blob: 31f63ea863cefa6fb19587e9e5f31e59b912e78d [file] [log] [blame]
// Code to load disk image and start system boot.
//
// Copyright (C) 2008-2013 Kevin O'Connor <kevin@koconnor.net>
// Copyright (C) 2002 MandrakeSoft S.A.
//
// This file may be distributed under the terms of the GNU LGPLv3 license.
#include "block.h" // struct drive_s
#include "bregs.h" // struct bregs
#include "config.h" // CONFIG_*
#include "fw/paravirt.h" // qemu_cfg_show_boot_menu
#include "hw/pci.h" // pci_bdf_to_*
#include "hw/pcidevice.h" // struct pci_device
#include "hw/rtc.h" // rtc_read
#include "hw/usb.h" // struct usbdevice_s
#include "list.h" // hlist_node
#include "malloc.h" // free
#include "output.h" // dprintf
#include "romfile.h" // romfile_loadint
#include "std/disk.h" // struct mbr_s
#include "string.h" // memset
#include "util.h" // irqtimer_calc
#include "tcgbios.h" // tpm_*
/****************************************************************
* Helper search functions
****************************************************************/
// See if 'str' starts with 'glob' - if glob contains an '*' character
// it will match any number of characters in str that aren't a '/' or
// the next glob character.
static char *
glob_prefix(const char *glob, const char *str)
{
for (;;) {
if (!*glob && (!*str || *str == '/'))
return (char*)str;
if (*glob == '*') {
if (!*str || *str == '/' || *str == glob[1])
glob++;
else
str++;
continue;
}
if (*glob != *str)
return NULL;
glob++;
str++;
}
}
#if CONFIG_PARISC
#define FW_PCI_DOMAIN "/dino-pcihost"
#else
#define FW_PCI_DOMAIN "/pci@i0cf8"
#endif
static char *
build_pci_path(char *buf, int max, const char *devname, struct pci_device *pci)
{
// Build the string path of a bdf - for example: /pci@i0cf8/isa@1,2
char *p = buf;
if (pci->parent) {
p = build_pci_path(p, max, "pci-bridge", pci->parent);
} else {
p += snprintf(p, buf+max-p, "%s", FW_PCI_DOMAIN);
if (pci->rootbus)
p += snprintf(p, buf+max-p, ",%x", pci->rootbus);
}
int dev = pci_bdf_to_dev(pci->bdf), fn = pci_bdf_to_fn(pci->bdf);
p += snprintf(p, buf+max-p, "/%s@%x", devname, dev);
if (fn)
p += snprintf(p, buf+max-p, ",%x", fn);
return p;
}
static char *
build_scsi_path(char *buf, int max,
struct pci_device *pci, int target, int lun)
{
// Build the string path of a scsi drive - for example:
// /pci@i0cf8/scsi@5/channel@0/disk@1,0
char *p;
p = build_pci_path(buf, max, "*", pci);
p += snprintf(p, buf+max-p, "/*@0/*@%x,%x", target, lun);
return p;
}
static char *
build_ata_path(char *buf, int max,
struct pci_device *pci, int chanid, int slave)
{
// Build the string path of an ata drive - for example:
// /pci@i0cf8/ide@1,1/drive@1/disk@0
char *p;
p = build_pci_path(buf, max, "*", pci);
p += snprintf(p, buf+max-p, "/drive@%x/disk@%x", chanid, slave);
return p;
}
/****************************************************************
* Boot device logical geometry
****************************************************************/
typedef struct BootDeviceLCHS {
char *name;
u32 lcyls;
u32 lheads;
u32 lsecs;
} BootDeviceLCHS;
static BootDeviceLCHS *BiosGeometry VARVERIFY32INIT;
static int BiosGeometryCount;
static char *
parse_u32(char *cur, u32 *n)
{
u32 m = 0;
if (cur) {
while ('0' <= *cur && *cur <= '9') {
m = 10 * m + (*cur - '0');
cur++;
}
if (*cur != '\0')
cur++;
}
*n = m;
return cur;
}
static void
loadBiosGeometry(void)
{
if (!CONFIG_HOST_BIOS_GEOMETRY)
return;
char *f = romfile_loadfile("bios-geometry", NULL);
if (!f)
return;
int i = 0;
BiosGeometryCount = 1;
while (f[i]) {
if (f[i] == '\n')
BiosGeometryCount++;
i++;
}
BiosGeometry = malloc_tmphigh(BiosGeometryCount * sizeof(BootDeviceLCHS));
if (!BiosGeometry) {
warn_noalloc();
free(f);
BiosGeometryCount = 0;
return;
}
dprintf(1, "bios geometry:\n");
i = 0;
do {
BootDeviceLCHS *d = &BiosGeometry[i];
d->name = f;
f = strchr(f, '\n');
if (f)
*(f++) = '\0';
char *chs_values = strchr(d->name, ' ');
if (chs_values)
*(chs_values++) = '\0';
chs_values = parse_u32(chs_values, &d->lcyls);
chs_values = parse_u32(chs_values, &d->lheads);
chs_values = parse_u32(chs_values, &d->lsecs);
dprintf(1, "%s: (%u, %u, %u)\n",
d->name, d->lcyls, d->lheads, d->lsecs);
i++;
} while (f);
}
// Search the bios-geometry list for the given glob pattern.
