blob: 45dc6613991664ab956fe5aa822b2255e8836d4a [file] [log] [blame]
// Low level AHCI disk access
//
// Copyright (C) 2010 Gerd Hoffmann <kraxel@redhat.com>
//
// This file may be distributed under the terms of the GNU LGPLv3 license.
#include "ahci.h" // CDB_CMD_READ_10
#include "ata.h" // ATA_CB_STAT
#include "biosvar.h" // GET_GLOBAL
#include "blockcmd.h" // CDB_CMD_READ_10
#include "malloc.h" // free
#include "output.h" // dprintf
#include "pci.h" // pci_config_readb
#include "pcidevice.h" // foreachpci
#include "pci_ids.h" // PCI_CLASS_STORAGE_OTHER
#include "pci_regs.h" // PCI_INTERRUPT_LINE
#include "stacks.h" // yield
#include "std/disk.h" // DISK_RET_SUCCESS
#include "string.h" // memset
#include "util.h" // timer_calc
#include "x86.h" // inb
#define AHCI_REQUEST_TIMEOUT 32000 // 32 seconds max for IDE ops
#define AHCI_RESET_TIMEOUT 500 // 500 miliseconds
#define AHCI_LINK_TIMEOUT 10 // 10 miliseconds
// prepare sata command fis
static void sata_prep_simple(struct sata_cmd_fis *fis, u8 command)
{
memset_fl(fis, 0, sizeof(*fis));
fis->command = command;
}
static void sata_prep_readwrite(struct sata_cmd_fis *fis,
struct disk_op_s *op, int iswrite)
{
u64 lba = op->lba;
u8 command;
memset_fl(fis, 0, sizeof(*fis));
if (op->count >= (1<<8) || lba + op->count >= (1<<28)) {
fis->sector_count2 = op->count >> 8;
fis->lba_low2 = lba >> 24;
fis->lba_mid2 = lba >> 32;
fis->lba_high2 = lba >> 40;
lba &= 0xffffff;
command = (iswrite ? ATA_CMD_WRITE_DMA_EXT
: ATA_CMD_READ_DMA_EXT);
} else {
command = (iswrite ? ATA_CMD_WRITE_DMA
: ATA_CMD_READ_DMA);
}
fis->feature = 1; /* dma */
fis->command = command;
fis->sector_count = op->count;
fis->lba_low = lba;
fis->lba_mid = lba >> 8;
fis->lba_high = lba >> 16;
fis->device = ((lba >> 24) & 0xf) | ATA_CB_DH_LBA;
}
static void sata_prep_atapi(struct sata_cmd_fis *fis, u16 blocksize)
{
memset_fl(fis, 0, sizeof(*fis));
fis->command = ATA_CMD_PACKET;
fis->feature = 1; /* dma */
fis->lba_mid = blocksize;
fis->lba_high = blocksize >> 8;
}
// ahci register access helpers
static u32 ahci_ctrl_readl(struct ahci_ctrl_s *ctrl, u32 reg)
{
return readl(ctrl->iobase + reg);
}
static void ahci_ctrl_writel(struct ahci_ctrl_s *ctrl, u32 reg, u32 val)
{
writel(ctrl->iobase + reg, val);
}
static u32 ahci_port_to_ctrl(u32 pnr, u32 port_reg)
{
u32 ctrl_reg = 0x100;
ctrl_reg += pnr * 0x80;
ctrl_reg += port_reg;
return ctrl_reg;
}
static u32 ahci_port_readl(struct ahci_ctrl_s *ctrl, u32 pnr, u32 reg)
{
u32 ctrl_reg = ahci_port_to_ctrl(pnr, reg);
return ahci_ctrl_readl(ctrl, ctrl_reg);
}
static void ahci_port_writel(struct ahci_ctrl_s *ctrl, u32 pnr, u32 reg, u32 val)
{
u32 ctrl_reg = ahci_port_to_ctrl(pnr, reg);
ahci_ctrl_writel(ctrl, ctrl_reg, val);
}
// submit ahci command + wait for result
static int ahci_command(struct ahci_port_s *port_gf, int iswrite, int isatapi,
void *buffer, u32 bsize)
