blob: f77ab94a50347ae3108e18ab2e17c00bdb4a9d0e [file] [log] [blame]
// PCI config space access functions.
//
// Copyright (C) 2008 Kevin O'Connor <kevin@koconnor.net>
// Copyright (C) 2002 MandrakeSoft S.A.
//
// This file may be distributed under the terms of the GNU LGPLv3 license.
#include "output.h" // dprintf
#include "pci.h" // pci_config_writel
#include "pci_regs.h" // PCI_VENDOR_ID
#include "byteorder.h" // cpu_to_le16
#include "util.h" // udelay
#include "x86.h" // outl
#if CONFIG_X86
#define PORT_PCI_CMD 0x0cf8
#define PORT_PCI_DATA 0x0cfc
#elif CONFIG_PARISC
#include "parisc/hppa_hardware.h"
#endif
static u32 mmconfig;
static void *mmconfig_addr(u16 bdf, u32 addr)
{
return (void*)(mmconfig + ((u32)bdf << 12) + addr);
}
static u32 ioconfig_cmd(u16 bdf, u32 addr)
{
return 0x80000000 | (bdf << 8) | (addr & 0xfc);
}
/*
* Memory mapped I/O
*
* readX()/writeX() do byteswapping and take an ioremapped address
* __raw_readX()/__raw_writeX() don't byteswap and take an ioremapped address.
* gsc_*() don't byteswap and operate on physical addresses;
* eg dev->hpa or 0xfee00000.
*/
/* each elroy has 0x2000 offset */
#define ELROY_MAX_BUSSES 4
unsigned long elroy_offset(u16 bdf)
{
static const int elroy_hpa_offsets[ELROY_MAX_BUSSES] = { 0x30000, 0x32000, 0x38000, 0x3c000 };
int bus = pci_bdf_to_bus(bdf);
if (bus >= ELROY_MAX_BUSSES)
return -1UL;
return elroy_hpa_offsets[bus] - elroy_hpa_offsets[0];
}
void *elroy_port(unsigned long port, unsigned long offs)
{
return (void *)(port + offs);
}
void pci_config_writel(u16 bdf, u32 addr, u32 val)
{
if (has_astro) {
unsigned long offs = elroy_offset(bdf);
if (offs == -1UL)
return;
writel(elroy_port(PORT_PCI_CMD, offs), ioconfig_cmd((u8)bdf, addr));
writel(elroy_port(PORT_PCI_DATA, offs), val);
} else
if (!MODESEGMENT && mmconfig) {
writel(mmconfig_addr(bdf, addr), val);
} else {
*(u32*)PORT_PCI_CMD = ioconfig_cmd(bdf, addr);
*(u32*)PORT_PCI_DATA = cpu_to_le32(val);
}
}
void pci_config_writew(u16 bdf, u32 addr, u16 val)
{
if (has_astro) {
unsigned long offs = elroy_offset(bdf);
if (offs == -1UL)
return;
writel(elroy_port(PORT_PCI_CMD, offs), ioconfig_cmd((u8)bdf, addr));
writew(elroy_port(PORT_PCI_DATA + (addr & 2), offs), val);
} else
if (!MODESEGMENT && mmconfig) {
writew(mmconfig_addr(bdf, addr), val);
} else {
*(u32*)PORT_PCI_CMD = ioconfig_cmd(bdf, addr);
*(u16*)(PORT_PCI_DATA + (addr & 2)) = cpu_to_le16(val);
}
}
void pci_config_writeb(u16 bdf, u32 addr, u8 val)
{
if (has_astro) {
unsigned long offs = elroy_offset(bdf);
if (offs == -1UL)
return;
writel(elroy_port(PORT_PCI_CMD, offs), ioconfig_cmd((u8)bdf, addr));
writeb(elroy_port(PORT_PCI_DATA + (addr & 3), offs), val);
} else
if (!MODESEGMENT && mmconfig) {
writeb(mmconfig_addr(bdf, addr), val);
} else {
*(u32*)PORT_PCI_CMD = ioconfig_cmd(bdf, addr);
*(u8*)(PORT_PCI_DATA + (addr & 3)) = val;
}
}
u32 pci_config_readl(u16 bdf, u32 addr)
{
if (has_astro) {
unsigned long offs = elroy_offset(bdf);
