Tom Musta | 72ac97c | 2014-04-21 15:54:45 -0500 | [diff] [blame] | 1 | /* Decimal number arithmetic module for the decNumber C Library. |
| 2 | Copyright (C) 2005, 2007 Free Software Foundation, Inc. |
| 3 | Contributed by IBM Corporation. Author Mike Cowlishaw. |
| 4 | |
| 5 | This file is part of GCC. |
| 6 | |
| 7 | GCC is free software; you can redistribute it and/or modify it under |
| 8 | the terms of the GNU General Public License as published by the Free |
| 9 | Software Foundation; either version 2, or (at your option) any later |
| 10 | version. |
| 11 | |
| 12 | In addition to the permissions in the GNU General Public License, |
| 13 | the Free Software Foundation gives you unlimited permission to link |
| 14 | the compiled version of this file into combinations with other |
| 15 | programs, and to distribute those combinations without any |
| 16 | restriction coming from the use of this file. (The General Public |
| 17 | License restrictions do apply in other respects; for example, they |
| 18 | cover modification of the file, and distribution when not linked |
| 19 | into a combine executable.) |
| 20 | |
| 21 | GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| 22 | WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 23 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 24 | for more details. |
| 25 | |
| 26 | You should have received a copy of the GNU General Public License |
| 27 | along with GCC; see the file COPYING. If not, write to the Free |
| 28 | Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA |
| 29 | 02110-1301, USA. */ |
| 30 | |
| 31 | /* ------------------------------------------------------------------ */ |
| 32 | /* Decimal Number arithmetic module */ |
| 33 | /* ------------------------------------------------------------------ */ |
| 34 | /* This module comprises the routines for General Decimal Arithmetic */ |
| 35 | /* as defined in the specification which may be found on the */ |
| 36 | /* http://www2.hursley.ibm.com/decimal web pages. It implements both */ |
| 37 | /* the full ('extended') arithmetic and the simpler ('subset') */ |
| 38 | /* arithmetic. */ |
| 39 | /* */ |
| 40 | /* Usage notes: */ |
| 41 | /* */ |
| 42 | /* 1. This code is ANSI C89 except: */ |
| 43 | /* */ |
| 44 | /* If DECDPUN>4 or DECUSE64=1, the C99 64-bit int64_t and */ |
| 45 | /* uint64_t types may be used. To avoid these, set DECUSE64=0 */ |
| 46 | /* and DECDPUN<=4 (see documentation). */ |
| 47 | /* */ |
| 48 | /* 2. The decNumber format which this library uses is optimized for */ |
| 49 | /* efficient processing of relatively short numbers; in particular */ |
| 50 | /* it allows the use of fixed sized structures and minimizes copy */ |
| 51 | /* and move operations. It does, however, support arbitrary */ |
| 52 | /* precision (up to 999,999,999 digits) and arbitrary exponent */ |
| 53 | /* range (Emax in the range 0 through 999,999,999 and Emin in the */ |
| 54 | /* range -999,999,999 through 0). Mathematical functions (for */ |
| 55 | /* example decNumberExp) as identified below are restricted more */ |
| 56 | /* tightly: digits, emax, and -emin in the context must be <= */ |
| 57 | /* DEC_MAX_MATH (999999), and their operand(s) must be within */ |
| 58 | /* these bounds. */ |
| 59 | /* */ |
| 60 | /* 3. Logical functions are further restricted; their operands must */ |
| 61 | /* be finite, positive, have an exponent of zero, and all digits */ |
| 62 | /* must be either 0 or 1. The result will only contain digits */ |
| 63 | /* which are 0 or 1 (and will have exponent=0 and a sign of 0). */ |
| 64 | /* */ |
| 65 | /* 4. Operands to operator functions are never modified unless they */ |
| 66 | /* are also specified to be the result number (which is always */ |
| 67 | /* permitted). Other than that case, operands must not overlap. */ |
| 68 | /* */ |
| 69 | /* 5. Error handling: the type of the error is ORed into the status */ |
| 70 | /* flags in the current context (decContext structure). The */ |
| 71 | /* SIGFPE signal is then raised if the corresponding trap-enabler */ |
| 72 | /* flag in the decContext is set (is 1). */ |
| 73 | /* */ |
| 74 | /* It is the responsibility of the caller to clear the status */ |
| 75 | /* flags as required. */ |
| 76 | /* */ |
| 77 | /* The result of any routine which returns a number will always */ |
| 78 | /* be a valid number (which may be a special value, such as an */ |
| 79 | /* Infinity or NaN). */ |
| 80 | /* */ |
| 81 | /* 6. The decNumber format is not an exchangeable concrete */ |
| 82 | /* representation as it comprises fields which may be machine- */ |
| 83 | /* dependent (packed or unpacked, or special length, for example). */ |
| 84 | /* Canonical conversions to and from strings are provided; other */ |
| 85 | /* conversions are available in separate modules. */ |
| 86 | /* */ |
| 87 | /* 7. Normally, input operands are assumed to be valid. Set DECCHECK */ |
| 88 | /* to 1 for extended operand checking (including NULL operands). */ |
| 89 | /* Results are undefined if a badly-formed structure (or a NULL */ |
| 90 | /* pointer to a structure) is provided, though with DECCHECK */ |
| 91 | /* enabled the operator routines are protected against exceptions. */ |
| 92 | /* (Except if the result pointer is NULL, which is unrecoverable.) */ |
| 93 | /* */ |
| 94 | /* However, the routines will never cause exceptions if they are */ |
| 95 | /* given well-formed operands, even if the value of the operands */ |
| 96 | /* is inappropriate for the operation and DECCHECK is not set. */ |
| 97 | /* (Except for SIGFPE, as and where documented.) */ |
| 98 | /* */ |
| 99 | /* 8. Subset arithmetic is available only if DECSUBSET is set to 1. */ |
| 100 | /* ------------------------------------------------------------------ */ |
| 101 | /* Implementation notes for maintenance of this module: */ |
| 102 | /* */ |
| 103 | /* 1. Storage leak protection: Routines which use malloc are not */ |
| 104 | /* permitted to use return for fastpath or error exits (i.e., */ |
| 105 | /* they follow strict structured programming conventions). */ |
| 106 | /* Instead they have a do{}while(0); construct surrounding the */ |
| 107 | /* code which is protected -- break may be used to exit this. */ |
| 108 | /* Other routines can safely use the return statement inline. */ |
| 109 | /* */ |
| 110 | /* Storage leak accounting can be enabled using DECALLOC. */ |
| 111 | /* */ |
| 112 | /* 2. All loops use the for(;;) construct. Any do construct does */ |
| 113 | /* not loop; it is for allocation protection as just described. */ |
| 114 | /* */ |
| 115 | /* 3. Setting status in the context must always be the very last */ |
| 116 | /* action in a routine, as non-0 status may raise a trap and hence */ |
| 117 | /* the call to set status may not return (if the handler uses long */ |
| 118 | /* jump). Therefore all cleanup must be done first. In general, */ |
| 119 | /* to achieve this status is accumulated and is only applied just */ |
| 120 | /* before return by calling decContextSetStatus (via decStatus). */ |
| 121 | /* */ |
| 122 | /* Routines which allocate storage cannot, in general, use the */ |
| 123 | /* 'top level' routines which could cause a non-returning */ |
| 124 | /* transfer of control. The decXxxxOp routines are safe (do not */ |
| 125 | /* call decStatus even if traps are set in the context) and should */ |
| 126 | /* be used instead (they are also a little faster). */ |
| 127 | /* */ |
| 128 | /* 4. Exponent checking is minimized by allowing the exponent to */ |
| 129 | /* grow outside its limits during calculations, provided that */ |
| 130 | /* the decFinalize function is called later. Multiplication and */ |
| 131 | /* division, and intermediate calculations in exponentiation, */ |
| 132 | /* require more careful checks because of the risk of 31-bit */ |
| 133 | /* overflow (the most negative valid exponent is -1999999997, for */ |
| 134 | /* a 999999999-digit number with adjusted exponent of -999999999). */ |
| 135 | /* */ |
| 136 | /* 5. Rounding is deferred until finalization of results, with any */ |
| 137 | /* 'off to the right' data being represented as a single digit */ |
| 138 | /* residue (in the range -1 through 9). This avoids any double- */ |
| 139 | /* rounding when more than one shortening takes place (for */ |
| 140 | /* example, when a result is subnormal). */ |
| 141 | /* */ |
| 142 | /* 6. The digits count is allowed to rise to a multiple of DECDPUN */ |
| 143 | /* during many operations, so whole Units are handled and exact */ |
| 144 | /* accounting of digits is not needed. The correct digits value */ |
| 145 | /* is found by decGetDigits, which accounts for leading zeros. */ |
| 146 | /* This must be called before any rounding if the number of digits */ |
| 147 | /* is not known exactly. */ |
| 148 | /* */ |
| 149 | /* 7. The multiply-by-reciprocal 'trick' is used for partitioning */ |
| 150 | /* numbers up to four digits, using appropriate constants. This */ |
| 151 | /* is not useful for longer numbers because overflow of 32 bits */ |
| 152 | /* would lead to 4 multiplies, which is almost as expensive as */ |
| 153 | /* a divide (unless a floating-point or 64-bit multiply is */ |
| 154 | /* assumed to be available). */ |
| 155 | /* */ |
| 156 | /* 8. Unusual abbreviations that may be used in the commentary: */ |
| 157 | /* lhs -- left hand side (operand, of an operation) */ |
| 158 | /* lsd -- least significant digit (of coefficient) */ |
| 159 | /* lsu -- least significant Unit (of coefficient) */ |
| 160 | /* msd -- most significant digit (of coefficient) */ |
| 161 | /* msi -- most significant item (in an array) */ |
| 162 | /* msu -- most significant Unit (of coefficient) */ |
| 163 | /* rhs -- right hand side (operand, of an operation) */ |
| 164 | /* +ve -- positive */ |
| 165 | /* -ve -- negative */ |
| 166 | /* ** -- raise to the power */ |
| 167 | /* ------------------------------------------------------------------ */ |
| 168 | |
Peter Maydell | 7a4e543 | 2016-02-09 11:02:46 +0000 | [diff] [blame] | 169 | #include "qemu/osdep.h" |
Tom Musta | 0f2d373 | 2014-04-21 15:54:47 -0500 | [diff] [blame] | 170 | #include "libdecnumber/dconfig.h" |
| 171 | #include "libdecnumber/decNumber.h" |
| 172 | #include "libdecnumber/decNumberLocal.h" |
Tom Musta | 72ac97c | 2014-04-21 15:54:45 -0500 | [diff] [blame] | 173 | |
| 174 | /* Constants */ |
| 175 | /* Public lookup table used by the D2U macro */ |
| 176 | const uByte d2utable[DECMAXD2U+1]=D2UTABLE; |
| 177 | |
| 178 | #define DECVERB 1 /* set to 1 for verbose DECCHECK */ |
| 179 | #define powers DECPOWERS /* old internal name */ |
| 180 | |
| 181 | /* Local constants */ |
| 182 | #define DIVIDE 0x80 /* Divide operators */ |
| 183 | #define REMAINDER 0x40 /* .. */ |
| 184 | #define DIVIDEINT 0x20 /* .. */ |
| 185 | #define REMNEAR 0x10 /* .. */ |
| 186 | #define COMPARE 0x01 /* Compare operators */ |
| 187 | #define COMPMAX 0x02 /* .. */ |
| 188 | #define COMPMIN 0x03 /* .. */ |
| 189 | #define COMPTOTAL 0x04 /* .. */ |
| 190 | #define COMPNAN 0x05 /* .. [NaN processing] */ |
| 191 | #define COMPSIG 0x06 /* .. [signaling COMPARE] */ |
| 192 | #define COMPMAXMAG 0x07 /* .. */ |
| 193 | #define COMPMINMAG 0x08 /* .. */ |
| 194 | |
| 195 | #define DEC_sNaN 0x40000000 /* local status: sNaN signal */ |
| 196 | #define BADINT (Int)0x80000000 /* most-negative Int; error indicator */ |
| 197 | /* Next two indicate an integer >= 10**6, and its parity (bottom bit) */ |
| 198 | #define BIGEVEN (Int)0x80000002 |
| 199 | #define BIGODD (Int)0x80000003 |
| 200 | |
| 201 | static Unit uarrone[1]={1}; /* Unit array of 1, used for incrementing */ |
| 202 | |
| 203 | /* Granularity-dependent code */ |
| 204 | #if DECDPUN<=4 |
| 205 | #define eInt Int /* extended integer */ |
| 206 | #define ueInt uInt /* unsigned extended integer */ |
| 207 | /* Constant multipliers for divide-by-power-of five using reciprocal */ |
| 208 | /* multiply, after removing powers of 2 by shifting, and final shift */ |
| 209 | /* of 17 [we only need up to **4] */ |
| 210 | static const uInt multies[]={131073, 26215, 5243, 1049, 210}; |
| 211 | /* QUOT10 -- macro to return the quotient of unit u divided by 10**n */ |
| 212 | #define QUOT10(u, n) ((((uInt)(u)>>(n))*multies[n])>>17) |
| 213 | #else |
| 214 | /* For DECDPUN>4 non-ANSI-89 64-bit types are needed. */ |
| 215 | #if !DECUSE64 |
| 216 | #error decNumber.c: DECUSE64 must be 1 when DECDPUN>4 |
| 217 | #endif |
| 218 | #define eInt Long /* extended integer */ |
| 219 | #define ueInt uLong /* unsigned extended integer */ |
| 220 | #endif |
| 221 | |
| 222 | /* Local routines */ |
| 223 | static decNumber * decAddOp(decNumber *, const decNumber *, const decNumber *, |
| 224 | decContext *, uByte, uInt *); |
| 225 | static Flag decBiStr(const char *, const char *, const char *); |
| 226 | static uInt decCheckMath(const decNumber *, decContext *, uInt *); |
| 227 | static void decApplyRound(decNumber *, decContext *, Int, uInt *); |
| 228 | static Int decCompare(const decNumber *lhs, const decNumber *rhs, Flag); |
| 229 | static decNumber * decCompareOp(decNumber *, const decNumber *, |
| 230 | const decNumber *, decContext *, |
| 231 | Flag, uInt *); |
| 232 | static void decCopyFit(decNumber *, const decNumber *, decContext *, |
| 233 | Int *, uInt *); |
| 234 | static decNumber * decDecap(decNumber *, Int); |
| 235 | static decNumber * decDivideOp(decNumber *, const decNumber *, |
| 236 | const decNumber *, decContext *, Flag, uInt *); |
| 237 | static decNumber * decExpOp(decNumber *, const decNumber *, |
| 238 | decContext *, uInt *); |
| 239 | static void decFinalize(decNumber *, decContext *, Int *, uInt *); |
| 240 | static Int decGetDigits(Unit *, Int); |
| 241 | static Int decGetInt(const decNumber *); |
| 242 | static decNumber * decLnOp(decNumber *, const decNumber *, |
| 243 | decContext *, uInt *); |
| 244 | static decNumber * decMultiplyOp(decNumber *, const decNumber *, |
| 245 | const decNumber *, decContext *, |
| 246 | uInt *); |
| 247 | static decNumber * decNaNs(decNumber *, const decNumber *, |
| 248 | const decNumber *, decContext *, uInt *); |
| 249 | static decNumber * decQuantizeOp(decNumber *, const decNumber *, |
| 250 | const decNumber *, decContext *, Flag, |
| 251 | uInt *); |
| 252 | static void decReverse(Unit *, Unit *); |
| 253 | static void decSetCoeff(decNumber *, decContext *, const Unit *, |
| 254 | Int, Int *, uInt *); |
| 255 | static void decSetMaxValue(decNumber *, decContext *); |
| 256 | static void decSetOverflow(decNumber *, decContext *, uInt *); |
| 257 | static void decSetSubnormal(decNumber *, decContext *, Int *, uInt *); |
| 258 | static Int decShiftToLeast(Unit *, Int, Int); |
| 259 | static Int decShiftToMost(Unit *, Int, Int); |
| 260 | static void decStatus(decNumber *, uInt, decContext *); |
| 261 | static void decToString(const decNumber *, char[], Flag); |
| 262 | static decNumber * decTrim(decNumber *, decContext *, Flag, Int *); |
| 263 | static Int decUnitAddSub(const Unit *, Int, const Unit *, Int, Int, |
| 264 | Unit *, Int); |
| 265 | static Int decUnitCompare(const Unit *, Int, const Unit *, Int, Int); |
| 266 | |
| 267 | #if !DECSUBSET |
| 268 | /* decFinish == decFinalize when no subset arithmetic needed */ |
| 269 | #define decFinish(a,b,c,d) decFinalize(a,b,c,d) |
| 270 | #else |
| 271 | static void decFinish(decNumber *, decContext *, Int *, uInt *); |
| 272 | static decNumber * decRoundOperand(const decNumber *, decContext *, uInt *); |
| 273 | #endif |
| 274 | |
| 275 | /* Local macros */ |
| 276 | /* masked special-values bits */ |
| 277 | #define SPECIALARG (rhs->bits & DECSPECIAL) |
| 278 | #define SPECIALARGS ((lhs->bits | rhs->bits) & DECSPECIAL) |
| 279 | |
| 280 | /* Diagnostic macros, etc. */ |
| 281 | #if DECALLOC |
| 282 | /* Handle malloc/free accounting. If enabled, our accountable routines */ |
| 283 | /* are used; otherwise the code just goes straight to the system malloc */ |
| 284 | /* and free routines. */ |
| 285 | #define malloc(a) decMalloc(a) |
| 286 | #define free(a) decFree(a) |
| 287 | #define DECFENCE 0x5a /* corruption detector */ |
| 288 | /* 'Our' malloc and free: */ |
| 289 | static void *decMalloc(size_t); |
| 290 | static void decFree(void *); |
| 291 | uInt decAllocBytes=0; /* count of bytes allocated */ |
| 292 | /* Note that DECALLOC code only checks for storage buffer overflow. */ |
| 293 | /* To check for memory leaks, the decAllocBytes variable must be */ |
| 294 | /* checked to be 0 at appropriate times (e.g., after the test */ |
| 295 | /* harness completes a set of tests). This checking may be unreliable */ |
| 296 | /* if the testing is done in a multi-thread environment. */ |
| 297 | #endif |
| 298 | |
| 299 | #if DECCHECK |
| 300 | /* Optional checking routines. Enabling these means that decNumber */ |
| 301 | /* and decContext operands to operator routines are checked for */ |
| 302 | /* correctness. This roughly doubles the execution time of the */ |
| 303 | /* fastest routines (and adds 600+ bytes), so should not normally be */ |
| 304 | /* used in 'production'. */ |
| 305 | /* decCheckInexact is used to check that inexact results have a full */ |
| 306 | /* complement of digits (where appropriate -- this is not the case */ |
| 307 | /* for Quantize, for example) */ |
| 308 | #define DECUNRESU ((decNumber *)(void *)0xffffffff) |
| 309 | #define DECUNUSED ((const decNumber *)(void *)0xffffffff) |
| 310 | #define DECUNCONT ((decContext *)(void *)(0xffffffff)) |
| 311 | static Flag decCheckOperands(decNumber *, const decNumber *, |
| 312 | const decNumber *, decContext *); |
| 313 | static Flag decCheckNumber(const decNumber *); |
| 314 | static void decCheckInexact(const decNumber *, decContext *); |
| 315 | #endif |
| 316 | |
| 317 | #if DECTRACE || DECCHECK |
| 318 | /* Optional trace/debugging routines (may or may not be used) */ |
| 319 | void decNumberShow(const decNumber *); /* displays the components of a number */ |
| 320 | static void decDumpAr(char, const Unit *, Int); |
| 321 | #endif |
| 322 | |
| 323 | /* ================================================================== */ |
| 324 | /* Conversions */ |
| 325 | /* ================================================================== */ |
| 326 | |
| 327 | /* ------------------------------------------------------------------ */ |
| 328 | /* from-int32 -- conversion from Int or uInt */ |
| 329 | /* */ |
| 330 | /* dn is the decNumber to receive the integer */ |
| 331 | /* in or uin is the integer to be converted */ |
| 332 | /* returns dn */ |
| 333 | /* */ |
| 334 | /* No error is possible. */ |
| 335 | /* ------------------------------------------------------------------ */ |
| 336 | decNumber * decNumberFromInt32(decNumber *dn, Int in) { |
| 337 | uInt unsig; |
| 338 | if (in>=0) unsig=in; |
| 339 | else { /* negative (possibly BADINT) */ |
| 340 | if (in==BADINT) unsig=(uInt)1073741824*2; /* special case */ |
| 341 | else unsig=-in; /* invert */ |
| 342 | } |
| 343 | /* in is now positive */ |
| 344 | decNumberFromUInt32(dn, unsig); |
| 345 | if (in<0) dn->bits=DECNEG; /* sign needed */ |
| 346 | return dn; |
| 347 | } /* decNumberFromInt32 */ |
| 348 | |
| 349 | decNumber * decNumberFromUInt32(decNumber *dn, uInt uin) { |
| 350 | Unit *up; /* work pointer */ |
| 351 | decNumberZero(dn); /* clean */ |
| 352 | if (uin==0) return dn; /* [or decGetDigits bad call] */ |
| 353 | for (up=dn->lsu; uin>0; up++) { |
| 354 | *up=(Unit)(uin%(DECDPUNMAX+1)); |
| 355 | uin=uin/(DECDPUNMAX+1); |
| 356 | } |
| 357 | dn->digits=decGetDigits(dn->lsu, up-dn->lsu); |
| 358 | return dn; |
| 359 | } /* decNumberFromUInt32 */ |
| 360 | |
| 361 | /* ------------------------------------------------------------------ */ |
| 362 | /* to-int32 -- conversion to Int or uInt */ |
| 363 | /* */ |
| 364 | /* dn is the decNumber to convert */ |
| 365 | /* set is the context for reporting errors */ |
| 366 | /* returns the converted decNumber, or 0 if Invalid is set */ |
| 367 | /* */ |
| 368 | /* Invalid is set if the decNumber does not have exponent==0 or if */ |
| 369 | /* it is a NaN, Infinite, or out-of-range. */ |
| 370 | /* ------------------------------------------------------------------ */ |
| 371 | Int decNumberToInt32(const decNumber *dn, decContext *set) { |
| 372 | #if DECCHECK |
| 373 | if (decCheckOperands(DECUNRESU, DECUNUSED, dn, set)) return 0; |
| 374 | #endif |
| 375 | |
| 376 | /* special or too many digits, or bad exponent */ |
| 377 | if (dn->bits&DECSPECIAL || dn->digits>10 || dn->exponent!=0) ; /* bad */ |
| 378 | else { /* is a finite integer with 10 or fewer digits */ |
| 379 | Int d; /* work */ |
| 380 | const Unit *up; /* .. */ |
| 381 | uInt hi=0, lo; /* .. */ |
| 382 | up=dn->lsu; /* -> lsu */ |
| 383 | lo=*up; /* get 1 to 9 digits */ |
| 384 | #if DECDPUN>1 /* split to higher */ |
| 385 | hi=lo/10; |
| 386 | lo=lo%10; |
| 387 | #endif |
| 388 | up++; |
| 389 | /* collect remaining Units, if any, into hi */ |
| 390 | for (d=DECDPUN; d<dn->digits; up++, d+=DECDPUN) hi+=*up*powers[d-1]; |
| 391 | /* now low has the lsd, hi the remainder */ |
| 392 | if (hi>214748364 || (hi==214748364 && lo>7)) { /* out of range? */ |
| 393 | /* most-negative is a reprieve */ |
| 394 | if (dn->bits&DECNEG && hi==214748364 && lo==8) return 0x80000000; |
| 395 | /* bad -- drop through */ |
| 396 | } |
| 397 | else { /* in-range always */ |
| 398 | Int i=X10(hi)+lo; |
| 399 | if (dn->bits&DECNEG) return -i; |
| 400 | return i; |
| 401 | } |
| 402 | } /* integer */ |
| 403 | decContextSetStatus(set, DEC_Invalid_operation); /* [may not return] */ |
| 404 | return 0; |
| 405 | } /* decNumberToInt32 */ |
| 406 | |
| 407 | uInt decNumberToUInt32(const decNumber *dn, decContext *set) { |
| 408 | #if DECCHECK |
| 409 | if (decCheckOperands(DECUNRESU, DECUNUSED, dn, set)) return 0; |
| 410 | #endif |
| 411 | /* special or too many digits, or bad exponent, or negative (<0) */ |
| 412 | if (dn->bits&DECSPECIAL || dn->digits>10 || dn->exponent!=0 |
| 413 | || (dn->bits&DECNEG && !ISZERO(dn))); /* bad */ |
| 414 | else { /* is a finite integer with 10 or fewer digits */ |
| 415 | Int d; /* work */ |
| 416 | const Unit *up; /* .. */ |
| 417 | uInt hi=0, lo; /* .. */ |
| 418 | up=dn->lsu; /* -> lsu */ |
| 419 | lo=*up; /* get 1 to 9 digits */ |
| 420 | #if DECDPUN>1 /* split to higher */ |
| 421 | hi=lo/10; |
| 422 | lo=lo%10; |
| 423 | #endif |
| 424 | up++; |
| 425 | /* collect remaining Units, if any, into hi */ |
| 426 | for (d=DECDPUN; d<dn->digits; up++, d+=DECDPUN) hi+=*up*powers[d-1]; |
| 427 | |
| 428 | /* now low has the lsd, hi the remainder */ |
| 429 | if (hi>429496729 || (hi==429496729 && lo>5)) ; /* no reprieve possible */ |
| 430 | else return X10(hi)+lo; |
| 431 | } /* integer */ |
| 432 | decContextSetStatus(set, DEC_Invalid_operation); /* [may not return] */ |
| 433 | return 0; |
| 434 | } /* decNumberToUInt32 */ |
| 435 | |
Tom Musta | 8e706db | 2014-04-21 15:54:53 -0500 | [diff] [blame] | 436 | decNumber *decNumberFromInt64(decNumber *dn, int64_t in) |
| 437 | { |
| 438 | uint64_t unsig = in; |
| 439 | if (in < 0) { |
| 440 | unsig = -unsig; |
| 441 | } |
| 442 | |
| 443 | decNumberFromUInt64(dn, unsig); |
| 444 | if (in < 0) { |
| 445 | dn->bits = DECNEG; /* sign needed */ |
| 446 | } |
| 447 | return dn; |
| 448 | } /* decNumberFromInt64 */ |
| 449 | |
| 450 | decNumber *decNumberFromUInt64(decNumber *dn, uint64_t uin) |
| 451 | { |
| 452 | Unit *up; /* work pointer */ |
| 453 | decNumberZero(dn); /* clean */ |
| 454 | if (uin == 0) { |
| 455 | return dn; /* [or decGetDigits bad call] */ |
| 456 | } |
| 457 | for (up = dn->lsu; uin > 0; up++) { |
| 458 | *up = (Unit)(uin % (DECDPUNMAX + 1)); |
| 459 | uin = uin / (DECDPUNMAX + 1); |
| 460 | } |
| 461 | dn->digits = decGetDigits(dn->lsu, up-dn->lsu); |
| 462 | return dn; |
| 463 | } /* decNumberFromUInt64 */ |
| 464 | |
Tom Musta | 79af357 | 2014-04-21 15:54:54 -0500 | [diff] [blame] | 465 | /* ------------------------------------------------------------------ */ |
| 466 | /* to-int64 -- conversion to int64 */ |
| 467 | /* */ |
| 468 | /* dn is the decNumber to convert. dn is assumed to have been */ |
| 469 | /* rounded to a floating point integer value. */ |
| 470 | /* set is the context for reporting errors */ |
| 471 | /* returns the converted decNumber, or 0 if Invalid is set */ |
| 472 | /* */ |
| 473 | /* Invalid is set if the decNumber is a NaN, Infinite or is out of */ |
| 474 | /* range for a signed 64 bit integer. */ |
| 475 | /* ------------------------------------------------------------------ */ |
| 476 | |
| 477 | int64_t decNumberIntegralToInt64(const decNumber *dn, decContext *set) |
| 478 | { |
| 479 | if (decNumberIsSpecial(dn) || (dn->exponent < 0) || |
| 480 | (dn->digits + dn->exponent > 19)) { |
| 481 | goto Invalid; |
| 482 | } else { |
| 483 | int64_t d; /* work */ |
| 484 | const Unit *up; /* .. */ |
| 485 | uint64_t hi = 0; |
| 486 | up = dn->lsu; /* -> lsu */ |
| 487 | |
| 488 | for (d = 1; d <= dn->digits; up++, d += DECDPUN) { |
| 489 | uint64_t prev = hi; |
| 490 | hi += *up * powers[d-1]; |
| 491 | if ((hi < prev) || (hi > INT64_MAX)) { |
| 492 | goto Invalid; |
| 493 | } |
| 494 | } |
| 495 | |
| 496 | uint64_t prev = hi; |
| 497 | hi *= (uint64_t)powers[dn->exponent]; |
| 498 | if ((hi < prev) || (hi > INT64_MAX)) { |
| 499 | goto Invalid; |
| 500 | } |
| 501 | return (decNumberIsNegative(dn)) ? -((int64_t)hi) : (int64_t)hi; |
| 502 | } |
| 503 | |
| 504 | Invalid: |
| 505 | decContextSetStatus(set, DEC_Invalid_operation); |
| 506 | return 0; |
| 507 | } /* decNumberIntegralToInt64 */ |
| 508 | |
Tom Musta | 8e706db | 2014-04-21 15:54:53 -0500 | [diff] [blame] | 509 | |
Tom Musta | 72ac97c | 2014-04-21 15:54:45 -0500 | [diff] [blame] | 510 | /* ------------------------------------------------------------------ */ |
| 511 | /* to-scientific-string -- conversion to numeric string */ |
| 512 | /* to-engineering-string -- conversion to numeric string */ |
| 513 | /* */ |
| 514 | /* decNumberToString(dn, string); */ |
| 515 | /* decNumberToEngString(dn, string); */ |
| 516 | /* */ |
| 517 | /* dn is the decNumber to convert */ |
| 518 | /* string is the string where the result will be laid out */ |
| 519 | /* */ |
| 520 | /* string must be at least dn->digits+14 characters long */ |
| 521 | /* */ |
| 522 | /* No error is possible, and no status can be set. */ |
| 523 | /* ------------------------------------------------------------------ */ |
| 524 | char * decNumberToString(const decNumber *dn, char *string){ |
| 525 | decToString(dn, string, 0); |
| 526 | return string; |
| 527 | } /* DecNumberToString */ |
| 528 | |
| 529 | char * decNumberToEngString(const decNumber *dn, char *string){ |
| 530 | decToString(dn, string, 1); |
| 531 | return string; |
| 532 | } /* DecNumberToEngString */ |
| 533 | |
| 534 | /* ------------------------------------------------------------------ */ |
| 535 | /* to-number -- conversion from numeric string */ |
| 536 | /* */ |
| 537 | /* decNumberFromString -- convert string to decNumber */ |
| 538 | /* dn -- the number structure to fill */ |
| 539 | /* chars[] -- the string to convert ('\0' terminated) */ |
| 540 | /* set -- the context used for processing any error, */ |
| 541 | /* determining the maximum precision available */ |
| 542 | /* (set.digits), determining the maximum and minimum */ |
| 543 | /* exponent (set.emax and set.emin), determining if */ |
| 544 | /* extended values are allowed, and checking the */ |
| 545 | /* rounding mode if overflow occurs or rounding is */ |
| 546 | /* needed. */ |
| 547 | /* */ |
| 548 | /* The length of the coefficient and the size of the exponent are */ |
| 549 | /* checked by this routine, so the correct error (Underflow or */ |
| 550 | /* Overflow) can be reported or rounding applied, as necessary. */ |
| 551 | /* */ |
| 552 | /* If bad syntax is detected, the result will be a quiet NaN. */ |
| 553 | /* ------------------------------------------------------------------ */ |
| 554 | decNumber * decNumberFromString(decNumber *dn, const char chars[], |
| 555 | decContext *set) { |
| 556 | Int exponent=0; /* working exponent [assume 0] */ |
| 557 | uByte bits=0; /* working flags [assume +ve] */ |
| 558 | Unit *res; /* where result will be built */ |
| 559 | Unit resbuff[SD2U(DECBUFFER+9)];/* local buffer in case need temporary */ |
| 560 | /* [+9 allows for ln() constants] */ |
| 561 | Unit *allocres=NULL; /* -> allocated result, iff allocated */ |
| 562 | Int d=0; /* count of digits found in decimal part */ |
| 563 | const char *dotchar=NULL; /* where dot was found */ |
| 564 | const char *cfirst=chars; /* -> first character of decimal part */ |
| 565 | const char *last=NULL; /* -> last digit of decimal part */ |
| 566 | const char *c; /* work */ |
| 567 | Unit *up; /* .. */ |
| 568 | #if DECDPUN>1 |
| 569 | Int cut, out; /* .. */ |
| 570 | #endif |
| 571 | Int residue; /* rounding residue */ |
| 572 | uInt status=0; /* error code */ |
| 573 | |
| 574 | #if DECCHECK |
| 575 | if (decCheckOperands(DECUNRESU, DECUNUSED, DECUNUSED, set)) |
| 576 | return decNumberZero(dn); |
| 577 | #endif |
| 578 | |
| 579 | do { /* status & malloc protection */ |
