blob: ce39233976aefdae21da90bab8c5c1f57cfa87d9 [file] [log] [blame]
// 16bit code to handle system clocks.
//
// Copyright (C) 2008-2010 Kevin O'Connor <kevin@koconnor.net>
// Copyright (C) 2002 MandrakeSoft S.A.
//
// This file may be distributed under the terms of the GNU LGPLv3 license.
#include "biosvar.h" // SET_BDA
#include "bregs.h" // struct bregs
#include "hw/pic.h" // pic_eoi1
#include "hw/ps2port.h" // ps2_check_event
#include "hw/rtc.h" // rtc_read
#include "hw/usb-hid.h" // usb_check_event
#include "output.h" // debug_enter
#include "stacks.h" // yield
#include "string.h" // memset
#include "util.h" // clock_setup
/****************************************************************
* Init
****************************************************************/
static u32
bcd2bin(u8 val)
{
return (val & 0xf) + ((val >> 4) * 10);
}
u8 Century VARLOW;
void
clock_setup(void)
{
dprintf(3, "init timer\n");
pit_setup();
rtc_setup();
rtc_updating();
u32 seconds = bcd2bin(rtc_read(CMOS_RTC_SECONDS));
u32 minutes = bcd2bin(rtc_read(CMOS_RTC_MINUTES));
u32 hours = bcd2bin(rtc_read(CMOS_RTC_HOURS));
u32 ticks = ticks_from_ms(((hours * 60 + minutes) * 60 + seconds) * 1000);
SET_BDA(timer_counter, ticks % TICKS_PER_DAY);
// Setup Century storage
if (CONFIG_QEMU) {
Century = rtc_read(CMOS_CENTURY);
} else {
// Infer current century from the year.
u8 year = rtc_read(CMOS_RTC_YEAR);
if (year > 0x80)
Century = 0x19;
else
Century = 0x20;
}
enable_hwirq(0, FUNC16(entry_08));
if (CONFIG_RTC_TIMER)
enable_hwirq(8, FUNC16(entry_70));
}
/****************************************************************
* Standard clock functions
****************************************************************/
// get current clock count
static void
handle_1a00(struct bregs *regs)
{
yield();
u32 ticks = GET_BDA(timer_counter);
regs->cx = ticks >> 16;
regs->dx = ticks;
regs->al = GET_BDA(timer_rollover);
SET_BDA(timer_rollover, 0); // reset flag
set_success(regs);
}
// Set Current Clock Count
static void
handle_1a01(struct bregs *regs)
{
u32 ticks = (regs->cx << 16) | regs->dx;
SET_BDA(timer_counter, ticks);
SET_BDA(timer_rollover, 0); // reset flag
// XXX - should use set_code_success()?
regs->ah = 0;
set_success(regs);
}
// Read CMOS Time
static void
handle_1a02(struct bregs *regs)
{
if (rtc_updating()) {
set_invalid(regs);
return;
}
regs->dh = rtc_read(CMOS_RTC_SECONDS);
regs->cl = rtc_read(CMOS_RTC_MINUTES);
regs->ch = rtc_read(CMOS_RTC_HOURS);
regs->dl = rtc_read(CMOS_STATUS_B) & RTC_B_DSE;
regs->ah = 0;
regs->al = regs->ch;
set_success(regs);
}
// Set CMOS Time
static void
handle_1a03(struct bregs *regs)
{
// Using a debugger, I notice the following masking/setting
// of bits in Status Register B, by setting Reg B to
// a few values and getting its value after INT 1A was called.
