blob: 9f018d71560acd7ca4acfa06f684ec57f8f8439e [file] [log] [blame]
// AMD PCscsi boot support.
//
// Copyright (C) 2012 Red Hat Inc.
//
// Authors:
// Paolo Bonzini <pbonzini@redhat.com>
//
// based on lsi-scsi.c which is written by:
// Gerd Hoffman <kraxel@redhat.com>
//
// This file may be distributed under the terms of the GNU LGPLv3 license.
#include "biosvar.h" // GET_GLOBALFLAT
#include "block.h" // struct drive_s
#include "blockcmd.h" // scsi_drive_setup
#include "config.h" // CONFIG_*
#include "fw/paravirt.h" // runningOnQEMU
#include "malloc.h" // free
#include "output.h" // dprintf
#include "pcidevice.h" // foreachpci
#include "pci_ids.h" // PCI_DEVICE_ID
#include "pci_regs.h" // PCI_VENDOR_ID
#include "stacks.h" // run_thread
#include "std/disk.h" // DISK_RET_SUCCESS
#include "string.h" // memset
#include "util.h" // usleep
#define ESP_TCLO 0x00
#define ESP_TCMID 0x04
#define ESP_FIFO 0x08
#define ESP_CMD 0x0c
#define ESP_WBUSID 0x10
#define ESP_TCHI 0x38
#define ESP_RSTAT 0x10
#define ESP_RINTR 0x14
#define ESP_RFLAGS 0x1c
#define ESP_DMA_CMD 0x40
#define ESP_DMA_STC 0x44
#define ESP_DMA_SPA 0x48
#define ESP_DMA_WBC 0x4c
#define ESP_DMA_WAC 0x50
#define ESP_DMA_STAT 0x54
#define ESP_DMA_SMDLA 0x58
#define ESP_DMA_WMAC 0x58c
#define ESP_CMD_DMA 0x80
#define ESP_CMD_FLUSH 0x01
#define ESP_CMD_RESET 0x02
#define ESP_CMD_TI 0x10
#define ESP_CMD_ICCS 0x11
#define ESP_CMD_SELATN 0x42
#define ESP_STAT_DI 0x01
#define ESP_STAT_CD 0x02
#define ESP_STAT_MSG 0x04
#define ESP_STAT_TC 0x10
#define ESP_INTR_FC 0x08
#define ESP_INTR_BS 0x10
#define ESP_INTR_DC 0x20
struct esp_lun_s {
struct drive_s drive;
struct pci_device *pci;
u32 iobase;
u8 target;
u8 lun;
};
static void
esp_scsi_dma(u32 iobase, u32 buf, u32 len, int read)
{
outb(len & 0xff, iobase + ESP_TCLO);
outb((len >> 8) & 0xff, iobase + ESP_TCMID);
outb((len >> 16) & 0xff, iobase + ESP_TCHI);
outl(buf, iobase + ESP_DMA_SPA);
outl(len, iobase + ESP_DMA_STC);
outb(read ? 0x83 : 0x03, iobase + ESP_DMA_CMD);
}
int
esp_scsi_process_op(struct disk_op_s *op)
{
if (!CONFIG_ESP_SCSI)
return DISK_RET_EBADTRACK;
struct esp_lun_s *llun_gf =
container_of(op->drive_fl, struct esp_lun_s, drive);
u16 target = GET_GLOBALFLAT(llun_gf->target);
u16 lun = GET_GLOBALFLAT(llun_gf->lun);
u8 cdbcmd[16];
int blocksize = scsi_fill_cmd(op, cdbcmd, sizeof(cdbcmd));
if (blocksize < 0)
return default_process_op(op);
u32 iobase = GET_GLOBALFLAT(llun_gf->iobase);
int i, state;
u8 status;
outb(target, iobase + ESP_WBUSID);
/* Clear FIFO and interrupts before sending command. */
outb(ESP_CMD_FLUSH, iobase + ESP_CMD);
inb(iobase + ESP_RINTR);
/*
* We need to pass the LUN at the beginning of the command, and the FIFO
* is only 16 bytes, so we cannot support 16-byte CDBs. The alternative
* would be to use DMA for the 17-byte command too, which is quite
* overkill.
