blob: a54f107e3bfb65906d9187999794b3824b7413e9 [file] [log] [blame]
// Disk setup and access
//
// Copyright (C) 2008,2009 Kevin O'Connor <kevin@koconnor.net>
// Copyright (C) 2002 MandrakeSoft S.A.
//
// This file may be distributed under the terms of the GNU LGPLv3 license.
#include "biosvar.h" // GET_GLOBAL
#include "block.h" // process_op
#include "hw/ata.h" // process_ata_op
#include "hw/ahci.h" // process_ahci_op
#include "hw/esp-scsi.h" // esp_scsi_process_op
#include "hw/lsi-scsi.h" // lsi_scsi_process_op
#include "hw/megasas.h" // megasas_process_op
#include "hw/mpt-scsi.h" // mpt_scsi_process_op
#include "hw/pci.h" // pci_bdf_to_bus
#include "hw/pvscsi.h" // pvscsi_process_op
#include "hw/rtc.h" // rtc_read
#include "hw/usb-msc.h" // usb_process_op
#include "hw/usb-uas.h" // uas_process_op
#include "hw/virtio-blk.h" // process_virtio_blk_op
#include "hw/virtio-scsi.h" // virtio_scsi_process_op
#include "hw/nvme.h" // nvme_process_op
#include "malloc.h" // malloc_low
#include "output.h" // dprintf
#include "stacks.h" // call32
#include "std/disk.h" // struct dpte_s
#include "string.h" // checksum
#include "util.h" // process_floppy_op
u8 FloppyCount VARFSEG;
u8 CDCount;
struct drive_s *IDMap[3][BUILD_MAX_EXTDRIVE] VARFSEG;
u8 *bounce_buf_fl VARFSEG;
struct drive_s *
getDrive(u8 exttype, u8 extdriveoffset)
{
if (extdriveoffset >= ARRAY_SIZE(IDMap[0]))
return NULL;
return GET_GLOBAL(IDMap[exttype][extdriveoffset]);
}
int getDriveId(u8 exttype, struct drive_s *drive)
{
ASSERT32FLAT();
int i;
for (i = 0; i < ARRAY_SIZE(IDMap[0]); i++)
if (getDrive(exttype, i) == drive)
return i;
return -1;
}
int create_bounce_buf(void)
{
if (bounce_buf_fl)
return 0;
u8 *buf = malloc_low(CDROM_SECTOR_SIZE);
if (!buf) {
warn_noalloc();
return -1;
}
bounce_buf_fl = buf;
return 0;
}
/****************************************************************
* Disk geometry translation
****************************************************************/
static u8
get_translation(struct drive_s *drive)
{
u8 type = drive->type;
if (CONFIG_QEMU && type == DTYPE_ATA) {
// Emulators pass in the translation info via nvram.
u8 translation = rtc_read(CMOS_BIOS_DISKTRANSFLAG + drive->cntl_id/4);
translation >>= 2 * (drive->cntl_id % 4);
translation &= 0x03;
return translation;
}
// Otherwise use a heuristic to determine translation type.
u16 heads = drive->pchs.head;
u16 cylinders = drive->pchs.cylinder;
u16 spt = drive->pchs.sector;
u64 sectors = drive->sectors;
u64 psectors = (u64)heads * cylinders * spt;
if (!heads || !cylinders || !spt || psectors > sectors)
// pchs doesn't look valid - use LBA.
