blob: cfa5ce35103fe204bd2629728712c9fc0b969484 [file] [log] [blame]
// SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
/* Copyright 2013-2019 IBM Corp. */
#ifndef __CHIP_H
#define __CHIP_H
#include <stdint.h>
#include <lock.h>
#include <ccan/list/list.h>
/*
* Note on chip IDs:
*
* We carry a "chip_id" around, in the cpu_thread, but also as
* ibm,chip-id properties.
*
* This ID is the HW fabric ID of a chip based on the XSCOM numbering,
* also known as "GCID" (Global Chip ID).
*
* The format of this number is different between chip generations and care must
* be taken when trying to convert between this chip ID and some other
* representation such as PIR values, interrupt-server numbers etc... :
*
*/
/*
* P8 GCID
* -------
*
* Global chip ID is a 6 bit number:
*
* NodeID ChipID
* | | |
* |___|___|___|___|___|___|
*
* The the ChipID is 3 bits long, the GCID is the same as the high bits of PIR
*/
#define P8_PIR2GCID(pir) (((pir) >> 7) & 0x3f)
#define P8_PIR2COREID(pir) (((pir) >> 3) & 0xf)
#define P8_PIR2THREADID(pir) ((pir) & 0x7)
/*
* P9 GCID
* -------
*
* Global chip ID is a 7 bit number:
*
* NodeID ChipID
* | | |
* |___|___|___|___|___|___|___|
*
* Bit 56 is unused according to the manual by we add it to the coreid here,
* thus we have a 6-bit core number.
*
* Note: XIVE Only supports 4-bit chip numbers ...
*
* Upper PIR Bits
* --------------
*
* Normal-Core Mode:
* 57:61 CoreID
* 62:63 ThreadID
*
* Fused-Core Mode:
* 57:59 FusedQuadID
* 60 FusedCoreID
* 61:63 FusedThreadID
*
* FusedCoreID 0 contains normal-core chiplet 0 and 1
* FusedCoreID 1 contains normal-core chiplet 2 and 3
*
* Fused cores have interleaved threads:
* core chiplet 0/2 = t0, t2, t4, t6
* core chiplet 1/3 = t1, t3, t5, t7
*
*/
#define P9_PIR2GCID(pir) (((pir) >> 8) & 0x7f)
#define P9_PIR2COREID(pir) (((pir) >> 2) & 0x3f)
#define P9_PIR2THREADID(pir) ((pir) & 0x3)
#define P9_GCID2NODEID(gcid) (((gcid) >> 3) & 0xf)
#define P9_GCID2CHIPID(gcid) ((gcid) & 0x7)
#define P9_PIR2FUSEDQUADID(pir) (((pir) >> 4) & 0x7)
#define P9_PIR2FUSEDCOREID(pir) (((pir) >> 3) & 0x1)
#define P9_PIR2FUSEDTHREADID(pir) ((pir) & 0x7)
#define P9_PIRFUSED2NORMALCOREID(pir) \
(P9_PIR2FUSEDQUADID(pir) << 2) | \
(P9_PIR2FUSEDCOREID(pir) << 1) | \
(P9_PIR2FUSEDTHREADID(pir) & 1)
#define P9_PIRFUSED2NORMALTHREADID(pir) (((pir) >> 1) & 0x3)
#define P10_PIR2FUSEDCOREID(pir) P9_PIR2FUSEDCOREID(pir)
#define P10_PIRFUSED2NORMALCOREID(pir) P9_PIRFUSED2NORMALCOREID(pir)
#define P10_PIRFUSED2NORMALTHREADID(pir) P9_PIRFUSED2NORMALTHREADID(pir)
/* P9 specific ones mostly used by XIVE */
#define P9_PIR2LOCALCPU(pir) ((pir) & 0xff)
#define P9_PIRFROMLOCALCPU(chip, cpu) (((chip) << 8) | (cpu))
/*
* P10 PIR
* -------
*
* PIR layout:
*
* | 49| 50| 51| 52| 53| 54| 55| 56| 57| 58| 59| 60| 61| 62| 63|
* |Spare ID |Topology ID |Sp. |Quad ID |Core ID |Thread ID|
*
* Bit 56 is a spare quad ID. In big-core mode, thread ID extends to bit 61.
*
* P10 GCID
* --------
*
* - Global chip ID is also called Topology ID.
* - Node ID is called Group ID (? XXX P10).
*
* Global chip ID is a 4 bit number.
*
* There is a topology mode bit that can be 0 or 1, which changes GCID mapping.
*
* Topology mode 0:
* NodeID ChipID
* | | |
* |____|____|____|____|
*
* Topology mode 1:
* NodeID ChipID
* | | |
* |____|____|____|____|
*/
#define P10_PIR2GCID(pir) (((pir) >> 8) & 0xf)
#define P10_PIR2COREID(pir) (((pir) >> 2) & 0x3f)
#define P10_PIR2THREADID(pir) ((pir) & 0x3)
// XXX P10 These depend on the topology mode, how to get that (system type?)