if (offs == -1UL)
return -1;
writel(elroy_port(PORT_PCI_CMD, offs), ioconfig_cmd((u8)bdf, addr));
return readl(elroy_port(PORT_PCI_DATA, offs));
} else
if (!MODESEGMENT && mmconfig) {
return readl(mmconfig_addr(bdf, addr));
} else {
*(u32*)PORT_PCI_CMD = ioconfig_cmd(bdf, addr);
return (le32_to_cpu(*(u32*)PORT_PCI_DATA));
}
}
u16 pci_config_readw(u16 bdf, u32 addr)
{
if (has_astro) {
unsigned long offs = elroy_offset(bdf);
if (offs == -1UL)
return -1;
writel(elroy_port(PORT_PCI_CMD, offs), ioconfig_cmd((u8)bdf, addr));
return readw(elroy_port(PORT_PCI_DATA + (addr & 2), offs));
} else
if (!MODESEGMENT && mmconfig) {
return readw(mmconfig_addr(bdf, addr));
} else {
*(u32*)PORT_PCI_CMD = ioconfig_cmd(bdf, addr);
return (le16_to_cpu(*(u16*)(PORT_PCI_DATA + (addr & 2))));
}
}
u8 pci_config_readb(u16 bdf, u32 addr)
{
if (has_astro) {
unsigned long offs = elroy_offset(bdf);
if (offs == -1UL)
return -1;
writel(elroy_port(PORT_PCI_CMD, offs), ioconfig_cmd((u8)bdf, addr));
return readb(elroy_port(PORT_PCI_DATA + (addr & 3), offs));
} else
if (!MODESEGMENT && mmconfig) {
return readb(mmconfig_addr(bdf, addr));
} else {
*(u32*)PORT_PCI_CMD = ioconfig_cmd(bdf, addr);
return (*(u8*)(PORT_PCI_DATA + (addr & 3)));
}
}
void
pci_config_maskw(u16 bdf, u32 addr, u16 off, u16 on)
{
u16 val = pci_config_readw(bdf, addr);
val = (val & ~off) | on;
pci_config_writew(bdf, addr, val);
}
void
pci_enable_mmconfig(u64 addr, const char *name)
{
if (addr >= 0x100000000ll)
return;
dprintf(1, "PCIe: using %s mmconfig at 0x%llx\n", name, addr);
mmconfig = addr;
}
u8 pci_find_capability(u16 bdf, u8 cap_id, u8 cap)
{
int i;
u16 status = pci_config_readw(bdf, PCI_STATUS);
if (!(status & PCI_STATUS_CAP_LIST))
return 0;
if (cap == 0) {
/* find first */
cap = pci_config_readb(bdf, PCI_CAPABILITY_LIST);
} else {
/* find next */
cap = pci_config_readb(bdf, cap + PCI_CAP_LIST_NEXT);
}
for (i = 0; cap && i <= 0xff; i++) {
if (pci_config_readb(bdf, cap + PCI_CAP_LIST_ID) == cap_id)
return cap;
cap = pci_config_readb(bdf, cap + PCI_CAP_LIST_NEXT);
}
return 0;
}
// Helper function for foreachbdf() macro - return next device
int
pci_next(int bdf, int bus)
{
if (pci_bdf_to_fn(bdf) == 0
&& (pci_config_readb(bdf, PCI_HEADER_TYPE) & 0x80) == 0)
// Last found device wasn't a multi-function device - skip to
// the next device.
bdf += 8;
else
bdf += 1;
for (;;) {
if (pci_bdf_to_bus(bdf) != bus)
return -1;
u16 v = pci_config_readw(bdf, PCI_VENDOR_ID);
if (v != 0x0000 && v != 0xffff)
// Device is present.
return bdf;
if (pci_bdf_to_fn(bdf) == 0)
bdf += 8;
else
bdf += 1;
}
}
// Check if PCI is available at all
int
pci_probe_host(void)
{
outl(0x80000000, PORT_PCI_CMD);
if (inl(PORT_PCI_CMD) != 0x80000000) {
dprintf(1, "Detected non-PCI system\n");
return -1;
}
return 0;
}
void
pci_reboot(void)
{
u8 v = inb(PORT_PCI_REBOOT) & ~6;
outb(v|2, PORT_PCI_REBOOT); /* Request hard reset */
udelay(50);
outb(v|6, PORT_PCI_REBOOT); /* Actually do the reset */
udelay(50);
}