static BootDeviceLCHS *
boot_lchs_find(const char *glob)
{
dprintf(1, "Searching bios-geometry for: %s\n", glob);
int i;
for (i = 0; i < BiosGeometryCount; i++)
if (glob_prefix(glob, BiosGeometry[i].name))
return &BiosGeometry[i];
return NULL;
}
int boot_lchs_find_pci_device(struct pci_device *pci, struct chs_s *chs)
{
if (!CONFIG_HOST_BIOS_GEOMETRY)
return -1;
char desc[256];
build_pci_path(desc, sizeof(desc), "*", pci);
BootDeviceLCHS *b = boot_lchs_find(desc);
if (!b)
return -1;
chs->cylinder = (u16)b->lcyls;
chs->head = (u16)b->lheads;
chs->sector = (u16)b->lsecs;
return 0;
}
int boot_lchs_find_scsi_device(struct pci_device *pci, int target, int lun,
struct chs_s *chs)
{
if (!CONFIG_HOST_BIOS_GEOMETRY)
return -1;
if (!pci)
// support only pci machine for now
return -1;
// Find scsi drive - for example: /pci@i0cf8/scsi@5/channel@0/disk@1,0
char desc[256];
build_scsi_path(desc, sizeof(desc), pci, target, lun);
BootDeviceLCHS *b = boot_lchs_find(desc);
if (!b)
return -1;
chs->cylinder = (u16)b->lcyls;
chs->head = (u16)b->lheads;
chs->sector = (u16)b->lsecs;
return 0;
}
int boot_lchs_find_ata_device(struct pci_device *pci, int chanid, int slave,
struct chs_s *chs)
{
if (!CONFIG_HOST_BIOS_GEOMETRY)
return -1;
if (!pci)
// support only pci machine for now
return -1;
// Find ata drive - for example: /pci@i0cf8/ide@1,1/drive@1/disk@0
char desc[256];
build_ata_path(desc, sizeof(desc), pci, chanid, slave);
BootDeviceLCHS *b = boot_lchs_find(desc);
if (!b)
return -1;
chs->cylinder = (u16)b->lcyls;
chs->head = (u16)b->lheads;
chs->sector = (u16)b->lsecs;
return 0;
}
/****************************************************************
* Boot priority ordering
****************************************************************/
static char **Bootorder VARVERIFY32INIT;
static int BootorderCount;
static void
loadBootOrder(void)
{
if (!CONFIG_BOOTORDER)
return;
char *f = romfile_loadfile("bootorder", NULL);
if (!f)
return;
int i = 0;
BootorderCount = 1;
while (f[i]) {
if (f[i] == '\n')
BootorderCount++;
i++;
}
Bootorder = malloc_tmphigh(BootorderCount*sizeof(char*));
if (!Bootorder) {
warn_noalloc();
free(f);
BootorderCount = 0;
return;
}
dprintf(1, "boot order:\n");
i = 0;
do {
Bootorder[i] = f;
f = strchr(f, '\n');
if (f)
*(f++) = '\0';
Bootorder[i] = nullTrailingSpace(Bootorder[i]);
dprintf(1, "%d: %s\n", i+1, Bootorder[i]);
i++;
} while (f);
}
// Search the bootorder list for the given glob pattern.
