcie;
pci_cfg_read32(phb, pd->bdfn, PCI_CFG_REV_ID, &rev_class);
pci_cfg_read8(phb, pd->bdfn, PCI_CFG_INT_PIN, &intpin);
is_pcie = pci_has_cap(pd, PCI_CFG_CAP_ID_EXP, false);
/*
* Some IBM PHBs (p7ioc?) have an invalid PCI class code. Linux
* uses prefers to read the class code from the DT rather than
* re-reading config space we can hack around it here.
*/
if (is_pcie && pd->dev_type == PCIE_TYPE_ROOT_PORT)
rev_class = (rev_class & 0xff) | 0x6040000;
cname = pci_class_name(rev_class >> 8);
if (PCI_FUNC(pd->bdfn))
snprintf(name, MAX_NAME - 1, "%s@%x,%x",
cname, PCI_DEV(pd->bdfn), PCI_FUNC(pd->bdfn));
else
snprintf(name, MAX_NAME - 1, "%s@%x",
cname, PCI_DEV(pd->bdfn));
pd->dn = np = dt_new(parent_node, name);
/*
* NB: ibm,pci-config-space-type is the PAPR way of indicating the
* device has a 4KB config space. It's got nothing to do with the
* standard Type 0/1 config spaces defined by PCI.
*/
if (is_pcie ||
(phb->phb_type == phb_type_npu_v2_opencapi) ||
(phb->phb_type == phb_type_pau_opencapi)) {
snprintf(compat, MAX_NAME, "pciex%x,%x",
PCI_VENDOR_ID(pd->vdid), PCI_DEVICE_ID(pd->vdid));
dt_add_property_cells(np, "ibm,pci-config-space-type", 1);
} else {
snprintf(compat, MAX_NAME, "pci%x,%x",
PCI_VENDOR_ID(pd->vdid), PCI_DEVICE_ID(pd->vdid));
dt_add_property_cells(np, "ibm,pci-config-space-type", 0);
}
dt_add_property_cells(np, "class-code", rev_class >> 8);
dt_add_property_cells(np, "revision-id", rev_class & 0xff);
dt_add_property_cells(np, "vendor-id", PCI_VENDOR_ID(pd->vdid));
dt_add_property_cells(np, "device-id", PCI_DEVICE_ID(pd->vdid));
if (intpin)
dt_add_property_cells(np, "interrupts", intpin);
pci_handle_quirk(phb, pd);
/* XXX FIXME: Add a few missing ones such as
*
* - devsel-speed (!express)
* - max-latency
* - min-grant
* - subsystem-id
* - subsystem-vendor-id
* - ...
*/
/* Add slot properties if needed and iff this is a bridge */
if (pd->slot)
pci_slot_add_dt_properties(pd->slot, np);
/*
* Use the phb base location code for root ports if the platform
* doesn't provide one via slot->add_properties() operation.
*/
if (pd->dev_type == PCIE_TYPE_ROOT_PORT && phb->base_loc_code &&
!dt_has_node_property(np, "ibm,slot-location-code", NULL))
dt_add_property_string(np, "ibm,slot-location-code",
phb->base_loc_code);
/* Make up location code */
if (platform.pci_add_loc_code)
platform.pci_add_loc_code(np, pd);
else
pci_add_loc_code(np);
/* XXX FIXME: We don't look for BARs, we only put the config space
* entry in the "reg" property. That's enough for Linux and we might
* even want to make this legit in future ePAPR
*/
dt_add_property_cells(np, "reg", pd->bdfn << 8, 0, 0, 0, 0);
/* Print summary info about the device */
pci_print_summary_line(phb, pd, np, rev_class, cname);
if (!pd->is_bridge)
return;
dt_add_property_cells(np, "#address-cells", 3);
dt_add_property_cells(np, "#size-cells", 2);
dt_add_property_cells(np, "#interrupt-cells", 1);
/* We want "device_type" for bridges */
if (is_pcie)
dt_add_property_string(np, "device_type", "pciex");
else
dt_add_property_string(np, "device_type", "pci");
/* Update the current interrupt swizzling level based on our own
* device number
*/
swizzle = (swizzle + PCI_DEV(pd->bdfn)) & 3;
/* We generate a standard-swizzling interrupt map. This is pretty
* big, we *could* try to be smarter for things that aren't hotplug
* slots at least and only populate those entries for which there's
* an actual children (especially on PCI Express), but for now that
* will do
*/
pci_std_swizzle_irq_map(np, pd, lstate, swizzle);
/* Parts of the OF address translation in the kernel will fail to
* correctly translate a PCI address if translating a 1:1 mapping
* (ie. an empty ranges property).
* Instead add a ranges property that explicitly translates 1:1.