return TRANSLATION_LBA;
if (cylinders <= 1024 && heads <= 16 && spt <= 63)
return TRANSLATION_NONE;
if (cylinders * heads <= 131072)
return TRANSLATION_LARGE;
return TRANSLATION_LBA;
}
static void
setup_translation(struct drive_s *drive)
{
u8 translation = get_translation(drive);
drive->translation = translation;
u16 heads = drive->pchs.head ;
u16 cylinders = drive->pchs.cylinder;
u16 spt = drive->pchs.sector;
u64 sectors = drive->sectors;
const char *desc = NULL;
switch (translation) {
default:
case TRANSLATION_NONE:
desc = "none";
break;
case TRANSLATION_LBA:
desc = "lba";
spt = 63;
if (sectors > 63*255*1024) {
heads = 255;
cylinders = 1024;
break;
}
u32 sect = (u32)sectors / 63;
heads = sect / 1024;
if (heads>128)
heads = 255;
else if (heads>64)
heads = 128;
else if (heads>32)
heads = 64;
else if (heads>16)
heads = 32;
else
heads = 16;
cylinders = sect / heads;
break;
case TRANSLATION_RECHS:
desc = "r-echs";
// Take care not to overflow
if (heads==16) {
if (cylinders>61439)
cylinders=61439;
heads=15;
cylinders = (u16)((u32)(cylinders)*16/15);
}
// then go through the large bitshift process
case TRANSLATION_LARGE:
if (translation == TRANSLATION_LARGE)
desc = "large";
while (cylinders > 1024) {
cylinders >>= 1;
heads <<= 1;
// If we max out the head count
if (heads > 127)
break;
}
break;
}
// clip to 1024 cylinders in lchs
if (cylinders > 1024)
cylinders = 1024;
dprintf(1, "drive %p: PCHS=%u/%d/%d translation=%s LCHS=%d/%d/%d s=%u\n"
, drive
, drive->pchs.cylinder, drive->pchs.head, drive->pchs.sector
, desc
, cylinders, heads, spt
, (u32)sectors);
drive->lchs.head = heads;
drive->lchs.cylinder = cylinders;
drive->lchs.sector = spt;
}
/****************************************************************
* Drive mapping
****************************************************************/
// Fill in Fixed Disk Parameter Table (located in ebda).
static void
fill_fdpt(struct drive_s *drive, int hdid)
{
if (hdid > 1)
return;
u16 nlc = drive->lchs.cylinder;
u16 nlh = drive->lchs.head;
u16 nls = drive->lchs.sector;
u16 npc = drive->pchs.cylinder;
u16 nph = drive->pchs.head;
u16 nps = drive->pchs.sector;
struct fdpt_s *fdpt = &get_ebda_ptr()->fdpt[hdid];
fdpt->precompensation = 0xffff;
fdpt->drive_control_byte = 0xc0 | ((nph > 8) << 3);
fdpt->landing_zone = npc;
fdpt->cylinders = nlc;
fdpt->heads = nlh;
fdpt->sectors = nls;
if (nlc != npc || nlh != nph || nls != nps) {
// Logical mapping present - use extended structure.
// complies with Phoenix style Translated Fixed Disk Parameter
// Table (FDPT)
fdpt->phys_cylinders = npc;
fdpt->phys_heads = nph;
fdpt->phys_sectors = nps;
fdpt->a0h_signature = 0xa0;
// Checksum structure.
fdpt->checksum -= checksum(fdpt, sizeof(*fdpt));
}
if (hdid == 0)
SET_IVT(0x41, SEGOFF(get_ebda_seg(), offsetof(
struct extended_bios_data_area_s, fdpt[0])));
else
SET_IVT(0x46, SEGOFF(get_ebda_seg(), offsetof(
struct extended_bios_data_area_s, fdpt[1])));
}
// Find spot to add a drive
static void
add_drive(struct drive_s **idmap, u8 *count, struct drive_s *drive)
{
if (*count >= ARRAY_SIZE(IDMap[0])) {
warn_noalloc();
return;
}
idmap[*count] = drive;
*count = *count + 1;
}
// Map a hard drive
void
map_hd_drive(struct drive_s *drive)
{
ASSERT32FLAT();
struct bios_data_area_s *bda = get_bda_ptr();
int hdid = bda->hdcount;
dprintf(3, "Mapping hd drive %p to %d\n", drive, hdid);
add_drive(IDMap[EXTTYPE_HD], &bda->hdcount, drive);
// Setup disk geometry translation.
setup_translation(drive);
// Fill "fdpt" structure.