{
u32 val, status, success, flags, intbits, error;
struct ahci_ctrl_s *ctrl = port_gf->ctrl;
struct ahci_cmd_s *cmd = port_gf->cmd;
struct ahci_fis_s *fis = port_gf->fis;
struct ahci_list_s *list = port_gf->list;
u32 pnr = port_gf->pnr;
cmd->fis.reg = 0x27;
cmd->fis.pmp_type = 1 << 7; /* cmd fis */
cmd->prdt[0].base = (u32)buffer;
cmd->prdt[0].baseu = 0;
cmd->prdt[0].flags = bsize-1;
flags = ((1 << 16) | /* one prd entry */
(iswrite ? (1 << 6) : 0) |
(isatapi ? (1 << 5) : 0) |
(5 << 0)); /* fis length (dwords) */
list[0].flags = flags;
list[0].bytes = 0;
list[0].base = (u32)(cmd);
list[0].baseu = 0;
dprintf(8, "AHCI/%d: send cmd ...\n", pnr);
intbits = ahci_port_readl(ctrl, pnr, PORT_IRQ_STAT);
if (intbits)
ahci_port_writel(ctrl, pnr, PORT_IRQ_STAT, intbits);
ahci_port_writel(ctrl, pnr, PORT_CMD_ISSUE, 1);
u32 end = timer_calc(AHCI_REQUEST_TIMEOUT);
do {
for (;;) {
intbits = ahci_port_readl(ctrl, pnr, PORT_IRQ_STAT);
if (intbits) {
ahci_port_writel(ctrl, pnr, PORT_IRQ_STAT, intbits);
if (intbits & 0x02) {
status = GET_LOWFLAT(fis->psfis[2]);
error = GET_LOWFLAT(fis->psfis[3]);
break;
}
if (intbits & 0x01) {
status = GET_LOWFLAT(fis->rfis[2]);
error = GET_LOWFLAT(fis->rfis[3]);
break;
}
}
if (timer_check(end)) {
warn_timeout();
return -1;
}
yield();
}
dprintf(8, "AHCI/%d: ... intbits 0x%x, status 0x%x ...\n",
pnr, intbits, status);
} while (status & ATA_CB_STAT_BSY);
success = (0x00 == (status & (ATA_CB_STAT_BSY | ATA_CB_STAT_DF |
ATA_CB_STAT_ERR)) &&
ATA_CB_STAT_RDY == (status & (ATA_CB_STAT_RDY)));
if (success) {
dprintf(8, "AHCI/%d: ... finished, status 0x%x, OK\n", pnr,
status);
} else {
dprintf(2, "AHCI/%d: ... finished, status 0x%x, ERROR 0x%x\n", pnr,
status, error);
// non-queued error recovery (AHCI 1.3 section 6.2.2.1)
// Clears PxCMD.ST to 0 to reset the PxCI register
val = ahci_port_readl(ctrl, pnr, PORT_CMD);
ahci_port_writel(ctrl, pnr, PORT_CMD, val & ~PORT_CMD_START);
// waits for PxCMD.CR to clear to 0
while (1) {
val = ahci_port_readl(ctrl, pnr, PORT_CMD);
if ((val & PORT_CMD_LIST_ON) == 0)
break;
yield();
}
// Clears any error bits in PxSERR to enable capturing new errors
val = ahci_port_readl(ctrl, pnr, PORT_SCR_ERR);
ahci_port_writel(ctrl, pnr, PORT_SCR_ERR, val);
// Clears status bits in PxIS as appropriate
val = ahci_port_readl(ctrl, pnr, PORT_IRQ_STAT);
ahci_port_writel(ctrl, pnr, PORT_IRQ_STAT, val);
// If PxTFD.STS.BSY or PxTFD.STS.DRQ is set to 1, issue
// a COMRESET to the device to put it in an idle state
val = ahci_port_readl(ctrl, pnr, PORT_TFDATA);
if (val & (ATA_CB_STAT_BSY | ATA_CB_STAT_DRQ)) {
dprintf(2, "AHCI/%d: issue comreset\n", pnr);
val = ahci_port_readl(ctrl, pnr, PORT_SCR_CTL);
// set Device Detection Initialization (DET) to 1 for 1 ms for comreset
ahci_port_writel(ctrl, pnr, PORT_SCR_CTL, val | 1);
mdelay (1);
ahci_port_writel(ctrl, pnr, PORT_SCR_CTL, val);
}