//
// try#1 try#2 try#3
// before 1111 1101 0111 1101 0000 0000
// after 0110 0010 0110 0010 0000 0010
//
// Bit4 in try#1 flipped in hardware (forced low) due to bit7=1
// My assumption: RegB = ((RegB & 01100000b) | 00000010b)
if (rtc_updating()) {
rtc_setup();
// fall through as if an update were not in progress
}
rtc_write(CMOS_RTC_SECONDS, regs->dh);
rtc_write(CMOS_RTC_MINUTES, regs->cl);
rtc_write(CMOS_RTC_HOURS, regs->ch);
// Set Daylight Savings time enabled bit to requested value
u8 val8 = ((rtc_read(CMOS_STATUS_B) & (RTC_B_PIE|RTC_B_AIE))
| RTC_B_24HR | (regs->dl & RTC_B_DSE));
rtc_write(CMOS_STATUS_B, val8);
regs->ah = 0;
regs->al = val8; // val last written to Reg B
set_success(regs);
}
// Read CMOS Date
static void
handle_1a04(struct bregs *regs)
{
regs->ah = 0;
if (rtc_updating()) {
set_invalid(regs);
return;
}
regs->cl = rtc_read(CMOS_RTC_YEAR);
regs->dh = rtc_read(CMOS_RTC_MONTH);
regs->dl = rtc_read(CMOS_RTC_DAY_MONTH);
regs->ch = GET_LOW(Century);
regs->al = regs->ch;
set_success(regs);
}
// Set CMOS Date
static void
handle_1a05(struct bregs *regs)
{
// Using a debugger, I notice the following masking/setting
// of bits in Status Register B, by setting Reg B to
// a few values and getting its value after INT 1A was called.
//
// try#1 try#2 try#3 try#4
// before 1111 1101 0111 1101 0000 0010 0000 0000
// after 0110 1101 0111 1101 0000 0010 0000 0000
//
// Bit4 in try#1 flipped in hardware (forced low) due to bit7=1
// My assumption: RegB = (RegB & 01111111b)
if (rtc_updating()) {
rtc_setup();
set_invalid(regs);
return;
}
rtc_write(CMOS_RTC_YEAR, regs->cl);
rtc_write(CMOS_RTC_MONTH, regs->dh);
rtc_write(CMOS_RTC_DAY_MONTH, regs->dl);
SET_LOW(Century, regs->ch);
// clear halt-clock bit
u8 val8 = rtc_read(CMOS_STATUS_B) & ~RTC_B_SET;
rtc_write(CMOS_STATUS_B, val8);
regs->ah = 0;
regs->al = val8; // AL = val last written to Reg B
set_success(regs);
}
// Set Alarm Time in CMOS
static void
handle_1a06(struct bregs *regs)
{
// Using a debugger, I notice the following masking/setting
// of bits in Status Register B, by setting Reg B to
// a few values and getting its value after INT 1A was called.
//
// try#1 try#2 try#3
// before 1101 1111 0101 1111 0000 0000
// after 0110 1111 0111 1111 0010 0000
//
// Bit4 in try#1 flipped in hardware (forced low) due to bit7=1
// My assumption: RegB = ((RegB & 01111111b) | 00100000b)
u8 val8 = rtc_read(CMOS_STATUS_B); // Get Status Reg B
regs->ax = 0;
if (val8 & RTC_B_AIE) {
// Alarm interrupt enabled already
set_invalid(regs);
return;
}
if (rtc_updating()) {
rtc_setup();
// fall through as if an update were not in progress
}
rtc_write(CMOS_RTC_SECONDS_ALARM, regs->dh);
rtc_write(CMOS_RTC_MINUTES_ALARM, regs->cl);
rtc_write(CMOS_RTC_HOURS_ALARM, regs->ch);
// enable Status Reg B alarm bit, clear halt clock bit
rtc_write(CMOS_STATUS_B, (val8 & ~RTC_B_SET) | RTC_B_AIE);
set_success(regs);
}
// Turn off Alarm
static void
handle_1a07(struct bregs *regs)
{
// Using a debugger, I notice the following masking/setting
// of bits in Status Register B, by setting Reg B to
// a few values and getting its value after INT 1A was called.