fill_fdpt(drive, hdid);
}
// Map a cd
void
map_cd_drive(struct drive_s *drive)
{
ASSERT32FLAT();
dprintf(3, "Mapping cd drive %p\n", drive);
add_drive(IDMap[EXTTYPE_CD], &CDCount, drive);
}
// Map a floppy
void
map_floppy_drive(struct drive_s *drive)
{
ASSERT32FLAT();
dprintf(3, "Mapping floppy drive %p\n", drive);
add_drive(IDMap[EXTTYPE_FLOPPY], &FloppyCount, drive);
// Update equipment word bits for floppy
if (FloppyCount == 1) {
// 1 drive, ready for boot
set_equipment_flags(0x41, 0x01);
SET_BDA(floppy_harddisk_info, 0x07);
} else if (FloppyCount >= 2) {
// 2 drives, ready for boot
set_equipment_flags(0x41, 0x41);
SET_BDA(floppy_harddisk_info, 0x77);
}
}
/****************************************************************
* Extended Disk Drive (EDD) get drive parameters
****************************************************************/
// flags for bus_iface field in fill_generic_edd()
#define EDD_ISA 0x01
#define EDD_PCI 0x02
#define EDD_BUS_MASK 0x0f
#define EDD_ATA 0x10
#define EDD_SCSI 0x20
#define EDD_IFACE_MASK 0xf0
// Fill in EDD info
static int
fill_generic_edd(struct segoff_s edd, struct drive_s *drive_fl
, u32 dpte_so, u8 bus_iface, u32 iface_path, u32 device_path)
{
u16 seg = edd.seg;
struct int13dpt_s *param_far = (void*)(edd.offset+0);
u16 size = GET_FARVAR(seg, param_far->size);
u16 t13 = size == 74;
// Buffer is too small
if (size < 26)
return DISK_RET_EPARAM;
// EDD 1.x
u8 type = GET_FLATPTR(drive_fl->type);
u16 npc = GET_FLATPTR(drive_fl->pchs.cylinder);
u16 nph = GET_FLATPTR(drive_fl->pchs.head);
u16 nps = GET_FLATPTR(drive_fl->pchs.sector);
u64 lba = GET_FLATPTR(drive_fl->sectors);
u16 blksize = GET_FLATPTR(drive_fl->blksize);
dprintf(DEBUG_HDL_13, "disk_1348 size=%d t=%d chs=%d,%d,%d lba=%d bs=%d\n"
, size, type, npc, nph, nps, (u32)lba, blksize);
SET_FARVAR(seg, param_far->size, 26);
if (lba == (u64)-1) {
// 0x74 = removable, media change, lockable, max values
SET_FARVAR(seg, param_far->infos, 0x74);
SET_FARVAR(seg, param_far->cylinders, 0xffffffff);
SET_FARVAR(seg, param_far->heads, 0xffffffff);
SET_FARVAR(seg, param_far->spt, 0xffffffff);
} else {
if (lba > (u64)nps*nph*0x3fff) {
SET_FARVAR(seg, param_far->infos, 0x00); // geometry is invalid
SET_FARVAR(seg, param_far->cylinders, 0x3fff);
} else {
SET_FARVAR(seg, param_far->infos, 0x02); // geometry is valid
SET_FARVAR(seg, param_far->cylinders, (u32)npc);
}
SET_FARVAR(seg, param_far->heads, (u32)nph);
SET_FARVAR(seg, param_far->spt, (u32)nps);
}
SET_FARVAR(seg, param_far->sector_count, lba);
SET_FARVAR(seg, param_far->blksize, blksize);
if (size < 30 || !dpte_so)
return DISK_RET_SUCCESS;
// EDD 2.x
SET_FARVAR(seg, param_far->size, 30);
SET_FARVAR(seg, param_far->dpte.segoff, dpte_so);
if (size < 66 || !bus_iface)
return DISK_RET_SUCCESS;
// EDD 3.x
SET_FARVAR(seg, param_far->key, 0xbedd);
SET_FARVAR(seg, param_far->dpi_length, t13 ? 44 : 36);
SET_FARVAR(seg, param_far->reserved1, 0);
SET_FARVAR(seg, param_far->reserved2, 0);
const char *host_bus = "ISA ";
if ((bus_iface & EDD_BUS_MASK) == EDD_PCI) {
host_bus = "PCI ";
if (!t13)
// Phoenix v3 spec (pre t13) did not define the PCI channel field
iface_path &= 0x00ffffff;
}
memcpy_far(seg, param_far->host_bus, SEG_BIOS, host_bus
, sizeof(param_far->host_bus));