// Sets PxCMD.ST to 1 to enable issuing new commands
val = ahci_port_readl(ctrl, pnr, PORT_CMD);
ahci_port_writel(ctrl, pnr, PORT_CMD, val | PORT_CMD_START);
}
return success ? 0 : -1;
}
#define CDROM_CDB_SIZE 12
int ahci_atapi_process_op(struct disk_op_s *op)
{
if (! CONFIG_AHCI)
return 0;
struct ahci_port_s *port_gf = container_of(
op->drive_fl, struct ahci_port_s, drive);
struct ahci_cmd_s *cmd = port_gf->cmd;
if (op->command == CMD_WRITE || op->command == CMD_FORMAT)
return DISK_RET_EWRITEPROTECT;
int blocksize = scsi_fill_cmd(op, cmd->atapi, CDROM_CDB_SIZE);
if (blocksize < 0)
return default_process_op(op);
sata_prep_atapi(&cmd->fis, blocksize);
int rc = ahci_command(port_gf, 0, 1, op->buf_fl, op->count * blocksize);
if (rc < 0)
return DISK_RET_EBADTRACK;
return DISK_RET_SUCCESS;
}
// read/write count blocks from a harddrive, op->buf_fl must be word aligned
static int
ahci_disk_readwrite_aligned(struct disk_op_s *op, int iswrite)
{
struct ahci_port_s *port_gf = container_of(
op->drive_fl, struct ahci_port_s, drive);
struct ahci_cmd_s *cmd = port_gf->cmd;
int rc;
sata_prep_readwrite(&cmd->fis, op, iswrite);
rc = ahci_command(port_gf, iswrite, 0, op->buf_fl,
op->count * DISK_SECTOR_SIZE);
dprintf(8, "ahci disk %s, lba %6x, count %3x, buf %p, rc %d\n",
iswrite ? "write" : "read", (u32)op->lba, op->count, op->buf_fl, rc);
if (rc < 0)
return DISK_RET_EBADTRACK;
return DISK_RET_SUCCESS;
}
// read/write count blocks from a harddrive.
static int
ahci_disk_readwrite(struct disk_op_s *op, int iswrite)
{
// if caller's buffer is word aligned, use it directly
if (((u32) op->buf_fl & 1) == 0)
return ahci_disk_readwrite_aligned(op, iswrite);
// Use a word aligned buffer for AHCI I/O
int rc;
struct disk_op_s localop = *op;
u8 *alignedbuf_fl = bounce_buf_fl;
u8 *position = op->buf_fl;
localop.buf_fl = alignedbuf_fl;
localop.count = 1;
if (iswrite) {
u16 block;
for (block = 0; block < op->count; block++) {
memcpy_fl (alignedbuf_fl, position, DISK_SECTOR_SIZE);
rc = ahci_disk_readwrite_aligned (&localop, 1);
if (rc)
return rc;
position += DISK_SECTOR_SIZE;
localop.lba++;
}
} else { // read
u16 block;
for (block = 0; block < op->count; block++) {
rc = ahci_disk_readwrite_aligned (&localop, 0);
if (rc)
return rc;
memcpy_fl (position, alignedbuf_fl, DISK_SECTOR_SIZE);
position += DISK_SECTOR_SIZE;
localop.lba++;
}
}
return DISK_RET_SUCCESS;
}
// command demuxer
int
ahci_process_op(struct disk_op_s *op)
{
if (!CONFIG_AHCI)
return 0;
switch (op->command) {
case CMD_READ:
return ahci_disk_readwrite(op, 0);
case CMD_WRITE:
return ahci_disk_readwrite(op, 1);
default:
return default_process_op(op);
}
}
static void
ahci_port_reset(struct ahci_ctrl_s *ctrl, u32 pnr)
{
u32 val;
/* disable FIS + CMD */
u32 end = timer_calc(AHCI_RESET_TIMEOUT);
for (;;) {
val = ahci_port_readl(ctrl, pnr, PORT_CMD);
if (!(val & (PORT_CMD_FIS_RX | PORT_CMD_START |