| 580 | for (c=chars;; c++) { /* -> input character */ |
| 581 | if (*c>='0' && *c<='9') { /* test for Arabic digit */ |
| 582 | last=c; |
| 583 | d++; /* count of real digits */ |
| 584 | continue; /* still in decimal part */ |
| 585 | } |
| 586 | if (*c=='.' && dotchar==NULL) { /* first '.' */ |
| 587 | dotchar=c; /* record offset into decimal part */ |
| 588 | if (c==cfirst) cfirst++; /* first digit must follow */ |
| 589 | continue;} |
| 590 | if (c==chars) { /* first in string... */ |
| 591 | if (*c=='-') { /* valid - sign */ |
| 592 | cfirst++; |
| 593 | bits=DECNEG; |
| 594 | continue;} |
| 595 | if (*c=='+') { /* valid + sign */ |
| 596 | cfirst++; |
| 597 | continue;} |
| 598 | } |
| 599 | /* *c is not a digit, or a valid +, -, or '.' */ |
| 600 | break; |
| 601 | } /* c */ |
| 602 | |
| 603 | if (last==NULL) { /* no digits yet */ |
| 604 | status=DEC_Conversion_syntax;/* assume the worst */ |
| 605 | if (*c=='\0') break; /* and no more to come... */ |
| 606 | #if DECSUBSET |
| 607 | /* if subset then infinities and NaNs are not allowed */ |
| 608 | if (!set->extended) break; /* hopeless */ |
| 609 | #endif |
| 610 | /* Infinities and NaNs are possible, here */ |
| 611 | if (dotchar!=NULL) break; /* .. unless had a dot */ |
| 612 | decNumberZero(dn); /* be optimistic */ |
| 613 | if (decBiStr(c, "infinity", "INFINITY") |
| 614 | || decBiStr(c, "inf", "INF")) { |
| 615 | dn->bits=bits | DECINF; |
| 616 | status=0; /* is OK */ |
| 617 | break; /* all done */ |
| 618 | } |
| 619 | /* a NaN expected */ |
| 620 | /* 2003.09.10 NaNs are now permitted to have a sign */ |
| 621 | dn->bits=bits | DECNAN; /* assume simple NaN */ |
| 622 | if (*c=='s' || *c=='S') { /* looks like an sNaN */ |
| 623 | c++; |
| 624 | dn->bits=bits | DECSNAN; |
| 625 | } |
| 626 | if (*c!='n' && *c!='N') break; /* check caseless "NaN" */ |
| 627 | c++; |
| 628 | if (*c!='a' && *c!='A') break; /* .. */ |
| 629 | c++; |
| 630 | if (*c!='n' && *c!='N') break; /* .. */ |
| 631 | c++; |
| 632 | /* now either nothing, or nnnn payload, expected */ |
| 633 | /* -> start of integer and skip leading 0s [including plain 0] */ |
| 634 | for (cfirst=c; *cfirst=='0';) cfirst++; |
| 635 | if (*cfirst=='\0') { /* "NaN" or "sNaN", maybe with all 0s */ |
| 636 | status=0; /* it's good */ |
| 637 | break; /* .. */ |
| 638 | } |
| 639 | /* something other than 0s; setup last and d as usual [no dots] */ |
| 640 | for (c=cfirst;; c++, d++) { |
| 641 | if (*c<'0' || *c>'9') break; /* test for Arabic digit */ |
| 642 | last=c; |
| 643 | } |
| 644 | if (*c!='\0') break; /* not all digits */ |
| 645 | if (d>set->digits-1) { |
| 646 | /* [NB: payload in a decNumber can be full length unless */ |
| 647 | /* clamped, in which case can only be digits-1] */ |
| 648 | if (set->clamp) break; |
| 649 | if (d>set->digits) break; |
| 650 | } /* too many digits? */ |
| 651 | /* good; drop through to convert the integer to coefficient */ |
| 652 | status=0; /* syntax is OK */ |
| 653 | bits=dn->bits; /* for copy-back */ |
| 654 | } /* last==NULL */ |
| 655 | |
| 656 | else if (*c!='\0') { /* more to process... */ |
| 657 | /* had some digits; exponent is only valid sequence now */ |
| 658 | Flag nege; /* 1=negative exponent */ |
| 659 | const char *firstexp; /* -> first significant exponent digit */ |
| 660 | status=DEC_Conversion_syntax;/* assume the worst */ |
| 661 | if (*c!='e' && *c!='E') break; |
| 662 | /* Found 'e' or 'E' -- now process explicit exponent */ |
| 663 | /* 1998.07.11: sign no longer required */ |
| 664 | nege=0; |
| 665 | c++; /* to (possible) sign */ |
| 666 | if (*c=='-') {nege=1; c++;} |
| 667 | else if (*c=='+') c++; |
| 668 | if (*c=='\0') break; |
| 669 | |
| 670 | for (; *c=='0' && *(c+1)!='\0';) c++; /* strip insignificant zeros */ |
| 671 | firstexp=c; /* save exponent digit place */ |
| 672 | for (; ;c++) { |
| 673 | if (*c<'0' || *c>'9') break; /* not a digit */ |
| 674 | exponent=X10(exponent)+(Int)*c-(Int)'0'; |
| 675 | } /* c */ |
| 676 | /* if not now on a '\0', *c must not be a digit */ |
| 677 | if (*c!='\0') break; |
| 678 | |
| 679 | /* (this next test must be after the syntax checks) */ |
| 680 | /* if it was too long the exponent may have wrapped, so check */ |
| 681 | /* carefully and set it to a certain overflow if wrap possible */ |
| 682 | if (c>=firstexp+9+1) { |
| 683 | if (c>firstexp+9+1 || *firstexp>'1') exponent=DECNUMMAXE*2; |
| 684 | /* [up to 1999999999 is OK, for example 1E-1000000998] */ |
| 685 | } |
| 686 | if (nege) exponent=-exponent; /* was negative */ |
| 687 | status=0; /* is OK */ |
| 688 | } /* stuff after digits */ |
| 689 | |
| 690 | /* Here when whole string has been inspected; syntax is good */ |
| 691 | /* cfirst->first digit (never dot), last->last digit (ditto) */ |
| 692 | |
| 693 | /* strip leading zeros/dot [leave final 0 if all 0's] */ |
| 694 | if (*cfirst=='0') { /* [cfirst has stepped over .] */ |
| 695 | for (c=cfirst; c<last; c++, cfirst++) { |
| 696 | if (*c=='.') continue; /* ignore dots */ |
| 697 | if (*c!='0') break; /* non-zero found */ |
| 698 | d--; /* 0 stripped */ |
| 699 | } /* c */ |
| 700 | #if DECSUBSET |
| 701 | /* make a rapid exit for easy zeros if !extended */ |
| 702 | if (*cfirst=='0' && !set->extended) { |
| 703 | decNumberZero(dn); /* clean result */ |
| 704 | break; /* [could be return] */ |
| 705 | } |
| 706 | #endif |
| 707 | } /* at least one leading 0 */ |
| 708 | |
| 709 | /* Handle decimal point... */ |
| 710 | if (dotchar!=NULL && dotchar<last) /* non-trailing '.' found? */ |
| 711 | exponent-=(last-dotchar); /* adjust exponent */ |
| 712 | /* [we can now ignore the .] */ |
| 713 | |
| 714 | /* OK, the digits string is good. Assemble in the decNumber, or in */ |
| 715 | /* a temporary units array if rounding is needed */ |
| 716 | if (d<=set->digits) res=dn->lsu; /* fits into supplied decNumber */ |
| 717 | else { /* rounding needed */ |
| 718 | Int needbytes=D2U(d)*sizeof(Unit);/* bytes needed */ |
| 719 | res=resbuff; /* assume use local buffer */ |
| 720 | if (needbytes>(Int)sizeof(resbuff)) { /* too big for local */ |
| 721 | allocres=(Unit *)malloc(needbytes); |
| 722 | if (allocres==NULL) {status|=DEC_Insufficient_storage; break;} |
| 723 | res=allocres; |
| 724 | } |
| 725 | } |
| 726 | /* res now -> number lsu, buffer, or allocated storage for Unit array */ |
| 727 | |
| 728 | /* Place the coefficient into the selected Unit array */ |
| 729 | /* [this is often 70% of the cost of this function when DECDPUN>1] */ |
| 730 | #if DECDPUN>1 |
| 731 | out=0; /* accumulator */ |
| 732 | up=res+D2U(d)-1; /* -> msu */ |
| 733 | cut=d-(up-res)*DECDPUN; /* digits in top unit */ |
| 734 | for (c=cfirst;; c++) { /* along the digits */ |
| 735 | if (*c=='.') continue; /* ignore '.' [don't decrement cut] */ |
| 736 | out=X10(out)+(Int)*c-(Int)'0'; |
| 737 | if (c==last) break; /* done [never get to trailing '.'] */ |
| 738 | cut--; |
| 739 | if (cut>0) continue; /* more for this unit */ |
| 740 | *up=(Unit)out; /* write unit */ |
| 741 | up--; /* prepare for unit below.. */ |
| 742 | cut=DECDPUN; /* .. */ |
| 743 | out=0; /* .. */ |
| 744 | } /* c */ |
| 745 | *up=(Unit)out; /* write lsu */ |
| 746 | |
| 747 | #else |
| 748 | /* DECDPUN==1 */ |
| 749 | up=res; /* -> lsu */ |
| 750 | for (c=last; c>=cfirst; c--) { /* over each character, from least */ |
| 751 | if (*c=='.') continue; /* ignore . [don't step up] */ |
| 752 | *up=(Unit)((Int)*c-(Int)'0'); |
| 753 | up++; |
| 754 | } /* c */ |
| 755 | #endif |
| 756 | |
| 757 | dn->bits=bits; |
| 758 | dn->exponent=exponent; |
| 759 | dn->digits=d; |
| 760 | |
| 761 | /* if not in number (too long) shorten into the number */ |
| 762 | if (d>set->digits) { |
| 763 | residue=0; |
| 764 | decSetCoeff(dn, set, res, d, &residue, &status); |
| 765 | /* always check for overflow or subnormal and round as needed */ |
| 766 | decFinalize(dn, set, &residue, &status); |
| 767 | } |
| 768 | else { /* no rounding, but may still have overflow or subnormal */ |
| 769 | /* [these tests are just for performance; finalize repeats them] */ |
| 770 | if ((dn->exponent-1<set->emin-dn->digits) |
| 771 | || (dn->exponent-1>set->emax-set->digits)) { |
| 772 | residue=0; |
| 773 | decFinalize(dn, set, &residue, &status); |
| 774 | } |
| 775 | } |
| 776 | /* decNumberShow(dn); */ |
| 777 | } while(0); /* [for break] */ |
| 778 | |
| 779 | if (allocres!=NULL) free(allocres); /* drop any storage used */ |
| 780 | if (status!=0) decStatus(dn, status, set); |
| 781 | return dn; |
| 782 | } /* decNumberFromString */ |
| 783 | |
| 784 | /* ================================================================== */ |
| 785 | /* Operators */ |
| 786 | /* ================================================================== */ |
| 787 | |
| 788 | /* ------------------------------------------------------------------ */ |
| 789 | /* decNumberAbs -- absolute value operator */ |
| 790 | /* */ |
| 791 | /* This computes C = abs(A) */ |
| 792 | /* */ |
| 793 | /* res is C, the result. C may be A */ |
| 794 | /* rhs is A */ |
| 795 | /* set is the context */ |
| 796 | /* */ |
| 797 | /* See also decNumberCopyAbs for a quiet bitwise version of this. */ |
| 798 | /* C must have space for set->digits digits. */ |
| 799 | /* ------------------------------------------------------------------ */ |
| 800 | /* This has the same effect as decNumberPlus unless A is negative, */ |
| 801 | /* in which case it has the same effect as decNumberMinus. */ |
| 802 | /* ------------------------------------------------------------------ */ |
| 803 | decNumber * decNumberAbs(decNumber *res, const decNumber *rhs, |
| 804 | decContext *set) { |
| 805 | decNumber dzero; /* for 0 */ |
| 806 | uInt status=0; /* accumulator */ |
| 807 | |
| 808 | #if DECCHECK |
| 809 | if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; |
| 810 | #endif |
| 811 | |
| 812 | decNumberZero(&dzero); /* set 0 */ |
| 813 | dzero.exponent=rhs->exponent; /* [no coefficient expansion] */ |
| 814 | decAddOp(res, &dzero, rhs, set, (uByte)(rhs->bits & DECNEG), &status); |
| 815 | if (status!=0) decStatus(res, status, set); |
| 816 | #if DECCHECK |
| 817 | decCheckInexact(res, set); |
| 818 | #endif |
| 819 | return res; |
| 820 | } /* decNumberAbs */ |
| 821 | |
| 822 | /* ------------------------------------------------------------------ */ |
| 823 | /* decNumberAdd -- add two Numbers */ |
| 824 | /* */ |
| 825 | /* This computes C = A + B */ |
| 826 | /* */ |
| 827 | /* res is C, the result. C may be A and/or B (e.g., X=X+X) */ |
| 828 | /* lhs is A */ |
| 829 | /* rhs is B */ |
| 830 | /* set is the context */ |
| 831 | /* */ |
| 832 | /* C must have space for set->digits digits. */ |
| 833 | /* ------------------------------------------------------------------ */ |
| 834 | /* This just calls the routine shared with Subtract */ |
| 835 | decNumber * decNumberAdd(decNumber *res, const decNumber *lhs, |
| 836 | const decNumber *rhs, decContext *set) { |
| 837 | uInt status=0; /* accumulator */ |
| 838 | decAddOp(res, lhs, rhs, set, 0, &status); |
| 839 | if (status!=0) decStatus(res, status, set); |
| 840 | #if DECCHECK |
| 841 | decCheckInexact(res, set); |
| 842 | #endif |
| 843 | return res; |
| 844 | } /* decNumberAdd */ |
| 845 | |
| 846 | /* ------------------------------------------------------------------ */ |
| 847 | /* decNumberAnd -- AND two Numbers, digitwise */ |
| 848 | /* */ |
| 849 | /* This computes C = A & B */ |
| 850 | /* */ |
| 851 | /* res is C, the result. C may be A and/or B (e.g., X=X&X) */ |
| 852 | /* lhs is A */ |
| 853 | /* rhs is B */ |
| 854 | /* set is the context (used for result length and error report) */ |
| 855 | /* */ |
| 856 | /* C must have space for set->digits digits. */ |
| 857 | /* */ |
| 858 | /* Logical function restrictions apply (see above); a NaN is */ |
| 859 | /* returned with Invalid_operation if a restriction is violated. */ |
| 860 | /* ------------------------------------------------------------------ */ |
| 861 | decNumber * decNumberAnd(decNumber *res, const decNumber *lhs, |
| 862 | const decNumber *rhs, decContext *set) { |
| 863 | const Unit *ua, *ub; /* -> operands */ |
| 864 | const Unit *msua, *msub; /* -> operand msus */ |
| 865 | Unit *uc, *msuc; /* -> result and its msu */ |
| 866 | Int msudigs; /* digits in res msu */ |
| 867 | #if DECCHECK |
| 868 | if (decCheckOperands(res, lhs, rhs, set)) return res; |
| 869 | #endif |
| 870 | |
| 871 | if (lhs->exponent!=0 || decNumberIsSpecial(lhs) || decNumberIsNegative(lhs) |
| 872 | || rhs->exponent!=0 || decNumberIsSpecial(rhs) || decNumberIsNegative(rhs)) { |
| 873 | decStatus(res, DEC_Invalid_operation, set); |
| 874 | return res; |
| 875 | } |
| 876 | |
| 877 | /* operands are valid */ |
| 878 | ua=lhs->lsu; /* bottom-up */ |
| 879 | ub=rhs->lsu; /* .. */ |
| 880 | uc=res->lsu; /* .. */ |
| 881 | msua=ua+D2U(lhs->digits)-1; /* -> msu of lhs */ |
| 882 | msub=ub+D2U(rhs->digits)-1; /* -> msu of rhs */ |
| 883 | msuc=uc+D2U(set->digits)-1; /* -> msu of result */ |
| 884 | msudigs=MSUDIGITS(set->digits); /* [faster than remainder] */ |
| 885 | for (; uc<=msuc; ua++, ub++, uc++) { /* Unit loop */ |
| 886 | Unit a, b; /* extract units */ |
| 887 | if (ua>msua) a=0; |
| 888 | else a=*ua; |
| 889 | if (ub>msub) b=0; |
| 890 | else b=*ub; |
| 891 | *uc=0; /* can now write back */ |
| 892 | if (a|b) { /* maybe 1 bits to examine */ |
| 893 | Int i, j; |
| 894 | *uc=0; /* can now write back */ |
| 895 | /* This loop could be unrolled and/or use BIN2BCD tables */ |
| 896 | for (i=0; i<DECDPUN; i++) { |
| 897 | if (a&b&1) *uc=*uc+(Unit)powers[i]; /* effect AND */ |
| 898 | j=a%10; |
| 899 | a=a/10; |
| 900 | j|=b%10; |
| 901 | b=b/10; |
| 902 | if (j>1) { |
| 903 | decStatus(res, DEC_Invalid_operation, set); |
| 904 | return res; |
| 905 | } |
| 906 | if (uc==msuc && i==msudigs-1) break; /* just did final digit */ |
| 907 | } /* each digit */ |
| 908 | } /* both OK */ |
| 909 | } /* each unit */ |
| 910 | /* [here uc-1 is the msu of the result] */ |
| 911 | res->digits=decGetDigits(res->lsu, uc-res->lsu); |
| 912 | res->exponent=0; /* integer */ |
| 913 | res->bits=0; /* sign=0 */ |
| 914 | return res; /* [no status to set] */ |
| 915 | } /* decNumberAnd */ |
| 916 | |
| 917 | /* ------------------------------------------------------------------ */ |
| 918 | /* decNumberCompare -- compare two Numbers */ |
| 919 | /* */ |
| 920 | /* This computes C = A ? B */ |
| 921 | /* */ |
| 922 | /* res is C, the result. C may be A and/or B (e.g., X=X?X) */ |
| 923 | /* lhs is A */ |
| 924 | /* rhs is B */ |
| 925 | /* set is the context */ |
| 926 | /* */ |
| 927 | /* C must have space for one digit (or NaN). */ |
| 928 | /* ------------------------------------------------------------------ */ |
| 929 | decNumber * decNumberCompare(decNumber *res, const decNumber *lhs, |
| 930 | const decNumber *rhs, decContext *set) { |
| 931 | uInt status=0; /* accumulator */ |
| 932 | decCompareOp(res, lhs, rhs, set, COMPARE, &status); |
| 933 | if (status!=0) decStatus(res, status, set); |
| 934 | return res; |
| 935 | } /* decNumberCompare */ |
| 936 | |
| 937 | /* ------------------------------------------------------------------ */ |
| 938 | /* decNumberCompareSignal -- compare, signalling on all NaNs */ |
| 939 | /* */ |
| 940 | /* This computes C = A ? B */ |
| 941 | /* */ |
| 942 | /* res is C, the result. C may be A and/or B (e.g., X=X?X) */ |
| 943 | /* lhs is A */ |
| 944 | /* rhs is B */ |
| 945 | /* set is the context */ |
| 946 | /* */ |
| 947 | /* C must have space for one digit (or NaN). */ |
| 948 | /* ------------------------------------------------------------------ */ |
| 949 | decNumber * decNumberCompareSignal(decNumber *res, const decNumber *lhs, |
| 950 | const decNumber *rhs, decContext *set) { |
| 951 | uInt status=0; /* accumulator */ |
| 952 | decCompareOp(res, lhs, rhs, set, COMPSIG, &status); |
| 953 | if (status!=0) decStatus(res, status, set); |
| 954 | return res; |
| 955 | } /* decNumberCompareSignal */ |
| 956 | |
| 957 | /* ------------------------------------------------------------------ */ |
| 958 | /* decNumberCompareTotal -- compare two Numbers, using total ordering */ |
| 959 | /* */ |
| 960 | /* This computes C = A ? B, under total ordering */ |
| 961 | /* */ |
| 962 | /* res is C, the result. C may be A and/or B (e.g., X=X?X) */ |
| 963 | /* lhs is A */ |
| 964 | /* rhs is B */ |
| 965 | /* set is the context */ |
| 966 | /* */ |
| 967 | /* C must have space for one digit; the result will always be one of */ |
| 968 | /* -1, 0, or 1. */ |
| 969 | /* ------------------------------------------------------------------ */ |
| 970 | decNumber * decNumberCompareTotal(decNumber *res, const decNumber *lhs, |
| 971 | const decNumber *rhs, decContext *set) { |
| 972 | uInt status=0; /* accumulator */ |
| 973 | decCompareOp(res, lhs, rhs, set, COMPTOTAL, &status); |
| 974 | if (status!=0) decStatus(res, status, set); |
| 975 | return res; |
| 976 | } /* decNumberCompareTotal */ |
| 977 | |
| 978 | /* ------------------------------------------------------------------ */ |
| 979 | /* decNumberCompareTotalMag -- compare, total ordering of magnitudes */ |
| 980 | /* */ |
| 981 | /* This computes C = |A| ? |B|, under total ordering */ |
| 982 | /* */ |
| 983 | /* res is C, the result. C may be A and/or B (e.g., X=X?X) */ |
| 984 | /* lhs is A */ |
| 985 | /* rhs is B */ |
| 986 | /* set is the context */ |
| 987 | /* */ |
| 988 | /* C must have space for one digit; the result will always be one of */ |
| 989 | /* -1, 0, or 1. */ |
| 990 | /* ------------------------------------------------------------------ */ |
| 991 | decNumber * decNumberCompareTotalMag(decNumber *res, const decNumber *lhs, |
| 992 | const decNumber *rhs, decContext *set) { |
| 993 | uInt status=0; /* accumulator */ |
| 994 | uInt needbytes; /* for space calculations */ |
| 995 | decNumber bufa[D2N(DECBUFFER+1)];/* +1 in case DECBUFFER=0 */ |
| 996 | decNumber *allocbufa=NULL; /* -> allocated bufa, iff allocated */ |
| 997 | decNumber bufb[D2N(DECBUFFER+1)]; |
| 998 | decNumber *allocbufb=NULL; /* -> allocated bufb, iff allocated */ |
| 999 | decNumber *a, *b; /* temporary pointers */ |
| 1000 | |
| 1001 | #if DECCHECK |
| 1002 | if (decCheckOperands(res, lhs, rhs, set)) return res; |
| 1003 | #endif |
| 1004 | |
| 1005 | do { /* protect allocated storage */ |
| 1006 | /* if either is negative, take a copy and absolute */ |
| 1007 | if (decNumberIsNegative(lhs)) { /* lhs<0 */ |
| 1008 | a=bufa; |
| 1009 | needbytes=sizeof(decNumber)+(D2U(lhs->digits)-1)*sizeof(Unit); |
| 1010 | if (needbytes>sizeof(bufa)) { /* need malloc space */ |
| 1011 | allocbufa=(decNumber *)malloc(needbytes); |
| 1012 | if (allocbufa==NULL) { /* hopeless -- abandon */ |
| 1013 | status|=DEC_Insufficient_storage; |
| 1014 | break;} |
| 1015 | a=allocbufa; /* use the allocated space */ |
| 1016 | } |
| 1017 | decNumberCopy(a, lhs); /* copy content */ |
| 1018 | a->bits&=~DECNEG; /* .. and clear the sign */ |
| 1019 | lhs=a; /* use copy from here on */ |
| 1020 | } |
| 1021 | if (decNumberIsNegative(rhs)) { /* rhs<0 */ |
| 1022 | b=bufb; |
| 1023 | needbytes=sizeof(decNumber)+(D2U(rhs->digits)-1)*sizeof(Unit); |
| 1024 | if (needbytes>sizeof(bufb)) { /* need malloc space */ |
| 1025 | allocbufb=(decNumber *)malloc(needbytes); |
| 1026 | if (allocbufb==NULL) { /* hopeless -- abandon */ |
| 1027 | status|=DEC_Insufficient_storage; |
| 1028 | break;} |
| 1029 | b=allocbufb; /* use the allocated space */ |
| 1030 | } |
| 1031 | decNumberCopy(b, rhs); /* copy content */ |
| 1032 | b->bits&=~DECNEG; /* .. and clear the sign */ |
| 1033 | rhs=b; /* use copy from here on */ |
| 1034 | } |
| 1035 | decCompareOp(res, lhs, rhs, set, COMPTOTAL, &status); |
| 1036 | } while(0); /* end protected */ |
| 1037 | |
| 1038 | if (allocbufa!=NULL) free(allocbufa); /* drop any storage used */ |
| 1039 | if (allocbufb!=NULL) free(allocbufb); /* .. */ |
| 1040 | if (status!=0) decStatus(res, status, set); |
| 1041 | return res; |
| 1042 | } /* decNumberCompareTotalMag */ |
| 1043 | |
| 1044 | /* ------------------------------------------------------------------ */ |
| 1045 | /* decNumberDivide -- divide one number by another */ |
| 1046 | /* */ |
| 1047 | /* This computes C = A / B */ |
| 1048 | /* */ |
| 1049 | /* res is C, the result. C may be A and/or B (e.g., X=X/X) */ |
| 1050 | /* lhs is A */ |
| 1051 | /* rhs is B */ |
| 1052 | /* set is the context */ |
| 1053 | /* */ |
| 1054 | /* C must have space for set->digits digits. */ |
| 1055 | /* ------------------------------------------------------------------ */ |
| 1056 | decNumber * decNumberDivide(decNumber *res, const decNumber *lhs, |
| 1057 | const decNumber *rhs, decContext *set) { |
| 1058 | uInt status=0; /* accumulator */ |
| 1059 | decDivideOp(res, lhs, rhs, set, DIVIDE, &status); |
| 1060 | if (status!=0) decStatus(res, status, set); |
| 1061 | #if DECCHECK |
| 1062 | decCheckInexact(res, set); |
| 1063 | #endif |
| 1064 | return res; |
| 1065 | } /* decNumberDivide */ |
| 1066 | |
| 1067 | /* ------------------------------------------------------------------ */ |
| 1068 | /* decNumberDivideInteger -- divide and return integer quotient */ |
| 1069 | /* */ |
| 1070 | /* This computes C = A # B, where # is the integer divide operator */ |
| 1071 | /* */ |
| 1072 | /* res is C, the result. C may be A and/or B (e.g., X=X#X) */ |
| 1073 | /* lhs is A */ |
| 1074 | /* rhs is B */ |
| 1075 | /* set is the context */ |
| 1076 | /* */ |
| 1077 | /* C must have space for set->digits digits. */ |
| 1078 | /* ------------------------------------------------------------------ */ |
| 1079 | decNumber * decNumberDivideInteger(decNumber *res, const decNumber *lhs, |
| 1080 | const decNumber *rhs, decContext *set) { |
| 1081 | uInt status=0; /* accumulator */ |
| 1082 | decDivideOp(res, lhs, rhs, set, DIVIDEINT, &status); |
| 1083 | if (status!=0) decStatus(res, status, set); |
| 1084 | return res; |
| 1085 | } /* decNumberDivideInteger */ |
| 1086 | |
| 1087 | /* ------------------------------------------------------------------ */ |
| 1088 | /* decNumberExp -- exponentiation */ |
| 1089 | /* */ |
| 1090 | /* This computes C = exp(A) */ |
| 1091 | /* */ |
| 1092 | /* res is C, the result. C may be A */ |
| 1093 | /* rhs is A */ |
| 1094 | /* set is the context; note that rounding mode has no effect */ |
| 1095 | /* */ |
| 1096 | /* C must have space for set->digits digits. */ |
| 1097 | /* */ |
| 1098 | /* Mathematical function restrictions apply (see above); a NaN is */ |
| 1099 | /* returned with Invalid_operation if a restriction is violated. */ |
| 1100 | /* */ |
| 1101 | /* Finite results will always be full precision and Inexact, except */ |
| 1102 | /* when A is a zero or -Infinity (giving 1 or 0 respectively). */ |
| 1103 | /* */ |
| 1104 | /* An Inexact result is rounded using DEC_ROUND_HALF_EVEN; it will */ |
| 1105 | /* almost always be correctly rounded, but may be up to 1 ulp in */ |
| 1106 | /* error in rare cases. */ |
| 1107 | /* ------------------------------------------------------------------ */ |
| 1108 | /* This is a wrapper for decExpOp which can handle the slightly wider */ |
| 1109 | /* (double) range needed by Ln (which has to be able to calculate */ |
| 1110 | /* exp(-a) where a can be the tiniest number (Ntiny). */ |
| 1111 | /* ------------------------------------------------------------------ */ |
| 1112 | decNumber * decNumberExp(decNumber *res, const decNumber *rhs, |
| 1113 | decContext *set) { |
| 1114 | uInt status=0; /* accumulator */ |
| 1115 | #if DECSUBSET |
| 1116 | decNumber *allocrhs=NULL; /* non-NULL if rounded rhs allocated */ |
| 1117 | #endif |
| 1118 | |
| 1119 | #if DECCHECK |
| 1120 | if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; |
| 1121 | #endif |
| 1122 | |
| 1123 | /* Check restrictions; these restrictions ensure that if h=8 (see */ |
| 1124 | /* decExpOp) then the result will either overflow or underflow to 0. */ |
| 1125 | /* Other math functions restrict the input range, too, for inverses. */ |
| 1126 | /* If not violated then carry out the operation. */ |
| 1127 | if (!decCheckMath(rhs, set, &status)) do { /* protect allocation */ |
| 1128 | #if DECSUBSET |
| 1129 | if (!set->extended) { |
| 1130 | /* reduce operand and set lostDigits status, as needed */ |
| 1131 | if (rhs->digits>set->digits) { |
| 1132 | allocrhs=decRoundOperand(rhs, set, &status); |
| 1133 | if (allocrhs==NULL) break; |
| 1134 | rhs=allocrhs; |
| 1135 | } |
| 1136 | } |
| 1137 | #endif |
| 1138 | decExpOp(res, rhs, set, &status); |
| 1139 | } while(0); /* end protected */ |
| 1140 | |
| 1141 | #if DECSUBSET |
| 1142 | if (allocrhs !=NULL) free(allocrhs); /* drop any storage used */ |
| 1143 | #endif |
| 1144 | /* apply significant status */ |
| 1145 | if (status!=0) decStatus(res, status, set); |
| 1146 | #if DECCHECK |
| 1147 | decCheckInexact(res, set); |
| 1148 | #endif |
| 1149 | return res; |
| 1150 | } /* decNumberExp */ |
| 1151 | |
| 1152 | /* ------------------------------------------------------------------ */ |
| 1153 | /* decNumberFMA -- fused multiply add */ |
| 1154 | /* */ |
| 1155 | /* This computes D = (A * B) + C with only one rounding */ |
| 1156 | /* */ |
| 1157 | /* res is D, the result. D may be A or B or C (e.g., X=FMA(X,X,X)) */ |
| 1158 | /* lhs is A */ |
| 1159 | /* rhs is B */ |
| 1160 | /* fhs is C [far hand side] */ |
| 1161 | /* set is the context */ |
| 1162 | /* */ |
| 1163 | /* Mathematical function restrictions apply (see above); a NaN is */ |
| 1164 | /* returned with Invalid_operation if a restriction is violated. */ |
| 1165 | /* */ |
| 1166 | /* C must have space for set->digits digits. */ |
| 1167 | /* ------------------------------------------------------------------ */ |
| 1168 | decNumber * decNumberFMA(decNumber *res, const decNumber *lhs, |
| 1169 | const decNumber *rhs, const decNumber *fhs, |
| 1170 | decContext *set) { |
| 1171 | uInt status=0; /* accumulator */ |
| 1172 | decContext dcmul; /* context for the multiplication */ |
| 1173 | uInt needbytes; /* for space calculations */ |
| 1174 | decNumber bufa[D2N(DECBUFFER*2+1)]; |
| 1175 | decNumber *allocbufa=NULL; /* -> allocated bufa, iff allocated */ |
| 1176 | decNumber *acc; /* accumulator pointer */ |
| 1177 | decNumber dzero; /* work */ |
| 1178 | |
| 1179 | #if DECCHECK |
| 1180 | if (decCheckOperands(res, lhs, rhs, set)) return res; |
| 1181 | if (decCheckOperands(res, fhs, DECUNUSED, set)) return res; |
| 1182 | #endif |
| 1183 | |
| 1184 | do { /* protect allocated storage */ |
| 1185 | #if DECSUBSET |
| 1186 | if (!set->extended) { /* [undefined if subset] */ |
| 1187 | status|=DEC_Invalid_operation; |
| 1188 | break;} |
| 1189 | #endif |
| 1190 | /* Check math restrictions [these ensure no overflow or underflow] */ |
| 1191 | if ((!decNumberIsSpecial(lhs) && decCheckMath(lhs, set, &status)) |
| 1192 | || (!decNumberIsSpecial(rhs) && decCheckMath(rhs, set, &status)) |
| 1193 | || (!decNumberIsSpecial(fhs) && decCheckMath(fhs, set, &status))) break; |
| 1194 | /* set up context for multiply */ |
| 1195 | dcmul=*set; |
| 1196 | dcmul.digits=lhs->digits+rhs->digits; /* just enough */ |
| 1197 | /* [The above may be an over-estimate for subset arithmetic, but that's OK] */ |
| 1198 | dcmul.emax=DEC_MAX_EMAX; /* effectively unbounded .. */ |
| 1199 | dcmul.emin=DEC_MIN_EMIN; /* [thanks to Math restrictions] */ |
| 1200 | /* set up decNumber space to receive the result of the multiply */ |
| 1201 | acc=bufa; /* may fit */ |
| 1202 | needbytes=sizeof(decNumber)+(D2U(dcmul.digits)-1)*sizeof(Unit); |
| 1203 | if (needbytes>sizeof(bufa)) { /* need malloc space */ |
| 1204 | allocbufa=(decNumber *)malloc(needbytes); |
| 1205 | if (allocbufa==NULL) { /* hopeless -- abandon */ |
| 1206 | status|=DEC_Insufficient_storage; |
| 1207 | break;} |
| 1208 | acc=allocbufa; /* use the allocated space */ |
| 1209 | } |
| 1210 | /* multiply with extended range and necessary precision */ |
| 1211 | /*printf("emin=%ld\n", dcmul.emin); */ |
| 1212 | decMultiplyOp(acc, lhs, rhs, &dcmul, &status); |
| 1213 | /* Only Invalid operation (from sNaN or Inf * 0) is possible in */ |
| 1214 | /* status; if either is seen than ignore fhs (in case it is */ |
| 1215 | /* another sNaN) and set acc to NaN unless we had an sNaN */ |
| 1216 | /* [decMultiplyOp leaves that to caller] */ |
| 1217 | /* Note sNaN has to go through addOp to shorten payload if */ |
| 1218 | /* necessary */ |
| 1219 | if ((status&DEC_Invalid_operation)!=0) { |
| 1220 | if (!(status&DEC_sNaN)) { /* but be true invalid */ |
| 1221 | decNumberZero(res); /* acc not yet set */ |
| 1222 | res->bits=DECNAN; |
| 1223 | break; |
| 1224 | } |
| 1225 | decNumberZero(&dzero); /* make 0 (any non-NaN would do) */ |
| 1226 | fhs=&dzero; /* use that */ |
| 1227 | } |
| 1228 | #if DECCHECK |
| 1229 | else { /* multiply was OK */ |
| 1230 | if (status!=0) printf("Status=%08lx after FMA multiply\n", status); |
| 1231 | } |
| 1232 | #endif |
| 1233 | /* add the third operand and result -> res, and all is done */ |
| 1234 | decAddOp(res, acc, fhs, set, 0, &status); |
| 1235 | } while(0); /* end protected */ |
| 1236 | |
| 1237 | if (allocbufa!=NULL) free(allocbufa); /* drop any storage used */ |