static int
find_prio(const char *glob)
{
dprintf(1, "Searching bootorder for: %s\n", glob);
int i;
for (i = 0; i < BootorderCount; i++)
if (glob_prefix(glob, Bootorder[i]))
return i+1;
return -1;
}
u8 is_bootprio_strict(void)
{
static int prio_halt = -2;
if (prio_halt == -2)
prio_halt = find_prio("HALT");
return prio_halt >= 0;
}
int bootprio_find_pci_device(struct pci_device *pci)
{
if (CONFIG_CSM)
return csm_bootprio_pci(pci);
if (!CONFIG_BOOTORDER)
return -1;
// Find pci device - for example: /pci@i0cf8/ethernet@5
char desc[256];
build_pci_path(desc, sizeof(desc), "*", pci);
return find_prio(desc);
}
int bootprio_find_mmio_device(void *mmio)
{
if (!CONFIG_BOOTORDER)
return -1;
char desc[256];
snprintf(desc, sizeof(desc), "/virtio-mmio@%016x/*", (u32)mmio);
return find_prio(desc);
}
int bootprio_find_scsi_device(struct pci_device *pci, int target, int lun)
{
if (!CONFIG_BOOTORDER)
return -1;
if (!pci)
// support only pci machine for now
return -1;
char desc[256];
build_scsi_path(desc, sizeof(desc), pci, target, lun);
return find_prio(desc);
}
int bootprio_find_scsi_mmio_device(void *mmio, int target, int lun)
{
if (!CONFIG_BOOTORDER)
return -1;
char desc[256];
snprintf(desc, sizeof(desc), "/virtio-mmio@%016x/*@0/*@%x,%x",
(u32)mmio, target, lun);
return find_prio(desc);
}
int bootprio_find_ata_device(struct pci_device *pci, int chanid, int slave)
{
if (CONFIG_CSM)
return csm_bootprio_ata(pci, chanid, slave);
if (!CONFIG_BOOTORDER)
return -1;
if (!pci)
// support only pci machine for now
return -1;
char desc[256];
build_ata_path(desc, sizeof(desc), pci, chanid, slave);
return find_prio(desc);
}
int bootprio_find_fdc_device(struct pci_device *pci, int port, int fdid)
{
if (CONFIG_CSM)
return csm_bootprio_fdc(pci, port, fdid);
if (!CONFIG_BOOTORDER)
return -1;
if (!pci)
// support only pci machine for now
return -1;
// Find floppy - for example: /pci@i0cf8/isa@1/fdc@03f1/floppy@0
char desc[256], *p;
p = build_pci_path(desc, sizeof(desc), "isa", pci);
snprintf(p, desc+sizeof(desc)-p, "/fdc@%04x/floppy@%x", port, fdid);
return find_prio(desc);
}
int bootprio_find_pci_rom(struct pci_device *pci, int instance)
{
if (!CONFIG_BOOTORDER)
return -1;
// Find pci rom - for example: /pci@i0cf8/scsi@3:rom2
char desc[256], *p;
p = build_pci_path(desc, sizeof(desc), "*", pci);
if (instance)
snprintf(p, desc+sizeof(desc)-p, ":rom%x", instance);
return find_prio(desc);
}
int bootprio_find_named_rom(const char *name, int instance)
{
if (!CONFIG_BOOTORDER)
return -1;
// Find named rom - for example: /rom@genroms/linuxboot.bin
char desc[256], *p;
p = desc + snprintf(desc, sizeof(desc), "/rom@%s", name);
if (instance)
snprintf(p, desc+sizeof(desc)-p, ":rom%x", instance);
return find_prio(desc);
}
static int usb_portmap(struct usbdevice_s *usbdev)
{
if (usbdev->hub->op->portmap)
return usbdev->hub->op->portmap(usbdev->hub, usbdev->port);
return usbdev->port + 1;
}
static char *
build_usb_path(char *buf, int max, struct usbhub_s *hub)
{
if (!hub->usbdev)
// Root hub - nothing to add.