SET_FARVAR(seg, param_far->iface_path, iface_path);
const char *iface_type = "ATA ";
if ((bus_iface & EDD_IFACE_MASK) == EDD_SCSI)
iface_type = "SCSI ";
memcpy_far(seg, param_far->iface_type, SEG_BIOS, iface_type
, sizeof(param_far->iface_type));
if (t13) {
SET_FARVAR(seg, param_far->t13.device_path[0], device_path);
SET_FARVAR(seg, param_far->t13.device_path[1], 0);
SET_FARVAR(seg, param_far->t13.checksum
, -checksum_far(seg, (void*)param_far+30, 43));
} else {
SET_FARVAR(seg, param_far->phoenix.device_path, device_path);
SET_FARVAR(seg, param_far->phoenix.checksum
, -checksum_far(seg, (void*)param_far+30, 35));
}
return DISK_RET_SUCCESS;
}
// Build an EDD "iface_path" field for a PCI device
static u32
edd_pci_path(u16 bdf, u8 channel)
{
return (pci_bdf_to_bus(bdf) | (pci_bdf_to_dev(bdf) << 8)
| (pci_bdf_to_fn(bdf) << 16) | ((u32)channel << 24));
}
struct dpte_s DefaultDPTE VARLOW;
// EDD info for ATA and ATAPI drives
static int
fill_ata_edd(struct segoff_s edd, struct drive_s *drive_gf)
{
if (!CONFIG_ATA)
return DISK_RET_EPARAM;
// Fill in dpte
struct atadrive_s *adrive_gf = container_of(
drive_gf, struct atadrive_s, drive);
struct ata_channel_s *chan_gf = GET_GLOBALFLAT(adrive_gf->chan_gf);
u8 slave = GET_GLOBALFLAT(adrive_gf->slave);
u16 iobase2 = GET_GLOBALFLAT(chan_gf->iobase2);
u8 irq = GET_GLOBALFLAT(chan_gf->irq);
u16 iobase1 = GET_GLOBALFLAT(chan_gf->iobase1);
int bdf = GET_GLOBALFLAT(chan_gf->pci_bdf);
u8 channel = GET_GLOBALFLAT(chan_gf->chanid);
u16 options = 0;
if (GET_GLOBALFLAT(drive_gf->type) == DTYPE_ATA) {
u8 translation = GET_GLOBALFLAT(drive_gf->translation);
if (translation != TRANSLATION_NONE) {
options |= 1<<3; // CHS translation
if (translation == TRANSLATION_LBA)
options |= 1<<9;
if (translation == TRANSLATION_RECHS)
options |= 3<<9;
}
} else {
// ATAPI
options |= 1<<5; // removable device
options |= 1<<6; // atapi device
}
options |= 1<<4; // lba translation
if (CONFIG_ATA_PIO32)
options |= 1<<7;
SET_LOW(DefaultDPTE.iobase1, iobase1);
SET_LOW(DefaultDPTE.iobase2, iobase2 + ATA_CB_DC);
SET_LOW(DefaultDPTE.prefix, ((slave ? ATA_CB_DH_DEV1 : ATA_CB_DH_DEV0)
| ATA_CB_DH_LBA));
SET_LOW(DefaultDPTE.unused, 0xcb);
SET_LOW(DefaultDPTE.irq, irq);
SET_LOW(DefaultDPTE.blkcount, 1);
SET_LOW(DefaultDPTE.dma, 0);
SET_LOW(DefaultDPTE.pio, 0);
SET_LOW(DefaultDPTE.options, options);
SET_LOW(DefaultDPTE.reserved, 0);
SET_LOW(DefaultDPTE.revision, 0x11);
u8 sum = checksum_far(SEG_LOW, &DefaultDPTE, 15);
SET_LOW(DefaultDPTE.checksum, -sum);
u32 bustype = EDD_ISA, ifpath = iobase1;
if (bdf >= 0) {
bustype = EDD_PCI;
ifpath = edd_pci_path(bdf, channel);
}
return fill_generic_edd(
edd, drive_gf, SEGOFF(SEG_LOW, (u32)&DefaultDPTE).segoff
, bustype | EDD_ATA, ifpath, slave);
}
// Fill Extended Disk Drive (EDD) "Get drive parameters" info for a drive
int noinline
fill_edd(struct segoff_s edd, struct drive_s *drive_fl)
{
switch (GET_FLATPTR(drive_fl->type)) {
case DTYPE_ATA:
case DTYPE_ATA_ATAPI:
return fill_ata_edd(edd, drive_fl);
case DTYPE_VIRTIO_BLK:
case DTYPE_VIRTIO_SCSI:
return fill_generic_edd(
edd, drive_fl, 0xffffffff, EDD_PCI | EDD_SCSI
, edd_pci_path(GET_FLATPTR(drive_fl->cntl_id), 0), 0);
default:
return fill_generic_edd(edd, drive_fl, 0, 0, 0, 0);
}
return 0;