| 1238 | if (status!=0) decStatus(res, status, set); |
| 1239 | #if DECCHECK |
| 1240 | decCheckInexact(res, set); |
| 1241 | #endif |
| 1242 | return res; |
| 1243 | } /* decNumberFMA */ |
| 1244 | |
| 1245 | /* ------------------------------------------------------------------ */ |
| 1246 | /* decNumberInvert -- invert a Number, digitwise */ |
| 1247 | /* */ |
| 1248 | /* This computes C = ~A */ |
| 1249 | /* */ |
| 1250 | /* res is C, the result. C may be A (e.g., X=~X) */ |
| 1251 | /* rhs is A */ |
| 1252 | /* set is the context (used for result length and error report) */ |
| 1253 | /* */ |
| 1254 | /* C must have space for set->digits digits. */ |
| 1255 | /* */ |
| 1256 | /* Logical function restrictions apply (see above); a NaN is */ |
| 1257 | /* returned with Invalid_operation if a restriction is violated. */ |
| 1258 | /* ------------------------------------------------------------------ */ |
| 1259 | decNumber * decNumberInvert(decNumber *res, const decNumber *rhs, |
| 1260 | decContext *set) { |
| 1261 | const Unit *ua, *msua; /* -> operand and its msu */ |
| 1262 | Unit *uc, *msuc; /* -> result and its msu */ |
| 1263 | Int msudigs; /* digits in res msu */ |
| 1264 | #if DECCHECK |
| 1265 | if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; |
| 1266 | #endif |
| 1267 | |
| 1268 | if (rhs->exponent!=0 || decNumberIsSpecial(rhs) || decNumberIsNegative(rhs)) { |
| 1269 | decStatus(res, DEC_Invalid_operation, set); |
| 1270 | return res; |
| 1271 | } |
| 1272 | /* operand is valid */ |
| 1273 | ua=rhs->lsu; /* bottom-up */ |
| 1274 | uc=res->lsu; /* .. */ |
| 1275 | msua=ua+D2U(rhs->digits)-1; /* -> msu of rhs */ |
| 1276 | msuc=uc+D2U(set->digits)-1; /* -> msu of result */ |
| 1277 | msudigs=MSUDIGITS(set->digits); /* [faster than remainder] */ |
| 1278 | for (; uc<=msuc; ua++, uc++) { /* Unit loop */ |
| 1279 | Unit a; /* extract unit */ |
| 1280 | Int i, j; /* work */ |
| 1281 | if (ua>msua) a=0; |
| 1282 | else a=*ua; |
| 1283 | *uc=0; /* can now write back */ |
| 1284 | /* always need to examine all bits in rhs */ |
| 1285 | /* This loop could be unrolled and/or use BIN2BCD tables */ |
| 1286 | for (i=0; i<DECDPUN; i++) { |
| 1287 | if ((~a)&1) *uc=*uc+(Unit)powers[i]; /* effect INVERT */ |
| 1288 | j=a%10; |
| 1289 | a=a/10; |
| 1290 | if (j>1) { |
| 1291 | decStatus(res, DEC_Invalid_operation, set); |
| 1292 | return res; |
| 1293 | } |
| 1294 | if (uc==msuc && i==msudigs-1) break; /* just did final digit */ |
| 1295 | } /* each digit */ |
| 1296 | } /* each unit */ |
| 1297 | /* [here uc-1 is the msu of the result] */ |
| 1298 | res->digits=decGetDigits(res->lsu, uc-res->lsu); |
| 1299 | res->exponent=0; /* integer */ |
| 1300 | res->bits=0; /* sign=0 */ |
| 1301 | return res; /* [no status to set] */ |
| 1302 | } /* decNumberInvert */ |
| 1303 | |
| 1304 | /* ------------------------------------------------------------------ */ |
| 1305 | /* decNumberLn -- natural logarithm */ |
| 1306 | /* */ |
| 1307 | /* This computes C = ln(A) */ |
| 1308 | /* */ |
| 1309 | /* res is C, the result. C may be A */ |
| 1310 | /* rhs is A */ |
| 1311 | /* set is the context; note that rounding mode has no effect */ |
| 1312 | /* */ |
| 1313 | /* C must have space for set->digits digits. */ |
| 1314 | /* */ |
| 1315 | /* Notable cases: */ |
| 1316 | /* A<0 -> Invalid */ |
| 1317 | /* A=0 -> -Infinity (Exact) */ |
| 1318 | /* A=+Infinity -> +Infinity (Exact) */ |
| 1319 | /* A=1 exactly -> 0 (Exact) */ |
| 1320 | /* */ |
| 1321 | /* Mathematical function restrictions apply (see above); a NaN is */ |
| 1322 | /* returned with Invalid_operation if a restriction is violated. */ |
| 1323 | /* */ |
| 1324 | /* An Inexact result is rounded using DEC_ROUND_HALF_EVEN; it will */ |
| 1325 | /* almost always be correctly rounded, but may be up to 1 ulp in */ |
| 1326 | /* error in rare cases. */ |
| 1327 | /* ------------------------------------------------------------------ */ |
| 1328 | /* This is a wrapper for decLnOp which can handle the slightly wider */ |
| 1329 | /* (+11) range needed by Ln, Log10, etc. (which may have to be able */ |
| 1330 | /* to calculate at p+e+2). */ |
| 1331 | /* ------------------------------------------------------------------ */ |
| 1332 | decNumber * decNumberLn(decNumber *res, const decNumber *rhs, |
| 1333 | decContext *set) { |
| 1334 | uInt status=0; /* accumulator */ |
| 1335 | #if DECSUBSET |
| 1336 | decNumber *allocrhs=NULL; /* non-NULL if rounded rhs allocated */ |
| 1337 | #endif |
| 1338 | |
| 1339 | #if DECCHECK |
| 1340 | if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; |
| 1341 | #endif |
| 1342 | |
| 1343 | /* Check restrictions; this is a math function; if not violated */ |
| 1344 | /* then carry out the operation. */ |
| 1345 | if (!decCheckMath(rhs, set, &status)) do { /* protect allocation */ |
| 1346 | #if DECSUBSET |
| 1347 | if (!set->extended) { |
| 1348 | /* reduce operand and set lostDigits status, as needed */ |
| 1349 | if (rhs->digits>set->digits) { |
| 1350 | allocrhs=decRoundOperand(rhs, set, &status); |
| 1351 | if (allocrhs==NULL) break; |
| 1352 | rhs=allocrhs; |
| 1353 | } |
| 1354 | /* special check in subset for rhs=0 */ |
| 1355 | if (ISZERO(rhs)) { /* +/- zeros -> error */ |
| 1356 | status|=DEC_Invalid_operation; |
| 1357 | break;} |
| 1358 | } /* extended=0 */ |
| 1359 | #endif |
| 1360 | decLnOp(res, rhs, set, &status); |
| 1361 | } while(0); /* end protected */ |
| 1362 | |
| 1363 | #if DECSUBSET |
| 1364 | if (allocrhs !=NULL) free(allocrhs); /* drop any storage used */ |
| 1365 | #endif |
| 1366 | /* apply significant status */ |
| 1367 | if (status!=0) decStatus(res, status, set); |
| 1368 | #if DECCHECK |
| 1369 | decCheckInexact(res, set); |
| 1370 | #endif |
| 1371 | return res; |
| 1372 | } /* decNumberLn */ |
| 1373 | |
| 1374 | /* ------------------------------------------------------------------ */ |
| 1375 | /* decNumberLogB - get adjusted exponent, by 754r rules */ |
| 1376 | /* */ |
| 1377 | /* This computes C = adjustedexponent(A) */ |
| 1378 | /* */ |
| 1379 | /* res is C, the result. C may be A */ |
| 1380 | /* rhs is A */ |
| 1381 | /* set is the context, used only for digits and status */ |
| 1382 | /* */ |
| 1383 | /* C must have space for 10 digits (A might have 10**9 digits and */ |
| 1384 | /* an exponent of +999999999, or one digit and an exponent of */ |
| 1385 | /* -1999999999). */ |
| 1386 | /* */ |
| 1387 | /* This returns the adjusted exponent of A after (in theory) padding */ |
| 1388 | /* with zeros on the right to set->digits digits while keeping the */ |
| 1389 | /* same value. The exponent is not limited by emin/emax. */ |
| 1390 | /* */ |
| 1391 | /* Notable cases: */ |
| 1392 | /* A<0 -> Use |A| */ |
| 1393 | /* A=0 -> -Infinity (Division by zero) */ |
| 1394 | /* A=Infinite -> +Infinity (Exact) */ |
| 1395 | /* A=1 exactly -> 0 (Exact) */ |
| 1396 | /* NaNs are propagated as usual */ |
| 1397 | /* ------------------------------------------------------------------ */ |
| 1398 | decNumber * decNumberLogB(decNumber *res, const decNumber *rhs, |
| 1399 | decContext *set) { |
| 1400 | uInt status=0; /* accumulator */ |
| 1401 | |
| 1402 | #if DECCHECK |
| 1403 | if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; |
| 1404 | #endif |
| 1405 | |
| 1406 | /* NaNs as usual; Infinities return +Infinity; 0->oops */ |
| 1407 | if (decNumberIsNaN(rhs)) decNaNs(res, rhs, NULL, set, &status); |
| 1408 | else if (decNumberIsInfinite(rhs)) decNumberCopyAbs(res, rhs); |
| 1409 | else if (decNumberIsZero(rhs)) { |
| 1410 | decNumberZero(res); /* prepare for Infinity */ |
| 1411 | res->bits=DECNEG|DECINF; /* -Infinity */ |
| 1412 | status|=DEC_Division_by_zero; /* as per 754r */ |
| 1413 | } |
| 1414 | else { /* finite non-zero */ |
| 1415 | Int ae=rhs->exponent+rhs->digits-1; /* adjusted exponent */ |
| 1416 | decNumberFromInt32(res, ae); /* lay it out */ |
| 1417 | } |
| 1418 | |
| 1419 | if (status!=0) decStatus(res, status, set); |
| 1420 | return res; |
| 1421 | } /* decNumberLogB */ |
| 1422 | |
| 1423 | /* ------------------------------------------------------------------ */ |
| 1424 | /* decNumberLog10 -- logarithm in base 10 */ |
| 1425 | /* */ |
| 1426 | /* This computes C = log10(A) */ |
| 1427 | /* */ |
| 1428 | /* res is C, the result. C may be A */ |
| 1429 | /* rhs is A */ |
| 1430 | /* set is the context; note that rounding mode has no effect */ |
| 1431 | /* */ |
| 1432 | /* C must have space for set->digits digits. */ |
| 1433 | /* */ |
| 1434 | /* Notable cases: */ |
| 1435 | /* A<0 -> Invalid */ |
| 1436 | /* A=0 -> -Infinity (Exact) */ |
| 1437 | /* A=+Infinity -> +Infinity (Exact) */ |
| 1438 | /* A=10**n (if n is an integer) -> n (Exact) */ |
| 1439 | /* */ |
| 1440 | /* Mathematical function restrictions apply (see above); a NaN is */ |
| 1441 | /* returned with Invalid_operation if a restriction is violated. */ |
| 1442 | /* */ |
| 1443 | /* An Inexact result is rounded using DEC_ROUND_HALF_EVEN; it will */ |
| 1444 | /* almost always be correctly rounded, but may be up to 1 ulp in */ |
| 1445 | /* error in rare cases. */ |
| 1446 | /* ------------------------------------------------------------------ */ |
| 1447 | /* This calculates ln(A)/ln(10) using appropriate precision. For */ |
| 1448 | /* ln(A) this is the max(p, rhs->digits + t) + 3, where p is the */ |
| 1449 | /* requested digits and t is the number of digits in the exponent */ |
| 1450 | /* (maximum 6). For ln(10) it is p + 3; this is often handled by the */ |
| 1451 | /* fastpath in decLnOp. The final division is done to the requested */ |
| 1452 | /* precision. */ |
| 1453 | /* ------------------------------------------------------------------ */ |
| 1454 | decNumber * decNumberLog10(decNumber *res, const decNumber *rhs, |
| 1455 | decContext *set) { |
| 1456 | uInt status=0, ignore=0; /* status accumulators */ |
| 1457 | uInt needbytes; /* for space calculations */ |
| 1458 | Int p; /* working precision */ |
| 1459 | Int t; /* digits in exponent of A */ |
| 1460 | |
| 1461 | /* buffers for a and b working decimals */ |
| 1462 | /* (adjustment calculator, same size) */ |
| 1463 | decNumber bufa[D2N(DECBUFFER+2)]; |
| 1464 | decNumber *allocbufa=NULL; /* -> allocated bufa, iff allocated */ |
| 1465 | decNumber *a=bufa; /* temporary a */ |
| 1466 | decNumber bufb[D2N(DECBUFFER+2)]; |
| 1467 | decNumber *allocbufb=NULL; /* -> allocated bufb, iff allocated */ |
| 1468 | decNumber *b=bufb; /* temporary b */ |
| 1469 | decNumber bufw[D2N(10)]; /* working 2-10 digit number */ |
| 1470 | decNumber *w=bufw; /* .. */ |
| 1471 | #if DECSUBSET |
| 1472 | decNumber *allocrhs=NULL; /* non-NULL if rounded rhs allocated */ |
| 1473 | #endif |
| 1474 | |
| 1475 | decContext aset; /* working context */ |
| 1476 | |
| 1477 | #if DECCHECK |
| 1478 | if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; |
| 1479 | #endif |
| 1480 | |
| 1481 | /* Check restrictions; this is a math function; if not violated */ |
| 1482 | /* then carry out the operation. */ |
| 1483 | if (!decCheckMath(rhs, set, &status)) do { /* protect malloc */ |
| 1484 | #if DECSUBSET |
| 1485 | if (!set->extended) { |
| 1486 | /* reduce operand and set lostDigits status, as needed */ |
| 1487 | if (rhs->digits>set->digits) { |
| 1488 | allocrhs=decRoundOperand(rhs, set, &status); |
| 1489 | if (allocrhs==NULL) break; |
| 1490 | rhs=allocrhs; |
| 1491 | } |
| 1492 | /* special check in subset for rhs=0 */ |
| 1493 | if (ISZERO(rhs)) { /* +/- zeros -> error */ |
| 1494 | status|=DEC_Invalid_operation; |
| 1495 | break;} |
| 1496 | } /* extended=0 */ |
| 1497 | #endif |
| 1498 | |
| 1499 | decContextDefault(&aset, DEC_INIT_DECIMAL64); /* clean context */ |
| 1500 | |
| 1501 | /* handle exact powers of 10; only check if +ve finite */ |
| 1502 | if (!(rhs->bits&(DECNEG|DECSPECIAL)) && !ISZERO(rhs)) { |
| 1503 | Int residue=0; /* (no residue) */ |
| 1504 | uInt copystat=0; /* clean status */ |
| 1505 | |
| 1506 | /* round to a single digit... */ |
| 1507 | aset.digits=1; |
| 1508 | decCopyFit(w, rhs, &aset, &residue, ©stat); /* copy & shorten */ |
| 1509 | /* if exact and the digit is 1, rhs is a power of 10 */ |
| 1510 | if (!(copystat&DEC_Inexact) && w->lsu[0]==1) { |
| 1511 | /* the exponent, conveniently, is the power of 10; making */ |
| 1512 | /* this the result needs a little care as it might not fit, */ |
| 1513 | /* so first convert it into the working number, and then move */ |
| 1514 | /* to res */ |
| 1515 | decNumberFromInt32(w, w->exponent); |
| 1516 | residue=0; |
| 1517 | decCopyFit(res, w, set, &residue, &status); /* copy & round */ |
| 1518 | decFinish(res, set, &residue, &status); /* cleanup/set flags */ |
| 1519 | break; |
| 1520 | } /* not a power of 10 */ |
| 1521 | } /* not a candidate for exact */ |
| 1522 | |
| 1523 | /* simplify the information-content calculation to use 'total */ |
| 1524 | /* number of digits in a, including exponent' as compared to the */ |
| 1525 | /* requested digits, as increasing this will only rarely cost an */ |
| 1526 | /* iteration in ln(a) anyway */ |
| 1527 | t=6; /* it can never be >6 */ |
| 1528 | |
| 1529 | /* allocate space when needed... */ |
| 1530 | p=(rhs->digits+t>set->digits?rhs->digits+t:set->digits)+3; |
| 1531 | needbytes=sizeof(decNumber)+(D2U(p)-1)*sizeof(Unit); |
| 1532 | if (needbytes>sizeof(bufa)) { /* need malloc space */ |
| 1533 | allocbufa=(decNumber *)malloc(needbytes); |
| 1534 | if (allocbufa==NULL) { /* hopeless -- abandon */ |
| 1535 | status|=DEC_Insufficient_storage; |
| 1536 | break;} |
| 1537 | a=allocbufa; /* use the allocated space */ |
| 1538 | } |
| 1539 | aset.digits=p; /* as calculated */ |
| 1540 | aset.emax=DEC_MAX_MATH; /* usual bounds */ |
| 1541 | aset.emin=-DEC_MAX_MATH; /* .. */ |
| 1542 | aset.clamp=0; /* and no concrete format */ |
| 1543 | decLnOp(a, rhs, &aset, &status); /* a=ln(rhs) */ |
| 1544 | |
| 1545 | /* skip the division if the result so far is infinite, NaN, or */ |
| 1546 | /* zero, or there was an error; note NaN from sNaN needs copy */ |
| 1547 | if (status&DEC_NaNs && !(status&DEC_sNaN)) break; |
| 1548 | if (a->bits&DECSPECIAL || ISZERO(a)) { |
| 1549 | decNumberCopy(res, a); /* [will fit] */ |
| 1550 | break;} |
| 1551 | |
| 1552 | /* for ln(10) an extra 3 digits of precision are needed */ |
| 1553 | p=set->digits+3; |
| 1554 | needbytes=sizeof(decNumber)+(D2U(p)-1)*sizeof(Unit); |
| 1555 | if (needbytes>sizeof(bufb)) { /* need malloc space */ |
| 1556 | allocbufb=(decNumber *)malloc(needbytes); |
| 1557 | if (allocbufb==NULL) { /* hopeless -- abandon */ |
| 1558 | status|=DEC_Insufficient_storage; |
| 1559 | break;} |
| 1560 | b=allocbufb; /* use the allocated space */ |
| 1561 | } |
| 1562 | decNumberZero(w); /* set up 10... */ |
| 1563 | #if DECDPUN==1 |
| 1564 | w->lsu[1]=1; w->lsu[0]=0; /* .. */ |
| 1565 | #else |
| 1566 | w->lsu[0]=10; /* .. */ |
| 1567 | #endif |
| 1568 | w->digits=2; /* .. */ |
| 1569 | |
| 1570 | aset.digits=p; |
| 1571 | decLnOp(b, w, &aset, &ignore); /* b=ln(10) */ |
| 1572 | |
| 1573 | aset.digits=set->digits; /* for final divide */ |
| 1574 | decDivideOp(res, a, b, &aset, DIVIDE, &status); /* into result */ |
| 1575 | } while(0); /* [for break] */ |
| 1576 | |
| 1577 | if (allocbufa!=NULL) free(allocbufa); /* drop any storage used */ |
| 1578 | if (allocbufb!=NULL) free(allocbufb); /* .. */ |
| 1579 | #if DECSUBSET |
| 1580 | if (allocrhs !=NULL) free(allocrhs); /* .. */ |
| 1581 | #endif |
| 1582 | /* apply significant status */ |
| 1583 | if (status!=0) decStatus(res, status, set); |
| 1584 | #if DECCHECK |
| 1585 | decCheckInexact(res, set); |
| 1586 | #endif |
| 1587 | return res; |
| 1588 | } /* decNumberLog10 */ |
| 1589 | |
| 1590 | /* ------------------------------------------------------------------ */ |
| 1591 | /* decNumberMax -- compare two Numbers and return the maximum */ |
| 1592 | /* */ |
| 1593 | /* This computes C = A ? B, returning the maximum by 754R rules */ |
| 1594 | /* */ |
| 1595 | /* res is C, the result. C may be A and/or B (e.g., X=X?X) */ |
| 1596 | /* lhs is A */ |
| 1597 | /* rhs is B */ |
| 1598 | /* set is the context */ |
| 1599 | /* */ |
| 1600 | /* C must have space for set->digits digits. */ |
| 1601 | /* ------------------------------------------------------------------ */ |
| 1602 | decNumber * decNumberMax(decNumber *res, const decNumber *lhs, |
| 1603 | const decNumber *rhs, decContext *set) { |
| 1604 | uInt status=0; /* accumulator */ |
| 1605 | decCompareOp(res, lhs, rhs, set, COMPMAX, &status); |
| 1606 | if (status!=0) decStatus(res, status, set); |
| 1607 | #if DECCHECK |
| 1608 | decCheckInexact(res, set); |
| 1609 | #endif |
| 1610 | return res; |
| 1611 | } /* decNumberMax */ |
| 1612 | |
| 1613 | /* ------------------------------------------------------------------ */ |
| 1614 | /* decNumberMaxMag -- compare and return the maximum by magnitude */ |
| 1615 | /* */ |
| 1616 | /* This computes C = A ? B, returning the maximum by 754R rules */ |
| 1617 | /* */ |
| 1618 | /* res is C, the result. C may be A and/or B (e.g., X=X?X) */ |
| 1619 | /* lhs is A */ |
| 1620 | /* rhs is B */ |
| 1621 | /* set is the context */ |
| 1622 | /* */ |
| 1623 | /* C must have space for set->digits digits. */ |
| 1624 | /* ------------------------------------------------------------------ */ |
| 1625 | decNumber * decNumberMaxMag(decNumber *res, const decNumber *lhs, |
| 1626 | const decNumber *rhs, decContext *set) { |
| 1627 | uInt status=0; /* accumulator */ |
| 1628 | decCompareOp(res, lhs, rhs, set, COMPMAXMAG, &status); |
| 1629 | if (status!=0) decStatus(res, status, set); |
| 1630 | #if DECCHECK |
| 1631 | decCheckInexact(res, set); |
| 1632 | #endif |
| 1633 | return res; |
| 1634 | } /* decNumberMaxMag */ |
| 1635 | |
| 1636 | /* ------------------------------------------------------------------ */ |
| 1637 | /* decNumberMin -- compare two Numbers and return the minimum */ |
| 1638 | /* */ |
| 1639 | /* This computes C = A ? B, returning the minimum by 754R rules */ |
| 1640 | /* */ |
| 1641 | /* res is C, the result. C may be A and/or B (e.g., X=X?X) */ |
| 1642 | /* lhs is A */ |
| 1643 | /* rhs is B */ |
| 1644 | /* set is the context */ |
| 1645 | /* */ |
| 1646 | /* C must have space for set->digits digits. */ |
| 1647 | /* ------------------------------------------------------------------ */ |
| 1648 | decNumber * decNumberMin(decNumber *res, const decNumber *lhs, |
| 1649 | const decNumber *rhs, decContext *set) { |
| 1650 | uInt status=0; /* accumulator */ |
| 1651 | decCompareOp(res, lhs, rhs, set, COMPMIN, &status); |
| 1652 | if (status!=0) decStatus(res, status, set); |
| 1653 | #if DECCHECK |
| 1654 | decCheckInexact(res, set); |
| 1655 | #endif |
| 1656 | return res; |
| 1657 | } /* decNumberMin */ |
| 1658 | |
| 1659 | /* ------------------------------------------------------------------ */ |
| 1660 | /* decNumberMinMag -- compare and return the minimum by magnitude */ |
| 1661 | /* */ |
| 1662 | /* This computes C = A ? B, returning the minimum by 754R rules */ |
| 1663 | /* */ |
| 1664 | /* res is C, the result. C may be A and/or B (e.g., X=X?X) */ |
| 1665 | /* lhs is A */ |
| 1666 | /* rhs is B */ |
| 1667 | /* set is the context */ |
| 1668 | /* */ |
| 1669 | /* C must have space for set->digits digits. */ |
| 1670 | /* ------------------------------------------------------------------ */ |
| 1671 | decNumber * decNumberMinMag(decNumber *res, const decNumber *lhs, |
| 1672 | const decNumber *rhs, decContext *set) { |
| 1673 | uInt status=0; /* accumulator */ |
| 1674 | decCompareOp(res, lhs, rhs, set, COMPMINMAG, &status); |
| 1675 | if (status!=0) decStatus(res, status, set); |
| 1676 | #if DECCHECK |
| 1677 | decCheckInexact(res, set); |
| 1678 | #endif |
| 1679 | return res; |
| 1680 | } /* decNumberMinMag */ |
| 1681 | |
| 1682 | /* ------------------------------------------------------------------ */ |
| 1683 | /* decNumberMinus -- prefix minus operator */ |
| 1684 | /* */ |
| 1685 | /* This computes C = 0 - A */ |
| 1686 | /* */ |
| 1687 | /* res is C, the result. C may be A */ |
| 1688 | /* rhs is A */ |
| 1689 | /* set is the context */ |
| 1690 | /* */ |
| 1691 | /* See also decNumberCopyNegate for a quiet bitwise version of this. */ |
| 1692 | /* C must have space for set->digits digits. */ |
| 1693 | /* ------------------------------------------------------------------ */ |
| 1694 | /* Simply use AddOp for the subtract, which will do the necessary. */ |
| 1695 | /* ------------------------------------------------------------------ */ |
| 1696 | decNumber * decNumberMinus(decNumber *res, const decNumber *rhs, |
| 1697 | decContext *set) { |
| 1698 | decNumber dzero; |
| 1699 | uInt status=0; /* accumulator */ |
| 1700 | |
| 1701 | #if DECCHECK |
| 1702 | if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; |
| 1703 | #endif |
| 1704 | |
| 1705 | decNumberZero(&dzero); /* make 0 */ |
| 1706 | dzero.exponent=rhs->exponent; /* [no coefficient expansion] */ |
| 1707 | decAddOp(res, &dzero, rhs, set, DECNEG, &status); |
| 1708 | if (status!=0) decStatus(res, status, set); |
| 1709 | #if DECCHECK |
| 1710 | decCheckInexact(res, set); |
| 1711 | #endif |
| 1712 | return res; |
| 1713 | } /* decNumberMinus */ |
| 1714 | |
| 1715 | /* ------------------------------------------------------------------ */ |
| 1716 | /* decNumberNextMinus -- next towards -Infinity */ |
| 1717 | /* */ |
| 1718 | /* This computes C = A - infinitesimal, rounded towards -Infinity */ |
| 1719 | /* */ |
| 1720 | /* res is C, the result. C may be A */ |
| 1721 | /* rhs is A */ |
| 1722 | /* set is the context */ |
| 1723 | /* */ |
| 1724 | /* This is a generalization of 754r NextDown. */ |
| 1725 | /* ------------------------------------------------------------------ */ |
| 1726 | decNumber * decNumberNextMinus(decNumber *res, const decNumber *rhs, |
| 1727 | decContext *set) { |
| 1728 | decNumber dtiny; /* constant */ |
| 1729 | decContext workset=*set; /* work */ |
| 1730 | uInt status=0; /* accumulator */ |
| 1731 | #if DECCHECK |
| 1732 | if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; |
| 1733 | #endif |
| 1734 | |
| 1735 | /* +Infinity is the special case */ |
| 1736 | if ((rhs->bits&(DECINF|DECNEG))==DECINF) { |
| 1737 | decSetMaxValue(res, set); /* is +ve */ |
| 1738 | /* there is no status to set */ |
| 1739 | return res; |
| 1740 | } |
| 1741 | decNumberZero(&dtiny); /* start with 0 */ |
| 1742 | dtiny.lsu[0]=1; /* make number that is .. */ |
| 1743 | dtiny.exponent=DEC_MIN_EMIN-1; /* .. smaller than tiniest */ |
| 1744 | workset.round=DEC_ROUND_FLOOR; |
| 1745 | decAddOp(res, rhs, &dtiny, &workset, DECNEG, &status); |
| 1746 | status&=DEC_Invalid_operation|DEC_sNaN; /* only sNaN Invalid please */ |
| 1747 | if (status!=0) decStatus(res, status, set); |
| 1748 | return res; |
| 1749 | } /* decNumberNextMinus */ |
| 1750 | |
| 1751 | /* ------------------------------------------------------------------ */ |
| 1752 | /* decNumberNextPlus -- next towards +Infinity */ |
| 1753 | /* */ |
| 1754 | /* This computes C = A + infinitesimal, rounded towards +Infinity */ |
| 1755 | /* */ |
| 1756 | /* res is C, the result. C may be A */ |
| 1757 | /* rhs is A */ |
| 1758 | /* set is the context */ |
| 1759 | /* */ |
| 1760 | /* This is a generalization of 754r NextUp. */ |
| 1761 | /* ------------------------------------------------------------------ */ |
| 1762 | decNumber * decNumberNextPlus(decNumber *res, const decNumber *rhs, |
| 1763 | decContext *set) { |
| 1764 | decNumber dtiny; /* constant */ |
| 1765 | decContext workset=*set; /* work */ |
| 1766 | uInt status=0; /* accumulator */ |
| 1767 | #if DECCHECK |
| 1768 | if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; |
| 1769 | #endif |
| 1770 | |
| 1771 | /* -Infinity is the special case */ |
| 1772 | if ((rhs->bits&(DECINF|DECNEG))==(DECINF|DECNEG)) { |
| 1773 | decSetMaxValue(res, set); |
| 1774 | res->bits=DECNEG; /* negative */ |
| 1775 | /* there is no status to set */ |
| 1776 | return res; |
| 1777 | } |
| 1778 | decNumberZero(&dtiny); /* start with 0 */ |
| 1779 | dtiny.lsu[0]=1; /* make number that is .. */ |
| 1780 | dtiny.exponent=DEC_MIN_EMIN-1; /* .. smaller than tiniest */ |
| 1781 | workset.round=DEC_ROUND_CEILING; |
| 1782 | decAddOp(res, rhs, &dtiny, &workset, 0, &status); |
| 1783 | status&=DEC_Invalid_operation|DEC_sNaN; /* only sNaN Invalid please */ |
| 1784 | if (status!=0) decStatus(res, status, set); |
| 1785 | return res; |
| 1786 | } /* decNumberNextPlus */ |
| 1787 | |
| 1788 | /* ------------------------------------------------------------------ */ |
| 1789 | /* decNumberNextToward -- next towards rhs */ |
| 1790 | /* */ |
| 1791 | /* This computes C = A +/- infinitesimal, rounded towards */ |
| 1792 | /* +/-Infinity in the direction of B, as per 754r nextafter rules */ |
| 1793 | /* */ |
| 1794 | /* res is C, the result. C may be A or B. */ |
| 1795 | /* lhs is A */ |
| 1796 | /* rhs is B */ |
| 1797 | /* set is the context */ |
| 1798 | /* */ |
| 1799 | /* This is a generalization of 754r NextAfter. */ |
| 1800 | /* ------------------------------------------------------------------ */ |
| 1801 | decNumber * decNumberNextToward(decNumber *res, const decNumber *lhs, |
| 1802 | const decNumber *rhs, decContext *set) { |
| 1803 | decNumber dtiny; /* constant */ |
| 1804 | decContext workset=*set; /* work */ |
| 1805 | Int result; /* .. */ |
| 1806 | uInt status=0; /* accumulator */ |
| 1807 | #if DECCHECK |
| 1808 | if (decCheckOperands(res, lhs, rhs, set)) return res; |
| 1809 | #endif |
| 1810 | |
| 1811 | if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs)) { |
| 1812 | decNaNs(res, lhs, rhs, set, &status); |
| 1813 | } |
| 1814 | else { /* Is numeric, so no chance of sNaN Invalid, etc. */ |
| 1815 | result=decCompare(lhs, rhs, 0); /* sign matters */ |
| 1816 | if (result==BADINT) status|=DEC_Insufficient_storage; /* rare */ |
| 1817 | else { /* valid compare */ |
| 1818 | if (result==0) decNumberCopySign(res, lhs, rhs); /* easy */ |
| 1819 | else { /* differ: need NextPlus or NextMinus */ |
| 1820 | uByte sub; /* add or subtract */ |
| 1821 | if (result<0) { /* lhs<rhs, do nextplus */ |
| 1822 | /* -Infinity is the special case */ |
| 1823 | if ((lhs->bits&(DECINF|DECNEG))==(DECINF|DECNEG)) { |
| 1824 | decSetMaxValue(res, set); |
| 1825 | res->bits=DECNEG; /* negative */ |
| 1826 | return res; /* there is no status to set */ |
| 1827 | } |
| 1828 | workset.round=DEC_ROUND_CEILING; |
| 1829 | sub=0; /* add, please */ |
| 1830 | } /* plus */ |
| 1831 | else { /* lhs>rhs, do nextminus */ |
| 1832 | /* +Infinity is the special case */ |
| 1833 | if ((lhs->bits&(DECINF|DECNEG))==DECINF) { |
| 1834 | decSetMaxValue(res, set); |
| 1835 | return res; /* there is no status to set */ |
| 1836 | } |
| 1837 | workset.round=DEC_ROUND_FLOOR; |
| 1838 | sub=DECNEG; /* subtract, please */ |
| 1839 | } /* minus */ |
| 1840 | decNumberZero(&dtiny); /* start with 0 */ |
| 1841 | dtiny.lsu[0]=1; /* make number that is .. */ |
| 1842 | dtiny.exponent=DEC_MIN_EMIN-1; /* .. smaller than tiniest */ |
| 1843 | decAddOp(res, lhs, &dtiny, &workset, sub, &status); /* + or - */ |
| 1844 | /* turn off exceptions if the result is a normal number */ |
| 1845 | /* (including Nmin), otherwise let all status through */ |
| 1846 | if (decNumberIsNormal(res, set)) status=0; |
| 1847 | } /* unequal */ |
| 1848 | } /* compare OK */ |
| 1849 | } /* numeric */ |
| 1850 | if (status!=0) decStatus(res, status, set); |
| 1851 | return res; |
| 1852 | } /* decNumberNextToward */ |
| 1853 | |
| 1854 | /* ------------------------------------------------------------------ */ |
| 1855 | /* decNumberOr -- OR two Numbers, digitwise */ |
| 1856 | /* */ |
| 1857 | /* This computes C = A | B */ |
| 1858 | /* */ |
| 1859 | /* res is C, the result. C may be A and/or B (e.g., X=X|X) */ |
| 1860 | /* lhs is A */ |
| 1861 | /* rhs is B */ |
| 1862 | /* set is the context (used for result length and error report) */ |
| 1863 | /* */ |
| 1864 | /* C must have space for set->digits digits. */ |
| 1865 | /* */ |
| 1866 | /* Logical function restrictions apply (see above); a NaN is */ |
| 1867 | /* returned with Invalid_operation if a restriction is violated. */ |
| 1868 | /* ------------------------------------------------------------------ */ |
| 1869 | decNumber * decNumberOr(decNumber *res, const decNumber *lhs, |
| 1870 | const decNumber *rhs, decContext *set) { |
| 1871 | const Unit *ua, *ub; /* -> operands */ |
| 1872 | const Unit *msua, *msub; /* -> operand msus */ |
| 1873 | Unit *uc, *msuc; /* -> result and its msu */ |
| 1874 | Int msudigs; /* digits in res msu */ |
| 1875 | #if DECCHECK |
| 1876 | if (decCheckOperands(res, lhs, rhs, set)) return res; |
| 1877 | #endif |
| 1878 | |
| 1879 | if (lhs->exponent!=0 || decNumberIsSpecial(lhs) || decNumberIsNegative(lhs) |
| 1880 | || rhs->exponent!=0 || decNumberIsSpecial(rhs) || decNumberIsNegative(rhs)) { |
| 1881 | decStatus(res, DEC_Invalid_operation, set); |
| 1882 | return res; |
| 1883 | } |
| 1884 | /* operands are valid */ |
| 1885 | ua=lhs->lsu; /* bottom-up */ |
| 1886 | ub=rhs->lsu; /* .. */ |
| 1887 | uc=res->lsu; /* .. */ |
| 1888 | msua=ua+D2U(lhs->digits)-1; /* -> msu of lhs */ |