return buf;
char *p = build_usb_path(buf, max, hub->usbdev->hub);
p += snprintf(p, buf+max-p, "/hub@%x", usb_portmap(hub->usbdev));
return p;
}
int bootprio_find_usb(struct usbdevice_s *usbdev, int lun)
{
if (!CONFIG_BOOTORDER)
return -1;
// Find usb - examples:
// pci: /pci@i0cf8/usb@1,2/storage@1/channel@0/disk@0,0
// mmio: /sysbus-xhci@00000000fe900000/storage@1/channel@0/disk@0,0
char desc[256], *p;
if (usbdev->hub->cntl->pci)
p = build_pci_path(desc, sizeof(desc), "usb", usbdev->hub->cntl->pci);
else if (usbdev->hub->cntl->mmio)
p = desc + snprintf(desc, sizeof(desc), "/*@%016x"
, (u32)usbdev->hub->cntl->mmio);
else
return -1;
p = build_usb_path(p, desc+sizeof(desc)-p, usbdev->hub);
snprintf(p, desc+sizeof(desc)-p, "/storage@%x/*@0/*@0,%x"
, usb_portmap(usbdev), lun);
int ret = find_prio(desc);
if (ret >= 0)
return ret;
// Try usb-host/redir - for example: /pci@i0cf8/usb@1,2/usb-host@1
snprintf(p, desc+sizeof(desc)-p, "/usb-*@%x", usb_portmap(usbdev));
return find_prio(desc);
}
/****************************************************************
* Boot setup
****************************************************************/
static int BootRetryTime;
static int CheckFloppySig = 1;
#define DEFAULT_PRIO 9999
static int DefaultFloppyPrio = 101;
static int DefaultCDPrio = 102;
static int DefaultHDPrio = 103;
static int DefaultBEVPrio = 104;
void
boot_init(void)
{
if (! CONFIG_BOOT)
return;
if (CONFIG_QEMU) {
// On emulators, get boot order from nvram.
if (rtc_read(CMOS_BIOS_BOOTFLAG1) & 1)
CheckFloppySig = 0;
u32 bootorder = (rtc_read(CMOS_BIOS_BOOTFLAG2)
| ((rtc_read(CMOS_BIOS_BOOTFLAG1) & 0xf0) << 4));
DefaultFloppyPrio = DefaultCDPrio = DefaultHDPrio
= DefaultBEVPrio = DEFAULT_PRIO;
int i;
for (i=101; i<104; i++) {
u32 val = bootorder & 0x0f;
bootorder >>= 4;
switch (val) {
case 1: DefaultFloppyPrio = i; break;
case 2: DefaultHDPrio = i; break;
case 3: DefaultCDPrio = i; break;
case 4: DefaultBEVPrio = i; break;
}
}
}
BootRetryTime = romfile_loadint("etc/boot-fail-wait", 60*1000);
loadBootOrder();
loadBiosGeometry();
}
/****************************************************************
* BootList handling
****************************************************************/
struct bootentry_s {
int type;
union {
u32 data;
struct segoff_s vector;
struct drive_s *drive;
};
int priority;
const char *description;
struct hlist_node node;
};
static struct hlist_head BootList VARVERIFY32INIT;
#define IPL_TYPE_FLOPPY 0x01
#define IPL_TYPE_HARDDISK 0x02
#define IPL_TYPE_CDROM 0x03
#define IPL_TYPE_CBFS 0x20
#define IPL_TYPE_BEV 0x80
#define IPL_TYPE_BCV 0x81
#define IPL_TYPE_HALT 0xf0
static void
bootentry_add(int type, int prio, u32 data, const char *desc)
{
if (! CONFIG_BOOT)
return;
struct bootentry_s *be = malloc_tmp(sizeof(*be));
if (!be) {
warn_noalloc();
return;
}
be->type = type;
be->priority = prio;
be->data = data;
be->description = desc ?: "?";
dprintf(3, "Registering bootable: %s (type:%d prio:%d data:%x)\n"
, be->description, type, prio, data);
// Add entry in sorted order.