*/
dt_add_property_cells(np, "ranges",
/* 64-bit direct mapping. We know the bridges
* don't cover the entire address space so
* use 0xf00... as a good compromise. */
0x02000000, 0x0, 0x0,
0x02000000, 0x0, 0x0,
0xf0000000, 0x0);
}
void __noinline pci_add_device_nodes(struct phb *phb,
struct list_head *list,
struct dt_node *parent_node,
struct pci_lsi_state *lstate,
uint8_t swizzle)
{
struct pci_device *pd;
/* Add all child devices */
list_for_each(list, pd, link) {
pci_add_one_device_node(phb, pd, parent_node,
lstate, swizzle);
if (list_empty(&pd->children))
continue;
pci_add_device_nodes(phb, &pd->children,
pd->dn, lstate, swizzle);
}
}
static void pci_do_jobs(void (*fn)(void *))
{
struct cpu_job **jobs;
int i;
jobs = zalloc(sizeof(struct cpu_job *) * ARRAY_SIZE(phbs));
assert(jobs);
for (i = 0; i < ARRAY_SIZE(phbs); i++) {
if (!phbs[i]) {
jobs[i] = NULL;
continue;
}
jobs[i] = __cpu_queue_job(NULL, phbs[i]->dt_node->name,
fn, phbs[i], false);
assert(jobs[i]);
}
/* If no secondary CPUs, do everything sync */
cpu_process_local_jobs();
/* Wait until all tasks are done */
for (i = 0; i < ARRAY_SIZE(phbs); i++) {
if (!jobs[i])
continue;
cpu_wait_job(jobs[i], true);
}
free(jobs);
}
static void __pci_init_slots(void)
{
unsigned int i;
/* Some PHBs may need that long to debounce the presence detect
* after HW initialization.
*/
for (i = 0; i < ARRAY_SIZE(phbs); i++) {
if (phbs[i]) {
time_wait_ms(20);
break;
}
}
if (platform.pre_pci_fixup)
platform.pre_pci_fixup();
prlog(PR_NOTICE, "PCI: Resetting PHBs and training links...\n");
pci_do_jobs(pci_reset_phb);
prlog(PR_NOTICE, "PCI: Probing slots...\n");
pci_do_jobs(pci_scan_phb);
if (platform.pci_probe_complete)
platform.pci_probe_complete();
prlog(PR_NOTICE, "PCI Summary:\n");
for (i = 0; i < ARRAY_SIZE(phbs); i++) {
if (!phbs[i])
continue;
pci_add_device_nodes(phbs[i], &phbs[i]->devices,
phbs[i]->dt_node, &phbs[i]->lstate, 0);
}
/* PHB final fixup */
for (i = 0; i < ARRAY_SIZE(phbs); i++) {
if (!phbs[i] || !phbs[i]->ops || !phbs[i]->ops->phb_final_fixup)
continue;
phbs[i]->ops->phb_final_fixup(phbs[i]);
}
}
static void __pci_reset(struct list_head *list)
{
struct pci_device *pd;
struct pci_cfg_reg_filter *pcrf;
int i;
while ((pd = list_pop(list, struct pci_device, link)) != NULL) {
__pci_reset(&pd->children);
dt_free(pd->dn);
free(pd->slot);
while((pcrf = list_pop(&pd->pcrf, struct pci_cfg_reg_filter, link)) != NULL) {
free(pcrf);
}
for(i=0; i < 64; i++)
if (pd->cap[i].free_func)
pd->cap[i].free_func(pd->cap[i].data);
free(pd);
}
}
int64_t pci_reset(void)
{
unsigned int i;
prlog(PR_NOTICE, "PCI: Clearing all devices...\n");
for (i = 0; i < ARRAY_SIZE(phbs); i++) {
struct phb *phb = phbs[i];
if (!phb)
continue;
__pci_reset(&phb->devices);
pci_slot_set_state(phb->slot, PCI_SLOT_STATE_CRESET_START);
}
/* Do init and discovery of PCI slots in parallel */
__pci_init_slots();
return 0;
}
void pci_init_slots(void)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(phbs); i++) {
struct phb *phb = phbs[i];
if (!phb)
continue;
pci_slot_set_state(phb->slot, PCI_SLOT_STATE_FRESET_POWER_OFF);
}
__pci_init_slots();
}
/*
* Complete iteration on current level before switching to
* child level, which is the proper order for restoring
* PCI bus range on bridges.