| 1889 | msub=ub+D2U(rhs->digits)-1; /* -> msu of rhs */ |
| 1890 | msuc=uc+D2U(set->digits)-1; /* -> msu of result */ |
| 1891 | msudigs=MSUDIGITS(set->digits); /* [faster than remainder] */ |
| 1892 | for (; uc<=msuc; ua++, ub++, uc++) { /* Unit loop */ |
| 1893 | Unit a, b; /* extract units */ |
| 1894 | if (ua>msua) a=0; |
| 1895 | else a=*ua; |
| 1896 | if (ub>msub) b=0; |
| 1897 | else b=*ub; |
| 1898 | *uc=0; /* can now write back */ |
| 1899 | if (a|b) { /* maybe 1 bits to examine */ |
| 1900 | Int i, j; |
| 1901 | /* This loop could be unrolled and/or use BIN2BCD tables */ |
| 1902 | for (i=0; i<DECDPUN; i++) { |
| 1903 | if ((a|b)&1) *uc=*uc+(Unit)powers[i]; /* effect OR */ |
| 1904 | j=a%10; |
| 1905 | a=a/10; |
| 1906 | j|=b%10; |
| 1907 | b=b/10; |
| 1908 | if (j>1) { |
| 1909 | decStatus(res, DEC_Invalid_operation, set); |
| 1910 | return res; |
| 1911 | } |
| 1912 | if (uc==msuc && i==msudigs-1) break; /* just did final digit */ |
| 1913 | } /* each digit */ |
| 1914 | } /* non-zero */ |
| 1915 | } /* each unit */ |
| 1916 | /* [here uc-1 is the msu of the result] */ |
| 1917 | res->digits=decGetDigits(res->lsu, uc-res->lsu); |
| 1918 | res->exponent=0; /* integer */ |
| 1919 | res->bits=0; /* sign=0 */ |
| 1920 | return res; /* [no status to set] */ |
| 1921 | } /* decNumberOr */ |
| 1922 | |
| 1923 | /* ------------------------------------------------------------------ */ |
| 1924 | /* decNumberPlus -- prefix plus operator */ |
| 1925 | /* */ |
| 1926 | /* This computes C = 0 + A */ |
| 1927 | /* */ |
| 1928 | /* res is C, the result. C may be A */ |
| 1929 | /* rhs is A */ |
| 1930 | /* set is the context */ |
| 1931 | /* */ |
| 1932 | /* See also decNumberCopy for a quiet bitwise version of this. */ |
| 1933 | /* C must have space for set->digits digits. */ |
| 1934 | /* ------------------------------------------------------------------ */ |
| 1935 | /* This simply uses AddOp; Add will take fast path after preparing A. */ |
| 1936 | /* Performance is a concern here, as this routine is often used to */ |
| 1937 | /* check operands and apply rounding and overflow/underflow testing. */ |
| 1938 | /* ------------------------------------------------------------------ */ |
| 1939 | decNumber * decNumberPlus(decNumber *res, const decNumber *rhs, |
| 1940 | decContext *set) { |
| 1941 | decNumber dzero; |
| 1942 | uInt status=0; /* accumulator */ |
| 1943 | #if DECCHECK |
| 1944 | if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; |
| 1945 | #endif |
| 1946 | |
| 1947 | decNumberZero(&dzero); /* make 0 */ |
| 1948 | dzero.exponent=rhs->exponent; /* [no coefficient expansion] */ |
| 1949 | decAddOp(res, &dzero, rhs, set, 0, &status); |
| 1950 | if (status!=0) decStatus(res, status, set); |
| 1951 | #if DECCHECK |
| 1952 | decCheckInexact(res, set); |
| 1953 | #endif |
| 1954 | return res; |
| 1955 | } /* decNumberPlus */ |
| 1956 | |
| 1957 | /* ------------------------------------------------------------------ */ |
| 1958 | /* decNumberMultiply -- multiply two Numbers */ |
| 1959 | /* */ |
| 1960 | /* This computes C = A x B */ |
| 1961 | /* */ |
| 1962 | /* res is C, the result. C may be A and/or B (e.g., X=X+X) */ |
| 1963 | /* lhs is A */ |
| 1964 | /* rhs is B */ |
| 1965 | /* set is the context */ |
| 1966 | /* */ |
| 1967 | /* C must have space for set->digits digits. */ |
| 1968 | /* ------------------------------------------------------------------ */ |
| 1969 | decNumber * decNumberMultiply(decNumber *res, const decNumber *lhs, |
| 1970 | const decNumber *rhs, decContext *set) { |
| 1971 | uInt status=0; /* accumulator */ |
| 1972 | decMultiplyOp(res, lhs, rhs, set, &status); |
| 1973 | if (status!=0) decStatus(res, status, set); |
| 1974 | #if DECCHECK |
| 1975 | decCheckInexact(res, set); |
| 1976 | #endif |
| 1977 | return res; |
| 1978 | } /* decNumberMultiply */ |
| 1979 | |
| 1980 | /* ------------------------------------------------------------------ */ |
| 1981 | /* decNumberPower -- raise a number to a power */ |
| 1982 | /* */ |
| 1983 | /* This computes C = A ** B */ |
| 1984 | /* */ |
| 1985 | /* res is C, the result. C may be A and/or B (e.g., X=X**X) */ |
| 1986 | /* lhs is A */ |
| 1987 | /* rhs is B */ |
| 1988 | /* set is the context */ |
| 1989 | /* */ |
| 1990 | /* C must have space for set->digits digits. */ |
| 1991 | /* */ |
| 1992 | /* Mathematical function restrictions apply (see above); a NaN is */ |
| 1993 | /* returned with Invalid_operation if a restriction is violated. */ |
| 1994 | /* */ |
| 1995 | /* However, if 1999999997<=B<=999999999 and B is an integer then the */ |
| 1996 | /* restrictions on A and the context are relaxed to the usual bounds, */ |
| 1997 | /* for compatibility with the earlier (integer power only) version */ |
| 1998 | /* of this function. */ |
| 1999 | /* */ |
| 2000 | /* When B is an integer, the result may be exact, even if rounded. */ |
| 2001 | /* */ |
| 2002 | /* The final result is rounded according to the context; it will */ |
| 2003 | /* almost always be correctly rounded, but may be up to 1 ulp in */ |
| 2004 | /* error in rare cases. */ |
| 2005 | /* ------------------------------------------------------------------ */ |
| 2006 | decNumber * decNumberPower(decNumber *res, const decNumber *lhs, |
| 2007 | const decNumber *rhs, decContext *set) { |
| 2008 | #if DECSUBSET |
| 2009 | decNumber *alloclhs=NULL; /* non-NULL if rounded lhs allocated */ |
| 2010 | decNumber *allocrhs=NULL; /* .., rhs */ |
| 2011 | #endif |
| 2012 | decNumber *allocdac=NULL; /* -> allocated acc buffer, iff used */ |
| 2013 | decNumber *allocinv=NULL; /* -> allocated 1/x buffer, iff used */ |
| 2014 | Int reqdigits=set->digits; /* requested DIGITS */ |
| 2015 | Int n; /* rhs in binary */ |
| 2016 | Flag rhsint=0; /* 1 if rhs is an integer */ |
| 2017 | Flag useint=0; /* 1 if can use integer calculation */ |
| 2018 | Flag isoddint=0; /* 1 if rhs is an integer and odd */ |
| 2019 | Int i; /* work */ |
| 2020 | #if DECSUBSET |
| 2021 | Int dropped; /* .. */ |
| 2022 | #endif |
| 2023 | uInt needbytes; /* buffer size needed */ |
| 2024 | Flag seenbit; /* seen a bit while powering */ |
| 2025 | Int residue=0; /* rounding residue */ |
| 2026 | uInt status=0; /* accumulators */ |
| 2027 | uByte bits=0; /* result sign if errors */ |
| 2028 | decContext aset; /* working context */ |
| 2029 | decNumber dnOne; /* work value 1... */ |
| 2030 | /* local accumulator buffer [a decNumber, with digits+elength+1 digits] */ |
| 2031 | decNumber dacbuff[D2N(DECBUFFER+9)]; |
| 2032 | decNumber *dac=dacbuff; /* -> result accumulator */ |
| 2033 | /* same again for possible 1/lhs calculation */ |
| 2034 | decNumber invbuff[D2N(DECBUFFER+9)]; |
| 2035 | |
| 2036 | #if DECCHECK |
| 2037 | if (decCheckOperands(res, lhs, rhs, set)) return res; |
| 2038 | #endif |
| 2039 | |
| 2040 | do { /* protect allocated storage */ |
| 2041 | #if DECSUBSET |
| 2042 | if (!set->extended) { /* reduce operands and set status, as needed */ |
| 2043 | if (lhs->digits>reqdigits) { |
| 2044 | alloclhs=decRoundOperand(lhs, set, &status); |
| 2045 | if (alloclhs==NULL) break; |
| 2046 | lhs=alloclhs; |
| 2047 | } |
| 2048 | if (rhs->digits>reqdigits) { |
| 2049 | allocrhs=decRoundOperand(rhs, set, &status); |
| 2050 | if (allocrhs==NULL) break; |
| 2051 | rhs=allocrhs; |
| 2052 | } |
| 2053 | } |
| 2054 | #endif |
| 2055 | /* [following code does not require input rounding] */ |
| 2056 | |
| 2057 | /* handle NaNs and rhs Infinity (lhs infinity is harder) */ |
| 2058 | if (SPECIALARGS) { |
| 2059 | if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs)) { /* NaNs */ |
| 2060 | decNaNs(res, lhs, rhs, set, &status); |
| 2061 | break;} |
| 2062 | if (decNumberIsInfinite(rhs)) { /* rhs Infinity */ |
| 2063 | Flag rhsneg=rhs->bits&DECNEG; /* save rhs sign */ |
| 2064 | if (decNumberIsNegative(lhs) /* lhs<0 */ |
| 2065 | && !decNumberIsZero(lhs)) /* .. */ |
| 2066 | status|=DEC_Invalid_operation; |
| 2067 | else { /* lhs >=0 */ |
| 2068 | decNumberZero(&dnOne); /* set up 1 */ |
| 2069 | dnOne.lsu[0]=1; |
| 2070 | decNumberCompare(dac, lhs, &dnOne, set); /* lhs ? 1 */ |
| 2071 | decNumberZero(res); /* prepare for 0/1/Infinity */ |
| 2072 | if (decNumberIsNegative(dac)) { /* lhs<1 */ |
| 2073 | if (rhsneg) res->bits|=DECINF; /* +Infinity [else is +0] */ |
| 2074 | } |
| 2075 | else if (dac->lsu[0]==0) { /* lhs=1 */ |
| 2076 | /* 1**Infinity is inexact, so return fully-padded 1.0000 */ |
| 2077 | Int shift=set->digits-1; |
| 2078 | *res->lsu=1; /* was 0, make int 1 */ |
| 2079 | res->digits=decShiftToMost(res->lsu, 1, shift); |
| 2080 | res->exponent=-shift; /* make 1.0000... */ |
| 2081 | status|=DEC_Inexact|DEC_Rounded; /* deemed inexact */ |
| 2082 | } |
| 2083 | else { /* lhs>1 */ |
| 2084 | if (!rhsneg) res->bits|=DECINF; /* +Infinity [else is +0] */ |
| 2085 | } |
| 2086 | } /* lhs>=0 */ |
| 2087 | break;} |
| 2088 | /* [lhs infinity drops through] */ |
| 2089 | } /* specials */ |
| 2090 | |
| 2091 | /* Original rhs may be an integer that fits and is in range */ |
| 2092 | n=decGetInt(rhs); |
| 2093 | if (n!=BADINT) { /* it is an integer */ |
| 2094 | rhsint=1; /* record the fact for 1**n */ |
| 2095 | isoddint=(Flag)n&1; /* [works even if big] */ |
| 2096 | if (n!=BIGEVEN && n!=BIGODD) /* can use integer path? */ |
| 2097 | useint=1; /* looks good */ |
| 2098 | } |
| 2099 | |
| 2100 | if (decNumberIsNegative(lhs) /* -x .. */ |
| 2101 | && isoddint) bits=DECNEG; /* .. to an odd power */ |
| 2102 | |
| 2103 | /* handle LHS infinity */ |
| 2104 | if (decNumberIsInfinite(lhs)) { /* [NaNs already handled] */ |
| 2105 | uByte rbits=rhs->bits; /* save */ |
| 2106 | decNumberZero(res); /* prepare */ |
| 2107 | if (n==0) *res->lsu=1; /* [-]Inf**0 => 1 */ |
| 2108 | else { |
| 2109 | /* -Inf**nonint -> error */ |
| 2110 | if (!rhsint && decNumberIsNegative(lhs)) { |
| 2111 | status|=DEC_Invalid_operation; /* -Inf**nonint is error */ |
| 2112 | break;} |
| 2113 | if (!(rbits & DECNEG)) bits|=DECINF; /* was not a **-n */ |
| 2114 | /* [otherwise will be 0 or -0] */ |
| 2115 | res->bits=bits; |
| 2116 | } |
| 2117 | break;} |
| 2118 | |
| 2119 | /* similarly handle LHS zero */ |
| 2120 | if (decNumberIsZero(lhs)) { |
| 2121 | if (n==0) { /* 0**0 => Error */ |
| 2122 | #if DECSUBSET |
| 2123 | if (!set->extended) { /* [unless subset] */ |
| 2124 | decNumberZero(res); |
| 2125 | *res->lsu=1; /* return 1 */ |
| 2126 | break;} |
| 2127 | #endif |
| 2128 | status|=DEC_Invalid_operation; |
| 2129 | } |
| 2130 | else { /* 0**x */ |
| 2131 | uByte rbits=rhs->bits; /* save */ |
| 2132 | if (rbits & DECNEG) { /* was a 0**(-n) */ |
| 2133 | #if DECSUBSET |
| 2134 | if (!set->extended) { /* [bad if subset] */ |
| 2135 | status|=DEC_Invalid_operation; |
| 2136 | break;} |
| 2137 | #endif |
| 2138 | bits|=DECINF; |
| 2139 | } |
| 2140 | decNumberZero(res); /* prepare */ |
| 2141 | /* [otherwise will be 0 or -0] */ |
| 2142 | res->bits=bits; |
| 2143 | } |
| 2144 | break;} |
| 2145 | |
| 2146 | /* here both lhs and rhs are finite; rhs==0 is handled in the */ |
| 2147 | /* integer path. Next handle the non-integer cases */ |
| 2148 | if (!useint) { /* non-integral rhs */ |
| 2149 | /* any -ve lhs is bad, as is either operand or context out of */ |
| 2150 | /* bounds */ |
| 2151 | if (decNumberIsNegative(lhs)) { |
| 2152 | status|=DEC_Invalid_operation; |
| 2153 | break;} |
| 2154 | if (decCheckMath(lhs, set, &status) |
| 2155 | || decCheckMath(rhs, set, &status)) break; /* variable status */ |
| 2156 | |
| 2157 | decContextDefault(&aset, DEC_INIT_DECIMAL64); /* clean context */ |
| 2158 | aset.emax=DEC_MAX_MATH; /* usual bounds */ |
| 2159 | aset.emin=-DEC_MAX_MATH; /* .. */ |
| 2160 | aset.clamp=0; /* and no concrete format */ |
| 2161 | |
| 2162 | /* calculate the result using exp(ln(lhs)*rhs), which can */ |
| 2163 | /* all be done into the accumulator, dac. The precision needed */ |
| 2164 | /* is enough to contain the full information in the lhs (which */ |
| 2165 | /* is the total digits, including exponent), or the requested */ |
| 2166 | /* precision, if larger, + 4; 6 is used for the exponent */ |
| 2167 | /* maximum length, and this is also used when it is shorter */ |
| 2168 | /* than the requested digits as it greatly reduces the >0.5 ulp */ |
| 2169 | /* cases at little cost (because Ln doubles digits each */ |
| 2170 | /* iteration so a few extra digits rarely causes an extra */ |
| 2171 | /* iteration) */ |
| 2172 | aset.digits=MAXI(lhs->digits, set->digits)+6+4; |
| 2173 | } /* non-integer rhs */ |
| 2174 | |
| 2175 | else { /* rhs is in-range integer */ |
| 2176 | if (n==0) { /* x**0 = 1 */ |
| 2177 | /* (0**0 was handled above) */ |
| 2178 | decNumberZero(res); /* result=1 */ |
| 2179 | *res->lsu=1; /* .. */ |
| 2180 | break;} |
| 2181 | /* rhs is a non-zero integer */ |
| 2182 | if (n<0) n=-n; /* use abs(n) */ |
| 2183 | |
| 2184 | aset=*set; /* clone the context */ |
| 2185 | aset.round=DEC_ROUND_HALF_EVEN; /* internally use balanced */ |
| 2186 | /* calculate the working DIGITS */ |
| 2187 | aset.digits=reqdigits+(rhs->digits+rhs->exponent)+2; |
| 2188 | #if DECSUBSET |
| 2189 | if (!set->extended) aset.digits--; /* use classic precision */ |
| 2190 | #endif |
| 2191 | /* it's an error if this is more than can be handled */ |
| 2192 | if (aset.digits>DECNUMMAXP) {status|=DEC_Invalid_operation; break;} |
| 2193 | } /* integer path */ |
| 2194 | |
| 2195 | /* aset.digits is the count of digits for the accumulator needed */ |
| 2196 | /* if accumulator is too long for local storage, then allocate */ |
| 2197 | needbytes=sizeof(decNumber)+(D2U(aset.digits)-1)*sizeof(Unit); |
| 2198 | /* [needbytes also used below if 1/lhs needed] */ |
| 2199 | if (needbytes>sizeof(dacbuff)) { |
| 2200 | allocdac=(decNumber *)malloc(needbytes); |
| 2201 | if (allocdac==NULL) { /* hopeless -- abandon */ |
| 2202 | status|=DEC_Insufficient_storage; |
| 2203 | break;} |
| 2204 | dac=allocdac; /* use the allocated space */ |
| 2205 | } |
| 2206 | /* here, aset is set up and accumulator is ready for use */ |
| 2207 | |
| 2208 | if (!useint) { /* non-integral rhs */ |
| 2209 | /* x ** y; special-case x=1 here as it will otherwise always */ |
| 2210 | /* reduce to integer 1; decLnOp has a fastpath which detects */ |
| 2211 | /* the case of x=1 */ |
| 2212 | decLnOp(dac, lhs, &aset, &status); /* dac=ln(lhs) */ |
| 2213 | /* [no error possible, as lhs 0 already handled] */ |
| 2214 | if (ISZERO(dac)) { /* x==1, 1.0, etc. */ |
| 2215 | /* need to return fully-padded 1.0000 etc., but rhsint->1 */ |
| 2216 | *dac->lsu=1; /* was 0, make int 1 */ |
| 2217 | if (!rhsint) { /* add padding */ |
| 2218 | Int shift=set->digits-1; |
| 2219 | dac->digits=decShiftToMost(dac->lsu, 1, shift); |
| 2220 | dac->exponent=-shift; /* make 1.0000... */ |
| 2221 | status|=DEC_Inexact|DEC_Rounded; /* deemed inexact */ |
| 2222 | } |
| 2223 | } |
| 2224 | else { |
| 2225 | decMultiplyOp(dac, dac, rhs, &aset, &status); /* dac=dac*rhs */ |
| 2226 | decExpOp(dac, dac, &aset, &status); /* dac=exp(dac) */ |
| 2227 | } |
| 2228 | /* and drop through for final rounding */ |
| 2229 | } /* non-integer rhs */ |
| 2230 | |
| 2231 | else { /* carry on with integer */ |
| 2232 | decNumberZero(dac); /* acc=1 */ |
| 2233 | *dac->lsu=1; /* .. */ |
| 2234 | |
| 2235 | /* if a negative power the constant 1 is needed, and if not subset */ |
| 2236 | /* invert the lhs now rather than inverting the result later */ |
| 2237 | if (decNumberIsNegative(rhs)) { /* was a **-n [hence digits>0] */ |
Veres Lajos | 67cc32e | 2015-09-08 22:45:14 +0100 | [diff] [blame] | 2238 | decNumber *inv=invbuff; /* assume use fixed buffer */ |
Tom Musta | 72ac97c | 2014-04-21 15:54:45 -0500 | [diff] [blame] | 2239 | decNumberCopy(&dnOne, dac); /* dnOne=1; [needed now or later] */ |
| 2240 | #if DECSUBSET |
| 2241 | if (set->extended) { /* need to calculate 1/lhs */ |
| 2242 | #endif |
| 2243 | /* divide lhs into 1, putting result in dac [dac=1/dac] */ |
| 2244 | decDivideOp(dac, &dnOne, lhs, &aset, DIVIDE, &status); |
| 2245 | /* now locate or allocate space for the inverted lhs */ |
| 2246 | if (needbytes>sizeof(invbuff)) { |
| 2247 | allocinv=(decNumber *)malloc(needbytes); |
| 2248 | if (allocinv==NULL) { /* hopeless -- abandon */ |
| 2249 | status|=DEC_Insufficient_storage; |
| 2250 | break;} |
| 2251 | inv=allocinv; /* use the allocated space */ |
| 2252 | } |
| 2253 | /* [inv now points to big-enough buffer or allocated storage] */ |
| 2254 | decNumberCopy(inv, dac); /* copy the 1/lhs */ |
| 2255 | decNumberCopy(dac, &dnOne); /* restore acc=1 */ |
| 2256 | lhs=inv; /* .. and go forward with new lhs */ |
| 2257 | #if DECSUBSET |
| 2258 | } |
| 2259 | #endif |
| 2260 | } |
| 2261 | |
| 2262 | /* Raise-to-the-power loop... */ |
| 2263 | seenbit=0; /* set once a 1-bit is encountered */ |
| 2264 | for (i=1;;i++){ /* for each bit [top bit ignored] */ |
| 2265 | /* abandon if had overflow or terminal underflow */ |
| 2266 | if (status & (DEC_Overflow|DEC_Underflow)) { /* interesting? */ |
| 2267 | if (status&DEC_Overflow || ISZERO(dac)) break; |
| 2268 | } |
| 2269 | /* [the following two lines revealed an optimizer bug in a C++ */ |
| 2270 | /* compiler, with symptom: 5**3 -> 25, when n=n+n was used] */ |
| 2271 | n=n<<1; /* move next bit to testable position */ |
| 2272 | if (n<0) { /* top bit is set */ |
| 2273 | seenbit=1; /* OK, significant bit seen */ |
| 2274 | decMultiplyOp(dac, dac, lhs, &aset, &status); /* dac=dac*x */ |
| 2275 | } |
| 2276 | if (i==31) break; /* that was the last bit */ |
| 2277 | if (!seenbit) continue; /* no need to square 1 */ |
| 2278 | decMultiplyOp(dac, dac, dac, &aset, &status); /* dac=dac*dac [square] */ |
| 2279 | } /*i*/ /* 32 bits */ |
| 2280 | |
| 2281 | /* complete internal overflow or underflow processing */ |
| 2282 | if (status & (DEC_Overflow|DEC_Underflow)) { |
| 2283 | #if DECSUBSET |
| 2284 | /* If subset, and power was negative, reverse the kind of -erflow */ |
| 2285 | /* [1/x not yet done] */ |
| 2286 | if (!set->extended && decNumberIsNegative(rhs)) { |
| 2287 | if (status & DEC_Overflow) |
| 2288 | status^=DEC_Overflow | DEC_Underflow | DEC_Subnormal; |
| 2289 | else { /* trickier -- Underflow may or may not be set */ |
| 2290 | status&=~(DEC_Underflow | DEC_Subnormal); /* [one or both] */ |
| 2291 | status|=DEC_Overflow; |
| 2292 | } |
| 2293 | } |
| 2294 | #endif |
| 2295 | dac->bits=(dac->bits & ~DECNEG) | bits; /* force correct sign */ |
| 2296 | /* round subnormals [to set.digits rather than aset.digits] */ |
| 2297 | /* or set overflow result similarly as required */ |
| 2298 | decFinalize(dac, set, &residue, &status); |
| 2299 | decNumberCopy(res, dac); /* copy to result (is now OK length) */ |
| 2300 | break; |
| 2301 | } |
| 2302 | |
| 2303 | #if DECSUBSET |
| 2304 | if (!set->extended && /* subset math */ |
| 2305 | decNumberIsNegative(rhs)) { /* was a **-n [hence digits>0] */ |
| 2306 | /* so divide result into 1 [dac=1/dac] */ |
| 2307 | decDivideOp(dac, &dnOne, dac, &aset, DIVIDE, &status); |
| 2308 | } |
| 2309 | #endif |
| 2310 | } /* rhs integer path */ |
| 2311 | |
| 2312 | /* reduce result to the requested length and copy to result */ |
| 2313 | decCopyFit(res, dac, set, &residue, &status); |
| 2314 | decFinish(res, set, &residue, &status); /* final cleanup */ |
| 2315 | #if DECSUBSET |
| 2316 | if (!set->extended) decTrim(res, set, 0, &dropped); /* trailing zeros */ |
| 2317 | #endif |
| 2318 | } while(0); /* end protected */ |
| 2319 | |
| 2320 | if (allocdac!=NULL) free(allocdac); /* drop any storage used */ |
| 2321 | if (allocinv!=NULL) free(allocinv); /* .. */ |
| 2322 | #if DECSUBSET |
| 2323 | if (alloclhs!=NULL) free(alloclhs); /* .. */ |
| 2324 | if (allocrhs!=NULL) free(allocrhs); /* .. */ |
| 2325 | #endif |
| 2326 | if (status!=0) decStatus(res, status, set); |
| 2327 | #if DECCHECK |
| 2328 | decCheckInexact(res, set); |
| 2329 | #endif |
| 2330 | return res; |
| 2331 | } /* decNumberPower */ |
| 2332 | |
| 2333 | /* ------------------------------------------------------------------ */ |
| 2334 | /* decNumberQuantize -- force exponent to requested value */ |
| 2335 | /* */ |
| 2336 | /* This computes C = op(A, B), where op adjusts the coefficient */ |
| 2337 | /* of C (by rounding or shifting) such that the exponent (-scale) */ |
| 2338 | /* of C has exponent of B. The numerical value of C will equal A, */ |
| 2339 | /* except for the effects of any rounding that occurred. */ |
| 2340 | /* */ |
| 2341 | /* res is C, the result. C may be A or B */ |
| 2342 | /* lhs is A, the number to adjust */ |
| 2343 | /* rhs is B, the number with exponent to match */ |
| 2344 | /* set is the context */ |
| 2345 | /* */ |
| 2346 | /* C must have space for set->digits digits. */ |
| 2347 | /* */ |
| 2348 | /* Unless there is an error or the result is infinite, the exponent */ |
| 2349 | /* after the operation is guaranteed to be equal to that of B. */ |
| 2350 | /* ------------------------------------------------------------------ */ |
| 2351 | decNumber * decNumberQuantize(decNumber *res, const decNumber *lhs, |
| 2352 | const decNumber *rhs, decContext *set) { |
| 2353 | uInt status=0; /* accumulator */ |
| 2354 | decQuantizeOp(res, lhs, rhs, set, 1, &status); |
| 2355 | if (status!=0) decStatus(res, status, set); |
| 2356 | return res; |
| 2357 | } /* decNumberQuantize */ |
| 2358 | |
| 2359 | /* ------------------------------------------------------------------ */ |
| 2360 | /* decNumberReduce -- remove trailing zeros */ |
| 2361 | /* */ |
| 2362 | /* This computes C = 0 + A, and normalizes the result */ |
| 2363 | /* */ |
| 2364 | /* res is C, the result. C may be A */ |
| 2365 | /* rhs is A */ |
| 2366 | /* set is the context */ |
| 2367 | /* */ |
| 2368 | /* C must have space for set->digits digits. */ |
| 2369 | /* ------------------------------------------------------------------ */ |
| 2370 | /* Previously known as Normalize */ |
| 2371 | decNumber * decNumberNormalize(decNumber *res, const decNumber *rhs, |
| 2372 | decContext *set) { |
| 2373 | return decNumberReduce(res, rhs, set); |
| 2374 | } /* decNumberNormalize */ |
| 2375 | |
| 2376 | decNumber * decNumberReduce(decNumber *res, const decNumber *rhs, |
| 2377 | decContext *set) { |
| 2378 | #if DECSUBSET |
| 2379 | decNumber *allocrhs=NULL; /* non-NULL if rounded rhs allocated */ |
| 2380 | #endif |
| 2381 | uInt status=0; /* as usual */ |
| 2382 | Int residue=0; /* as usual */ |
| 2383 | Int dropped; /* work */ |
| 2384 | |
| 2385 | #if DECCHECK |
| 2386 | if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; |
| 2387 | #endif |
| 2388 | |
| 2389 | do { /* protect allocated storage */ |
| 2390 | #if DECSUBSET |
| 2391 | if (!set->extended) { |
| 2392 | /* reduce operand and set lostDigits status, as needed */ |
| 2393 | if (rhs->digits>set->digits) { |
| 2394 | allocrhs=decRoundOperand(rhs, set, &status); |
| 2395 | if (allocrhs==NULL) break; |
| 2396 | rhs=allocrhs; |
| 2397 | } |
| 2398 | } |
| 2399 | #endif |
| 2400 | /* [following code does not require input rounding] */ |
| 2401 | |
| 2402 | /* Infinities copy through; NaNs need usual treatment */ |
| 2403 | if (decNumberIsNaN(rhs)) { |
| 2404 | decNaNs(res, rhs, NULL, set, &status); |
| 2405 | break; |
| 2406 | } |
| 2407 | |
| 2408 | /* reduce result to the requested length and copy to result */ |
| 2409 | decCopyFit(res, rhs, set, &residue, &status); /* copy & round */ |
| 2410 | decFinish(res, set, &residue, &status); /* cleanup/set flags */ |
| 2411 | decTrim(res, set, 1, &dropped); /* normalize in place */ |
| 2412 | } while(0); /* end protected */ |
| 2413 | |
| 2414 | #if DECSUBSET |
| 2415 | if (allocrhs !=NULL) free(allocrhs); /* .. */ |
| 2416 | #endif |
| 2417 | if (status!=0) decStatus(res, status, set);/* then report status */ |
| 2418 | return res; |
| 2419 | } /* decNumberReduce */ |
| 2420 | |
| 2421 | /* ------------------------------------------------------------------ */ |
| 2422 | /* decNumberRescale -- force exponent to requested value */ |
| 2423 | /* */ |
| 2424 | /* This computes C = op(A, B), where op adjusts the coefficient */ |
| 2425 | /* of C (by rounding or shifting) such that the exponent (-scale) */ |
| 2426 | /* of C has the value B. The numerical value of C will equal A, */ |
| 2427 | /* except for the effects of any rounding that occurred. */ |
| 2428 | /* */ |
| 2429 | /* res is C, the result. C may be A or B */ |
| 2430 | /* lhs is A, the number to adjust */ |
| 2431 | /* rhs is B, the requested exponent */ |
| 2432 | /* set is the context */ |
| 2433 | /* */ |
| 2434 | /* C must have space for set->digits digits. */ |
| 2435 | /* */ |
| 2436 | /* Unless there is an error or the result is infinite, the exponent */ |
| 2437 | /* after the operation is guaranteed to be equal to B. */ |
| 2438 | /* ------------------------------------------------------------------ */ |
| 2439 | decNumber * decNumberRescale(decNumber *res, const decNumber *lhs, |
| 2440 | const decNumber *rhs, decContext *set) { |
| 2441 | uInt status=0; /* accumulator */ |
| 2442 | decQuantizeOp(res, lhs, rhs, set, 0, &status); |
| 2443 | if (status!=0) decStatus(res, status, set); |
| 2444 | return res; |
| 2445 | } /* decNumberRescale */ |
| 2446 | |
| 2447 | /* ------------------------------------------------------------------ */ |
| 2448 | /* decNumberRemainder -- divide and return remainder */ |
| 2449 | /* */ |
| 2450 | /* This computes C = A % B */ |
| 2451 | /* */ |
| 2452 | /* res is C, the result. C may be A and/or B (e.g., X=X%X) */ |
| 2453 | /* lhs is A */ |
| 2454 | /* rhs is B */ |
| 2455 | /* set is the context */ |
| 2456 | /* */ |
| 2457 | /* C must have space for set->digits digits. */ |
| 2458 | /* ------------------------------------------------------------------ */ |
| 2459 | decNumber * decNumberRemainder(decNumber *res, const decNumber *lhs, |
| 2460 | const decNumber *rhs, decContext *set) { |
| 2461 | uInt status=0; /* accumulator */ |
| 2462 | decDivideOp(res, lhs, rhs, set, REMAINDER, &status); |
| 2463 | if (status!=0) decStatus(res, status, set); |
| 2464 | #if DECCHECK |
| 2465 | decCheckInexact(res, set); |
| 2466 | #endif |
| 2467 | return res; |
| 2468 | } /* decNumberRemainder */ |
| 2469 | |
| 2470 | /* ------------------------------------------------------------------ */ |
| 2471 | /* decNumberRemainderNear -- divide and return remainder from nearest */ |
| 2472 | /* */ |
| 2473 | /* This computes C = A % B, where % is the IEEE remainder operator */ |
| 2474 | /* */ |
| 2475 | /* res is C, the result. C may be A and/or B (e.g., X=X%X) */ |
| 2476 | /* lhs is A */ |
| 2477 | /* rhs is B */ |
| 2478 | /* set is the context */ |
| 2479 | /* */ |
| 2480 | /* C must have space for set->digits digits. */ |
| 2481 | /* ------------------------------------------------------------------ */ |
| 2482 | decNumber * decNumberRemainderNear(decNumber *res, const decNumber *lhs, |
| 2483 | const decNumber *rhs, decContext *set) { |
| 2484 | uInt status=0; /* accumulator */ |
| 2485 | decDivideOp(res, lhs, rhs, set, REMNEAR, &status); |
| 2486 | if (status!=0) decStatus(res, status, set); |
| 2487 | #if DECCHECK |
| 2488 | decCheckInexact(res, set); |
| 2489 | #endif |
| 2490 | return res; |
| 2491 | } /* decNumberRemainderNear */ |
| 2492 | |
| 2493 | /* ------------------------------------------------------------------ */ |
| 2494 | /* decNumberRotate -- rotate the coefficient of a Number left/right */ |
| 2495 | /* */ |
| 2496 | /* This computes C = A rot B (in base ten and rotating set->digits */ |
| 2497 | /* digits). */ |
| 2498 | /* */ |
| 2499 | /* res is C, the result. C may be A and/or B (e.g., X=XrotX) */ |
| 2500 | /* lhs is A */ |
| 2501 | /* rhs is B, the number of digits to rotate (-ve to right) */ |
| 2502 | /* set is the context */ |
| 2503 | /* */ |
| 2504 | /* The digits of the coefficient of A are rotated to the left (if B */ |
| 2505 | /* is positive) or to the right (if B is negative) without adjusting */ |
| 2506 | /* the exponent or the sign of A. If lhs->digits is less than */ |
| 2507 | /* set->digits the coefficient is padded with zeros on the left */ |
| 2508 | /* before the rotate. Any leading zeros in the result are removed */ |
| 2509 | /* as usual. */ |
| 2510 | /* */ |
| 2511 | /* B must be an integer (q=0) and in the range -set->digits through */ |
| 2512 | /* +set->digits. */ |
| 2513 | /* C must have space for set->digits digits. */ |
| 2514 | /* NaNs are propagated as usual. Infinities are unaffected (but */ |
| 2515 | /* B must be valid). No status is set unless B is invalid or an */ |
| 2516 | /* operand is an sNaN. */ |
| 2517 | /* ------------------------------------------------------------------ */ |
| 2518 | decNumber * decNumberRotate(decNumber *res, const decNumber *lhs, |
| 2519 | const decNumber *rhs, decContext *set) { |
| 2520 | uInt status=0; /* accumulator */ |
| 2521 | Int rotate; /* rhs as an Int */ |
| 2522 | |
| 2523 | #if DECCHECK |
| 2524 | if (decCheckOperands(res, lhs, rhs, set)) return res; |
| 2525 | #endif |
| 2526 | |
| 2527 | /* NaNs propagate as normal */ |
| 2528 | if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs)) |
| 2529 | decNaNs(res, lhs, rhs, set, &status); |
| 2530 | /* rhs must be an integer */ |
| 2531 | else if (decNumberIsInfinite(rhs) || rhs->exponent!=0) |