//
// try#1 try#2 try#3 try#4
// before 1111 1101 0111 1101 0010 0000 0010 0010
// after 0100 0101 0101 0101 0000 0000 0000 0010
//
// Bit4 in try#1 flipped in hardware (forced low) due to bit7=1
// My assumption: RegB = (RegB & 01010111b)
u8 val8 = rtc_read(CMOS_STATUS_B); // Get Status Reg B
// clear clock-halt bit, disable alarm bit
rtc_write(CMOS_STATUS_B, val8 & ~(RTC_B_SET|RTC_B_AIE));
regs->ah = 0;
regs->al = val8; // val last written to Reg B
set_success(regs);
}
static void
handle_1abb(struct bregs *regs)
{
if (!CONFIG_TCGBIOS)
return;
dprintf(DEBUG_tcg, "16: Calling tpm_interrupt_handler\n");
call32(tpm_interrupt_handler32, MAKE_FLATPTR(GET_SEG(SS), regs), 0);
}
// Unsupported
static void
handle_1aXX(struct bregs *regs)
{
set_unimplemented(regs);
}
// INT 1Ah Time-of-day Service Entry Point
void VISIBLE16
handle_1a(struct bregs *regs)
{
debug_enter(regs, DEBUG_HDL_1a);
switch (regs->ah) {
case 0x00: handle_1a00(regs); break;
case 0x01: handle_1a01(regs); break;
case 0x02: handle_1a02(regs); break;
case 0x03: handle_1a03(regs); break;
case 0x04: handle_1a04(regs); break;
case 0x05: handle_1a05(regs); break;
case 0x06: handle_1a06(regs); break;
case 0x07: handle_1a07(regs); break;
case 0xbb: handle_1abb(regs); break;
default: handle_1aXX(regs); break;
}
}
// Update main tick counter
static void
clock_update(void)
{
u32 counter = GET_BDA(timer_counter);
counter++;
// compare to one days worth of timer ticks at 18.2 hz
if (counter >= TICKS_PER_DAY) {
// there has been a midnight rollover at this point
counter = 0;
SET_BDA(timer_rollover, GET_BDA(timer_rollover) + 1);
}
SET_BDA(timer_counter, counter);
// Check for internal events.
floppy_tick();
usb_check_event();
ps2_check_event();
sercon_check_event();
}
// INT 08h System Timer ISR Entry Point
void VISIBLE16
handle_08(void)
{
debug_isr(DEBUG_ISR_08);
clock_update();
// chain to user timer tick INT #0x1c
struct bregs br;
memset(&br, 0, sizeof(br));
br.flags = F_IF;
call16_int(0x1c, &br);
pic_eoi1();
}
u32 last_timer_check VARLOW;
// Simulate timer irq on machines without hardware irqs
void
clock_poll_irq(void)
{
if (CONFIG_HARDWARE_IRQ)
return;
if (!timer_check(GET_LOW(last_timer_check)))
return;
SET_LOW(last_timer_check, timer_calc(ticks_to_ms(1)));
clock_update();
}
/****************************************************************
* IRQ based timer
****************************************************************/
// Calculate the timer value at 'count' number of full timer ticks in
// the future.
u32
irqtimer_calc_ticks(u32 count)
{
return (GET_BDA(timer_counter) + count + 1) % TICKS_PER_DAY;
}
// Return the timer value that is 'msecs' time in the future.
u32
irqtimer_calc(u32 msecs)
{
if (!msecs)
return GET_BDA(timer_counter);
return irqtimer_calc_ticks(ticks_from_ms(msecs));
}
// Check if the given timer value has passed.
int
irqtimer_check(u32 end)
{
return (((GET_BDA(timer_counter) + TICKS_PER_DAY - end) % TICKS_PER_DAY)
< (TICKS_PER_DAY/2));
}
/****************************************************************
* Periodic timer
****************************************************************/
static int
set_usertimer(u32 usecs, u16 seg, u16 offset)
{
if (GET_BDA(rtc_wait_flag) & RWS_WAIT_PENDING)
return -1;
// Interval not already set.