PORT_CMD_FIS_ON | PORT_CMD_LIST_ON)))
break;
val &= ~(PORT_CMD_FIS_RX | PORT_CMD_START);
ahci_port_writel(ctrl, pnr, PORT_CMD, val);
if (timer_check(end)) {
warn_timeout();
break;
}
yield();
}
/* disable + clear IRQs */
ahci_port_writel(ctrl, pnr, PORT_IRQ_MASK, 0);
val = ahci_port_readl(ctrl, pnr, PORT_IRQ_STAT);
if (val)
ahci_port_writel(ctrl, pnr, PORT_IRQ_STAT, val);
}
static struct ahci_port_s*
ahci_port_alloc(struct ahci_ctrl_s *ctrl, u32 pnr)
{
struct ahci_port_s *port = malloc_tmp(sizeof(*port));
if (!port) {
warn_noalloc();
return NULL;
}
memset(port, 0, sizeof(*port));
port->pnr = pnr;
port->ctrl = ctrl;
port->list = memalign_tmp(1024, 1024);
port->fis = memalign_tmp(256, 256);
port->cmd = memalign_tmp(256, 256);
if (port->list == NULL || port->fis == NULL || port->cmd == NULL) {
warn_noalloc();
return NULL;
}
memset(port->list, 0, 1024);
memset(port->fis, 0, 256);
memset(port->cmd, 0, 256);
ahci_port_writel(ctrl, pnr, PORT_LST_ADDR, (u32)port->list);
ahci_port_writel(ctrl, pnr, PORT_FIS_ADDR, (u32)port->fis);
if (ctrl->caps & HOST_CAP_64) {
ahci_port_writel(ctrl, pnr, PORT_LST_ADDR_HI, 0);
ahci_port_writel(ctrl, pnr, PORT_FIS_ADDR_HI, 0);
}
return port;
}
static void ahci_port_release(struct ahci_port_s *port)
{
ahci_port_reset(port->ctrl, port->pnr);
free(port->list);
free(port->fis);
free(port->cmd);
free(port);
}
static struct ahci_port_s* ahci_port_realloc(struct ahci_port_s *port)
{
struct ahci_port_s *tmp;
u32 cmd;
tmp = malloc_fseg(sizeof(*port));
if (!tmp) {
warn_noalloc();
ahci_port_release(port);
return NULL;
}
*tmp = *port;
free(port);
port = tmp;
ahci_port_reset(port->ctrl, port->pnr);
free(port->list);
free(port->fis);
free(port->cmd);
port->list = memalign_high(1024, 1024);
port->fis = memalign_high(256, 256);
port->cmd = memalign_high(256, 256);
if (!port->list || !port->fis || !port->cmd) {
warn_noalloc();
free(port->list);
free(port->fis);
free(port->cmd);
free(port);
return NULL;
}
ahci_port_writel(port->ctrl, port->pnr, PORT_LST_ADDR, (u32)port->list);
ahci_port_writel(port->ctrl, port->pnr, PORT_FIS_ADDR, (u32)port->fis);
cmd = ahci_port_readl(port->ctrl, port->pnr, PORT_CMD);
cmd |= (PORT_CMD_FIS_RX|PORT_CMD_START);
ahci_port_writel(port->ctrl, port->pnr, PORT_CMD, cmd);
return port;
}
#define MAXMODEL 40
/* See ahci spec chapter 10.1 "Software Initialization of HBA" */
static int ahci_port_setup(struct ahci_port_s *port)
{
struct ahci_ctrl_s *ctrl = port->ctrl;
u32 pnr = port->pnr;
char model[MAXMODEL+1];
u16 buffer[256];
u32 cmd, stat, err, tf;
int rc;
/* enable FIS recv */
cmd = ahci_port_readl(ctrl, pnr, PORT_CMD);
cmd |= PORT_CMD_FIS_RX;
ahci_port_writel(ctrl, pnr, PORT_CMD, cmd);
/* spin up */
cmd |= PORT_CMD_SPIN_UP;
ahci_port_writel(ctrl, pnr, PORT_CMD, cmd);
u32 end = timer_calc(AHCI_LINK_TIMEOUT);
for (;;) {
stat = ahci_port_readl(ctrl, pnr, PORT_SCR_STAT);