| 2532 | status=DEC_Invalid_operation; |
| 2533 | else { /* both numeric, rhs is an integer */ |
| 2534 | rotate=decGetInt(rhs); /* [cannot fail] */ |
| 2535 | if (rotate==BADINT /* something bad .. */ |
| 2536 | || rotate==BIGODD || rotate==BIGEVEN /* .. very big .. */ |
| 2537 | || abs(rotate)>set->digits) /* .. or out of range */ |
| 2538 | status=DEC_Invalid_operation; |
| 2539 | else { /* rhs is OK */ |
| 2540 | decNumberCopy(res, lhs); |
| 2541 | /* convert -ve rotate to equivalent positive rotation */ |
| 2542 | if (rotate<0) rotate=set->digits+rotate; |
| 2543 | if (rotate!=0 && rotate!=set->digits /* zero or full rotation */ |
| 2544 | && !decNumberIsInfinite(res)) { /* lhs was infinite */ |
| 2545 | /* left-rotate to do; 0 < rotate < set->digits */ |
| 2546 | uInt units, shift; /* work */ |
| 2547 | uInt msudigits; /* digits in result msu */ |
| 2548 | Unit *msu=res->lsu+D2U(res->digits)-1; /* current msu */ |
| 2549 | Unit *msumax=res->lsu+D2U(set->digits)-1; /* rotation msu */ |
| 2550 | for (msu++; msu<=msumax; msu++) *msu=0; /* ensure high units=0 */ |
| 2551 | res->digits=set->digits; /* now full-length */ |
| 2552 | msudigits=MSUDIGITS(res->digits); /* actual digits in msu */ |
| 2553 | |
| 2554 | /* rotation here is done in-place, in three steps */ |
| 2555 | /* 1. shift all to least up to one unit to unit-align final */ |
| 2556 | /* lsd [any digits shifted out are rotated to the left, */ |
| 2557 | /* abutted to the original msd (which may require split)] */ |
| 2558 | /* */ |
| 2559 | /* [if there are no whole units left to rotate, the */ |
| 2560 | /* rotation is now complete] */ |
| 2561 | /* */ |
| 2562 | /* 2. shift to least, from below the split point only, so that */ |
| 2563 | /* the final msd is in the right place in its Unit [any */ |
| 2564 | /* digits shifted out will fit exactly in the current msu, */ |
| 2565 | /* left aligned, no split required] */ |
| 2566 | /* */ |
| 2567 | /* 3. rotate all the units by reversing left part, right */ |
| 2568 | /* part, and then whole */ |
| 2569 | /* */ |
| 2570 | /* example: rotate right 8 digits (2 units + 2), DECDPUN=3. */ |
| 2571 | /* */ |
| 2572 | /* start: 00a bcd efg hij klm npq */ |
| 2573 | /* */ |
| 2574 | /* 1a 000 0ab cde fgh|ijk lmn [pq saved] */ |
| 2575 | /* 1b 00p qab cde fgh|ijk lmn */ |
| 2576 | /* */ |
| 2577 | /* 2a 00p qab cde fgh|00i jkl [mn saved] */ |
| 2578 | /* 2b mnp qab cde fgh|00i jkl */ |
| 2579 | /* */ |
| 2580 | /* 3a fgh cde qab mnp|00i jkl */ |
| 2581 | /* 3b fgh cde qab mnp|jkl 00i */ |
| 2582 | /* 3c 00i jkl mnp qab cde fgh */ |
| 2583 | |
| 2584 | /* Step 1: amount to shift is the partial right-rotate count */ |
| 2585 | rotate=set->digits-rotate; /* make it right-rotate */ |
| 2586 | units=rotate/DECDPUN; /* whole units to rotate */ |
| 2587 | shift=rotate%DECDPUN; /* left-over digits count */ |
| 2588 | if (shift>0) { /* not an exact number of units */ |
| 2589 | uInt save=res->lsu[0]%powers[shift]; /* save low digit(s) */ |
| 2590 | decShiftToLeast(res->lsu, D2U(res->digits), shift); |
| 2591 | if (shift>msudigits) { /* msumax-1 needs >0 digits */ |
| 2592 | uInt rem=save%powers[shift-msudigits];/* split save */ |
| 2593 | *msumax=(Unit)(save/powers[shift-msudigits]); /* and insert */ |
| 2594 | *(msumax-1)=*(msumax-1) |
| 2595 | +(Unit)(rem*powers[DECDPUN-(shift-msudigits)]); /* .. */ |
| 2596 | } |
| 2597 | else { /* all fits in msumax */ |
| 2598 | *msumax=*msumax+(Unit)(save*powers[msudigits-shift]); /* [maybe *1] */ |
| 2599 | } |
| 2600 | } /* digits shift needed */ |
| 2601 | |
| 2602 | /* If whole units to rotate... */ |
| 2603 | if (units>0) { /* some to do */ |
| 2604 | /* Step 2: the units to touch are the whole ones in rotate, */ |
| 2605 | /* if any, and the shift is DECDPUN-msudigits (which may be */ |
| 2606 | /* 0, again) */ |
| 2607 | shift=DECDPUN-msudigits; |
| 2608 | if (shift>0) { /* not an exact number of units */ |
| 2609 | uInt save=res->lsu[0]%powers[shift]; /* save low digit(s) */ |
| 2610 | decShiftToLeast(res->lsu, units, shift); |
| 2611 | *msumax=*msumax+(Unit)(save*powers[msudigits]); |
| 2612 | } /* partial shift needed */ |
| 2613 | |
| 2614 | /* Step 3: rotate the units array using triple reverse */ |
| 2615 | /* (reversing is easy and fast) */ |
| 2616 | decReverse(res->lsu+units, msumax); /* left part */ |
| 2617 | decReverse(res->lsu, res->lsu+units-1); /* right part */ |
| 2618 | decReverse(res->lsu, msumax); /* whole */ |
| 2619 | } /* whole units to rotate */ |
| 2620 | /* the rotation may have left an undetermined number of zeros */ |
| 2621 | /* on the left, so true length needs to be calculated */ |
| 2622 | res->digits=decGetDigits(res->lsu, msumax-res->lsu+1); |
| 2623 | } /* rotate needed */ |
| 2624 | } /* rhs OK */ |
| 2625 | } /* numerics */ |
| 2626 | if (status!=0) decStatus(res, status, set); |
| 2627 | return res; |
| 2628 | } /* decNumberRotate */ |
| 2629 | |
| 2630 | /* ------------------------------------------------------------------ */ |
| 2631 | /* decNumberSameQuantum -- test for equal exponents */ |
| 2632 | /* */ |
| 2633 | /* res is the result number, which will contain either 0 or 1 */ |
| 2634 | /* lhs is a number to test */ |
| 2635 | /* rhs is the second (usually a pattern) */ |
| 2636 | /* */ |
| 2637 | /* No errors are possible and no context is needed. */ |
| 2638 | /* ------------------------------------------------------------------ */ |
| 2639 | decNumber * decNumberSameQuantum(decNumber *res, const decNumber *lhs, |
| 2640 | const decNumber *rhs) { |
| 2641 | Unit ret=0; /* return value */ |
| 2642 | |
| 2643 | #if DECCHECK |
| 2644 | if (decCheckOperands(res, lhs, rhs, DECUNCONT)) return res; |
| 2645 | #endif |
| 2646 | |
| 2647 | if (SPECIALARGS) { |
| 2648 | if (decNumberIsNaN(lhs) && decNumberIsNaN(rhs)) ret=1; |
| 2649 | else if (decNumberIsInfinite(lhs) && decNumberIsInfinite(rhs)) ret=1; |
| 2650 | /* [anything else with a special gives 0] */ |
| 2651 | } |
| 2652 | else if (lhs->exponent==rhs->exponent) ret=1; |
| 2653 | |
| 2654 | decNumberZero(res); /* OK to overwrite an operand now */ |
| 2655 | *res->lsu=ret; |
| 2656 | return res; |
| 2657 | } /* decNumberSameQuantum */ |
| 2658 | |
| 2659 | /* ------------------------------------------------------------------ */ |
| 2660 | /* decNumberScaleB -- multiply by a power of 10 */ |
| 2661 | /* */ |
| 2662 | /* This computes C = A x 10**B where B is an integer (q=0) with */ |
| 2663 | /* maximum magnitude 2*(emax+digits) */ |
| 2664 | /* */ |
| 2665 | /* res is C, the result. C may be A or B */ |
| 2666 | /* lhs is A, the number to adjust */ |
| 2667 | /* rhs is B, the requested power of ten to use */ |
| 2668 | /* set is the context */ |
| 2669 | /* */ |
| 2670 | /* C must have space for set->digits digits. */ |
| 2671 | /* */ |
| 2672 | /* The result may underflow or overflow. */ |
| 2673 | /* ------------------------------------------------------------------ */ |
| 2674 | decNumber * decNumberScaleB(decNumber *res, const decNumber *lhs, |
| 2675 | const decNumber *rhs, decContext *set) { |
| 2676 | Int reqexp; /* requested exponent change [B] */ |
| 2677 | uInt status=0; /* accumulator */ |
| 2678 | Int residue; /* work */ |
| 2679 | |
| 2680 | #if DECCHECK |
| 2681 | if (decCheckOperands(res, lhs, rhs, set)) return res; |
| 2682 | #endif |
| 2683 | |
| 2684 | /* Handle special values except lhs infinite */ |
| 2685 | if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs)) |
| 2686 | decNaNs(res, lhs, rhs, set, &status); |
| 2687 | /* rhs must be an integer */ |
| 2688 | else if (decNumberIsInfinite(rhs) || rhs->exponent!=0) |
| 2689 | status=DEC_Invalid_operation; |
| 2690 | else { |
| 2691 | /* lhs is a number; rhs is a finite with q==0 */ |
| 2692 | reqexp=decGetInt(rhs); /* [cannot fail] */ |
| 2693 | if (reqexp==BADINT /* something bad .. */ |
| 2694 | || reqexp==BIGODD || reqexp==BIGEVEN /* .. very big .. */ |
| 2695 | || abs(reqexp)>(2*(set->digits+set->emax))) /* .. or out of range */ |
| 2696 | status=DEC_Invalid_operation; |
| 2697 | else { /* rhs is OK */ |
| 2698 | decNumberCopy(res, lhs); /* all done if infinite lhs */ |
| 2699 | if (!decNumberIsInfinite(res)) { /* prepare to scale */ |
| 2700 | res->exponent+=reqexp; /* adjust the exponent */ |
| 2701 | residue=0; |
| 2702 | decFinalize(res, set, &residue, &status); /* .. and check */ |
| 2703 | } /* finite LHS */ |
| 2704 | } /* rhs OK */ |
| 2705 | } /* rhs finite */ |
| 2706 | if (status!=0) decStatus(res, status, set); |
| 2707 | return res; |
| 2708 | } /* decNumberScaleB */ |
| 2709 | |
| 2710 | /* ------------------------------------------------------------------ */ |
| 2711 | /* decNumberShift -- shift the coefficient of a Number left or right */ |
| 2712 | /* */ |
| 2713 | /* This computes C = A << B or C = A >> -B (in base ten). */ |
| 2714 | /* */ |
| 2715 | /* res is C, the result. C may be A and/or B (e.g., X=X<<X) */ |
| 2716 | /* lhs is A */ |
| 2717 | /* rhs is B, the number of digits to shift (-ve to right) */ |
| 2718 | /* set is the context */ |
| 2719 | /* */ |
| 2720 | /* The digits of the coefficient of A are shifted to the left (if B */ |
| 2721 | /* is positive) or to the right (if B is negative) without adjusting */ |
| 2722 | /* the exponent or the sign of A. */ |
| 2723 | /* */ |
| 2724 | /* B must be an integer (q=0) and in the range -set->digits through */ |
| 2725 | /* +set->digits. */ |
| 2726 | /* C must have space for set->digits digits. */ |
| 2727 | /* NaNs are propagated as usual. Infinities are unaffected (but */ |
| 2728 | /* B must be valid). No status is set unless B is invalid or an */ |
| 2729 | /* operand is an sNaN. */ |
| 2730 | /* ------------------------------------------------------------------ */ |
| 2731 | decNumber * decNumberShift(decNumber *res, const decNumber *lhs, |
| 2732 | const decNumber *rhs, decContext *set) { |
| 2733 | uInt status=0; /* accumulator */ |
| 2734 | Int shift; /* rhs as an Int */ |
| 2735 | |
| 2736 | #if DECCHECK |
| 2737 | if (decCheckOperands(res, lhs, rhs, set)) return res; |
| 2738 | #endif |
| 2739 | |
| 2740 | /* NaNs propagate as normal */ |
| 2741 | if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs)) |
| 2742 | decNaNs(res, lhs, rhs, set, &status); |
| 2743 | /* rhs must be an integer */ |
| 2744 | else if (decNumberIsInfinite(rhs) || rhs->exponent!=0) |
| 2745 | status=DEC_Invalid_operation; |
| 2746 | else { /* both numeric, rhs is an integer */ |
| 2747 | shift=decGetInt(rhs); /* [cannot fail] */ |
| 2748 | if (shift==BADINT /* something bad .. */ |
| 2749 | || shift==BIGODD || shift==BIGEVEN /* .. very big .. */ |
| 2750 | || abs(shift)>set->digits) /* .. or out of range */ |
| 2751 | status=DEC_Invalid_operation; |
| 2752 | else { /* rhs is OK */ |
| 2753 | decNumberCopy(res, lhs); |
| 2754 | if (shift!=0 && !decNumberIsInfinite(res)) { /* something to do */ |
| 2755 | if (shift>0) { /* to left */ |
| 2756 | if (shift==set->digits) { /* removing all */ |
| 2757 | *res->lsu=0; /* so place 0 */ |
| 2758 | res->digits=1; /* .. */ |
| 2759 | } |
| 2760 | else { /* */ |
| 2761 | /* first remove leading digits if necessary */ |
| 2762 | if (res->digits+shift>set->digits) { |
| 2763 | decDecap(res, res->digits+shift-set->digits); |
| 2764 | /* that updated res->digits; may have gone to 1 (for a */ |
| 2765 | /* single digit or for zero */ |
| 2766 | } |
| 2767 | if (res->digits>1 || *res->lsu) /* if non-zero.. */ |
| 2768 | res->digits=decShiftToMost(res->lsu, res->digits, shift); |
| 2769 | } /* partial left */ |
| 2770 | } /* left */ |
| 2771 | else { /* to right */ |
| 2772 | if (-shift>=res->digits) { /* discarding all */ |
| 2773 | *res->lsu=0; /* so place 0 */ |
| 2774 | res->digits=1; /* .. */ |
| 2775 | } |
| 2776 | else { |
| 2777 | decShiftToLeast(res->lsu, D2U(res->digits), -shift); |
| 2778 | res->digits-=(-shift); |
| 2779 | } |
| 2780 | } /* to right */ |
| 2781 | } /* non-0 non-Inf shift */ |
| 2782 | } /* rhs OK */ |
| 2783 | } /* numerics */ |
| 2784 | if (status!=0) decStatus(res, status, set); |
| 2785 | return res; |
| 2786 | } /* decNumberShift */ |
| 2787 | |
| 2788 | /* ------------------------------------------------------------------ */ |
| 2789 | /* decNumberSquareRoot -- square root operator */ |
| 2790 | /* */ |
| 2791 | /* This computes C = squareroot(A) */ |
| 2792 | /* */ |
| 2793 | /* res is C, the result. C may be A */ |
| 2794 | /* rhs is A */ |
| 2795 | /* set is the context; note that rounding mode has no effect */ |
| 2796 | /* */ |
| 2797 | /* C must have space for set->digits digits. */ |
| 2798 | /* ------------------------------------------------------------------ */ |
| 2799 | /* This uses the following varying-precision algorithm in: */ |
| 2800 | /* */ |
| 2801 | /* Properly Rounded Variable Precision Square Root, T. E. Hull and */ |
| 2802 | /* A. Abrham, ACM Transactions on Mathematical Software, Vol 11 #3, */ |
| 2803 | /* pp229-237, ACM, September 1985. */ |
| 2804 | /* */ |
| 2805 | /* The square-root is calculated using Newton's method, after which */ |
| 2806 | /* a check is made to ensure the result is correctly rounded. */ |
| 2807 | /* */ |
| 2808 | /* % [Reformatted original Numerical Turing source code follows.] */ |
| 2809 | /* function sqrt(x : real) : real */ |
| 2810 | /* % sqrt(x) returns the properly rounded approximation to the square */ |
| 2811 | /* % root of x, in the precision of the calling environment, or it */ |
| 2812 | /* % fails if x < 0. */ |
| 2813 | /* % t e hull and a abrham, august, 1984 */ |
| 2814 | /* if x <= 0 then */ |
| 2815 | /* if x < 0 then */ |
| 2816 | /* assert false */ |
| 2817 | /* else */ |
| 2818 | /* result 0 */ |
| 2819 | /* end if */ |
| 2820 | /* end if */ |
| 2821 | /* var f := setexp(x, 0) % fraction part of x [0.1 <= x < 1] */ |
| 2822 | /* var e := getexp(x) % exponent part of x */ |
| 2823 | /* var approx : real */ |
| 2824 | /* if e mod 2 = 0 then */ |
| 2825 | /* approx := .259 + .819 * f % approx to root of f */ |
| 2826 | /* else */ |
| 2827 | /* f := f/l0 % adjustments */ |
| 2828 | /* e := e + 1 % for odd */ |
| 2829 | /* approx := .0819 + 2.59 * f % exponent */ |
| 2830 | /* end if */ |
| 2831 | /* */ |
| 2832 | /* var p:= 3 */ |
| 2833 | /* const maxp := currentprecision + 2 */ |
| 2834 | /* loop */ |
| 2835 | /* p := min(2*p - 2, maxp) % p = 4,6,10, . . . , maxp */ |
| 2836 | /* precision p */ |
| 2837 | /* approx := .5 * (approx + f/approx) */ |
| 2838 | /* exit when p = maxp */ |
| 2839 | /* end loop */ |
| 2840 | /* */ |
| 2841 | /* % approx is now within 1 ulp of the properly rounded square root */ |
| 2842 | /* % of f; to ensure proper rounding, compare squares of (approx - */ |
| 2843 | /* % l/2 ulp) and (approx + l/2 ulp) with f. */ |
| 2844 | /* p := currentprecision */ |
| 2845 | /* begin */ |
| 2846 | /* precision p + 2 */ |
| 2847 | /* const approxsubhalf := approx - setexp(.5, -p) */ |
| 2848 | /* if mulru(approxsubhalf, approxsubhalf) > f then */ |
| 2849 | /* approx := approx - setexp(.l, -p + 1) */ |
| 2850 | /* else */ |
| 2851 | /* const approxaddhalf := approx + setexp(.5, -p) */ |
| 2852 | /* if mulrd(approxaddhalf, approxaddhalf) < f then */ |
| 2853 | /* approx := approx + setexp(.l, -p + 1) */ |
| 2854 | /* end if */ |
| 2855 | /* end if */ |
| 2856 | /* end */ |
| 2857 | /* result setexp(approx, e div 2) % fix exponent */ |
| 2858 | /* end sqrt */ |
| 2859 | /* ------------------------------------------------------------------ */ |
| 2860 | decNumber * decNumberSquareRoot(decNumber *res, const decNumber *rhs, |
| 2861 | decContext *set) { |
| 2862 | decContext workset, approxset; /* work contexts */ |
| 2863 | decNumber dzero; /* used for constant zero */ |
| 2864 | Int maxp; /* largest working precision */ |
| 2865 | Int workp; /* working precision */ |
| 2866 | Int residue=0; /* rounding residue */ |
| 2867 | uInt status=0, ignore=0; /* status accumulators */ |
| 2868 | uInt rstatus; /* .. */ |
| 2869 | Int exp; /* working exponent */ |
| 2870 | Int ideal; /* ideal (preferred) exponent */ |
| 2871 | Int needbytes; /* work */ |
| 2872 | Int dropped; /* .. */ |
| 2873 | |
| 2874 | #if DECSUBSET |
| 2875 | decNumber *allocrhs=NULL; /* non-NULL if rounded rhs allocated */ |
| 2876 | #endif |
| 2877 | /* buffer for f [needs +1 in case DECBUFFER 0] */ |
| 2878 | decNumber buff[D2N(DECBUFFER+1)]; |
| 2879 | /* buffer for a [needs +2 to match likely maxp] */ |
| 2880 | decNumber bufa[D2N(DECBUFFER+2)]; |
| 2881 | /* buffer for temporary, b [must be same size as a] */ |
| 2882 | decNumber bufb[D2N(DECBUFFER+2)]; |
| 2883 | decNumber *allocbuff=NULL; /* -> allocated buff, iff allocated */ |
| 2884 | decNumber *allocbufa=NULL; /* -> allocated bufa, iff allocated */ |
| 2885 | decNumber *allocbufb=NULL; /* -> allocated bufb, iff allocated */ |
| 2886 | decNumber *f=buff; /* reduced fraction */ |
| 2887 | decNumber *a=bufa; /* approximation to result */ |
| 2888 | decNumber *b=bufb; /* intermediate result */ |
| 2889 | /* buffer for temporary variable, up to 3 digits */ |
| 2890 | decNumber buft[D2N(3)]; |
| 2891 | decNumber *t=buft; /* up-to-3-digit constant or work */ |
| 2892 | |
| 2893 | #if DECCHECK |
| 2894 | if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; |
| 2895 | #endif |
| 2896 | |
| 2897 | do { /* protect allocated storage */ |
| 2898 | #if DECSUBSET |
| 2899 | if (!set->extended) { |
| 2900 | /* reduce operand and set lostDigits status, as needed */ |
| 2901 | if (rhs->digits>set->digits) { |
| 2902 | allocrhs=decRoundOperand(rhs, set, &status); |
| 2903 | if (allocrhs==NULL) break; |
| 2904 | /* [Note: 'f' allocation below could reuse this buffer if */ |
| 2905 | /* used, but as this is rare they are kept separate for clarity.] */ |
| 2906 | rhs=allocrhs; |
| 2907 | } |
| 2908 | } |
| 2909 | #endif |
| 2910 | /* [following code does not require input rounding] */ |
| 2911 | |
| 2912 | /* handle infinities and NaNs */ |
| 2913 | if (SPECIALARG) { |
| 2914 | if (decNumberIsInfinite(rhs)) { /* an infinity */ |
| 2915 | if (decNumberIsNegative(rhs)) status|=DEC_Invalid_operation; |
| 2916 | else decNumberCopy(res, rhs); /* +Infinity */ |
| 2917 | } |
| 2918 | else decNaNs(res, rhs, NULL, set, &status); /* a NaN */ |
| 2919 | break; |
| 2920 | } |
| 2921 | |
| 2922 | /* calculate the ideal (preferred) exponent [floor(exp/2)] */ |
| 2923 | /* [We would like to write: ideal=rhs->exponent>>1, but this */ |
| 2924 | /* generates a compiler warning. Generated code is the same.] */ |
| 2925 | ideal=(rhs->exponent&~1)/2; /* target */ |
| 2926 | |
| 2927 | /* handle zeros */ |
| 2928 | if (ISZERO(rhs)) { |
| 2929 | decNumberCopy(res, rhs); /* could be 0 or -0 */ |
| 2930 | res->exponent=ideal; /* use the ideal [safe] */ |
| 2931 | /* use decFinish to clamp any out-of-range exponent, etc. */ |
| 2932 | decFinish(res, set, &residue, &status); |
| 2933 | break; |
| 2934 | } |
| 2935 | |
| 2936 | /* any other -x is an oops */ |
| 2937 | if (decNumberIsNegative(rhs)) { |
| 2938 | status|=DEC_Invalid_operation; |
| 2939 | break; |
| 2940 | } |
| 2941 | |
| 2942 | /* space is needed for three working variables */ |
| 2943 | /* f -- the same precision as the RHS, reduced to 0.01->0.99... */ |
| 2944 | /* a -- Hull's approximation -- precision, when assigned, is */ |
| 2945 | /* currentprecision+1 or the input argument precision, */ |
| 2946 | /* whichever is larger (+2 for use as temporary) */ |
| 2947 | /* b -- intermediate temporary result (same size as a) */ |
| 2948 | /* if any is too long for local storage, then allocate */ |
| 2949 | workp=MAXI(set->digits+1, rhs->digits); /* actual rounding precision */ |
| 2950 | maxp=workp+2; /* largest working precision */ |
| 2951 | |
| 2952 | needbytes=sizeof(decNumber)+(D2U(rhs->digits)-1)*sizeof(Unit); |
| 2953 | if (needbytes>(Int)sizeof(buff)) { |
| 2954 | allocbuff=(decNumber *)malloc(needbytes); |
| 2955 | if (allocbuff==NULL) { /* hopeless -- abandon */ |
| 2956 | status|=DEC_Insufficient_storage; |
| 2957 | break;} |
| 2958 | f=allocbuff; /* use the allocated space */ |
| 2959 | } |
| 2960 | /* a and b both need to be able to hold a maxp-length number */ |
| 2961 | needbytes=sizeof(decNumber)+(D2U(maxp)-1)*sizeof(Unit); |
| 2962 | if (needbytes>(Int)sizeof(bufa)) { /* [same applies to b] */ |
| 2963 | allocbufa=(decNumber *)malloc(needbytes); |
| 2964 | allocbufb=(decNumber *)malloc(needbytes); |
| 2965 | if (allocbufa==NULL || allocbufb==NULL) { /* hopeless */ |
| 2966 | status|=DEC_Insufficient_storage; |
| 2967 | break;} |
| 2968 | a=allocbufa; /* use the allocated spaces */ |
| 2969 | b=allocbufb; /* .. */ |
| 2970 | } |
| 2971 | |
| 2972 | /* copy rhs -> f, save exponent, and reduce so 0.1 <= f < 1 */ |
| 2973 | decNumberCopy(f, rhs); |
| 2974 | exp=f->exponent+f->digits; /* adjusted to Hull rules */ |
| 2975 | f->exponent=-(f->digits); /* to range */ |
| 2976 | |
| 2977 | /* set up working context */ |
| 2978 | decContextDefault(&workset, DEC_INIT_DECIMAL64); |
| 2979 | |
| 2980 | /* [Until further notice, no error is possible and status bits */ |
| 2981 | /* (Rounded, etc.) should be ignored, not accumulated.] */ |
| 2982 | |
| 2983 | /* Calculate initial approximation, and allow for odd exponent */ |
| 2984 | workset.digits=workp; /* p for initial calculation */ |
| 2985 | t->bits=0; t->digits=3; |
| 2986 | a->bits=0; a->digits=3; |
| 2987 | if ((exp & 1)==0) { /* even exponent */ |
| 2988 | /* Set t=0.259, a=0.819 */ |
| 2989 | t->exponent=-3; |
| 2990 | a->exponent=-3; |
| 2991 | #if DECDPUN>=3 |
| 2992 | t->lsu[0]=259; |
| 2993 | a->lsu[0]=819; |
| 2994 | #elif DECDPUN==2 |
| 2995 | t->lsu[0]=59; t->lsu[1]=2; |
| 2996 | a->lsu[0]=19; a->lsu[1]=8; |
| 2997 | #else |
| 2998 | t->lsu[0]=9; t->lsu[1]=5; t->lsu[2]=2; |
| 2999 | a->lsu[0]=9; a->lsu[1]=1; a->lsu[2]=8; |
| 3000 | #endif |
| 3001 | } |
| 3002 | else { /* odd exponent */ |
| 3003 | /* Set t=0.0819, a=2.59 */ |
| 3004 | f->exponent--; /* f=f/10 */ |
| 3005 | exp++; /* e=e+1 */ |
| 3006 | t->exponent=-4; |
| 3007 | a->exponent=-2; |
| 3008 | #if DECDPUN>=3 |
| 3009 | t->lsu[0]=819; |
| 3010 | a->lsu[0]=259; |
| 3011 | #elif DECDPUN==2 |
| 3012 | t->lsu[0]=19; t->lsu[1]=8; |
| 3013 | a->lsu[0]=59; a->lsu[1]=2; |
| 3014 | #else |
| 3015 | t->lsu[0]=9; t->lsu[1]=1; t->lsu[2]=8; |
| 3016 | a->lsu[0]=9; a->lsu[1]=5; a->lsu[2]=2; |
| 3017 | #endif |
| 3018 | } |
| 3019 | decMultiplyOp(a, a, f, &workset, &ignore); /* a=a*f */ |
| 3020 | decAddOp(a, a, t, &workset, 0, &ignore); /* ..+t */ |
| 3021 | /* [a is now the initial approximation for sqrt(f), calculated with */ |
| 3022 | /* currentprecision, which is also a's precision.] */ |
| 3023 | |
| 3024 | /* the main calculation loop */ |
| 3025 | decNumberZero(&dzero); /* make 0 */ |
| 3026 | decNumberZero(t); /* set t = 0.5 */ |
| 3027 | t->lsu[0]=5; /* .. */ |
| 3028 | t->exponent=-1; /* .. */ |
| 3029 | workset.digits=3; /* initial p */ |
| 3030 | for (;;) { |
| 3031 | /* set p to min(2*p - 2, maxp) [hence 3; or: 4, 6, 10, ... , maxp] */ |
| 3032 | workset.digits=workset.digits*2-2; |
| 3033 | if (workset.digits>maxp) workset.digits=maxp; |
| 3034 | /* a = 0.5 * (a + f/a) */ |
| 3035 | /* [calculated at p then rounded to currentprecision] */ |
| 3036 | decDivideOp(b, f, a, &workset, DIVIDE, &ignore); /* b=f/a */ |
| 3037 | decAddOp(b, b, a, &workset, 0, &ignore); /* b=b+a */ |
| 3038 | decMultiplyOp(a, b, t, &workset, &ignore); /* a=b*0.5 */ |
| 3039 | if (a->digits==maxp) break; /* have required digits */ |
| 3040 | } /* loop */ |
| 3041 | |
| 3042 | /* Here, 0.1 <= a < 1 [Hull], and a has maxp digits */ |
| 3043 | /* now reduce to length, etc.; this needs to be done with a */ |
| 3044 | /* having the correct exponent so as to handle subnormals */ |
| 3045 | /* correctly */ |
| 3046 | approxset=*set; /* get emin, emax, etc. */ |
| 3047 | approxset.round=DEC_ROUND_HALF_EVEN; |
| 3048 | a->exponent+=exp/2; /* set correct exponent */ |
| 3049 | |
| 3050 | rstatus=0; /* clear status */ |
| 3051 | residue=0; /* .. and accumulator */ |
| 3052 | decCopyFit(a, a, &approxset, &residue, &rstatus); /* reduce (if needed) */ |
| 3053 | decFinish(a, &approxset, &residue, &rstatus); /* clean and finalize */ |
| 3054 | |
| 3055 | /* Overflow was possible if the input exponent was out-of-range, */ |
| 3056 | /* in which case quit */ |
| 3057 | if (rstatus&DEC_Overflow) { |
| 3058 | status=rstatus; /* use the status as-is */ |
| 3059 | decNumberCopy(res, a); /* copy to result */ |
| 3060 | break; |
| 3061 | } |
| 3062 | |
| 3063 | /* Preserve status except Inexact/Rounded */ |
| 3064 | status|=(rstatus & ~(DEC_Rounded|DEC_Inexact)); |
| 3065 | |
| 3066 | /* Carry out the Hull correction */ |
| 3067 | a->exponent-=exp/2; /* back to 0.1->1 */ |
| 3068 | |
| 3069 | /* a is now at final precision and within 1 ulp of the properly */ |
| 3070 | /* rounded square root of f; to ensure proper rounding, compare */ |
| 3071 | /* squares of (a - l/2 ulp) and (a + l/2 ulp) with f. */ |
| 3072 | /* Here workset.digits=maxp and t=0.5, and a->digits determines */ |
| 3073 | /* the ulp */ |
| 3074 | workset.digits--; /* maxp-1 is OK now */ |
| 3075 | t->exponent=-a->digits-1; /* make 0.5 ulp */ |
| 3076 | decAddOp(b, a, t, &workset, DECNEG, &ignore); /* b = a - 0.5 ulp */ |
| 3077 | workset.round=DEC_ROUND_UP; |
| 3078 | decMultiplyOp(b, b, b, &workset, &ignore); /* b = mulru(b, b) */ |
| 3079 | decCompareOp(b, f, b, &workset, COMPARE, &ignore); /* b ? f, reversed */ |
| 3080 | if (decNumberIsNegative(b)) { /* f < b [i.e., b > f] */ |
| 3081 | /* this is the more common adjustment, though both are rare */ |
| 3082 | t->exponent++; /* make 1.0 ulp */ |
| 3083 | t->lsu[0]=1; /* .. */ |
| 3084 | decAddOp(a, a, t, &workset, DECNEG, &ignore); /* a = a - 1 ulp */ |
| 3085 | /* assign to approx [round to length] */ |
| 3086 | approxset.emin-=exp/2; /* adjust to match a */ |
| 3087 | approxset.emax-=exp/2; |
| 3088 | decAddOp(a, &dzero, a, &approxset, 0, &ignore); |
| 3089 | } |
| 3090 | else { |
| 3091 | decAddOp(b, a, t, &workset, 0, &ignore); /* b = a + 0.5 ulp */ |
| 3092 | workset.round=DEC_ROUND_DOWN; |
| 3093 | decMultiplyOp(b, b, b, &workset, &ignore); /* b = mulrd(b, b) */ |
| 3094 | decCompareOp(b, b, f, &workset, COMPARE, &ignore); /* b ? f */ |
| 3095 | if (decNumberIsNegative(b)) { /* b < f */ |
| 3096 | t->exponent++; /* make 1.0 ulp */ |
| 3097 | t->lsu[0]=1; /* .. */ |
| 3098 | decAddOp(a, a, t, &workset, 0, &ignore); /* a = a + 1 ulp */ |
| 3099 | /* assign to approx [round to length] */ |
| 3100 | approxset.emin-=exp/2; /* adjust to match a */ |
| 3101 | approxset.emax-=exp/2; |
| 3102 | decAddOp(a, &dzero, a, &approxset, 0, &ignore); |
| 3103 | } |
| 3104 | } |
| 3105 | /* [no errors are possible in the above, and rounding/inexact during */ |
| 3106 | /* estimation are irrelevant, so status was not accumulated] */ |
| 3107 | |
| 3108 | /* Here, 0.1 <= a < 1 (still), so adjust back */ |
| 3109 | a->exponent+=exp/2; /* set correct exponent */ |
| 3110 | |
| 3111 | /* count droppable zeros [after any subnormal rounding] by */ |
| 3112 | /* trimming a copy */ |
| 3113 | decNumberCopy(b, a); |
| 3114 | decTrim(b, set, 1, &dropped); /* [drops trailing zeros] */ |
| 3115 | |
| 3116 | /* Set Inexact and Rounded. The answer can only be exact if */ |
| 3117 | /* it is short enough so that squaring it could fit in workp digits, */ |
| 3118 | /* and it cannot have trailing zeros due to clamping, so these are */ |
| 3119 | /* the only (relatively rare) conditions a careful check is needed */ |
| 3120 | if (b->digits*2-1 > workp && !set->clamp) { /* cannot fit */ |
| 3121 | status|=DEC_Inexact|DEC_Rounded; |
| 3122 | } |
| 3123 | else { /* could be exact/unrounded */ |
| 3124 | uInt mstatus=0; /* local status */ |
| 3125 | decMultiplyOp(b, b, b, &workset, &mstatus); /* try the multiply */ |
| 3126 | if (mstatus&DEC_Overflow) { /* result just won't fit */ |
| 3127 | status|=DEC_Inexact|DEC_Rounded; |
| 3128 | } |
| 3129 | else { /* plausible */ |
| 3130 | decCompareOp(t, b, rhs, &workset, COMPARE, &mstatus); /* b ? rhs */ |
| 3131 | if (!ISZERO(t)) status|=DEC_Inexact|DEC_Rounded; /* not equal */ |
| 3132 | else { /* is Exact */ |
| 3133 | /* here, dropped is the count of trailing zeros in 'a' */ |
| 3134 | /* use closest exponent to ideal... */ |
| 3135 | Int todrop=ideal-a->exponent; /* most that can be dropped */ |
| 3136 | if (todrop<0) status|=DEC_Rounded; /* ideally would add 0s */ |
| 3137 | else { /* unrounded */ |
| 3138 | if (dropped<todrop) { /* clamp to those available */ |
| 3139 | todrop=dropped; |
| 3140 | status|=DEC_Clamped; |
| 3141 | } |
| 3142 | if (todrop>0) { /* have some to drop */ |
| 3143 | decShiftToLeast(a->lsu, D2U(a->digits), todrop); |
| 3144 | a->exponent+=todrop; /* maintain numerical value */ |
| 3145 | a->digits-=todrop; /* new length */ |
| 3146 | } |
| 3147 | } |
| 3148 | } |
| 3149 | } |
| 3150 | } |
| 3151 | |
| 3152 | /* double-check Underflow, as perhaps the result could not have */ |
| 3153 | /* been subnormal (initial argument too big), or it is now Exact */ |
| 3154 | if (status&DEC_Underflow) { |
| 3155 | Int ae=rhs->exponent+rhs->digits-1; /* adjusted exponent */ |
| 3156 | /* check if truly subnormal */ |
| 3157 | #if DECEXTFLAG /* DEC_Subnormal too */ |
| 3158 | if (ae>=set->emin*2) status&=~(DEC_Subnormal|DEC_Underflow); |