struct hlist_node **pprev;
struct bootentry_s *pos;
hlist_for_each_entry_pprev(pos, pprev, &BootList, node) {
if (be->priority < pos->priority)
break;
if (be->priority > pos->priority)
continue;
if (be->type < pos->type)
break;
if (be->type > pos->type)
continue;
if (be->type <= IPL_TYPE_CDROM
&& (be->drive->type < pos->drive->type
|| (be->drive->type == pos->drive->type
&& be->drive->cntl_id < pos->drive->cntl_id)))
break;
}
hlist_add(&be->node, pprev);
}
// Return the given priority if it's set - defaultprio otherwise.
static inline int defPrio(int priority, int defaultprio) {
return (priority < 0) ? defaultprio : priority;
}
// Add a BEV vector for a given pnp compatible option rom.
void
boot_add_bev(u16 seg, u16 bev, u16 desc, int prio)
{
bootentry_add(IPL_TYPE_BEV, defPrio(prio, DefaultBEVPrio)
, SEGOFF(seg, bev).segoff
, desc ? MAKE_FLATPTR(seg, desc) : "Unknown");
DefaultBEVPrio = DEFAULT_PRIO;
}
// Add a bcv entry for an expansion card harddrive or legacy option rom
void
boot_add_bcv(u16 seg, u16 ip, u16 desc, int prio)
{
bootentry_add(IPL_TYPE_BCV, defPrio(prio, DefaultHDPrio)
, SEGOFF(seg, ip).segoff
, desc ? MAKE_FLATPTR(seg, desc) : "Legacy option rom");
}
void
boot_add_floppy(struct drive_s *drive, const char *desc, int prio)
{
bootentry_add(IPL_TYPE_FLOPPY, defPrio(prio, DefaultFloppyPrio)
, (u32)drive, desc);
}
void
boot_add_hd(struct drive_s *drive, const char *desc, int prio)
{
bootentry_add(IPL_TYPE_HARDDISK, defPrio(prio, DefaultHDPrio)
, (u32)drive, desc);
}
void
boot_add_cd(struct drive_s *drive, const char *desc, int prio)
{
if (GET_GLOBAL(PlatformRunningOn) & PF_QEMU) {
// We want short boot times. But on physical hardware even
// the test unit ready can take several seconds. So do media
// access on qemu only, where we know it will be fast.
char *extra = cdrom_media_info(drive);
if (extra) {
desc = znprintf(MAXDESCSIZE, "%s (%s)", desc, extra);
free(extra);
}
}
bootentry_add(IPL_TYPE_CDROM, defPrio(prio, DefaultCDPrio)
, (u32)drive, desc);
}
// Add a CBFS payload entry
void
boot_add_cbfs(void *data, const char *desc, int prio)
{
bootentry_add(IPL_TYPE_CBFS, defPrio(prio, DEFAULT_PRIO), (u32)data, desc);
}
/****************************************************************
* Keyboard calls
****************************************************************/
// See if a keystroke is pending in the keyboard buffer.
static int
check_for_keystroke(void)
{
struct bregs br;
memset(&br, 0, sizeof(br));
br.flags = F_IF|F_ZF;
br.ah = 1;
call16_int(0x16, &br);
return !(br.flags & F_ZF);
}
// Return a keystroke - waiting forever if necessary.
static int
get_raw_keystroke(void)
{
struct bregs br;
memset(&br, 0, sizeof(br));
br.flags = F_IF;
call16_int(0x16, &br);
return br.ax;
}
// Read a keystroke - waiting up to 'msec' milliseconds.
// returns both scancode and ascii code.
int
get_keystroke_full(int msec)
{
u32 end = irqtimer_calc(msec);
for (;;) {
if (check_for_keystroke())
return get_raw_keystroke();
if (irqtimer_check(end))
return -1;
yield_toirq();
}
}
// Read a keystroke - waiting up to 'msec' milliseconds.