*/
outb(lun, iobase + ESP_FIFO);
cdbcmd[1] &= 0x1f;
cdbcmd[1] |= lun << 5;
for (i = 0; i < 12; i++)
outb(cdbcmd[i], iobase + ESP_FIFO);
outb(ESP_CMD_SELATN, iobase + ESP_CMD);
for (state = 0;;) {
u8 stat = inb(iobase + ESP_RSTAT);
u8 intr;
if (state == 0) {
intr = inb(iobase + ESP_RINTR);
/* Detect disconnected device. */
if (intr & ESP_INTR_DC) {
return DISK_RET_ENOTREADY;
}
/* HBA reads command, executes it, sets BS/FC -> do DMA if needed. */
if (intr & (ESP_INTR_BS | ESP_INTR_FC)) {
state++;
if (op->count && blocksize) {
/* Data phase. */
u32 count = (u32)op->count * blocksize;
esp_scsi_dma(iobase, (u32)op->buf_fl, count, scsi_is_read(op));
outb(ESP_CMD_TI | ESP_CMD_DMA, iobase + ESP_CMD);
continue;
} else {
/* No data phase. */
state++;
}
}
}
/* At end of DMA TC is set again -> complete command. */
if (state == 1 && (stat & ESP_STAT_TC)) {
state++;
/* Terminate esp_scsi_dma() command */
outb(0, iobase + ESP_DMA_CMD);
continue;
}
/* Request message in data. */
if (state == 2) {
state++;
outb(ESP_CMD_ICCS, iobase + ESP_CMD);
continue;
}
/* Finally read data from the message in phase. */
if (state == 3 && (stat & ESP_STAT_MSG)) {
state++;
status = inb(iobase + ESP_FIFO);
inb(iobase + ESP_FIFO);
break;
}
usleep(5);
}
if (status == 0) {
return DISK_RET_SUCCESS;
}
return DISK_RET_EBADTRACK;
}
static void
esp_scsi_init_lun(struct esp_lun_s *llun, struct pci_device *pci, u32 iobase,
u8 target, u8 lun)
{
memset(llun, 0, sizeof(*llun));
llun->drive.type = DTYPE_ESP_SCSI;
llun->drive.max_bytes_transfer = 64*1024; /* 64kb */
llun->drive.cntl_id = pci->bdf;
llun->pci = pci;
llun->target = target;
llun->lun = lun;
llun->iobase = iobase;
}
static int
esp_scsi_add_lun(u32 lun, struct drive_s *tmpl_drv)
{
struct esp_lun_s *tmpl_llun =
container_of(tmpl_drv, struct esp_lun_s, drive);
struct esp_lun_s *llun = malloc_fseg(sizeof(*llun));
if (!llun) {
warn_noalloc();
return -1;
}
esp_scsi_init_lun(llun, tmpl_llun->pci, tmpl_llun->iobase,
tmpl_llun->target, lun);
char *name = znprintf(MAXDESCSIZE, "esp %pP %d:%d",
llun->pci, llun->target, llun->lun);
boot_lchs_find_scsi_device(llun->pci, llun->target, llun->lun,
&(llun->drive.lchs));
int prio = bootprio_find_scsi_device(llun->pci, llun->target, llun->lun);
int ret = scsi_drive_setup(&llun->drive, name, prio, llun->target, llun->lun);
free(name);
if (ret)
goto fail;
return 0;
fail:
free(llun);
return -1;
}
static void
esp_scsi_scan_target(struct pci_device *pci, u32 iobase, u8 target)
{
struct esp_lun_s llun0;
esp_scsi_init_lun(&llun0, pci, iobase, target, 0);
scsi_rep_luns_scan(&llun0.drive, esp_scsi_add_lun);
}
static void
init_esp_scsi(void *data)
{
struct pci_device *pci = data;
u32 iobase = pci_enable_iobar(pci, PCI_BASE_ADDRESS_0);
if (!iobase)
return;
pci_enable_busmaster(pci);
dprintf(1, "found esp at %pP, io @ %x\n", pci, iobase);
// reset
outb(ESP_CMD_RESET, iobase + ESP_CMD);
int i;
for (i = 0; i <= 7; i++)
esp_scsi_scan_target(pci, iobase, i);
}
void
esp_scsi_setup(void)
{
ASSERT32FLAT();
if (!CONFIG_ESP_SCSI || !runningOnQEMU())
return;
dprintf(3, "init esp\n");
struct pci_device *pci;
foreachpci(pci) {
if (pci->vendor != PCI_VENDOR_ID_AMD
|| pci->device != PCI_DEVICE_ID_AMD_SCSI)
continue;
run_thread(init_esp_scsi, pci);
}
}