| 3159 | #else |
| 3160 | if (ae>=set->emin*2) status&=~DEC_Underflow; |
| 3161 | #endif |
| 3162 | /* check if truly inexact */ |
| 3163 | if (!(status&DEC_Inexact)) status&=~DEC_Underflow; |
| 3164 | } |
| 3165 | |
| 3166 | decNumberCopy(res, a); /* a is now the result */ |
| 3167 | } while(0); /* end protected */ |
| 3168 | |
| 3169 | if (allocbuff!=NULL) free(allocbuff); /* drop any storage used */ |
| 3170 | if (allocbufa!=NULL) free(allocbufa); /* .. */ |
| 3171 | if (allocbufb!=NULL) free(allocbufb); /* .. */ |
| 3172 | #if DECSUBSET |
| 3173 | if (allocrhs !=NULL) free(allocrhs); /* .. */ |
| 3174 | #endif |
| 3175 | if (status!=0) decStatus(res, status, set);/* then report status */ |
| 3176 | #if DECCHECK |
| 3177 | decCheckInexact(res, set); |
| 3178 | #endif |
| 3179 | return res; |
| 3180 | } /* decNumberSquareRoot */ |
| 3181 | |
| 3182 | /* ------------------------------------------------------------------ */ |
| 3183 | /* decNumberSubtract -- subtract two Numbers */ |
| 3184 | /* */ |
| 3185 | /* This computes C = A - B */ |
| 3186 | /* */ |
| 3187 | /* res is C, the result. C may be A and/or B (e.g., X=X-X) */ |
| 3188 | /* lhs is A */ |
| 3189 | /* rhs is B */ |
| 3190 | /* set is the context */ |
| 3191 | /* */ |
| 3192 | /* C must have space for set->digits digits. */ |
| 3193 | /* ------------------------------------------------------------------ */ |
| 3194 | decNumber * decNumberSubtract(decNumber *res, const decNumber *lhs, |
| 3195 | const decNumber *rhs, decContext *set) { |
| 3196 | uInt status=0; /* accumulator */ |
| 3197 | |
| 3198 | decAddOp(res, lhs, rhs, set, DECNEG, &status); |
| 3199 | if (status!=0) decStatus(res, status, set); |
| 3200 | #if DECCHECK |
| 3201 | decCheckInexact(res, set); |
| 3202 | #endif |
| 3203 | return res; |
| 3204 | } /* decNumberSubtract */ |
| 3205 | |
| 3206 | /* ------------------------------------------------------------------ */ |
| 3207 | /* decNumberToIntegralExact -- round-to-integral-value with InExact */ |
| 3208 | /* decNumberToIntegralValue -- round-to-integral-value */ |
| 3209 | /* */ |
| 3210 | /* res is the result */ |
| 3211 | /* rhs is input number */ |
| 3212 | /* set is the context */ |
| 3213 | /* */ |
| 3214 | /* res must have space for any value of rhs. */ |
| 3215 | /* */ |
| 3216 | /* This implements the IEEE special operators and therefore treats */ |
| 3217 | /* special values as valid. For finite numbers it returns */ |
| 3218 | /* rescale(rhs, 0) if rhs->exponent is <0. */ |
| 3219 | /* Otherwise the result is rhs (so no error is possible, except for */ |
| 3220 | /* sNaN). */ |
| 3221 | /* */ |
| 3222 | /* The context is used for rounding mode and status after sNaN, but */ |
| 3223 | /* the digits setting is ignored. The Exact version will signal */ |
| 3224 | /* Inexact if the result differs numerically from rhs; the other */ |
| 3225 | /* never signals Inexact. */ |
| 3226 | /* ------------------------------------------------------------------ */ |
| 3227 | decNumber * decNumberToIntegralExact(decNumber *res, const decNumber *rhs, |
| 3228 | decContext *set) { |
| 3229 | decNumber dn; |
| 3230 | decContext workset; /* working context */ |
| 3231 | uInt status=0; /* accumulator */ |
| 3232 | |
| 3233 | #if DECCHECK |
| 3234 | if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; |
| 3235 | #endif |
| 3236 | |
| 3237 | /* handle infinities and NaNs */ |
| 3238 | if (SPECIALARG) { |
| 3239 | if (decNumberIsInfinite(rhs)) decNumberCopy(res, rhs); /* an Infinity */ |
| 3240 | else decNaNs(res, rhs, NULL, set, &status); /* a NaN */ |
| 3241 | } |
| 3242 | else { /* finite */ |
| 3243 | /* have a finite number; no error possible (res must be big enough) */ |
| 3244 | if (rhs->exponent>=0) return decNumberCopy(res, rhs); |
| 3245 | /* that was easy, but if negative exponent there is work to do... */ |
| 3246 | workset=*set; /* clone rounding, etc. */ |
| 3247 | workset.digits=rhs->digits; /* no length rounding */ |
| 3248 | workset.traps=0; /* no traps */ |
| 3249 | decNumberZero(&dn); /* make a number with exponent 0 */ |
| 3250 | decNumberQuantize(res, rhs, &dn, &workset); |
| 3251 | status|=workset.status; |
| 3252 | } |
| 3253 | if (status!=0) decStatus(res, status, set); |
| 3254 | return res; |
| 3255 | } /* decNumberToIntegralExact */ |
| 3256 | |
| 3257 | decNumber * decNumberToIntegralValue(decNumber *res, const decNumber *rhs, |
| 3258 | decContext *set) { |
| 3259 | decContext workset=*set; /* working context */ |
| 3260 | workset.traps=0; /* no traps */ |
| 3261 | decNumberToIntegralExact(res, rhs, &workset); |
| 3262 | /* this never affects set, except for sNaNs; NaN will have been set */ |
| 3263 | /* or propagated already, so no need to call decStatus */ |
| 3264 | set->status|=workset.status&DEC_Invalid_operation; |
| 3265 | return res; |
| 3266 | } /* decNumberToIntegralValue */ |
| 3267 | |
| 3268 | /* ------------------------------------------------------------------ */ |
| 3269 | /* decNumberXor -- XOR two Numbers, digitwise */ |
| 3270 | /* */ |
| 3271 | /* This computes C = A ^ B */ |
| 3272 | /* */ |
| 3273 | /* res is C, the result. C may be A and/or B (e.g., X=X^X) */ |
| 3274 | /* lhs is A */ |
| 3275 | /* rhs is B */ |
| 3276 | /* set is the context (used for result length and error report) */ |
| 3277 | /* */ |
| 3278 | /* C must have space for set->digits digits. */ |
| 3279 | /* */ |
| 3280 | /* Logical function restrictions apply (see above); a NaN is */ |
| 3281 | /* returned with Invalid_operation if a restriction is violated. */ |
| 3282 | /* ------------------------------------------------------------------ */ |
| 3283 | decNumber * decNumberXor(decNumber *res, const decNumber *lhs, |
| 3284 | const decNumber *rhs, decContext *set) { |
| 3285 | const Unit *ua, *ub; /* -> operands */ |
| 3286 | const Unit *msua, *msub; /* -> operand msus */ |
| 3287 | Unit *uc, *msuc; /* -> result and its msu */ |
| 3288 | Int msudigs; /* digits in res msu */ |
| 3289 | #if DECCHECK |
| 3290 | if (decCheckOperands(res, lhs, rhs, set)) return res; |
| 3291 | #endif |
| 3292 | |
| 3293 | if (lhs->exponent!=0 || decNumberIsSpecial(lhs) || decNumberIsNegative(lhs) |
| 3294 | || rhs->exponent!=0 || decNumberIsSpecial(rhs) || decNumberIsNegative(rhs)) { |
| 3295 | decStatus(res, DEC_Invalid_operation, set); |
| 3296 | return res; |
| 3297 | } |
| 3298 | /* operands are valid */ |
| 3299 | ua=lhs->lsu; /* bottom-up */ |
| 3300 | ub=rhs->lsu; /* .. */ |
| 3301 | uc=res->lsu; /* .. */ |
| 3302 | msua=ua+D2U(lhs->digits)-1; /* -> msu of lhs */ |
| 3303 | msub=ub+D2U(rhs->digits)-1; /* -> msu of rhs */ |
| 3304 | msuc=uc+D2U(set->digits)-1; /* -> msu of result */ |
| 3305 | msudigs=MSUDIGITS(set->digits); /* [faster than remainder] */ |
| 3306 | for (; uc<=msuc; ua++, ub++, uc++) { /* Unit loop */ |
| 3307 | Unit a, b; /* extract units */ |
| 3308 | if (ua>msua) a=0; |
| 3309 | else a=*ua; |
| 3310 | if (ub>msub) b=0; |
| 3311 | else b=*ub; |
| 3312 | *uc=0; /* can now write back */ |
| 3313 | if (a|b) { /* maybe 1 bits to examine */ |
| 3314 | Int i, j; |
| 3315 | /* This loop could be unrolled and/or use BIN2BCD tables */ |
| 3316 | for (i=0; i<DECDPUN; i++) { |
| 3317 | if ((a^b)&1) *uc=*uc+(Unit)powers[i]; /* effect XOR */ |
| 3318 | j=a%10; |
| 3319 | a=a/10; |
| 3320 | j|=b%10; |
| 3321 | b=b/10; |
| 3322 | if (j>1) { |
| 3323 | decStatus(res, DEC_Invalid_operation, set); |
| 3324 | return res; |
| 3325 | } |
| 3326 | if (uc==msuc && i==msudigs-1) break; /* just did final digit */ |
| 3327 | } /* each digit */ |
| 3328 | } /* non-zero */ |
| 3329 | } /* each unit */ |
| 3330 | /* [here uc-1 is the msu of the result] */ |
| 3331 | res->digits=decGetDigits(res->lsu, uc-res->lsu); |
| 3332 | res->exponent=0; /* integer */ |
| 3333 | res->bits=0; /* sign=0 */ |
| 3334 | return res; /* [no status to set] */ |
| 3335 | } /* decNumberXor */ |
| 3336 | |
| 3337 | |
| 3338 | /* ================================================================== */ |
| 3339 | /* Utility routines */ |
| 3340 | /* ================================================================== */ |
| 3341 | |
| 3342 | /* ------------------------------------------------------------------ */ |
| 3343 | /* decNumberClass -- return the decClass of a decNumber */ |
| 3344 | /* dn -- the decNumber to test */ |
| 3345 | /* set -- the context to use for Emin */ |
| 3346 | /* returns the decClass enum */ |
| 3347 | /* ------------------------------------------------------------------ */ |
| 3348 | enum decClass decNumberClass(const decNumber *dn, decContext *set) { |
| 3349 | if (decNumberIsSpecial(dn)) { |
| 3350 | if (decNumberIsQNaN(dn)) return DEC_CLASS_QNAN; |
| 3351 | if (decNumberIsSNaN(dn)) return DEC_CLASS_SNAN; |
| 3352 | /* must be an infinity */ |
| 3353 | if (decNumberIsNegative(dn)) return DEC_CLASS_NEG_INF; |
| 3354 | return DEC_CLASS_POS_INF; |
| 3355 | } |
| 3356 | /* is finite */ |
| 3357 | if (decNumberIsNormal(dn, set)) { /* most common */ |
| 3358 | if (decNumberIsNegative(dn)) return DEC_CLASS_NEG_NORMAL; |
| 3359 | return DEC_CLASS_POS_NORMAL; |
| 3360 | } |
| 3361 | /* is subnormal or zero */ |
| 3362 | if (decNumberIsZero(dn)) { /* most common */ |
| 3363 | if (decNumberIsNegative(dn)) return DEC_CLASS_NEG_ZERO; |
| 3364 | return DEC_CLASS_POS_ZERO; |
| 3365 | } |
| 3366 | if (decNumberIsNegative(dn)) return DEC_CLASS_NEG_SUBNORMAL; |
| 3367 | return DEC_CLASS_POS_SUBNORMAL; |
| 3368 | } /* decNumberClass */ |
| 3369 | |
| 3370 | /* ------------------------------------------------------------------ */ |
| 3371 | /* decNumberClassToString -- convert decClass to a string */ |
| 3372 | /* */ |
| 3373 | /* eclass is a valid decClass */ |
| 3374 | /* returns a constant string describing the class (max 13+1 chars) */ |
| 3375 | /* ------------------------------------------------------------------ */ |
| 3376 | const char *decNumberClassToString(enum decClass eclass) { |
| 3377 | if (eclass==DEC_CLASS_POS_NORMAL) return DEC_ClassString_PN; |
| 3378 | if (eclass==DEC_CLASS_NEG_NORMAL) return DEC_ClassString_NN; |
| 3379 | if (eclass==DEC_CLASS_POS_ZERO) return DEC_ClassString_PZ; |
| 3380 | if (eclass==DEC_CLASS_NEG_ZERO) return DEC_ClassString_NZ; |
| 3381 | if (eclass==DEC_CLASS_POS_SUBNORMAL) return DEC_ClassString_PS; |
| 3382 | if (eclass==DEC_CLASS_NEG_SUBNORMAL) return DEC_ClassString_NS; |
| 3383 | if (eclass==DEC_CLASS_POS_INF) return DEC_ClassString_PI; |
| 3384 | if (eclass==DEC_CLASS_NEG_INF) return DEC_ClassString_NI; |
| 3385 | if (eclass==DEC_CLASS_QNAN) return DEC_ClassString_QN; |
| 3386 | if (eclass==DEC_CLASS_SNAN) return DEC_ClassString_SN; |
| 3387 | return DEC_ClassString_UN; /* Unknown */ |
| 3388 | } /* decNumberClassToString */ |
| 3389 | |
| 3390 | /* ------------------------------------------------------------------ */ |
| 3391 | /* decNumberCopy -- copy a number */ |
| 3392 | /* */ |
| 3393 | /* dest is the target decNumber */ |
| 3394 | /* src is the source decNumber */ |
| 3395 | /* returns dest */ |
| 3396 | /* */ |
| 3397 | /* (dest==src is allowed and is a no-op) */ |
| 3398 | /* All fields are updated as required. This is a utility operation, */ |
| 3399 | /* so special values are unchanged and no error is possible. */ |
| 3400 | /* ------------------------------------------------------------------ */ |
| 3401 | decNumber * decNumberCopy(decNumber *dest, const decNumber *src) { |
| 3402 | |
| 3403 | #if DECCHECK |
| 3404 | if (src==NULL) return decNumberZero(dest); |
| 3405 | #endif |
| 3406 | |
| 3407 | if (dest==src) return dest; /* no copy required */ |
| 3408 | |
| 3409 | /* Use explicit assignments here as structure assignment could copy */ |
| 3410 | /* more than just the lsu (for small DECDPUN). This would not affect */ |
| 3411 | /* the value of the results, but could disturb test harness spill */ |
| 3412 | /* checking. */ |
| 3413 | dest->bits=src->bits; |
| 3414 | dest->exponent=src->exponent; |
| 3415 | dest->digits=src->digits; |
| 3416 | dest->lsu[0]=src->lsu[0]; |
| 3417 | if (src->digits>DECDPUN) { /* more Units to come */ |
| 3418 | const Unit *smsup, *s; /* work */ |
| 3419 | Unit *d; /* .. */ |
| 3420 | /* memcpy for the remaining Units would be safe as they cannot */ |
| 3421 | /* overlap. However, this explicit loop is faster in short cases. */ |
| 3422 | d=dest->lsu+1; /* -> first destination */ |
| 3423 | smsup=src->lsu+D2U(src->digits); /* -> source msu+1 */ |
| 3424 | for (s=src->lsu+1; s<smsup; s++, d++) *d=*s; |
| 3425 | } |
| 3426 | return dest; |
| 3427 | } /* decNumberCopy */ |
| 3428 | |
| 3429 | /* ------------------------------------------------------------------ */ |
| 3430 | /* decNumberCopyAbs -- quiet absolute value operator */ |
| 3431 | /* */ |
| 3432 | /* This sets C = abs(A) */ |
| 3433 | /* */ |
| 3434 | /* res is C, the result. C may be A */ |
| 3435 | /* rhs is A */ |
| 3436 | /* */ |
| 3437 | /* C must have space for set->digits digits. */ |
| 3438 | /* No exception or error can occur; this is a quiet bitwise operation.*/ |
| 3439 | /* See also decNumberAbs for a checking version of this. */ |
| 3440 | /* ------------------------------------------------------------------ */ |
| 3441 | decNumber * decNumberCopyAbs(decNumber *res, const decNumber *rhs) { |
| 3442 | #if DECCHECK |
| 3443 | if (decCheckOperands(res, DECUNUSED, rhs, DECUNCONT)) return res; |
| 3444 | #endif |
| 3445 | decNumberCopy(res, rhs); |
| 3446 | res->bits&=~DECNEG; /* turn off sign */ |
| 3447 | return res; |
| 3448 | } /* decNumberCopyAbs */ |
| 3449 | |
| 3450 | /* ------------------------------------------------------------------ */ |
| 3451 | /* decNumberCopyNegate -- quiet negate value operator */ |
| 3452 | /* */ |
| 3453 | /* This sets C = negate(A) */ |
| 3454 | /* */ |
| 3455 | /* res is C, the result. C may be A */ |
| 3456 | /* rhs is A */ |
| 3457 | /* */ |
| 3458 | /* C must have space for set->digits digits. */ |
| 3459 | /* No exception or error can occur; this is a quiet bitwise operation.*/ |
| 3460 | /* See also decNumberMinus for a checking version of this. */ |
| 3461 | /* ------------------------------------------------------------------ */ |
| 3462 | decNumber * decNumberCopyNegate(decNumber *res, const decNumber *rhs) { |
| 3463 | #if DECCHECK |
| 3464 | if (decCheckOperands(res, DECUNUSED, rhs, DECUNCONT)) return res; |
| 3465 | #endif |
| 3466 | decNumberCopy(res, rhs); |
| 3467 | res->bits^=DECNEG; /* invert the sign */ |
| 3468 | return res; |
| 3469 | } /* decNumberCopyNegate */ |
| 3470 | |
| 3471 | /* ------------------------------------------------------------------ */ |
| 3472 | /* decNumberCopySign -- quiet copy and set sign operator */ |
| 3473 | /* */ |
| 3474 | /* This sets C = A with the sign of B */ |
| 3475 | /* */ |
| 3476 | /* res is C, the result. C may be A */ |
| 3477 | /* lhs is A */ |
| 3478 | /* rhs is B */ |
| 3479 | /* */ |
| 3480 | /* C must have space for set->digits digits. */ |
| 3481 | /* No exception or error can occur; this is a quiet bitwise operation.*/ |
| 3482 | /* ------------------------------------------------------------------ */ |
| 3483 | decNumber * decNumberCopySign(decNumber *res, const decNumber *lhs, |
| 3484 | const decNumber *rhs) { |
| 3485 | uByte sign; /* rhs sign */ |
| 3486 | #if DECCHECK |
| 3487 | if (decCheckOperands(res, DECUNUSED, rhs, DECUNCONT)) return res; |
| 3488 | #endif |
| 3489 | sign=rhs->bits & DECNEG; /* save sign bit */ |
| 3490 | decNumberCopy(res, lhs); |
| 3491 | res->bits&=~DECNEG; /* clear the sign */ |
| 3492 | res->bits|=sign; /* set from rhs */ |
| 3493 | return res; |
| 3494 | } /* decNumberCopySign */ |
| 3495 | |
| 3496 | /* ------------------------------------------------------------------ */ |
| 3497 | /* decNumberGetBCD -- get the coefficient in BCD8 */ |
| 3498 | /* dn is the source decNumber */ |
| 3499 | /* bcd is the uInt array that will receive dn->digits BCD bytes, */ |
| 3500 | /* most-significant at offset 0 */ |
| 3501 | /* returns bcd */ |
| 3502 | /* */ |
| 3503 | /* bcd must have at least dn->digits bytes. No error is possible; if */ |
| 3504 | /* dn is a NaN or Infinite, digits must be 1 and the coefficient 0. */ |
| 3505 | /* ------------------------------------------------------------------ */ |
| 3506 | uByte * decNumberGetBCD(const decNumber *dn, uint8_t *bcd) { |
| 3507 | uByte *ub=bcd+dn->digits-1; /* -> lsd */ |
| 3508 | const Unit *up=dn->lsu; /* Unit pointer, -> lsu */ |
| 3509 | |
| 3510 | #if DECDPUN==1 /* trivial simple copy */ |
| 3511 | for (; ub>=bcd; ub--, up++) *ub=*up; |
| 3512 | #else /* chopping needed */ |
| 3513 | uInt u=*up; /* work */ |
| 3514 | uInt cut=DECDPUN; /* downcounter through unit */ |
| 3515 | for (; ub>=bcd; ub--) { |
| 3516 | *ub=(uByte)(u%10); /* [*6554 trick inhibits, here] */ |
| 3517 | u=u/10; |
| 3518 | cut--; |
| 3519 | if (cut>0) continue; /* more in this unit */ |
| 3520 | up++; |
| 3521 | u=*up; |
| 3522 | cut=DECDPUN; |
| 3523 | } |
| 3524 | #endif |
| 3525 | return bcd; |
| 3526 | } /* decNumberGetBCD */ |
| 3527 | |
| 3528 | /* ------------------------------------------------------------------ */ |
| 3529 | /* decNumberSetBCD -- set (replace) the coefficient from BCD8 */ |
| 3530 | /* dn is the target decNumber */ |
| 3531 | /* bcd is the uInt array that will source n BCD bytes, most- */ |
| 3532 | /* significant at offset 0 */ |
| 3533 | /* n is the number of digits in the source BCD array (bcd) */ |
| 3534 | /* returns dn */ |
| 3535 | /* */ |
| 3536 | /* dn must have space for at least n digits. No error is possible; */ |
| 3537 | /* if dn is a NaN, or Infinite, or is to become a zero, n must be 1 */ |
| 3538 | /* and bcd[0] zero. */ |
| 3539 | /* ------------------------------------------------------------------ */ |
| 3540 | decNumber * decNumberSetBCD(decNumber *dn, const uByte *bcd, uInt n) { |
Tom Musta | 0a322e7 | 2014-04-21 15:54:55 -0500 | [diff] [blame] | 3541 | Unit *up = dn->lsu + D2U(n) - 1; /* -> msu [target pointer] */ |
Tom Musta | 72ac97c | 2014-04-21 15:54:45 -0500 | [diff] [blame] | 3542 | const uByte *ub=bcd; /* -> source msd */ |
| 3543 | |
| 3544 | #if DECDPUN==1 /* trivial simple copy */ |
| 3545 | for (; ub<bcd+n; ub++, up--) *up=*ub; |
| 3546 | #else /* some assembly needed */ |
| 3547 | /* calculate how many digits in msu, and hence first cut */ |
| 3548 | Int cut=MSUDIGITS(n); /* [faster than remainder] */ |
| 3549 | for (;up>=dn->lsu; up--) { /* each Unit from msu */ |
| 3550 | *up=0; /* will take <=DECDPUN digits */ |
| 3551 | for (; cut>0; ub++, cut--) *up=X10(*up)+*ub; |
| 3552 | cut=DECDPUN; /* next Unit has all digits */ |
| 3553 | } |
| 3554 | #endif |
| 3555 | dn->digits=n; /* set digit count */ |
| 3556 | return dn; |
| 3557 | } /* decNumberSetBCD */ |
| 3558 | |
| 3559 | /* ------------------------------------------------------------------ */ |
| 3560 | /* decNumberIsNormal -- test normality of a decNumber */ |
| 3561 | /* dn is the decNumber to test */ |
| 3562 | /* set is the context to use for Emin */ |
| 3563 | /* returns 1 if |dn| is finite and >=Nmin, 0 otherwise */ |
| 3564 | /* ------------------------------------------------------------------ */ |
| 3565 | Int decNumberIsNormal(const decNumber *dn, decContext *set) { |
| 3566 | Int ae; /* adjusted exponent */ |
| 3567 | #if DECCHECK |
| 3568 | if (decCheckOperands(DECUNRESU, DECUNUSED, dn, set)) return 0; |
| 3569 | #endif |
| 3570 | |
| 3571 | if (decNumberIsSpecial(dn)) return 0; /* not finite */ |
| 3572 | if (decNumberIsZero(dn)) return 0; /* not non-zero */ |
| 3573 | |
| 3574 | ae=dn->exponent+dn->digits-1; /* adjusted exponent */ |
| 3575 | if (ae<set->emin) return 0; /* is subnormal */ |
| 3576 | return 1; |
| 3577 | } /* decNumberIsNormal */ |
| 3578 | |
| 3579 | /* ------------------------------------------------------------------ */ |
| 3580 | /* decNumberIsSubnormal -- test subnormality of a decNumber */ |
| 3581 | /* dn is the decNumber to test */ |
| 3582 | /* set is the context to use for Emin */ |
| 3583 | /* returns 1 if |dn| is finite, non-zero, and <Nmin, 0 otherwise */ |
| 3584 | /* ------------------------------------------------------------------ */ |
| 3585 | Int decNumberIsSubnormal(const decNumber *dn, decContext *set) { |
| 3586 | Int ae; /* adjusted exponent */ |
| 3587 | #if DECCHECK |
| 3588 | if (decCheckOperands(DECUNRESU, DECUNUSED, dn, set)) return 0; |
| 3589 | #endif |
| 3590 | |
| 3591 | if (decNumberIsSpecial(dn)) return 0; /* not finite */ |
| 3592 | if (decNumberIsZero(dn)) return 0; /* not non-zero */ |
| 3593 | |
| 3594 | ae=dn->exponent+dn->digits-1; /* adjusted exponent */ |
| 3595 | if (ae<set->emin) return 1; /* is subnormal */ |
| 3596 | return 0; |
| 3597 | } /* decNumberIsSubnormal */ |
| 3598 | |
| 3599 | /* ------------------------------------------------------------------ */ |
| 3600 | /* decNumberTrim -- remove insignificant zeros */ |
| 3601 | /* */ |
| 3602 | /* dn is the number to trim */ |
| 3603 | /* returns dn */ |
| 3604 | /* */ |
| 3605 | /* All fields are updated as required. This is a utility operation, */ |
| 3606 | /* so special values are unchanged and no error is possible. */ |
| 3607 | /* ------------------------------------------------------------------ */ |
| 3608 | decNumber * decNumberTrim(decNumber *dn) { |
| 3609 | Int dropped; /* work */ |
| 3610 | decContext set; /* .. */ |
| 3611 | #if DECCHECK |
| 3612 | if (decCheckOperands(DECUNRESU, DECUNUSED, dn, DECUNCONT)) return dn; |
| 3613 | #endif |
| 3614 | decContextDefault(&set, DEC_INIT_BASE); /* clamp=0 */ |
| 3615 | return decTrim(dn, &set, 0, &dropped); |
| 3616 | } /* decNumberTrim */ |
| 3617 | |
| 3618 | /* ------------------------------------------------------------------ */ |
| 3619 | /* decNumberVersion -- return the name and version of this module */ |
| 3620 | /* */ |
| 3621 | /* No error is possible. */ |
| 3622 | /* ------------------------------------------------------------------ */ |
| 3623 | const char * decNumberVersion(void) { |
| 3624 | return DECVERSION; |
| 3625 | } /* decNumberVersion */ |
| 3626 | |
| 3627 | /* ------------------------------------------------------------------ */ |
| 3628 | /* decNumberZero -- set a number to 0 */ |
| 3629 | /* */ |
| 3630 | /* dn is the number to set, with space for one digit */ |
| 3631 | /* returns dn */ |
| 3632 | /* */ |
| 3633 | /* No error is possible. */ |
| 3634 | /* ------------------------------------------------------------------ */ |
| 3635 | /* Memset is not used as it is much slower in some environments. */ |
| 3636 | decNumber * decNumberZero(decNumber *dn) { |
| 3637 | |
| 3638 | #if DECCHECK |
| 3639 | if (decCheckOperands(dn, DECUNUSED, DECUNUSED, DECUNCONT)) return dn; |
| 3640 | #endif |
| 3641 | |
| 3642 | dn->bits=0; |
| 3643 | dn->exponent=0; |
| 3644 | dn->digits=1; |
| 3645 | dn->lsu[0]=0; |
| 3646 | return dn; |
| 3647 | } /* decNumberZero */ |
| 3648 | |
| 3649 | /* ================================================================== */ |
| 3650 | /* Local routines */ |
| 3651 | /* ================================================================== */ |
| 3652 | |
| 3653 | /* ------------------------------------------------------------------ */ |
| 3654 | /* decToString -- lay out a number into a string */ |
| 3655 | /* */ |
| 3656 | /* dn is the number to lay out */ |
| 3657 | /* string is where to lay out the number */ |
| 3658 | /* eng is 1 if Engineering, 0 if Scientific */ |
| 3659 | /* */ |
| 3660 | /* string must be at least dn->digits+14 characters long */ |
| 3661 | /* No error is possible. */ |
| 3662 | /* */ |
| 3663 | /* Note that this routine can generate a -0 or 0.000. These are */ |
| 3664 | /* never generated in subset to-number or arithmetic, but can occur */ |
| 3665 | /* in non-subset arithmetic (e.g., -1*0 or 1.234-1.234). */ |
| 3666 | /* ------------------------------------------------------------------ */ |
| 3667 | /* If DECCHECK is enabled the string "?" is returned if a number is */ |
| 3668 | /* invalid. */ |
| 3669 | static void decToString(const decNumber *dn, char *string, Flag eng) { |
| 3670 | Int exp=dn->exponent; /* local copy */ |
| 3671 | Int e; /* E-part value */ |
| 3672 | Int pre; /* digits before the '.' */ |
| 3673 | Int cut; /* for counting digits in a Unit */ |
| 3674 | char *c=string; /* work [output pointer] */ |
| 3675 | const Unit *up=dn->lsu+D2U(dn->digits)-1; /* -> msu [input pointer] */ |
| 3676 | uInt u, pow; /* work */ |
| 3677 | |
| 3678 | #if DECCHECK |
| 3679 | if (decCheckOperands(DECUNRESU, dn, DECUNUSED, DECUNCONT)) { |
| 3680 | strcpy(string, "?"); |
| 3681 | return;} |
| 3682 | #endif |
| 3683 | |
| 3684 | if (decNumberIsNegative(dn)) { /* Negatives get a minus */ |
| 3685 | *c='-'; |
| 3686 | c++; |
| 3687 | } |
| 3688 | if (dn->bits&DECSPECIAL) { /* Is a special value */ |
| 3689 | if (decNumberIsInfinite(dn)) { |
| 3690 | strcpy(c, "Inf"); |
| 3691 | strcpy(c+3, "inity"); |
| 3692 | return;} |
| 3693 | /* a NaN */ |
| 3694 | if (dn->bits&DECSNAN) { /* signalling NaN */ |
| 3695 | *c='s'; |
| 3696 | c++; |
| 3697 | } |
| 3698 | strcpy(c, "NaN"); |
| 3699 | c+=3; /* step past */ |
| 3700 | /* if not a clean non-zero coefficient, that's all there is in a */ |
| 3701 | /* NaN string */ |
| 3702 | if (exp!=0 || (*dn->lsu==0 && dn->digits==1)) return; |
| 3703 | /* [drop through to add integer] */ |
| 3704 | } |
| 3705 | |
| 3706 | /* calculate how many digits in msu, and hence first cut */ |
| 3707 | cut=MSUDIGITS(dn->digits); /* [faster than remainder] */ |
| 3708 | cut--; /* power of ten for digit */ |
| 3709 | |
| 3710 | if (exp==0) { /* simple integer [common fastpath] */ |
| 3711 | for (;up>=dn->lsu; up--) { /* each Unit from msu */ |
| 3712 | u=*up; /* contains DECDPUN digits to lay out */ |
| 3713 | for (; cut>=0; c++, cut--) TODIGIT(u, cut, c, pow); |
| 3714 | cut=DECDPUN-1; /* next Unit has all digits */ |
| 3715 | } |
| 3716 | *c='\0'; /* terminate the string */ |
| 3717 | return;} |
| 3718 | |
| 3719 | /* non-0 exponent -- assume plain form */ |
| 3720 | pre=dn->digits+exp; /* digits before '.' */ |
| 3721 | e=0; /* no E */ |
| 3722 | if ((exp>0) || (pre<-5)) { /* need exponential form */ |
| 3723 | e=exp+dn->digits-1; /* calculate E value */ |
| 3724 | pre=1; /* assume one digit before '.' */ |
| 3725 | if (eng && (e!=0)) { /* engineering: may need to adjust */ |
| 3726 | Int adj; /* adjustment */ |
| 3727 | /* The C remainder operator is undefined for negative numbers, so */ |
| 3728 | /* a positive remainder calculation must be used here */ |
| 3729 | if (e<0) { |
| 3730 | adj=(-e)%3; |
| 3731 | if (adj!=0) adj=3-adj; |
| 3732 | } |
| 3733 | else { /* e>0 */ |
| 3734 | adj=e%3; |
| 3735 | } |
| 3736 | e=e-adj; |
| 3737 | /* if dealing with zero still produce an exponent which is a */ |
| 3738 | /* multiple of three, as expected, but there will only be the */ |
| 3739 | /* one zero before the E, still. Otherwise note the padding. */ |
| 3740 | if (!ISZERO(dn)) pre+=adj; |
| 3741 | else { /* is zero */ |
| 3742 | if (adj!=0) { /* 0.00Esnn needed */ |
| 3743 | e=e+3; |
| 3744 | pre=-(2-adj); |
| 3745 | } |
| 3746 | } /* zero */ |
| 3747 | } /* eng */ |
| 3748 | } /* need exponent */ |
| 3749 | |
| 3750 | /* lay out the digits of the coefficient, adding 0s and . as needed */ |
| 3751 | u=*up; |
| 3752 | if (pre>0) { /* xxx.xxx or xx00 (engineering) form */ |
| 3753 | Int n=pre; |
| 3754 | for (; pre>0; pre--, c++, cut--) { |
| 3755 | if (cut<0) { /* need new Unit */ |
| 3756 | if (up==dn->lsu) break; /* out of input digits (pre>digits) */ |
| 3757 | up--; |
| 3758 | cut=DECDPUN-1; |
| 3759 | u=*up; |
| 3760 | } |
| 3761 | TODIGIT(u, cut, c, pow); |
| 3762 | } |
| 3763 | if (n<dn->digits) { /* more to come, after '.' */ |
| 3764 | *c='.'; c++; |
| 3765 | for (;; c++, cut--) { |
| 3766 | if (cut<0) { /* need new Unit */ |
| 3767 | if (up==dn->lsu) break; /* out of input digits */ |
| 3768 | up--; |
| 3769 | cut=DECDPUN-1; |
| 3770 | u=*up; |
| 3771 | } |
| 3772 | TODIGIT(u, cut, c, pow); |
| 3773 | } |
| 3774 | } |
| 3775 | else for (; pre>0; pre--, c++) *c='0'; /* 0 padding (for engineering) needed */ |
| 3776 | } |
| 3777 | else { /* 0.xxx or 0.000xxx form */ |
| 3778 | *c='0'; c++; |
| 3779 | *c='.'; c++; |
| 3780 | for (; pre<0; pre++, c++) *c='0'; /* add any 0's after '.' */ |
| 3781 | for (; ; c++, cut--) { |
| 3782 | if (cut<0) { /* need new Unit */ |
| 3783 | if (up==dn->lsu) break; /* out of input digits */ |
| 3784 | up--; |
| 3785 | cut=DECDPUN-1; |
| 3786 | u=*up; |
| 3787 | } |
| 3788 | TODIGIT(u, cut, c, pow); |
| 3789 | } |
| 3790 | } |
| 3791 | |
| 3792 | /* Finally add the E-part, if needed. It will never be 0, has a |
| 3793 | base maximum and minimum of +999999999 through -999999999, but |
| 3794 | could range down to -1999999998 for anormal numbers */ |
| 3795 | if (e!=0) { |
| 3796 | Flag had=0; /* 1=had non-zero */ |
| 3797 | *c='E'; c++; |
| 3798 | *c='+'; c++; /* assume positive */ |
| 3799 | u=e; /* .. */ |
| 3800 | if (e<0) { |
| 3801 | *(c-1)='-'; /* oops, need - */ |
| 3802 | u=-e; /* uInt, please */ |
| 3803 | } |
| 3804 | /* lay out the exponent [_itoa or equivalent is not ANSI C] */ |
| 3805 | for (cut=9; cut>=0; cut--) { |
| 3806 | TODIGIT(u, cut, c, pow); |
| 3807 | if (*c=='0' && !had) continue; /* skip leading zeros */ |