}
/****************************************************************
* Disk driver dispatch
****************************************************************/
void
block_setup(void)
{
floppy_setup();
ata_setup();
ahci_setup();
sdcard_setup();
ramdisk_setup();
virtio_blk_setup();
virtio_scsi_setup();
lsi_scsi_setup();
esp_scsi_setup();
megasas_setup();
pvscsi_setup();
mpt_scsi_setup();
nvme_setup();
}
// Fallback handler for command requests not implemented by drivers
int
default_process_op(struct disk_op_s *op)
{
switch (op->command) {
case CMD_FORMAT:
case CMD_RESET:
case CMD_ISREADY:
case CMD_VERIFY:
case CMD_SEEK:
// Return success if the driver doesn't implement these commands
return DISK_RET_SUCCESS;
default:
return DISK_RET_EPARAM;
}
}
// Command dispatch for disk drivers that run in both 16bit and 32bit mode
static int
process_op_both(struct disk_op_s *op)
{
switch (GET_FLATPTR(op->drive_fl->type)) {
#if CONFIG_PARISC
case DTYPE_ATA:
return ata_process_op(op);
#endif
case DTYPE_ATA_ATAPI:
return ata_atapi_process_op(op);
case DTYPE_USB:
return usb_process_op(op);
case DTYPE_UAS:
return uas_process_op(op);
case DTYPE_LSI_SCSI:
return lsi_scsi_process_op(op);
case DTYPE_ESP_SCSI:
return esp_scsi_process_op(op);
case DTYPE_MEGASAS:
return megasas_process_op(op);
case DTYPE_MPT_SCSI:
return mpt_scsi_process_op(op);
default:
if (!MODESEGMENT)
return DISK_RET_EPARAM;
// In 16bit mode and driver not found - try in 32bit mode
return call32(process_op_32, MAKE_FLATPTR(GET_SEG(SS), op)
, DISK_RET_EPARAM);
}
}
// Command dispatch for disk drivers that only run in 32bit mode
int VISIBLE32FLAT
process_op_32(struct disk_op_s *op)
{
ASSERT32FLAT();
switch (op->drive_fl->type) {
case DTYPE_VIRTIO_BLK:
return virtio_blk_process_op(op);
case DTYPE_AHCI:
return ahci_process_op(op);
case DTYPE_AHCI_ATAPI:
return ahci_atapi_process_op(op);
case DTYPE_SDCARD:
return sdcard_process_op(op);
case DTYPE_USB_32:
return usb_process_op(op);
case DTYPE_UAS_32:
return uas_process_op(op);
case DTYPE_VIRTIO_SCSI:
return virtio_scsi_process_op(op);
case DTYPE_PVSCSI:
return pvscsi_process_op(op);
case DTYPE_NVME:
return nvme_process_op(op);
default:
return process_op_both(op);
}
}
// Command dispatch for disk drivers that only run in 16bit mode
static int
process_op_16(struct disk_op_s *op)
{
ASSERT16();
switch (GET_FLATPTR(op->drive_fl->type)) {
case DTYPE_FLOPPY:
return floppy_process_op(op);
case DTYPE_ATA:
return ata_process_op(op);
case DTYPE_RAMDISK:
return ramdisk_process_op(op);
case DTYPE_CDEMU:
return cdemu_process_op(op);
default:
return process_op_both(op);
}
}
// Execute a disk_op_s request.
int
process_op(struct disk_op_s *op)
{
dprintf(DEBUG_HDL_13, "disk_op d=%p lba=%d buf=%p count=%d cmd=%d\n"
, op->drive_fl, (u32)op->lba, op->buf_fl
, op->count, op->command);
int ret, origcount = op->count;
/* Only x86 arch has problems with large reads/writes greater than 64kb */
if (CONFIG_X86 &&
(origcount * GET_FLATPTR(op->drive_fl->blksize) > 64*1024)) {
op->count = 0;
return DISK_RET_EBOUNDARY;
}
if (MODESEGMENT)
ret = process_op_16(op);
else
ret = process_op_32(op);
if (ret && op->count == origcount)
// If the count hasn't changed on error, assume no data transferred.
op->count = 0;
return ret;
}