if ((stat & 0x07) == 0x03) {
dprintf(2, "AHCI/%d: link up\n", port->pnr);
break;
}
if (timer_check(end)) {
dprintf(2, "AHCI/%d: link down\n", port->pnr);
return -1;
}
yield();
}
/* clear error status */
err = ahci_port_readl(ctrl, pnr, PORT_SCR_ERR);
if (err)
ahci_port_writel(ctrl, pnr, PORT_SCR_ERR, err);
/* wait for device becoming ready */
end = timer_calc(AHCI_REQUEST_TIMEOUT);
for (;;) {
tf = ahci_port_readl(ctrl, pnr, PORT_TFDATA);
if (!(tf & (ATA_CB_STAT_BSY |
ATA_CB_STAT_DRQ)))
break;
if (timer_check(end)) {
warn_timeout();
dprintf(1, "AHCI/%d: device not ready (tf 0x%x)\n", port->pnr, tf);
return -1;
}
yield();
}
/* start device */
cmd |= PORT_CMD_START;
ahci_port_writel(ctrl, pnr, PORT_CMD, cmd);
sata_prep_simple(&port->cmd->fis, ATA_CMD_IDENTIFY_PACKET_DEVICE);
rc = ahci_command(port, 0, 0, buffer, sizeof(buffer));
if (rc == 0) {
port->atapi = 1;
} else {
port->atapi = 0;
sata_prep_simple(&port->cmd->fis, ATA_CMD_IDENTIFY_DEVICE);
rc = ahci_command(port, 0, 0, buffer, sizeof(buffer));
if (rc < 0)
return -1;
}
port->drive.cntl_id = pnr;
port->drive.removable = (buffer[0] & 0x80) ? 1 : 0;
if (!port->atapi) {
// found disk (ata)
port->drive.type = DTYPE_AHCI;
port->drive.blksize = DISK_SECTOR_SIZE;
port->drive.pchs.cylinder = buffer[1];
port->drive.pchs.head = buffer[3];
port->drive.pchs.sector = buffer[6];
u64 sectors;
if (buffer[83] & (1 << 10)) // word 83 - lba48 support
sectors = *(u64*)&buffer[100]; // word 100-103
else
sectors = *(u32*)&buffer[60]; // word 60 and word 61
port->drive.sectors = sectors;
u64 adjsize = sectors >> 11;
char adjprefix = 'M';
if (adjsize >= (1 << 16)) {
adjsize >>= 10;
adjprefix = 'G';
}
port->desc = znprintf(MAXDESCSIZE
, "AHCI/%d: %s ATA-%d Hard-Disk (%u %ciBytes)"
, port->pnr
, ata_extract_model(model, MAXMODEL, buffer)
, ata_extract_version(buffer)
, (u32)adjsize, adjprefix);
port->prio = bootprio_find_ata_device(ctrl->pci_tmp, pnr, 0);
s8 multi_dma = -1;
s8 pio_mode = -1;
s8 udma_mode = -1;
// If bit 2 in word 53 is set, udma information is valid in word 88.
if (buffer[53] & 0x04) {
udma_mode = 6;
while ((udma_mode >= 0) &&
!((buffer[88] & 0x7f) & ( 1 << udma_mode ))) {
udma_mode--;
}
}
// If bit 1 in word 53 is set, multiword-dma and advanced pio modes
// are available in words 63 and 64.
if (buffer[53] & 0x02) {
pio_mode = 4;
multi_dma = 3;
while ((multi_dma >= 0) &&
!((buffer[63] & 0x7) & ( 1 << multi_dma ))) {
multi_dma--;
}
while ((pio_mode >= 3) &&
!((buffer[64] & 0x3) & ( 1 << ( pio_mode - 3 ) ))) {
pio_mode--;
}
}
dprintf(2, "AHCI/%d: supported modes: udma %d, multi-dma %d, pio %d\n",
port->pnr, udma_mode, multi_dma, pio_mode);
sata_prep_simple(&port->cmd->fis, ATA_CMD_SET_FEATURES);
port->cmd->fis.feature = ATA_SET_FEATRUE_TRANSFER_MODE;
// Select used mode. UDMA first, then Multi-DMA followed by
// advanced PIO modes 3 or 4. If non, set default PIO.