| 3808 | had=1; /* had non-0 */ |
| 3809 | c++; /* step for next */ |
| 3810 | } /* cut */ |
| 3811 | } |
| 3812 | *c='\0'; /* terminate the string (all paths) */ |
| 3813 | return; |
| 3814 | } /* decToString */ |
| 3815 | |
| 3816 | /* ------------------------------------------------------------------ */ |
| 3817 | /* decAddOp -- add/subtract operation */ |
| 3818 | /* */ |
| 3819 | /* This computes C = A + B */ |
| 3820 | /* */ |
| 3821 | /* res is C, the result. C may be A and/or B (e.g., X=X+X) */ |
| 3822 | /* lhs is A */ |
| 3823 | /* rhs is B */ |
| 3824 | /* set is the context */ |
| 3825 | /* negate is DECNEG if rhs should be negated, or 0 otherwise */ |
| 3826 | /* status accumulates status for the caller */ |
| 3827 | /* */ |
| 3828 | /* C must have space for set->digits digits. */ |
| 3829 | /* Inexact in status must be 0 for correct Exact zero sign in result */ |
| 3830 | /* ------------------------------------------------------------------ */ |
| 3831 | /* If possible, the coefficient is calculated directly into C. */ |
| 3832 | /* However, if: */ |
| 3833 | /* -- a digits+1 calculation is needed because the numbers are */ |
| 3834 | /* unaligned and span more than set->digits digits */ |
| 3835 | /* -- a carry to digits+1 digits looks possible */ |
| 3836 | /* -- C is the same as A or B, and the result would destructively */ |
| 3837 | /* overlap the A or B coefficient */ |
| 3838 | /* then the result must be calculated into a temporary buffer. In */ |
| 3839 | /* this case a local (stack) buffer is used if possible, and only if */ |
| 3840 | /* too long for that does malloc become the final resort. */ |
| 3841 | /* */ |
| 3842 | /* Misalignment is handled as follows: */ |
| 3843 | /* Apad: (AExp>BExp) Swap operands and proceed as for BExp>AExp. */ |
| 3844 | /* BPad: Apply the padding by a combination of shifting (whole */ |
| 3845 | /* units) and multiplication (part units). */ |
| 3846 | /* */ |
| 3847 | /* Addition, especially x=x+1, is speed-critical. */ |
| 3848 | /* The static buffer is larger than might be expected to allow for */ |
Veres Lajos | 67cc32e | 2015-09-08 22:45:14 +0100 | [diff] [blame] | 3849 | /* calls from higher-level functions (notably exp). */ |
Tom Musta | 72ac97c | 2014-04-21 15:54:45 -0500 | [diff] [blame] | 3850 | /* ------------------------------------------------------------------ */ |
| 3851 | static decNumber * decAddOp(decNumber *res, const decNumber *lhs, |
| 3852 | const decNumber *rhs, decContext *set, |
| 3853 | uByte negate, uInt *status) { |
| 3854 | #if DECSUBSET |
| 3855 | decNumber *alloclhs=NULL; /* non-NULL if rounded lhs allocated */ |
| 3856 | decNumber *allocrhs=NULL; /* .., rhs */ |
| 3857 | #endif |
| 3858 | Int rhsshift; /* working shift (in Units) */ |
| 3859 | Int maxdigits; /* longest logical length */ |
| 3860 | Int mult; /* multiplier */ |
| 3861 | Int residue; /* rounding accumulator */ |
| 3862 | uByte bits; /* result bits */ |
| 3863 | Flag diffsign; /* non-0 if arguments have different sign */ |
| 3864 | Unit *acc; /* accumulator for result */ |
| 3865 | Unit accbuff[SD2U(DECBUFFER*2+20)]; /* local buffer [*2+20 reduces many */ |
| 3866 | /* allocations when called from */ |
| 3867 | /* other operations, notable exp] */ |
| 3868 | Unit *allocacc=NULL; /* -> allocated acc buffer, iff allocated */ |
| 3869 | Int reqdigits=set->digits; /* local copy; requested DIGITS */ |
| 3870 | Int padding; /* work */ |
| 3871 | |
| 3872 | #if DECCHECK |
| 3873 | if (decCheckOperands(res, lhs, rhs, set)) return res; |
| 3874 | #endif |
| 3875 | |
| 3876 | do { /* protect allocated storage */ |
| 3877 | #if DECSUBSET |
| 3878 | if (!set->extended) { |
| 3879 | /* reduce operands and set lostDigits status, as needed */ |
| 3880 | if (lhs->digits>reqdigits) { |
| 3881 | alloclhs=decRoundOperand(lhs, set, status); |
| 3882 | if (alloclhs==NULL) break; |
| 3883 | lhs=alloclhs; |
| 3884 | } |
| 3885 | if (rhs->digits>reqdigits) { |
| 3886 | allocrhs=decRoundOperand(rhs, set, status); |
| 3887 | if (allocrhs==NULL) break; |
| 3888 | rhs=allocrhs; |
| 3889 | } |
| 3890 | } |
| 3891 | #endif |
| 3892 | /* [following code does not require input rounding] */ |
| 3893 | |
| 3894 | /* note whether signs differ [used all paths] */ |
| 3895 | diffsign=(Flag)((lhs->bits^rhs->bits^negate)&DECNEG); |
| 3896 | |
| 3897 | /* handle infinities and NaNs */ |
| 3898 | if (SPECIALARGS) { /* a special bit set */ |
| 3899 | if (SPECIALARGS & (DECSNAN | DECNAN)) /* a NaN */ |
| 3900 | decNaNs(res, lhs, rhs, set, status); |
| 3901 | else { /* one or two infinities */ |
| 3902 | if (decNumberIsInfinite(lhs)) { /* LHS is infinity */ |
| 3903 | /* two infinities with different signs is invalid */ |
| 3904 | if (decNumberIsInfinite(rhs) && diffsign) { |
| 3905 | *status|=DEC_Invalid_operation; |
| 3906 | break; |
| 3907 | } |
| 3908 | bits=lhs->bits & DECNEG; /* get sign from LHS */ |
| 3909 | } |
| 3910 | else bits=(rhs->bits^negate) & DECNEG;/* RHS must be Infinity */ |
| 3911 | bits|=DECINF; |
| 3912 | decNumberZero(res); |
| 3913 | res->bits=bits; /* set +/- infinity */ |
| 3914 | } /* an infinity */ |
| 3915 | break; |
| 3916 | } |
| 3917 | |
| 3918 | /* Quick exit for add 0s; return the non-0, modified as need be */ |
| 3919 | if (ISZERO(lhs)) { |
| 3920 | Int adjust; /* work */ |
| 3921 | Int lexp=lhs->exponent; /* save in case LHS==RES */ |
| 3922 | bits=lhs->bits; /* .. */ |
| 3923 | residue=0; /* clear accumulator */ |
| 3924 | decCopyFit(res, rhs, set, &residue, status); /* copy (as needed) */ |
| 3925 | res->bits^=negate; /* flip if rhs was negated */ |
| 3926 | #if DECSUBSET |
| 3927 | if (set->extended) { /* exponents on zeros count */ |
| 3928 | #endif |
| 3929 | /* exponent will be the lower of the two */ |
| 3930 | adjust=lexp-res->exponent; /* adjustment needed [if -ve] */ |
| 3931 | if (ISZERO(res)) { /* both 0: special IEEE 854 rules */ |
| 3932 | if (adjust<0) res->exponent=lexp; /* set exponent */ |
| 3933 | /* 0-0 gives +0 unless rounding to -infinity, and -0-0 gives -0 */ |
| 3934 | if (diffsign) { |
| 3935 | if (set->round!=DEC_ROUND_FLOOR) res->bits=0; |
| 3936 | else res->bits=DECNEG; /* preserve 0 sign */ |
| 3937 | } |
| 3938 | } |
| 3939 | else { /* non-0 res */ |
| 3940 | if (adjust<0) { /* 0-padding needed */ |
| 3941 | if ((res->digits-adjust)>set->digits) { |
| 3942 | adjust=res->digits-set->digits; /* to fit exactly */ |
| 3943 | *status|=DEC_Rounded; /* [but exact] */ |
| 3944 | } |
| 3945 | res->digits=decShiftToMost(res->lsu, res->digits, -adjust); |
| 3946 | res->exponent+=adjust; /* set the exponent. */ |
| 3947 | } |
| 3948 | } /* non-0 res */ |
| 3949 | #if DECSUBSET |
| 3950 | } /* extended */ |
| 3951 | #endif |
| 3952 | decFinish(res, set, &residue, status); /* clean and finalize */ |
| 3953 | break;} |
| 3954 | |
| 3955 | if (ISZERO(rhs)) { /* [lhs is non-zero] */ |
| 3956 | Int adjust; /* work */ |
| 3957 | Int rexp=rhs->exponent; /* save in case RHS==RES */ |
| 3958 | bits=rhs->bits; /* be clean */ |
| 3959 | residue=0; /* clear accumulator */ |
| 3960 | decCopyFit(res, lhs, set, &residue, status); /* copy (as needed) */ |
| 3961 | #if DECSUBSET |
| 3962 | if (set->extended) { /* exponents on zeros count */ |
| 3963 | #endif |
| 3964 | /* exponent will be the lower of the two */ |
| 3965 | /* [0-0 case handled above] */ |
| 3966 | adjust=rexp-res->exponent; /* adjustment needed [if -ve] */ |
| 3967 | if (adjust<0) { /* 0-padding needed */ |
| 3968 | if ((res->digits-adjust)>set->digits) { |
| 3969 | adjust=res->digits-set->digits; /* to fit exactly */ |
| 3970 | *status|=DEC_Rounded; /* [but exact] */ |
| 3971 | } |
| 3972 | res->digits=decShiftToMost(res->lsu, res->digits, -adjust); |
| 3973 | res->exponent+=adjust; /* set the exponent. */ |
| 3974 | } |
| 3975 | #if DECSUBSET |
| 3976 | } /* extended */ |
| 3977 | #endif |
| 3978 | decFinish(res, set, &residue, status); /* clean and finalize */ |
| 3979 | break;} |
| 3980 | |
| 3981 | /* [NB: both fastpath and mainpath code below assume these cases */ |
| 3982 | /* (notably 0-0) have already been handled] */ |
| 3983 | |
| 3984 | /* calculate the padding needed to align the operands */ |
| 3985 | padding=rhs->exponent-lhs->exponent; |
| 3986 | |
| 3987 | /* Fastpath cases where the numbers are aligned and normal, the RHS */ |
| 3988 | /* is all in one unit, no operand rounding is needed, and no carry, */ |
| 3989 | /* lengthening, or borrow is needed */ |
| 3990 | if (padding==0 |
| 3991 | && rhs->digits<=DECDPUN |
| 3992 | && rhs->exponent>=set->emin /* [some normals drop through] */ |
| 3993 | && rhs->exponent<=set->emax-set->digits+1 /* [could clamp] */ |
| 3994 | && rhs->digits<=reqdigits |
| 3995 | && lhs->digits<=reqdigits) { |
| 3996 | Int partial=*lhs->lsu; |
| 3997 | if (!diffsign) { /* adding */ |
| 3998 | partial+=*rhs->lsu; |
| 3999 | if ((partial<=DECDPUNMAX) /* result fits in unit */ |
| 4000 | && (lhs->digits>=DECDPUN || /* .. and no digits-count change */ |
| 4001 | partial<(Int)powers[lhs->digits])) { /* .. */ |
| 4002 | if (res!=lhs) decNumberCopy(res, lhs); /* not in place */ |
| 4003 | *res->lsu=(Unit)partial; /* [copy could have overwritten RHS] */ |
| 4004 | break; |
| 4005 | } |
| 4006 | /* else drop out for careful add */ |
| 4007 | } |
| 4008 | else { /* signs differ */ |
| 4009 | partial-=*rhs->lsu; |
| 4010 | if (partial>0) { /* no borrow needed, and non-0 result */ |
| 4011 | if (res!=lhs) decNumberCopy(res, lhs); /* not in place */ |
| 4012 | *res->lsu=(Unit)partial; |
| 4013 | /* this could have reduced digits [but result>0] */ |
| 4014 | res->digits=decGetDigits(res->lsu, D2U(res->digits)); |
| 4015 | break; |
| 4016 | } |
| 4017 | /* else drop out for careful subtract */ |
| 4018 | } |
| 4019 | } |
| 4020 | |
| 4021 | /* Now align (pad) the lhs or rhs so they can be added or */ |
| 4022 | /* subtracted, as necessary. If one number is much larger than */ |
| 4023 | /* the other (that is, if in plain form there is a least one */ |
| 4024 | /* digit between the lowest digit of one and the highest of the */ |
| 4025 | /* other) padding with up to DIGITS-1 trailing zeros may be */ |
| 4026 | /* needed; then apply rounding (as exotic rounding modes may be */ |
| 4027 | /* affected by the residue). */ |
| 4028 | rhsshift=0; /* rhs shift to left (padding) in Units */ |
| 4029 | bits=lhs->bits; /* assume sign is that of LHS */ |
| 4030 | mult=1; /* likely multiplier */ |
| 4031 | |
| 4032 | /* [if padding==0 the operands are aligned; no padding is needed] */ |
| 4033 | if (padding!=0) { |
| 4034 | /* some padding needed; always pad the RHS, as any required */ |
| 4035 | /* padding can then be effected by a simple combination of */ |
| 4036 | /* shifts and a multiply */ |
| 4037 | Flag swapped=0; |
| 4038 | if (padding<0) { /* LHS needs the padding */ |
| 4039 | const decNumber *t; |
| 4040 | padding=-padding; /* will be +ve */ |
| 4041 | bits=(uByte)(rhs->bits^negate); /* assumed sign is now that of RHS */ |
| 4042 | t=lhs; lhs=rhs; rhs=t; |
| 4043 | swapped=1; |
| 4044 | } |
| 4045 | |
| 4046 | /* If, after pad, rhs would be longer than lhs by digits+1 or */ |
| 4047 | /* more then lhs cannot affect the answer, except as a residue, */ |
| 4048 | /* so only need to pad up to a length of DIGITS+1. */ |
| 4049 | if (rhs->digits+padding > lhs->digits+reqdigits+1) { |
| 4050 | /* The RHS is sufficient */ |
| 4051 | /* for residue use the relative sign indication... */ |
| 4052 | Int shift=reqdigits-rhs->digits; /* left shift needed */ |
| 4053 | residue=1; /* residue for rounding */ |
| 4054 | if (diffsign) residue=-residue; /* signs differ */ |
| 4055 | /* copy, shortening if necessary */ |
| 4056 | decCopyFit(res, rhs, set, &residue, status); |
| 4057 | /* if it was already shorter, then need to pad with zeros */ |
| 4058 | if (shift>0) { |
| 4059 | res->digits=decShiftToMost(res->lsu, res->digits, shift); |
| 4060 | res->exponent-=shift; /* adjust the exponent. */ |
| 4061 | } |
| 4062 | /* flip the result sign if unswapped and rhs was negated */ |
| 4063 | if (!swapped) res->bits^=negate; |
| 4064 | decFinish(res, set, &residue, status); /* done */ |
| 4065 | break;} |
| 4066 | |
| 4067 | /* LHS digits may affect result */ |
| 4068 | rhsshift=D2U(padding+1)-1; /* this much by Unit shift .. */ |
| 4069 | mult=powers[padding-(rhsshift*DECDPUN)]; /* .. this by multiplication */ |
| 4070 | } /* padding needed */ |
| 4071 | |
| 4072 | if (diffsign) mult=-mult; /* signs differ */ |
| 4073 | |
| 4074 | /* determine the longer operand */ |
| 4075 | maxdigits=rhs->digits+padding; /* virtual length of RHS */ |
| 4076 | if (lhs->digits>maxdigits) maxdigits=lhs->digits; |
| 4077 | |
| 4078 | /* Decide on the result buffer to use; if possible place directly */ |
| 4079 | /* into result. */ |
| 4080 | acc=res->lsu; /* assume add direct to result */ |
| 4081 | /* If destructive overlap, or the number is too long, or a carry or */ |
| 4082 | /* borrow to DIGITS+1 might be possible, a buffer must be used. */ |
| 4083 | /* [Might be worth more sophisticated tests when maxdigits==reqdigits] */ |
| 4084 | if ((maxdigits>=reqdigits) /* is, or could be, too large */ |
| 4085 | || (res==rhs && rhsshift>0)) { /* destructive overlap */ |
| 4086 | /* buffer needed, choose it; units for maxdigits digits will be */ |
| 4087 | /* needed, +1 Unit for carry or borrow */ |
| 4088 | Int need=D2U(maxdigits)+1; |
| 4089 | acc=accbuff; /* assume use local buffer */ |
| 4090 | if (need*sizeof(Unit)>sizeof(accbuff)) { |
| 4091 | /* printf("malloc add %ld %ld\n", need, sizeof(accbuff)); */ |
| 4092 | allocacc=(Unit *)malloc(need*sizeof(Unit)); |
| 4093 | if (allocacc==NULL) { /* hopeless -- abandon */ |
| 4094 | *status|=DEC_Insufficient_storage; |
| 4095 | break;} |
| 4096 | acc=allocacc; |
| 4097 | } |
| 4098 | } |
| 4099 | |
| 4100 | res->bits=(uByte)(bits&DECNEG); /* it's now safe to overwrite.. */ |
| 4101 | res->exponent=lhs->exponent; /* .. operands (even if aliased) */ |
| 4102 | |
| 4103 | #if DECTRACE |
| 4104 | decDumpAr('A', lhs->lsu, D2U(lhs->digits)); |
| 4105 | decDumpAr('B', rhs->lsu, D2U(rhs->digits)); |
| 4106 | printf(" :h: %ld %ld\n", rhsshift, mult); |
| 4107 | #endif |
| 4108 | |
| 4109 | /* add [A+B*m] or subtract [A+B*(-m)] */ |
| 4110 | res->digits=decUnitAddSub(lhs->lsu, D2U(lhs->digits), |
| 4111 | rhs->lsu, D2U(rhs->digits), |
| 4112 | rhsshift, acc, mult) |
| 4113 | *DECDPUN; /* [units -> digits] */ |
| 4114 | if (res->digits<0) { /* borrowed... */ |
| 4115 | res->digits=-res->digits; |
| 4116 | res->bits^=DECNEG; /* flip the sign */ |
| 4117 | } |
| 4118 | #if DECTRACE |
| 4119 | decDumpAr('+', acc, D2U(res->digits)); |
| 4120 | #endif |
| 4121 | |
| 4122 | /* If a buffer was used the result must be copied back, possibly */ |
| 4123 | /* shortening. (If no buffer was used then the result must have */ |
| 4124 | /* fit, so can't need rounding and residue must be 0.) */ |
| 4125 | residue=0; /* clear accumulator */ |
| 4126 | if (acc!=res->lsu) { |
| 4127 | #if DECSUBSET |
| 4128 | if (set->extended) { /* round from first significant digit */ |
| 4129 | #endif |
| 4130 | /* remove leading zeros that were added due to rounding up to */ |
| 4131 | /* integral Units -- before the test for rounding. */ |
| 4132 | if (res->digits>reqdigits) |
| 4133 | res->digits=decGetDigits(acc, D2U(res->digits)); |
| 4134 | decSetCoeff(res, set, acc, res->digits, &residue, status); |
| 4135 | #if DECSUBSET |
| 4136 | } |
| 4137 | else { /* subset arithmetic rounds from original significant digit */ |
| 4138 | /* May have an underestimate. This only occurs when both */ |
| 4139 | /* numbers fit in DECDPUN digits and are padding with a */ |
| 4140 | /* negative multiple (-10, -100...) and the top digit(s) become */ |
| 4141 | /* 0. (This only matters when using X3.274 rules where the */ |
| 4142 | /* leading zero could be included in the rounding.) */ |
| 4143 | if (res->digits<maxdigits) { |
| 4144 | *(acc+D2U(res->digits))=0; /* ensure leading 0 is there */ |
| 4145 | res->digits=maxdigits; |
| 4146 | } |
| 4147 | else { |
| 4148 | /* remove leading zeros that added due to rounding up to */ |
| 4149 | /* integral Units (but only those in excess of the original */ |
| 4150 | /* maxdigits length, unless extended) before test for rounding. */ |
| 4151 | if (res->digits>reqdigits) { |
| 4152 | res->digits=decGetDigits(acc, D2U(res->digits)); |
| 4153 | if (res->digits<maxdigits) res->digits=maxdigits; |
| 4154 | } |
| 4155 | } |
| 4156 | decSetCoeff(res, set, acc, res->digits, &residue, status); |
| 4157 | /* Now apply rounding if needed before removing leading zeros. */ |
| 4158 | /* This is safe because subnormals are not a possibility */ |
| 4159 | if (residue!=0) { |
| 4160 | decApplyRound(res, set, residue, status); |
| 4161 | residue=0; /* did what needed to be done */ |
| 4162 | } |
| 4163 | } /* subset */ |
| 4164 | #endif |
| 4165 | } /* used buffer */ |
| 4166 | |
| 4167 | /* strip leading zeros [these were left on in case of subset subtract] */ |
| 4168 | res->digits=decGetDigits(res->lsu, D2U(res->digits)); |
| 4169 | |
| 4170 | /* apply checks and rounding */ |
| 4171 | decFinish(res, set, &residue, status); |
| 4172 | |
| 4173 | /* "When the sum of two operands with opposite signs is exactly */ |
| 4174 | /* zero, the sign of that sum shall be '+' in all rounding modes */ |
| 4175 | /* except round toward -Infinity, in which mode that sign shall be */ |
| 4176 | /* '-'." [Subset zeros also never have '-', set by decFinish.] */ |
| 4177 | if (ISZERO(res) && diffsign |
| 4178 | #if DECSUBSET |
| 4179 | && set->extended |
| 4180 | #endif |
| 4181 | && (*status&DEC_Inexact)==0) { |
| 4182 | if (set->round==DEC_ROUND_FLOOR) res->bits|=DECNEG; /* sign - */ |
| 4183 | else res->bits&=~DECNEG; /* sign + */ |
| 4184 | } |
| 4185 | } while(0); /* end protected */ |
| 4186 | |
| 4187 | if (allocacc!=NULL) free(allocacc); /* drop any storage used */ |
| 4188 | #if DECSUBSET |
| 4189 | if (allocrhs!=NULL) free(allocrhs); /* .. */ |
| 4190 | if (alloclhs!=NULL) free(alloclhs); /* .. */ |
| 4191 | #endif |
| 4192 | return res; |
| 4193 | } /* decAddOp */ |
| 4194 | |
| 4195 | /* ------------------------------------------------------------------ */ |
| 4196 | /* decDivideOp -- division operation */ |
| 4197 | /* */ |
| 4198 | /* This routine performs the calculations for all four division */ |
| 4199 | /* operators (divide, divideInteger, remainder, remainderNear). */ |
| 4200 | /* */ |
| 4201 | /* C=A op B */ |
| 4202 | /* */ |
| 4203 | /* res is C, the result. C may be A and/or B (e.g., X=X/X) */ |
| 4204 | /* lhs is A */ |
| 4205 | /* rhs is B */ |
| 4206 | /* set is the context */ |
| 4207 | /* op is DIVIDE, DIVIDEINT, REMAINDER, or REMNEAR respectively. */ |
| 4208 | /* status is the usual accumulator */ |
| 4209 | /* */ |
| 4210 | /* C must have space for set->digits digits. */ |
| 4211 | /* */ |
| 4212 | /* ------------------------------------------------------------------ */ |
| 4213 | /* The underlying algorithm of this routine is the same as in the */ |
| 4214 | /* 1981 S/370 implementation, that is, non-restoring long division */ |
| 4215 | /* with bi-unit (rather than bi-digit) estimation for each unit */ |
| 4216 | /* multiplier. In this pseudocode overview, complications for the */ |
| 4217 | /* Remainder operators and division residues for exact rounding are */ |
| 4218 | /* omitted for clarity. */ |
| 4219 | /* */ |
| 4220 | /* Prepare operands and handle special values */ |
| 4221 | /* Test for x/0 and then 0/x */ |
| 4222 | /* Exp =Exp1 - Exp2 */ |
| 4223 | /* Exp =Exp +len(var1) -len(var2) */ |
| 4224 | /* Sign=Sign1 * Sign2 */ |
| 4225 | /* Pad accumulator (Var1) to double-length with 0's (pad1) */ |
| 4226 | /* Pad Var2 to same length as Var1 */ |
| 4227 | /* msu2pair/plus=1st 2 or 1 units of var2, +1 to allow for round */ |
| 4228 | /* have=0 */ |
| 4229 | /* Do until (have=digits+1 OR residue=0) */ |
| 4230 | /* if exp<0 then if integer divide/residue then leave */ |
| 4231 | /* this_unit=0 */ |
| 4232 | /* Do forever */ |
| 4233 | /* compare numbers */ |
| 4234 | /* if <0 then leave inner_loop */ |
| 4235 | /* if =0 then (* quick exit without subtract *) do */ |
| 4236 | /* this_unit=this_unit+1; output this_unit */ |
| 4237 | /* leave outer_loop; end */ |
| 4238 | /* Compare lengths of numbers (mantissae): */ |
| 4239 | /* If same then tops2=msu2pair -- {units 1&2 of var2} */ |
| 4240 | /* else tops2=msu2plus -- {0, unit 1 of var2} */ |
| 4241 | /* tops1=first_unit_of_Var1*10**DECDPUN +second_unit_of_var1 */ |
| 4242 | /* mult=tops1/tops2 -- Good and safe guess at divisor */ |
| 4243 | /* if mult=0 then mult=1 */ |
| 4244 | /* this_unit=this_unit+mult */ |
| 4245 | /* subtract */ |
| 4246 | /* end inner_loop */ |
| 4247 | /* if have\=0 | this_unit\=0 then do */ |
| 4248 | /* output this_unit */ |
| 4249 | /* have=have+1; end */ |
| 4250 | /* var2=var2/10 */ |
| 4251 | /* exp=exp-1 */ |
| 4252 | /* end outer_loop */ |
| 4253 | /* exp=exp+1 -- set the proper exponent */ |
| 4254 | /* if have=0 then generate answer=0 */ |
| 4255 | /* Return (Result is defined by Var1) */ |
| 4256 | /* */ |
| 4257 | /* ------------------------------------------------------------------ */ |
| 4258 | /* Two working buffers are needed during the division; one (digits+ */ |
| 4259 | /* 1) to accumulate the result, and the other (up to 2*digits+1) for */ |
| 4260 | /* long subtractions. These are acc and var1 respectively. */ |
| 4261 | /* var1 is a copy of the lhs coefficient, var2 is the rhs coefficient.*/ |
| 4262 | /* The static buffers may be larger than might be expected to allow */ |
Veres Lajos | 67cc32e | 2015-09-08 22:45:14 +0100 | [diff] [blame] | 4263 | /* for calls from higher-level functions (notably exp). */ |
Tom Musta | 72ac97c | 2014-04-21 15:54:45 -0500 | [diff] [blame] | 4264 | /* ------------------------------------------------------------------ */ |
| 4265 | static decNumber * decDivideOp(decNumber *res, |
| 4266 | const decNumber *lhs, const decNumber *rhs, |
| 4267 | decContext *set, Flag op, uInt *status) { |
| 4268 | #if DECSUBSET |
| 4269 | decNumber *alloclhs=NULL; /* non-NULL if rounded lhs allocated */ |
| 4270 | decNumber *allocrhs=NULL; /* .., rhs */ |
| 4271 | #endif |
| 4272 | Unit accbuff[SD2U(DECBUFFER+DECDPUN+10)]; /* local buffer */ |
| 4273 | Unit *acc=accbuff; /* -> accumulator array for result */ |
| 4274 | Unit *allocacc=NULL; /* -> allocated buffer, iff allocated */ |
| 4275 | Unit *accnext; /* -> where next digit will go */ |
| 4276 | Int acclength; /* length of acc needed [Units] */ |
| 4277 | Int accunits; /* count of units accumulated */ |
| 4278 | Int accdigits; /* count of digits accumulated */ |
| 4279 | |
| 4280 | Unit varbuff[SD2U(DECBUFFER*2+DECDPUN)*sizeof(Unit)]; /* buffer for var1 */ |
| 4281 | Unit *var1=varbuff; /* -> var1 array for long subtraction */ |
| 4282 | Unit *varalloc=NULL; /* -> allocated buffer, iff used */ |
| 4283 | Unit *msu1; /* -> msu of var1 */ |
| 4284 | |
| 4285 | const Unit *var2; /* -> var2 array */ |
| 4286 | const Unit *msu2; /* -> msu of var2 */ |
| 4287 | Int msu2plus; /* msu2 plus one [does not vary] */ |
| 4288 | eInt msu2pair; /* msu2 pair plus one [does not vary] */ |
| 4289 | |
| 4290 | Int var1units, var2units; /* actual lengths */ |
| 4291 | Int var2ulen; /* logical length (units) */ |
| 4292 | Int var1initpad=0; /* var1 initial padding (digits) */ |
| 4293 | Int maxdigits; /* longest LHS or required acc length */ |
| 4294 | Int mult; /* multiplier for subtraction */ |
| 4295 | Unit thisunit; /* current unit being accumulated */ |
| 4296 | Int residue; /* for rounding */ |
| 4297 | Int reqdigits=set->digits; /* requested DIGITS */ |
| 4298 | Int exponent; /* working exponent */ |
| 4299 | Int maxexponent=0; /* DIVIDE maximum exponent if unrounded */ |
| 4300 | uByte bits; /* working sign */ |
| 4301 | Unit *target; /* work */ |
| 4302 | const Unit *source; /* .. */ |
Tom Musta | 79af357 | 2014-04-21 15:54:54 -0500 | [diff] [blame] | 4303 | uLong const *pow; /* .. */ |
Tom Musta | 72ac97c | 2014-04-21 15:54:45 -0500 | [diff] [blame] | 4304 | Int shift, cut; /* .. */ |
| 4305 | #if DECSUBSET |
| 4306 | Int dropped; /* work */ |
| 4307 | #endif |
| 4308 | |
| 4309 | #if DECCHECK |
| 4310 | if (decCheckOperands(res, lhs, rhs, set)) return res; |
| 4311 | #endif |
| 4312 | |
| 4313 | do { /* protect allocated storage */ |
| 4314 | #if DECSUBSET |
| 4315 | if (!set->extended) { |
| 4316 | /* reduce operands and set lostDigits status, as needed */ |
| 4317 | if (lhs->digits>reqdigits) { |
| 4318 | alloclhs=decRoundOperand(lhs, set, status); |
| 4319 | if (alloclhs==NULL) break; |
| 4320 | lhs=alloclhs; |
| 4321 | } |
| 4322 | if (rhs->digits>reqdigits) { |
| 4323 | allocrhs=decRoundOperand(rhs, set, status); |
| 4324 | if (allocrhs==NULL) break; |
| 4325 | rhs=allocrhs; |
| 4326 | } |
| 4327 | } |
| 4328 | #endif |
| 4329 | /* [following code does not require input rounding] */ |
| 4330 | |
| 4331 | bits=(lhs->bits^rhs->bits)&DECNEG; /* assumed sign for divisions */ |
| 4332 | |
| 4333 | /* handle infinities and NaNs */ |
| 4334 | if (SPECIALARGS) { /* a special bit set */ |
| 4335 | if (SPECIALARGS & (DECSNAN | DECNAN)) { /* one or two NaNs */ |
| 4336 | decNaNs(res, lhs, rhs, set, status); |
| 4337 | break; |
| 4338 | } |
| 4339 | /* one or two infinities */ |
| 4340 | if (decNumberIsInfinite(lhs)) { /* LHS (dividend) is infinite */ |
| 4341 | if (decNumberIsInfinite(rhs) || /* two infinities are invalid .. */ |
| 4342 | op & (REMAINDER | REMNEAR)) { /* as is remainder of infinity */ |
| 4343 | *status|=DEC_Invalid_operation; |
| 4344 | break; |
| 4345 | } |
| 4346 | /* [Note that infinity/0 raises no exceptions] */ |
| 4347 | decNumberZero(res); |
| 4348 | res->bits=bits|DECINF; /* set +/- infinity */ |
| 4349 | break; |
| 4350 | } |
| 4351 | else { /* RHS (divisor) is infinite */ |
| 4352 | residue=0; |
| 4353 | if (op&(REMAINDER|REMNEAR)) { |
| 4354 | /* result is [finished clone of] lhs */ |
| 4355 | decCopyFit(res, lhs, set, &residue, status); |
| 4356 | } |
| 4357 | else { /* a division */ |
| 4358 | decNumberZero(res); |
| 4359 | res->bits=bits; /* set +/- zero */ |
| 4360 | /* for DIVIDEINT the exponent is always 0. For DIVIDE, result */ |
| 4361 | /* is a 0 with infinitely negative exponent, clamped to minimum */ |
| 4362 | if (op&DIVIDE) { |
| 4363 | res->exponent=set->emin-set->digits+1; |
| 4364 | *status|=DEC_Clamped; |
| 4365 | } |
| 4366 | } |
| 4367 | decFinish(res, set, &residue, status); |
| 4368 | break; |
| 4369 | } |
| 4370 | } |
| 4371 | |
| 4372 | /* handle 0 rhs (x/0) */ |
| 4373 | if (ISZERO(rhs)) { /* x/0 is always exceptional */ |
| 4374 | if (ISZERO(lhs)) { |
| 4375 | decNumberZero(res); /* [after lhs test] */ |
| 4376 | *status|=DEC_Division_undefined;/* 0/0 will become NaN */ |
| 4377 | } |
| 4378 | else { |
| 4379 | decNumberZero(res); |
| 4380 | if (op&(REMAINDER|REMNEAR)) *status|=DEC_Invalid_operation; |
| 4381 | else { |
| 4382 | *status|=DEC_Division_by_zero; /* x/0 */ |
| 4383 | res->bits=bits|DECINF; /* .. is +/- Infinity */ |
| 4384 | } |
| 4385 | } |
| 4386 | break;} |
| 4387 | |
| 4388 | /* handle 0 lhs (0/x) */ |
| 4389 | if (ISZERO(lhs)) { /* 0/x [x!=0] */ |
| 4390 | #if DECSUBSET |
| 4391 | if (!set->extended) decNumberZero(res); |
| 4392 | else { |
| 4393 | #endif |
| 4394 | if (op&DIVIDE) { |
| 4395 | residue=0; |
| 4396 | exponent=lhs->exponent-rhs->exponent; /* ideal exponent */ |
| 4397 | decNumberCopy(res, lhs); /* [zeros always fit] */ |
| 4398 | res->bits=bits; /* sign as computed */ |
| 4399 | res->exponent=exponent; /* exponent, too */ |
| 4400 | decFinalize(res, set, &residue, status); /* check exponent */ |
| 4401 | } |
| 4402 | else if (op&DIVIDEINT) { |
| 4403 | decNumberZero(res); /* integer 0 */ |
| 4404 | res->bits=bits; /* sign as computed */ |
| 4405 | } |
| 4406 | else { /* a remainder */ |
| 4407 | exponent=rhs->exponent; /* [save in case overwrite] */ |
| 4408 | decNumberCopy(res, lhs); /* [zeros always fit] */ |
| 4409 | if (exponent<res->exponent) res->exponent=exponent; /* use lower */ |
| 4410 | } |
| 4411 | #if DECSUBSET |
| 4412 | } |
| 4413 | #endif |
| 4414 | break;} |
| 4415 | |
| 4416 | /* Precalculate exponent. This starts off adjusted (and hence fits */ |
| 4417 | /* in 31 bits) and becomes the usual unadjusted exponent as the */ |
| 4418 | /* division proceeds. The order of evaluation is important, here, */ |
| 4419 | /* to avoid wrap. */ |
| 4420 | exponent=(lhs->exponent+lhs->digits)-(rhs->exponent+rhs->digits); |
| 4421 | |
| 4422 | /* If the working exponent is -ve, then some quick exits are */ |
| 4423 | /* possible because the quotient is known to be <1 */ |
| 4424 | /* [for REMNEAR, it needs to be < -1, as -0.5 could need work] */ |
| 4425 | if (exponent<0 && !(op==DIVIDE)) { |
| 4426 | if (op&DIVIDEINT) { |
| 4427 | decNumberZero(res); /* integer part is 0 */ |
| 4428 | #if DECSUBSET |
| 4429 | if (set->extended) |
| 4430 | #endif |
| 4431 | res->bits=bits; /* set +/- zero */ |
| 4432 | break;} |
| 4433 | /* fastpath remainders so long as the lhs has the smaller */ |
| 4434 | /* (or equal) exponent */ |
| 4435 | if (lhs->exponent<=rhs->exponent) { |
| 4436 | if (op&REMAINDER || exponent<-1) { |