*/
static struct pci_device *__pci_walk_dev(struct phb *phb,
struct list_head *l,
int (*cb)(struct phb *,
struct pci_device *,
void *),
void *userdata)
{
struct pci_device *pd, *child;
if (list_empty(l))
return NULL;
list_for_each(l, pd, link) {
if (cb && cb(phb, pd, userdata))
return pd;
}
list_for_each(l, pd, link) {
child = __pci_walk_dev(phb, &pd->children, cb, userdata);
if (child)
return child;
}
return NULL;
}
struct pci_device *pci_walk_dev(struct phb *phb,
struct pci_device *pd,
int (*cb)(struct phb *,
struct pci_device *,
void *),
void *userdata)
{
if (pd)
return __pci_walk_dev(phb, &pd->children, cb, userdata);
return __pci_walk_dev(phb, &phb->devices, cb, userdata);
}
static int __pci_find_dev(struct phb *phb,
struct pci_device *pd, void *userdata)
{
uint16_t bdfn = *((uint16_t *)userdata);
if (!phb || !pd)
return 0;
if (pd->bdfn == bdfn)
return 1;
return 0;
}
struct pci_device *pci_find_dev(struct phb *phb, uint16_t bdfn)
{
return pci_walk_dev(phb, NULL, __pci_find_dev, &bdfn);
}
static int __pci_restore_bridge_buses(struct phb *phb,
struct pci_device *pd,
void *data __unused)
{
uint32_t vdid;
/* If the device is behind a switch, wait for the switch */
if (!pd->is_vf && !(pd->bdfn & 7) && pd->parent != NULL &&
pd->parent->dev_type == PCIE_TYPE_SWITCH_DNPORT) {
if (!pci_bridge_wait_link(phb, pd->parent, true)) {
PCIERR(phb, pd->bdfn, "Timeout waiting for switch\n");
return -1;
}
}
/* Wait for config space to stop returning CRS */
if (!pci_wait_crs(phb, pd->bdfn, &vdid))
return -1;
/* Make all devices below a bridge "re-capture" the bdfn */
pci_cfg_write32(phb, pd->bdfn, PCI_CFG_VENDOR_ID, vdid);
if (!pd->is_bridge)
return 0;
pci_cfg_write8(phb, pd->bdfn, PCI_CFG_PRIMARY_BUS,
pd->primary_bus);
pci_cfg_write8(phb, pd->bdfn, PCI_CFG_SECONDARY_BUS,
pd->secondary_bus);
pci_cfg_write8(phb, pd->bdfn, PCI_CFG_SUBORDINATE_BUS,
pd->subordinate_bus);
return 0;
}
void pci_restore_bridge_buses(struct phb *phb, struct pci_device *pd)
{
pci_walk_dev(phb, pd, __pci_restore_bridge_buses, NULL);
}
void pci_restore_slot_bus_configs(struct pci_slot *slot)
{
/*
* We might lose the bus numbers during the reset operation
* and we need to restore them. Otherwise, some adapters (e.g.
* IPR) can't be probed properly by the kernel. We don't need
* to restore bus numbers for every kind of reset, however,
* it's not harmful to always restore the bus numbers, which
* simplifies the logic.
*/
pci_restore_bridge_buses(slot->phb, slot->pd);
if (slot->phb->ops->device_init)
pci_walk_dev(slot->phb, slot->pd,
slot->phb->ops->device_init, NULL);
}
struct pci_cfg_reg_filter *pci_find_cfg_reg_filter(struct pci_device *pd,
uint32_t start, uint32_t len)
{
struct pci_cfg_reg_filter *pcrf;
/* Check on the cached range, which contains holes */
if ((start + len) <= pd->pcrf_start ||
pd->pcrf_end <= start)
return NULL;
list_for_each(&pd->pcrf, pcrf, link) {
if (start >= pcrf->start &&
(start + len) <= (pcrf->start + pcrf->len))
return pcrf;
}
return NULL;
}
static bool pci_device_has_cfg_reg_filters(struct phb *phb, uint16_t bdfn)
{
return bitmap_tst_bit(*phb->filter_map, bdfn);
}
int64_t pci_handle_cfg_filters(struct phb *phb, uint32_t bdfn,
uint32_t offset, uint32_t len,
uint32_t *data, bool write)
{
struct pci_device *pd;
struct pci_cfg_reg_filter *pcrf;
uint32_t flags;
if (!pci_device_has_cfg_reg_filters(phb, bdfn))
return OPAL_PARTIAL;
pd = pci_find_dev(phb, bdfn);
pcrf = pd ? pci_find_cfg_reg_filter(pd, offset, len) : NULL;
if (!pcrf || !pcrf->func)
return OPAL_PARTIAL;
flags = write ? PCI_REG_FLAG_WRITE : PCI_REG_FLAG_READ;
if ((pcrf->flags & flags) != flags)
return OPAL_PARTIAL;
return pcrf->func(pd, pcrf, offset, len, data, write);
}
struct pci_cfg_reg_filter *pci_add_cfg_reg_filter(struct pci_device *pd,
uint32_t start, uint32_t len,
uint32_t flags,
pci_cfg_reg_func func)
{
struct pci_cfg_reg_filter *pcrf;
pcrf = pci_find_cfg_reg_filter(pd, start, len);
if (pcrf)
return pcrf;
pcrf = zalloc(sizeof(*pcrf) + ((len + 0x4) & ~0x3));
if (!pcrf)
return NULL;
/* Don't validate the flags so that the private flags
* can be supported for debugging purpose.
*/
pcrf->flags = flags;
pcrf->start = start;
pcrf->len = len;
pcrf->func = func;
pcrf->data = (uint8_t *)(pcrf + 1);
if (start < pd->pcrf_start)
pd->pcrf_start = start;
if (pd->pcrf_end < (start + len))
pd->pcrf_end = start + len;
list_add_tail(&pd->pcrf, &pcrf->link);
bitmap_set_bit(*pd->phb->filter_map, pd->bdfn);
return pcrf;
}