// returns scancode only.
int
get_keystroke(int msec)
{
int keystroke = get_keystroke_full(msec);
if (keystroke < 0)
return keystroke;
return keystroke >> 8;
}
/****************************************************************
* Boot menu and BCV execution
****************************************************************/
#define DEFAULT_BOOTMENU_WAIT 2500
static const char menuchars[] = {
'1', '2', '3', '4', '5', '6', '7', '8', '9',
'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i',
'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r',
's', /* skip t (tpm menu) */
'u', 'v', 'w', 'x', 'y', 'z'
};
// Show IPL option menu.
void
interactive_bootmenu(void)
{
if (! CONFIG_BOOTMENU)
return;
int show_boot_menu = romfile_loadint("etc/show-boot-menu", 1);
if (!show_boot_menu)
return;
// skip menu if only one boot device and no TPM
if (show_boot_menu == 2 && !tpm_can_show_menu()
&& !hlist_empty(&BootList) && !BootList.first->next) {
dprintf(1, "Only one boot device present. Skip boot menu.\n");
printf("\n");
return;
}
while (get_keystroke(0) >= 0)
;
char *bootmsg = romfile_loadfile("etc/boot-menu-message", NULL);
int menukey = romfile_loadint("etc/boot-menu-key", 1);
printf("%s", bootmsg ?: "\nPress ESC for boot menu.\n\n");
free(bootmsg);
u32 menutime = romfile_loadint("etc/boot-menu-wait", DEFAULT_BOOTMENU_WAIT);
enable_bootsplash();
int scan_code = get_keystroke(menutime);
disable_bootsplash();
if (scan_code != menukey)
return;
while (get_keystroke(0) >= 0)
;
printf("Select boot device:\n\n");
wait_threads();
// Show menu items
int maxmenu = 0;
struct bootentry_s *pos, *boot = NULL;
hlist_for_each_entry(pos, &BootList, node) {
char desc[77];
if (maxmenu >= ARRAY_SIZE(menuchars)) {
break;
}
printf("%c. %s\n", menuchars[maxmenu]
, strtcpy(desc, pos->description, ARRAY_SIZE(desc)));
maxmenu++;
}
if (tpm_can_show_menu()) {
printf("\nt. TPM Configuration\n");
}
// Get key press. If the menu key is ESC, do not restart boot unless
// 1.5 seconds have passed. Otherwise users (trained by years of
// repeatedly hitting keys to enter the BIOS) will end up hitting ESC
// multiple times and immediately booting the primary boot device.
int esc_accepted_time = irqtimer_calc(menukey == 1 ? 1500 : 0);
for (;;) {
int keystroke = get_keystroke_full(1000);
if (keystroke == 0x011b && !irqtimer_check(esc_accepted_time))
continue;
if (keystroke < 0) // timeout
continue;
scan_code = keystroke >> 8;
int key_ascii = keystroke & 0xff;
if (tpm_can_show_menu() && key_ascii == 't') {
printf("\n");
tpm_menu();
}
if (scan_code == 1) {
// ESC
printf("\n");
return;
}
maxmenu = 0;
hlist_for_each_entry(pos, &BootList, node) {
if (maxmenu >= ARRAY_SIZE(menuchars))
break;
if (key_ascii == menuchars[maxmenu]) {
boot = pos;
break;
}
maxmenu++;
}
if (boot)
break;
}
printf("\n");
// Find entry and make top priority.