if (udma_mode >= 0) {
dprintf(1, "AHCI/%d: Set transfer mode to UDMA-%d\n",
port->pnr, udma_mode);
port->cmd->fis.sector_count = ATA_TRANSFER_MODE_ULTRA_DMA
| udma_mode;
} else if (multi_dma >= 0) {
dprintf(1, "AHCI/%d: Set transfer mode to Multi-DMA-%d\n",
port->pnr, multi_dma);
port->cmd->fis.sector_count = ATA_TRANSFER_MODE_MULTIWORD_DMA
| multi_dma;
} else if (pio_mode >= 3) {
dprintf(1, "AHCI/%d: Set transfer mode to PIO-%d\n",
port->pnr, pio_mode);
port->cmd->fis.sector_count = ATA_TRANSFER_MODE_PIO_FLOW_CTRL
| pio_mode;
} else {
dprintf(1, "AHCI/%d: Set transfer mode to default PIO\n",
port->pnr);
port->cmd->fis.sector_count = ATA_TRANSFER_MODE_DEFAULT_PIO;
}
rc = ahci_command(port, 1, 0, 0, 0);
if (rc < 0) {
dprintf(1, "AHCI/%d: Set transfer mode failed.\n", port->pnr);
}
} else {
// found cdrom (atapi)
port->drive.type = DTYPE_AHCI_ATAPI;
port->drive.blksize = CDROM_SECTOR_SIZE;
port->drive.sectors = (u64)-1;
u8 iscd = ((buffer[0] >> 8) & 0x1f) == 0x05;
if (!iscd) {
dprintf(1, "AHCI/%d: atapi device isn't a cdrom\n", port->pnr);
return -1;
}
port->desc = znprintf(MAXDESCSIZE
, "DVD/CD [AHCI/%d: %s ATAPI-%d DVD/CD]"
, port->pnr
, ata_extract_model(model, MAXMODEL, buffer)
, ata_extract_version(buffer));
port->prio = bootprio_find_ata_device(ctrl->pci_tmp, pnr, 0);
}
return 0;
}
// Detect any drives attached to a given controller.
static void
ahci_port_detect(void *data)
{
struct ahci_port_s *port = data;
int rc;
dprintf(2, "AHCI/%d: probing\n", port->pnr);
ahci_port_reset(port->ctrl, port->pnr);
rc = ahci_port_setup(port);
if (rc < 0)
ahci_port_release(port);
else {
port = ahci_port_realloc(port);
if (port == NULL)
return;
dprintf(1, "AHCI/%d: registering: \"%s\"\n", port->pnr, port->desc);
if (!port->atapi) {
// Register with bcv system.
boot_add_hd(&port->drive, port->desc, port->prio);
} else {
// fill cdidmap
boot_add_cd(&port->drive, port->desc, port->prio);
}
}
}
// Initialize an ata controller and detect its drives.
static void
ahci_controller_setup(struct pci_device *pci)
{
struct ahci_port_s *port;
u32 val, pnr, max;
if (create_bounce_buf() < 0)
return;
void *iobase = pci_enable_membar(pci, PCI_BASE_ADDRESS_5);
if (!iobase)
return;
struct ahci_ctrl_s *ctrl = malloc_fseg(sizeof(*ctrl));
if (!ctrl) {
warn_noalloc();
return;
}
ctrl->pci_tmp = pci;
ctrl->iobase = iobase;
ctrl->irq = pci_config_readb(pci->bdf, PCI_INTERRUPT_LINE);
dprintf(1, "AHCI controller at %pP, iobase %p, irq %d\n"
, pci, ctrl->iobase, ctrl->irq);
pci_enable_busmaster(pci);
val = ahci_ctrl_readl(ctrl, HOST_CTL);
ahci_ctrl_writel(ctrl, HOST_CTL, val | HOST_CTL_AHCI_EN);
ctrl->caps = ahci_ctrl_readl(ctrl, HOST_CAP);
ctrl->ports = ahci_ctrl_readl(ctrl, HOST_PORTS_IMPL);
dprintf(2, "AHCI: cap 0x%x, ports_impl 0x%x\n",
ctrl->caps, ctrl->ports);
max = 0x1f;
for (pnr = 0; pnr <= max; pnr++) {
if (!(ctrl->ports & (1 << pnr)))
continue;
port = ahci_port_alloc(ctrl, pnr);
if (port == NULL)
continue;
run_thread(ahci_port_detect, port);
}
}
// Locate and init ahci controllers.
static void
ahci_scan(void)
{
// Scan PCI bus for ATA adapters
struct pci_device *pci;
foreachpci(pci) {
if (pci->class != PCI_CLASS_STORAGE_SATA)
continue;
if (pci->prog_if != 1 /* AHCI rev 1 */)
continue;
ahci_controller_setup(pci);
}
}
void
ahci_setup(void)
{
ASSERT32FLAT();
if (!CONFIG_AHCI)
return;
dprintf(3, "init ahci\n");
ahci_scan();
}