#define P10_GCID2NODEID(gcid, mode) ((mode) == 0 ? ((gcid) >> 1) & 0x7 : ((gcid) >> 2) & 0x3)
#define P10_GCID2CHIPID(gcid, mode) ((mode) == 0 ? (gcid) & 0x1 : (gcid) & 0x3)
/* P10 specific ones mostly used by XIVE */
#define P10_PIR2LOCALCPU(pir) ((pir) & 0xff)
#define P10_PIRFROMLOCALCPU(chip, cpu) (((chip) << 8) | (cpu))
struct dt_node;
struct centaur_chip;
struct mfsi;
struct xive;
struct lpcm;
struct vas;
struct p9_sbe;
struct p9_dio;
/* Chip type */
enum proc_chip_type {
PROC_CHIP_UNKNOWN,
PROC_CHIP_P8_MURANO,
PROC_CHIP_P8_VENICE,
PROC_CHIP_P8_NAPLES,
PROC_CHIP_P9_NIMBUS,
PROC_CHIP_P9_CUMULUS,
PROC_CHIP_P9P,
PROC_CHIP_P10,
};
/* Simulator quirks */
enum proc_chip_quirks {
QUIRK_NO_CHIPTOD = 0x00000001,
QUIRK_MAMBO_CALLOUTS = 0x00000002,
QUIRK_NO_F000F = 0x00000004,
QUIRK_NO_PBA = 0x00000008,
QUIRK_NO_OCC_IRQ = 0x00000010,
QUIRK_SIMICS = 0x00000020,
QUIRK_SLOW_SIM = 0x00000040,
QUIRK_NO_DIRECT_CTL = 0x00000080,
QUIRK_NO_RNG = 0x00000100,
QUIRK_QEMU = 0x00000200,
QUIRK_AWAN = 0x00000400,
};
extern enum proc_chip_quirks proc_chip_quirks;
static inline bool chip_quirk(unsigned int q)
{
return !!(proc_chip_quirks & q);
}
#define MAX_CHIPS (1 << 6) /* 6-bit chip ID */
/*
* For each chip in the system, we maintain this structure
*
* This contains fields used by different modules including
* modules in hw/ but is handy to keep per-chip data
*/
struct proc_chip {
uint32_t id; /* HW Chip ID (GCID) */
struct dt_node *devnode; /* "xscom" chip node */
/* These are only initialized after xcom_init */
enum proc_chip_type type;
uint32_t ec_level; /* 0xMm (DD1.0 = 0x10) */
uint8_t ec_rev; /* sub-revision */
/* Those two values are only populated on machines with an FSP
* dbob_id = Drawer/Block/Octant/Blade (DBOBID)
* pcid = HDAT processor_chip_id
*/
uint32_t dbob_id;
uint32_t pcid;
/* If we expect to have an OCC (i.e. P8) and it is functional,
* set TRUE. If something has told us it is not, set FALSE and
* we can not wait for OCCs to init. This is only going to be
* FALSE in a simulator that doesn't simulate OCCs. */
bool occ_functional;
/* Used by hw/xscom.c */
uint64_t xscom_base;
/* Used by hw/lpc.c */
struct lpcm *lpc;
/* Used by hw/slw.c */
uint64_t slw_base;
uint64_t slw_bar_size;
uint64_t slw_image_size;
/* Used by hw/homer.c */
uint64_t homer_base;
uint64_t homer_size;
uint64_t occ_common_base;
uint64_t occ_common_size;
uint8_t throttle;
/* Must hold capi_lock to change */
uint8_t capp_phb3_attached_mask;
uint8_t capp_ucode_loaded;
/* Used by hw/centaur.c */
struct centaur_chip *centaurs;
/* Used by hw/p8-i2c.c */
struct list_head i2cms;
/* Used by hw/psi.c */
struct psi *psi;
/* Used by hw/fsi-master.c */
struct mfsi *fsi_masters;
/* Used by hw/xive.c */
struct xive *xive;
struct vas *vas;
/* Used by hw/nx-compress.c */
uint64_t nx_base;
/* location code of this chip */
const uint8_t *loc_code;
/* Used by hw/sbe-p9.c */
struct p9_sbe *sbe;
/* Used by hw/dio-p9.c */
struct p9_dio *dio;
/* Used during OCC init */
bool ex_present;
/* Used by hw/vas.c on p10 */
uint32_t primary_topology;
};
extern uint32_t pir_to_chip_id(uint32_t pir);
/*
* Note: In P9 fused-core mode, these will return the "normal"
* core ID and thread ID (ie, thread ID 0..3)
*/
extern uint32_t pir_to_core_id(uint32_t pir);
extern uint32_t pir_to_thread_id(uint32_t pir);
/* In P9 fused core mode, this is the "fused" core ID, in
* normal core mode or P8, this is the same as pir_to_core_id
*/
extern uint32_t pir_to_fused_core_id(uint32_t pir);
extern struct proc_chip *next_chip(struct proc_chip *chip);
#define for_each_chip(__c) for (__c=next_chip(NULL); __c; __c=next_chip(__c))
extern struct proc_chip *get_chip(uint32_t chip_id);
extern void init_chips(void);
/* helper to get number of chips in the system */
static inline int nr_chips(void)
{
struct proc_chip *chip;
int nr_chips = 0;
for_each_chip(chip)
nr_chips++;
return nr_chips;
}
/* helper to get location code of a chip */
static inline const char *chip_loc_code(uint32_t chip_id)
{
struct proc_chip *chip;
chip = get_chip(chip_id);
if (!chip)
return NULL;
return chip->loc_code;
}
#endif /* __CHIP_H */