SET_BDA(rtc_wait_flag, RWS_WAIT_PENDING); // Set status byte.
SET_BDA(user_wait_complete_flag, SEGOFF(seg, offset));
SET_BDA(user_wait_timeout, usecs);
rtc_use();
return 0;
}
static void
clear_usertimer(void)
{
if (!(GET_BDA(rtc_wait_flag) & RWS_WAIT_PENDING))
return;
// Turn off status byte.
SET_BDA(rtc_wait_flag, 0);
rtc_release();
}
#define RET_ECLOCKINUSE 0x83
// Wait for CX:DX microseconds
void
handle_1586(struct bregs *regs)
{
if (!CONFIG_RTC_TIMER) {
set_code_unimplemented(regs, RET_EUNSUPPORTED);
return;
}
// Use the rtc to wait for the specified time.
u8 statusflag = 0;
u32 count = (regs->cx << 16) | regs->dx;
int ret = set_usertimer(count, GET_SEG(SS), (u32)&statusflag);
if (ret) {
set_code_invalid(regs, RET_ECLOCKINUSE);
return;
}
while (!statusflag)
yield_toirq();
set_success(regs);
}
// Set Interval requested.
static void
handle_158300(struct bregs *regs)
{
int ret = set_usertimer((regs->cx << 16) | regs->dx, regs->es, regs->bx);
if (ret)
// Interval already set.
set_code_invalid(regs, RET_EUNSUPPORTED);
else
set_success(regs);
}
// Clear interval requested
static void
handle_158301(struct bregs *regs)
{
clear_usertimer();
set_success(regs);
}
static void
handle_1583XX(struct bregs *regs)
{
set_code_unimplemented(regs, RET_EUNSUPPORTED);
regs->al--;
}
void
handle_1583(struct bregs *regs)
{
if (!CONFIG_RTC_TIMER) {
handle_1583XX(regs);
return;
}
switch (regs->al) {
case 0x00: handle_158300(regs); break;
case 0x01: handle_158301(regs); break;
default: handle_1583XX(regs); break;
}
}
#define USEC_PER_RTC DIV_ROUND_CLOSEST(1000000, 1024)
// int70h: IRQ8 - CMOS RTC
void VISIBLE16
handle_70(void)
{
if (!CONFIG_RTC_TIMER)
return;
debug_isr(DEBUG_ISR_70);
// Check which modes are enabled and have occurred.
u8 registerB = rtc_read(CMOS_STATUS_B);
u8 registerC = rtc_read(CMOS_STATUS_C);
if (!(registerB & (RTC_B_PIE|RTC_B_AIE)))
goto done;
if (registerC & RTC_B_AIE) {
// Handle Alarm Interrupt.
struct bregs br;
memset(&br, 0, sizeof(br));
br.flags = F_IF;
call16_int(0x4a, &br);
}
if (!(registerC & RTC_B_PIE))
goto done;
// Handle Periodic Interrupt.
check_preempt();
if (!GET_BDA(rtc_wait_flag))
goto done;
// Wait Interval (Int 15, AH=83) active.
u32 time = GET_BDA(user_wait_timeout); // Time left in microseconds.
if (time < USEC_PER_RTC) {
// Done waiting - write to specified flag byte.
struct segoff_s segoff = GET_BDA(user_wait_complete_flag);
#if CONFIG_X86
u16 ptr_seg = segoff.seg;
#endif
u8 *ptr_far = (u8*)(segoff.offset+0);
u8 oldval = GET_FARVAR(ptr_seg, *ptr_far);
SET_FARVAR(ptr_seg, *ptr_far, oldval | 0x80);
clear_usertimer();
} else {
// Continue waiting.
time -= USEC_PER_RTC;
SET_BDA(user_wait_timeout, time);
}
done:
pic_eoi2();
}