hlist_del(&boot->node);
boot->priority = 0;
hlist_add_head(&boot->node, &BootList);
}
#if CONFIG_PARISC
void find_initial_parisc_boot_drives(struct drive_s **harddisc,
struct drive_s **cdrom)
{
struct bootentry_s *pos;
hlist_for_each_entry(pos, &BootList, node) {
if ((pos->type == IPL_TYPE_CDROM) && (*cdrom == NULL))
*cdrom = pos->drive;
if ((pos->type == IPL_TYPE_HARDDISK) && (*harddisc == NULL))
*harddisc = pos->drive;
}
}
struct drive_s *select_parisc_boot_drive(char bootdrive)
{
printf("Available boot devices:\n");
// Show menu items
int maxmenu = 0;
struct bootentry_s *pos;
hlist_for_each_entry(pos, &BootList, node) {
char desc[77];
maxmenu++;
printf("%d. %s\n", maxmenu
, strtcpy(desc, pos->description, ARRAY_SIZE(desc)));
}
/* try each boot device */
hlist_for_each_entry(pos, &BootList, node) {
if (((bootdrive == 'd') && (pos->type == IPL_TYPE_CDROM)) ||
((bootdrive == 'c') && (pos->type == IPL_TYPE_HARDDISK))) {
printf("\nBooting from %s\n",pos->description);
return pos->drive;
}
/* -boot order=g-m: machine implementation dependent drives */
if ((bootdrive >= 'g') && (bootdrive <= 'm')) {
int scsi_index = (int)bootdrive - 'g';
if (pos->drive->target == scsi_index) {
printf("\nBooting from SCSI target %d: %s\n",
scsi_index, pos->description);
return pos->drive;
}
}
}
/* if none found, choose first bootable device */
hlist_for_each_entry(pos, &BootList, node) {
if ((pos->type == IPL_TYPE_CDROM) ||
(pos->type == IPL_TYPE_HARDDISK)) {
printf("\nAuto-Booting from %s\n",pos->description);
return pos->drive;
}
}
return NULL;
}
#endif
// BEV (Boot Execution Vector) list
struct bev_s {
int type;
u32 vector;
};
static struct bev_s BEV[20];
static int BEVCount;
static int HaveHDBoot, HaveFDBoot;
static void
add_bev(int type, u32 vector)
{
if (type == IPL_TYPE_HARDDISK && HaveHDBoot++)
return;
if (type == IPL_TYPE_FLOPPY && HaveFDBoot++)
return;
if (BEVCount >= ARRAY_SIZE(BEV))
return;
struct bev_s *bev = &BEV[BEVCount++];
bev->type = type;
bev->vector = vector;
}
// Prepare for boot - show menu and run bcvs.
void
bcv_prepboot(void)
{
if (! CONFIG_BOOT)
return;
int haltprio = find_prio("HALT");
if (haltprio >= 0)
bootentry_add(IPL_TYPE_HALT, haltprio, 0, "HALT");
// Map drives and populate BEV list
struct bootentry_s *pos;
hlist_for_each_entry(pos, &BootList, node) {
switch (pos->type) {
case IPL_TYPE_BCV:
call_bcv(pos->vector.seg, pos->vector.offset);
add_bev(IPL_TYPE_HARDDISK, 0);
break;
case IPL_TYPE_FLOPPY:
map_floppy_drive(pos->drive);
add_bev(IPL_TYPE_FLOPPY, 0);
break;
case IPL_TYPE_HARDDISK:
map_hd_drive(pos->drive);
add_bev(IPL_TYPE_HARDDISK, 0);
break;
case IPL_TYPE_CDROM:
map_cd_drive(pos->drive);
// NO BREAK
default:
add_bev(pos->type, pos->data);
break;
}
}
// If nothing added a floppy/hd boot - add it manually.
add_bev(IPL_TYPE_FLOPPY, 0);
add_bev(IPL_TYPE_HARDDISK, 0);
}
/****************************************************************
* Boot code (int 18/19)
****************************************************************/
// Jump to a bootup entry point.
static void
call_boot_entry(struct segoff_s bootsegip, u8 bootdrv)
{
dprintf(1, "Booting from %04x:%04x\n", bootsegip.seg, bootsegip.offset);
struct bregs br;
memset(&br, 0, sizeof(br));
br.flags = F_IF;
br.code = bootsegip;
// Set the magic number in ax and the boot drive in dl.
br.dl = bootdrv;
br.ax = 0xaa55;
farcall16(&br);
}
// Boot from a disk (either floppy or harddrive)
static void
boot_disk(u8 bootdrv, int checksig)
{
u16 bootseg = 0x07c0;
// Read sector
struct bregs br;
memset(&br, 0, sizeof(br));
br.flags = F_IF;
br.dl = bootdrv;
br.es = bootseg;
br.ah = 2;
br.al = 1;
br.cl = 1;
call16_int(0x13, &br);
if (br.flags & F_CF) {
printf("Boot failed: could not read the boot disk\n\n");
return;
}
if (checksig) {
struct mbr_s *mbr = (void*)0;
if (GET_FARVAR(bootseg, mbr->signature) != MBR_SIGNATURE) {
printf("Boot failed: not a bootable disk\n\n");
return;
}
}
tpm_add_bcv(bootdrv, MAKE_FLATPTR(bootseg, 0), 512);
/* Canonicalize bootseg:bootip */
u16 bootip = (bootseg & 0x0fff) << 4;
bootseg &= 0xf000;
call_boot_entry(SEGOFF(bootseg, bootip), bootdrv);
}
// Boot from a CD-ROM
static void
boot_cdrom(struct drive_s *drive)
{
if (! CONFIG_CDROM_BOOT)
return;
printf("Booting from DVD/CD...\n");
int status = cdrom_boot(drive);
if (status) {
printf("Boot failed: Could not read from CDROM (code %04x)\n", status);
return;
}
u8 bootdrv = CDEmu.emulated_drive;
u16 bootseg = CDEmu.load_segment;
tpm_add_cdrom(bootdrv, MAKE_FLATPTR(bootseg, 0), 512);
/* Canonicalize bootseg:bootip */
u16 bootip = (bootseg & 0x0fff) << 4;
bootseg &= 0xf000;
call_boot_entry(SEGOFF(bootseg, bootip), bootdrv);
}
// Boot from a CBFS payload
static void
boot_cbfs(struct cbfs_file *file)
{
if (!CONFIG_COREBOOT_FLASH)
return;
printf("Booting from CBFS...\n");
cbfs_run_payload(file);
}
// Boot from a BEV entry on an optionrom.
static void
boot_rom(u32 vector)
{
printf("Booting from ROM...\n");
struct segoff_s so;
so.segoff = vector;
call_boot_entry(so, 0);
}
// Unable to find bootable device - warn user and eventually retry.
static void
boot_fail(void)
{
if (BootRetryTime == (u32)-1)
printf("No bootable device.\n");
else
printf("No bootable device. Retrying in %d seconds.\n"
, BootRetryTime/1000);
// Wait for 'BootRetryTime' milliseconds and then reboot.
u32 end = irqtimer_calc(BootRetryTime);
for (;;) {
if (BootRetryTime != (u32)-1 && irqtimer_check(end))
break;
yield_toirq();
}
printf("Rebooting.\n");
reset();
}
// Determine next boot method and attempt a boot using it.
static void
do_boot(int seq_nr)
{
if (! CONFIG_BOOT)
panic("Boot support not compiled in.\n");
if (seq_nr >= BEVCount)
boot_fail();
// Boot the given BEV type.
struct bev_s *ie = &BEV[seq_nr];
switch (ie->type) {
case IPL_TYPE_FLOPPY:
printf("Booting from Floppy...\n");
boot_disk(0x00, CheckFloppySig);
break;
case IPL_TYPE_HARDDISK:
printf("Booting from Hard Disk...\n");
boot_disk(0x80, 1);
break;
case IPL_TYPE_CDROM:
boot_cdrom((void*)ie->vector);
break;
case IPL_TYPE_CBFS:
boot_cbfs((void*)ie->vector);
break;
case IPL_TYPE_BEV:
boot_rom(ie->vector);
break;
case IPL_TYPE_HALT:
boot_fail();
break;
}
// Boot failed: invoke the boot recovery function
struct bregs br;
memset(&br, 0, sizeof(br));
br.flags = F_IF;
call16_int(0x18, &br);
}
int BootSequence VARLOW = -1;
// Boot Failure recovery: try the next device.
void VISIBLE32FLAT
handle_18(void)
{
debug_enter(NULL, DEBUG_HDL_18);
int seq = BootSequence + 1;
BootSequence = seq;
do_boot(seq);
}
// INT 19h Boot Load Service Entry Point
void VISIBLE32FLAT
handle_19(void)
{
debug_enter(NULL, DEBUG_HDL_19);
BootSequence = 0;
do_boot(0);
}