| 4437 | /* It is REMAINDER or safe REMNEAR; result is [finished */ |
| 4438 | /* clone of] lhs (r = x - 0*y) */ |
| 4439 | residue=0; |
| 4440 | decCopyFit(res, lhs, set, &residue, status); |
| 4441 | decFinish(res, set, &residue, status); |
| 4442 | break; |
| 4443 | } |
| 4444 | /* [unsafe REMNEAR drops through] */ |
| 4445 | } |
| 4446 | } /* fastpaths */ |
| 4447 | |
| 4448 | /* Long (slow) division is needed; roll up the sleeves... */ |
| 4449 | |
| 4450 | /* The accumulator will hold the quotient of the division. */ |
| 4451 | /* If it needs to be too long for stack storage, then allocate. */ |
| 4452 | acclength=D2U(reqdigits+DECDPUN); /* in Units */ |
| 4453 | if (acclength*sizeof(Unit)>sizeof(accbuff)) { |
| 4454 | /* printf("malloc dvacc %ld units\n", acclength); */ |
| 4455 | allocacc=(Unit *)malloc(acclength*sizeof(Unit)); |
| 4456 | if (allocacc==NULL) { /* hopeless -- abandon */ |
| 4457 | *status|=DEC_Insufficient_storage; |
| 4458 | break;} |
| 4459 | acc=allocacc; /* use the allocated space */ |
| 4460 | } |
| 4461 | |
| 4462 | /* var1 is the padded LHS ready for subtractions. */ |
| 4463 | /* If it needs to be too long for stack storage, then allocate. */ |
| 4464 | /* The maximum units needed for var1 (long subtraction) is: */ |
| 4465 | /* Enough for */ |
| 4466 | /* (rhs->digits+reqdigits-1) -- to allow full slide to right */ |
| 4467 | /* or (lhs->digits) -- to allow for long lhs */ |
| 4468 | /* whichever is larger */ |
| 4469 | /* +1 -- for rounding of slide to right */ |
| 4470 | /* +1 -- for leading 0s */ |
| 4471 | /* +1 -- for pre-adjust if a remainder or DIVIDEINT */ |
| 4472 | /* [Note: unused units do not participate in decUnitAddSub data] */ |
| 4473 | maxdigits=rhs->digits+reqdigits-1; |
| 4474 | if (lhs->digits>maxdigits) maxdigits=lhs->digits; |
| 4475 | var1units=D2U(maxdigits)+2; |
| 4476 | /* allocate a guard unit above msu1 for REMAINDERNEAR */ |
| 4477 | if (!(op&DIVIDE)) var1units++; |
| 4478 | if ((var1units+1)*sizeof(Unit)>sizeof(varbuff)) { |
| 4479 | /* printf("malloc dvvar %ld units\n", var1units+1); */ |
| 4480 | varalloc=(Unit *)malloc((var1units+1)*sizeof(Unit)); |
| 4481 | if (varalloc==NULL) { /* hopeless -- abandon */ |
| 4482 | *status|=DEC_Insufficient_storage; |
| 4483 | break;} |
| 4484 | var1=varalloc; /* use the allocated space */ |
| 4485 | } |
| 4486 | |
| 4487 | /* Extend the lhs and rhs to full long subtraction length. The lhs */ |
| 4488 | /* is truly extended into the var1 buffer, with 0 padding, so a */ |
| 4489 | /* subtract in place is always possible. The rhs (var2) has */ |
| 4490 | /* virtual padding (implemented by decUnitAddSub). */ |
| 4491 | /* One guard unit was allocated above msu1 for rem=rem+rem in */ |
| 4492 | /* REMAINDERNEAR. */ |
| 4493 | msu1=var1+var1units-1; /* msu of var1 */ |
| 4494 | source=lhs->lsu+D2U(lhs->digits)-1; /* msu of input array */ |
| 4495 | for (target=msu1; source>=lhs->lsu; source--, target--) *target=*source; |
| 4496 | for (; target>=var1; target--) *target=0; |
| 4497 | |
| 4498 | /* rhs (var2) is left-aligned with var1 at the start */ |
| 4499 | var2ulen=var1units; /* rhs logical length (units) */ |
| 4500 | var2units=D2U(rhs->digits); /* rhs actual length (units) */ |
| 4501 | var2=rhs->lsu; /* -> rhs array */ |
| 4502 | msu2=var2+var2units-1; /* -> msu of var2 [never changes] */ |
| 4503 | /* now set up the variables which will be used for estimating the */ |
| 4504 | /* multiplication factor. If these variables are not exact, add */ |
| 4505 | /* 1 to make sure that the multiplier is never overestimated. */ |
| 4506 | msu2plus=*msu2; /* it's value .. */ |
| 4507 | if (var2units>1) msu2plus++; /* .. +1 if any more */ |
| 4508 | msu2pair=(eInt)*msu2*(DECDPUNMAX+1);/* top two pair .. */ |
| 4509 | if (var2units>1) { /* .. [else treat 2nd as 0] */ |
| 4510 | msu2pair+=*(msu2-1); /* .. */ |
| 4511 | if (var2units>2) msu2pair++; /* .. +1 if any more */ |
| 4512 | } |
| 4513 | |
| 4514 | /* The calculation is working in units, which may have leading zeros, */ |
| 4515 | /* but the exponent was calculated on the assumption that they are */ |
| 4516 | /* both left-aligned. Adjust the exponent to compensate: add the */ |
| 4517 | /* number of leading zeros in var1 msu and subtract those in var2 msu. */ |
| 4518 | /* [This is actually done by counting the digits and negating, as */ |
| 4519 | /* lead1=DECDPUN-digits1, and similarly for lead2.] */ |
| 4520 | for (pow=&powers[1]; *msu1>=*pow; pow++) exponent--; |
| 4521 | for (pow=&powers[1]; *msu2>=*pow; pow++) exponent++; |
| 4522 | |
| 4523 | /* Now, if doing an integer divide or remainder, ensure that */ |
| 4524 | /* the result will be Unit-aligned. To do this, shift the var1 */ |
| 4525 | /* accumulator towards least if need be. (It's much easier to */ |
| 4526 | /* do this now than to reassemble the residue afterwards, if */ |
| 4527 | /* doing a remainder.) Also ensure the exponent is not negative. */ |
| 4528 | if (!(op&DIVIDE)) { |
| 4529 | Unit *u; /* work */ |
| 4530 | /* save the initial 'false' padding of var1, in digits */ |
| 4531 | var1initpad=(var1units-D2U(lhs->digits))*DECDPUN; |
| 4532 | /* Determine the shift to do. */ |
| 4533 | if (exponent<0) cut=-exponent; |
| 4534 | else cut=DECDPUN-exponent%DECDPUN; |
| 4535 | decShiftToLeast(var1, var1units, cut); |
| 4536 | exponent+=cut; /* maintain numerical value */ |
| 4537 | var1initpad-=cut; /* .. and reduce padding */ |
| 4538 | /* clean any most-significant units which were just emptied */ |
| 4539 | for (u=msu1; cut>=DECDPUN; cut-=DECDPUN, u--) *u=0; |
| 4540 | } /* align */ |
| 4541 | else { /* is DIVIDE */ |
| 4542 | maxexponent=lhs->exponent-rhs->exponent; /* save */ |
| 4543 | /* optimization: if the first iteration will just produce 0, */ |
| 4544 | /* preadjust to skip it [valid for DIVIDE only] */ |
| 4545 | if (*msu1<*msu2) { |
| 4546 | var2ulen--; /* shift down */ |
| 4547 | exponent-=DECDPUN; /* update the exponent */ |
| 4548 | } |
| 4549 | } |
| 4550 | |
| 4551 | /* ---- start the long-division loops ------------------------------ */ |
| 4552 | accunits=0; /* no units accumulated yet */ |
| 4553 | accdigits=0; /* .. or digits */ |
| 4554 | accnext=acc+acclength-1; /* -> msu of acc [NB: allows digits+1] */ |
| 4555 | for (;;) { /* outer forever loop */ |
| 4556 | thisunit=0; /* current unit assumed 0 */ |
| 4557 | /* find the next unit */ |
| 4558 | for (;;) { /* inner forever loop */ |
| 4559 | /* strip leading zero units [from either pre-adjust or from */ |
| 4560 | /* subtract last time around]. Leave at least one unit. */ |
| 4561 | for (; *msu1==0 && msu1>var1; msu1--) var1units--; |
| 4562 | |
| 4563 | if (var1units<var2ulen) break; /* var1 too low for subtract */ |
| 4564 | if (var1units==var2ulen) { /* unit-by-unit compare needed */ |
| 4565 | /* compare the two numbers, from msu */ |
| 4566 | const Unit *pv1, *pv2; |
| 4567 | Unit v2; /* units to compare */ |
| 4568 | pv2=msu2; /* -> msu */ |
| 4569 | for (pv1=msu1; ; pv1--, pv2--) { |
| 4570 | /* v1=*pv1 -- always OK */ |
| 4571 | v2=0; /* assume in padding */ |
| 4572 | if (pv2>=var2) v2=*pv2; /* in range */ |
| 4573 | if (*pv1!=v2) break; /* no longer the same */ |
| 4574 | if (pv1==var1) break; /* done; leave pv1 as is */ |
| 4575 | } |
| 4576 | /* here when all inspected or a difference seen */ |
| 4577 | if (*pv1<v2) break; /* var1 too low to subtract */ |
| 4578 | if (*pv1==v2) { /* var1 == var2 */ |
| 4579 | /* reach here if var1 and var2 are identical; subtraction */ |
| 4580 | /* would increase digit by one, and the residue will be 0 so */ |
| 4581 | /* the calculation is done; leave the loop with residue=0. */ |
| 4582 | thisunit++; /* as though subtracted */ |
| 4583 | *var1=0; /* set var1 to 0 */ |
| 4584 | var1units=1; /* .. */ |
| 4585 | break; /* from inner */ |
| 4586 | } /* var1 == var2 */ |
| 4587 | /* *pv1>v2. Prepare for real subtraction; the lengths are equal */ |
| 4588 | /* Estimate the multiplier (there's always a msu1-1)... */ |
| 4589 | /* Bring in two units of var2 to provide a good estimate. */ |
| 4590 | mult=(Int)(((eInt)*msu1*(DECDPUNMAX+1)+*(msu1-1))/msu2pair); |
| 4591 | } /* lengths the same */ |
| 4592 | else { /* var1units > var2ulen, so subtraction is safe */ |
| 4593 | /* The var2 msu is one unit towards the lsu of the var1 msu, */ |
| 4594 | /* so only one unit for var2 can be used. */ |
| 4595 | mult=(Int)(((eInt)*msu1*(DECDPUNMAX+1)+*(msu1-1))/msu2plus); |
| 4596 | } |
| 4597 | if (mult==0) mult=1; /* must always be at least 1 */ |
| 4598 | /* subtraction needed; var1 is > var2 */ |
| 4599 | thisunit=(Unit)(thisunit+mult); /* accumulate */ |
| 4600 | /* subtract var1-var2, into var1; only the overlap needs */ |
| 4601 | /* processing, as this is an in-place calculation */ |
| 4602 | shift=var2ulen-var2units; |
| 4603 | #if DECTRACE |
| 4604 | decDumpAr('1', &var1[shift], var1units-shift); |
| 4605 | decDumpAr('2', var2, var2units); |
| 4606 | printf("m=%ld\n", -mult); |
| 4607 | #endif |
| 4608 | decUnitAddSub(&var1[shift], var1units-shift, |
| 4609 | var2, var2units, 0, |
| 4610 | &var1[shift], -mult); |
| 4611 | #if DECTRACE |
| 4612 | decDumpAr('#', &var1[shift], var1units-shift); |
| 4613 | #endif |
| 4614 | /* var1 now probably has leading zeros; these are removed at the */ |
| 4615 | /* top of the inner loop. */ |
| 4616 | } /* inner loop */ |
| 4617 | |
| 4618 | /* The next unit has been calculated in full; unless it's a */ |
| 4619 | /* leading zero, add to acc */ |
| 4620 | if (accunits!=0 || thisunit!=0) { /* is first or non-zero */ |
| 4621 | *accnext=thisunit; /* store in accumulator */ |
| 4622 | /* account exactly for the new digits */ |
| 4623 | if (accunits==0) { |
| 4624 | accdigits++; /* at least one */ |
| 4625 | for (pow=&powers[1]; thisunit>=*pow; pow++) accdigits++; |
| 4626 | } |
| 4627 | else accdigits+=DECDPUN; |
| 4628 | accunits++; /* update count */ |
| 4629 | accnext--; /* ready for next */ |
| 4630 | if (accdigits>reqdigits) break; /* have enough digits */ |
| 4631 | } |
| 4632 | |
| 4633 | /* if the residue is zero, the operation is done (unless divide */ |
| 4634 | /* or divideInteger and still not enough digits yet) */ |
| 4635 | if (*var1==0 && var1units==1) { /* residue is 0 */ |
| 4636 | if (op&(REMAINDER|REMNEAR)) break; |
| 4637 | if ((op&DIVIDE) && (exponent<=maxexponent)) break; |
| 4638 | /* [drop through if divideInteger] */ |
| 4639 | } |
| 4640 | /* also done enough if calculating remainder or integer */ |
| 4641 | /* divide and just did the last ('units') unit */ |
| 4642 | if (exponent==0 && !(op&DIVIDE)) break; |
| 4643 | |
| 4644 | /* to get here, var1 is less than var2, so divide var2 by the per- */ |
| 4645 | /* Unit power of ten and go for the next digit */ |
| 4646 | var2ulen--; /* shift down */ |
| 4647 | exponent-=DECDPUN; /* update the exponent */ |
| 4648 | } /* outer loop */ |
| 4649 | |
| 4650 | /* ---- division is complete --------------------------------------- */ |
| 4651 | /* here: acc has at least reqdigits+1 of good results (or fewer */ |
| 4652 | /* if early stop), starting at accnext+1 (its lsu) */ |
| 4653 | /* var1 has any residue at the stopping point */ |
| 4654 | /* accunits is the number of digits collected in acc */ |
| 4655 | if (accunits==0) { /* acc is 0 */ |
| 4656 | accunits=1; /* show have a unit .. */ |
| 4657 | accdigits=1; /* .. */ |
| 4658 | *accnext=0; /* .. whose value is 0 */ |
| 4659 | } |
| 4660 | else accnext++; /* back to last placed */ |
| 4661 | /* accnext now -> lowest unit of result */ |
| 4662 | |
| 4663 | residue=0; /* assume no residue */ |
| 4664 | if (op&DIVIDE) { |
| 4665 | /* record the presence of any residue, for rounding */ |
| 4666 | if (*var1!=0 || var1units>1) residue=1; |
| 4667 | else { /* no residue */ |
| 4668 | /* Had an exact division; clean up spurious trailing 0s. */ |
| 4669 | /* There will be at most DECDPUN-1, from the final multiply, */ |
| 4670 | /* and then only if the result is non-0 (and even) and the */ |
| 4671 | /* exponent is 'loose'. */ |
| 4672 | #if DECDPUN>1 |
| 4673 | Unit lsu=*accnext; |
| 4674 | if (!(lsu&0x01) && (lsu!=0)) { |
| 4675 | /* count the trailing zeros */ |
| 4676 | Int drop=0; |
| 4677 | for (;; drop++) { /* [will terminate because lsu!=0] */ |
| 4678 | if (exponent>=maxexponent) break; /* don't chop real 0s */ |
| 4679 | #if DECDPUN<=4 |
| 4680 | if ((lsu-QUOT10(lsu, drop+1) |
| 4681 | *powers[drop+1])!=0) break; /* found non-0 digit */ |
| 4682 | #else |
| 4683 | if (lsu%powers[drop+1]!=0) break; /* found non-0 digit */ |
| 4684 | #endif |
| 4685 | exponent++; |
| 4686 | } |
| 4687 | if (drop>0) { |
| 4688 | accunits=decShiftToLeast(accnext, accunits, drop); |
| 4689 | accdigits=decGetDigits(accnext, accunits); |
| 4690 | accunits=D2U(accdigits); |
| 4691 | /* [exponent was adjusted in the loop] */ |
| 4692 | } |
| 4693 | } /* neither odd nor 0 */ |
| 4694 | #endif |
| 4695 | } /* exact divide */ |
| 4696 | } /* divide */ |
| 4697 | else /* op!=DIVIDE */ { |
| 4698 | /* check for coefficient overflow */ |
| 4699 | if (accdigits+exponent>reqdigits) { |
| 4700 | *status|=DEC_Division_impossible; |
| 4701 | break; |
| 4702 | } |
| 4703 | if (op & (REMAINDER|REMNEAR)) { |
| 4704 | /* [Here, the exponent will be 0, because var1 was adjusted */ |
| 4705 | /* appropriately.] */ |
| 4706 | Int postshift; /* work */ |
| 4707 | Flag wasodd=0; /* integer was odd */ |
| 4708 | Unit *quotlsu; /* for save */ |
| 4709 | Int quotdigits; /* .. */ |
| 4710 | |
| 4711 | bits=lhs->bits; /* remainder sign is always as lhs */ |
| 4712 | |
| 4713 | /* Fastpath when residue is truly 0 is worthwhile [and */ |
| 4714 | /* simplifies the code below] */ |
| 4715 | if (*var1==0 && var1units==1) { /* residue is 0 */ |
| 4716 | Int exp=lhs->exponent; /* save min(exponents) */ |
| 4717 | if (rhs->exponent<exp) exp=rhs->exponent; |
| 4718 | decNumberZero(res); /* 0 coefficient */ |
| 4719 | #if DECSUBSET |
| 4720 | if (set->extended) |
| 4721 | #endif |
| 4722 | res->exponent=exp; /* .. with proper exponent */ |
| 4723 | res->bits=(uByte)(bits&DECNEG); /* [cleaned] */ |
| 4724 | decFinish(res, set, &residue, status); /* might clamp */ |
| 4725 | break; |
| 4726 | } |
| 4727 | /* note if the quotient was odd */ |
| 4728 | if (*accnext & 0x01) wasodd=1; /* acc is odd */ |
| 4729 | quotlsu=accnext; /* save in case need to reinspect */ |
| 4730 | quotdigits=accdigits; /* .. */ |
| 4731 | |
| 4732 | /* treat the residue, in var1, as the value to return, via acc */ |
| 4733 | /* calculate the unused zero digits. This is the smaller of: */ |
| 4734 | /* var1 initial padding (saved above) */ |
| 4735 | /* var2 residual padding, which happens to be given by: */ |
| 4736 | postshift=var1initpad+exponent-lhs->exponent+rhs->exponent; |
| 4737 | /* [the 'exponent' term accounts for the shifts during divide] */ |
| 4738 | if (var1initpad<postshift) postshift=var1initpad; |
| 4739 | |
| 4740 | /* shift var1 the requested amount, and adjust its digits */ |
| 4741 | var1units=decShiftToLeast(var1, var1units, postshift); |
| 4742 | accnext=var1; |
| 4743 | accdigits=decGetDigits(var1, var1units); |
| 4744 | accunits=D2U(accdigits); |
| 4745 | |
| 4746 | exponent=lhs->exponent; /* exponent is smaller of lhs & rhs */ |
| 4747 | if (rhs->exponent<exponent) exponent=rhs->exponent; |
| 4748 | |
| 4749 | /* Now correct the result if doing remainderNear; if it */ |
| 4750 | /* (looking just at coefficients) is > rhs/2, or == rhs/2 and */ |
| 4751 | /* the integer was odd then the result should be rem-rhs. */ |
| 4752 | if (op&REMNEAR) { |
| 4753 | Int compare, tarunits; /* work */ |
| 4754 | Unit *up; /* .. */ |
| 4755 | /* calculate remainder*2 into the var1 buffer (which has */ |
| 4756 | /* 'headroom' of an extra unit and hence enough space) */ |
| 4757 | /* [a dedicated 'double' loop would be faster, here] */ |
| 4758 | tarunits=decUnitAddSub(accnext, accunits, accnext, accunits, |
| 4759 | 0, accnext, 1); |
| 4760 | /* decDumpAr('r', accnext, tarunits); */ |
| 4761 | |
| 4762 | /* Here, accnext (var1) holds tarunits Units with twice the */ |
| 4763 | /* remainder's coefficient, which must now be compared to the */ |
| 4764 | /* RHS. The remainder's exponent may be smaller than the RHS's. */ |
| 4765 | compare=decUnitCompare(accnext, tarunits, rhs->lsu, D2U(rhs->digits), |
| 4766 | rhs->exponent-exponent); |
| 4767 | if (compare==BADINT) { /* deep trouble */ |
| 4768 | *status|=DEC_Insufficient_storage; |
| 4769 | break;} |
| 4770 | |
| 4771 | /* now restore the remainder by dividing by two; the lsu */ |
| 4772 | /* is known to be even. */ |
| 4773 | for (up=accnext; up<accnext+tarunits; up++) { |
| 4774 | Int half; /* half to add to lower unit */ |
| 4775 | half=*up & 0x01; |
| 4776 | *up/=2; /* [shift] */ |
| 4777 | if (!half) continue; |
| 4778 | *(up-1)+=(DECDPUNMAX+1)/2; |
| 4779 | } |
| 4780 | /* [accunits still describes the original remainder length] */ |
| 4781 | |
| 4782 | if (compare>0 || (compare==0 && wasodd)) { /* adjustment needed */ |
| 4783 | Int exp, expunits, exprem; /* work */ |
| 4784 | /* This is effectively causing round-up of the quotient, */ |
| 4785 | /* so if it was the rare case where it was full and all */ |
| 4786 | /* nines, it would overflow and hence division-impossible */ |
| 4787 | /* should be raised */ |
| 4788 | Flag allnines=0; /* 1 if quotient all nines */ |
| 4789 | if (quotdigits==reqdigits) { /* could be borderline */ |
| 4790 | for (up=quotlsu; ; up++) { |
| 4791 | if (quotdigits>DECDPUN) { |
| 4792 | if (*up!=DECDPUNMAX) break;/* non-nines */ |
| 4793 | } |
| 4794 | else { /* this is the last Unit */ |
| 4795 | if (*up==powers[quotdigits]-1) allnines=1; |
| 4796 | break; |
| 4797 | } |
| 4798 | quotdigits-=DECDPUN; /* checked those digits */ |
| 4799 | } /* up */ |
| 4800 | } /* borderline check */ |
| 4801 | if (allnines) { |
| 4802 | *status|=DEC_Division_impossible; |
| 4803 | break;} |
| 4804 | |
| 4805 | /* rem-rhs is needed; the sign will invert. Again, var1 */ |
| 4806 | /* can safely be used for the working Units array. */ |
| 4807 | exp=rhs->exponent-exponent; /* RHS padding needed */ |
| 4808 | /* Calculate units and remainder from exponent. */ |
| 4809 | expunits=exp/DECDPUN; |
| 4810 | exprem=exp%DECDPUN; |
| 4811 | /* subtract [A+B*(-m)]; the result will always be negative */ |
| 4812 | accunits=-decUnitAddSub(accnext, accunits, |
| 4813 | rhs->lsu, D2U(rhs->digits), |
| 4814 | expunits, accnext, -(Int)powers[exprem]); |
| 4815 | accdigits=decGetDigits(accnext, accunits); /* count digits exactly */ |
| 4816 | accunits=D2U(accdigits); /* and recalculate the units for copy */ |
| 4817 | /* [exponent is as for original remainder] */ |
| 4818 | bits^=DECNEG; /* flip the sign */ |
| 4819 | } |
| 4820 | } /* REMNEAR */ |
| 4821 | } /* REMAINDER or REMNEAR */ |
| 4822 | } /* not DIVIDE */ |
| 4823 | |
| 4824 | /* Set exponent and bits */ |
| 4825 | res->exponent=exponent; |
| 4826 | res->bits=(uByte)(bits&DECNEG); /* [cleaned] */ |
| 4827 | |
| 4828 | /* Now the coefficient. */ |
| 4829 | decSetCoeff(res, set, accnext, accdigits, &residue, status); |
| 4830 | |
| 4831 | decFinish(res, set, &residue, status); /* final cleanup */ |
| 4832 | |
| 4833 | #if DECSUBSET |
| 4834 | /* If a divide then strip trailing zeros if subset [after round] */ |
| 4835 | if (!set->extended && (op==DIVIDE)) decTrim(res, set, 0, &dropped); |
| 4836 | #endif |
| 4837 | } while(0); /* end protected */ |
| 4838 | |
| 4839 | if (varalloc!=NULL) free(varalloc); /* drop any storage used */ |
| 4840 | if (allocacc!=NULL) free(allocacc); /* .. */ |
| 4841 | #if DECSUBSET |
| 4842 | if (allocrhs!=NULL) free(allocrhs); /* .. */ |
| 4843 | if (alloclhs!=NULL) free(alloclhs); /* .. */ |
| 4844 | #endif |
| 4845 | return res; |
| 4846 | } /* decDivideOp */ |
| 4847 | |
| 4848 | /* ------------------------------------------------------------------ */ |
| 4849 | /* decMultiplyOp -- multiplication operation */ |
| 4850 | /* */ |
| 4851 | /* This routine performs the multiplication C=A x B. */ |
| 4852 | /* */ |
| 4853 | /* res is C, the result. C may be A and/or B (e.g., X=X*X) */ |
| 4854 | /* lhs is A */ |
| 4855 | /* rhs is B */ |
| 4856 | /* set is the context */ |
| 4857 | /* status is the usual accumulator */ |
| 4858 | /* */ |
| 4859 | /* C must have space for set->digits digits. */ |
| 4860 | /* */ |
| 4861 | /* ------------------------------------------------------------------ */ |
| 4862 | /* 'Classic' multiplication is used rather than Karatsuba, as the */ |
| 4863 | /* latter would give only a minor improvement for the short numbers */ |
| 4864 | /* expected to be handled most (and uses much more memory). */ |
| 4865 | /* */ |
| 4866 | /* There are two major paths here: the general-purpose ('old code') */ |
| 4867 | /* path which handles all DECDPUN values, and a fastpath version */ |
| 4868 | /* which is used if 64-bit ints are available, DECDPUN<=4, and more */ |
| 4869 | /* than two calls to decUnitAddSub would be made. */ |
| 4870 | /* */ |
| 4871 | /* The fastpath version lumps units together into 8-digit or 9-digit */ |
| 4872 | /* chunks, and also uses a lazy carry strategy to minimise expensive */ |
| 4873 | /* 64-bit divisions. The chunks are then broken apart again into */ |
| 4874 | /* units for continuing processing. Despite this overhead, the */ |
| 4875 | /* fastpath can speed up some 16-digit operations by 10x (and much */ |
| 4876 | /* more for higher-precision calculations). */ |
| 4877 | /* */ |
| 4878 | /* A buffer always has to be used for the accumulator; in the */ |
| 4879 | /* fastpath, buffers are also always needed for the chunked copies of */ |
| 4880 | /* of the operand coefficients. */ |
| 4881 | /* Static buffers are larger than needed just for multiply, to allow */ |
| 4882 | /* for calls from other operations (notably exp). */ |
| 4883 | /* ------------------------------------------------------------------ */ |
| 4884 | #define FASTMUL (DECUSE64 && DECDPUN<5) |
| 4885 | static decNumber * decMultiplyOp(decNumber *res, const decNumber *lhs, |
| 4886 | const decNumber *rhs, decContext *set, |
| 4887 | uInt *status) { |
| 4888 | Int accunits; /* Units of accumulator in use */ |
| 4889 | Int exponent; /* work */ |
| 4890 | Int residue=0; /* rounding residue */ |
| 4891 | uByte bits; /* result sign */ |
| 4892 | Unit *acc; /* -> accumulator Unit array */ |
| 4893 | Int needbytes; /* size calculator */ |
| 4894 | void *allocacc=NULL; /* -> allocated accumulator, iff allocated */ |
| 4895 | Unit accbuff[SD2U(DECBUFFER*4+1)]; /* buffer (+1 for DECBUFFER==0, */ |
| 4896 | /* *4 for calls from other operations) */ |
| 4897 | const Unit *mer, *mermsup; /* work */ |
| 4898 | Int madlength; /* Units in multiplicand */ |
| 4899 | Int shift; /* Units to shift multiplicand by */ |
| 4900 | |
| 4901 | #if FASTMUL |
| 4902 | /* if DECDPUN is 1 or 3 work in base 10**9, otherwise */ |
| 4903 | /* (DECDPUN is 2 or 4) then work in base 10**8 */ |
| 4904 | #if DECDPUN & 1 /* odd */ |
| 4905 | #define FASTBASE 1000000000 /* base */ |
| 4906 | #define FASTDIGS 9 /* digits in base */ |
| 4907 | #define FASTLAZY 18 /* carry resolution point [1->18] */ |
| 4908 | #else |
| 4909 | #define FASTBASE 100000000 |
| 4910 | #define FASTDIGS 8 |
| 4911 | #define FASTLAZY 1844 /* carry resolution point [1->1844] */ |
| 4912 | #endif |
| 4913 | /* three buffers are used, two for chunked copies of the operands */ |
| 4914 | /* (base 10**8 or base 10**9) and one base 2**64 accumulator with */ |
| 4915 | /* lazy carry evaluation */ |
| 4916 | uInt zlhibuff[(DECBUFFER*2+1)/8+1]; /* buffer (+1 for DECBUFFER==0) */ |
| 4917 | uInt *zlhi=zlhibuff; /* -> lhs array */ |
| 4918 | uInt *alloclhi=NULL; /* -> allocated buffer, iff allocated */ |
| 4919 | uInt zrhibuff[(DECBUFFER*2+1)/8+1]; /* buffer (+1 for DECBUFFER==0) */ |
| 4920 | uInt *zrhi=zrhibuff; /* -> rhs array */ |
| 4921 | uInt *allocrhi=NULL; /* -> allocated buffer, iff allocated */ |
| 4922 | uLong zaccbuff[(DECBUFFER*2+1)/4+2]; /* buffer (+1 for DECBUFFER==0) */ |
| 4923 | /* [allocacc is shared for both paths, as only one will run] */ |
| 4924 | uLong *zacc=zaccbuff; /* -> accumulator array for exact result */ |
| 4925 | #if DECDPUN==1 |
| 4926 | Int zoff; /* accumulator offset */ |
| 4927 | #endif |
| 4928 | uInt *lip, *rip; /* item pointers */ |
| 4929 | uInt *lmsi, *rmsi; /* most significant items */ |
| 4930 | Int ilhs, irhs, iacc; /* item counts in the arrays */ |
| 4931 | Int lazy; /* lazy carry counter */ |
| 4932 | uLong lcarry; /* uLong carry */ |
| 4933 | uInt carry; /* carry (NB not uLong) */ |
| 4934 | Int count; /* work */ |
| 4935 | const Unit *cup; /* .. */ |
| 4936 | Unit *up; /* .. */ |
| 4937 | uLong *lp; /* .. */ |
| 4938 | Int p; /* .. */ |
| 4939 | #endif |
| 4940 | |
| 4941 | #if DECSUBSET |
| 4942 | decNumber *alloclhs=NULL; /* -> allocated buffer, iff allocated */ |
| 4943 | decNumber *allocrhs=NULL; /* -> allocated buffer, iff allocated */ |
| 4944 | #endif |
| 4945 | |
| 4946 | #if DECCHECK |
| 4947 | if (decCheckOperands(res, lhs, rhs, set)) return res; |
| 4948 | #endif |
| 4949 | |
| 4950 | /* precalculate result sign */ |
| 4951 | bits=(uByte)((lhs->bits^rhs->bits)&DECNEG); |
| 4952 | |
| 4953 | /* handle infinities and NaNs */ |
| 4954 | if (SPECIALARGS) { /* a special bit set */ |
| 4955 | if (SPECIALARGS & (DECSNAN | DECNAN)) { /* one or two NaNs */ |
| 4956 | decNaNs(res, lhs, rhs, set, status); |
| 4957 | return res;} |
| 4958 | /* one or two infinities; Infinity * 0 is invalid */ |
| 4959 | if (((lhs->bits & DECINF)==0 && ISZERO(lhs)) |
| 4960 | ||((rhs->bits & DECINF)==0 && ISZERO(rhs))) { |
| 4961 | *status|=DEC_Invalid_operation; |
| 4962 | return res;} |
| 4963 | decNumberZero(res); |
| 4964 | res->bits=bits|DECINF; /* infinity */ |
| 4965 | return res;} |
| 4966 | |
| 4967 | /* For best speed, as in DMSRCN [the original Rexx numerics */ |
| 4968 | /* module], use the shorter number as the multiplier (rhs) and */ |
| 4969 | /* the longer as the multiplicand (lhs) to minimise the number of */ |
| 4970 | /* adds (partial products) */ |
| 4971 | if (lhs->digits<rhs->digits) { /* swap... */ |
| 4972 | const decNumber *hold=lhs; |
| 4973 | lhs=rhs; |
| 4974 | rhs=hold; |
| 4975 | } |
| 4976 | |
| 4977 | do { /* protect allocated storage */ |
| 4978 | #if DECSUBSET |
| 4979 | if (!set->extended) { |
| 4980 | /* reduce operands and set lostDigits status, as needed */ |
| 4981 | if (lhs->digits>set->digits) { |
| 4982 | alloclhs=decRoundOperand(lhs, set, status); |
| 4983 | if (alloclhs==NULL) break; |
| 4984 | lhs=alloclhs; |
| 4985 | } |
| 4986 | if (rhs->digits>set->digits) { |
| 4987 | allocrhs=decRoundOperand(rhs, set, status); |
| 4988 | if (allocrhs==NULL) break; |
| 4989 | rhs=allocrhs; |
| 4990 | } |
| 4991 | } |
| 4992 | #endif |
| 4993 | /* [following code does not require input rounding] */ |
| 4994 | |
| 4995 | #if FASTMUL /* fastpath can be used */ |
| 4996 | /* use the fast path if there are enough digits in the shorter */ |
| 4997 | /* operand to make the setup and takedown worthwhile */ |
| 4998 | #define NEEDTWO (DECDPUN*2) /* within two decUnitAddSub calls */ |
| 4999 | if (rhs->digits>NEEDTWO) { /* use fastpath... */ |
| 5000 | /* calculate the number of elements in each array */ |
| 5001 | ilhs=(lhs->digits+FASTDIGS-1)/FASTDIGS; /* [ceiling] */ |
| 5002 | irhs=(rhs->digits+FASTDIGS-1)/FASTDIGS; /* .. */ |
| 5003 | iacc=ilhs+irhs; |
| 5004 | |
| 5005 | /* allocate buffers if required, as usual */ |
| 5006 | needbytes=ilhs*sizeof(uInt); |
| 5007 | if (needbytes>(Int)sizeof(zlhibuff)) { |
| 5008 | alloclhi=(uInt *)malloc(needbytes); |
| 5009 | zlhi=alloclhi;} |
| 5010 | needbytes=irhs*sizeof(uInt); |
| 5011 | if (needbytes>(Int)sizeof(zrhibuff)) { |
| 5012 | allocrhi=(uInt *)malloc(needbytes); |
| 5013 | zrhi=allocrhi;} |
| 5014 | |
| 5015 | /* Allocating the accumulator space needs a special case when */ |
| 5016 | /* DECDPUN=1 because when converting the accumulator to Units */ |
| 5017 | /* after the multiplication each 8-byte item becomes 9 1-byte */ |
| 5018 | /* units. Therefore iacc extra bytes are needed at the front */ |
| 5019 | /* (rounded up to a multiple of 8 bytes), and the uLong */ |
| 5020 | /* accumulator starts offset the appropriate number of units */ |
| 5021 | /* to the right to avoid overwrite during the unchunking. */ |
| 5022 | needbytes=iacc*sizeof(uLong); |
| 5023 | #if DECDPUN==1 |
| 5024 | zoff=(iacc+7)/8; /* items to offset by */ |
| 5025 | needbytes+=zoff*8; |
| 5026 | #endif |
| 5027 | if (needbytes>(Int)sizeof(zaccbuff)) { |
| 5028 | allocacc=(uLong *)malloc(needbytes); |
| 5029 | zacc=(uLong *)allocacc;} |
| 5030 | if (zlhi==NULL||zrhi==NULL||zacc==NULL) { |
| 5031 | *status|=DEC_Insufficient_storage; |
| 5032 | break;} |
| 5033 | |
| 5034 | acc=(Unit *)zacc; /* -> target Unit array */ |
| 5035 | #if DECDPUN==1 |
| 5036 | zacc+=zoff; /* start uLong accumulator to right */ |
| 5037 | #endif |
| 5038 | |
| 5039 | /* assemble the chunked copies of the left and right sides */ |
| 5040 | for (count=lhs->digits, cup=lhs->lsu, lip=zlhi; count>0; lip++) |
| 5041 | for (p=0, *lip=0; p<FASTDIGS && count>0; |
| 5042 | p+=DECDPUN, cup++, count-=DECDPUN) |
| 5043 | *lip+=*cup*powers[p]; |
| 5044 | lmsi=lip-1; /* save -> msi */ |
| 5045 | for (count=rhs->digits, cup=rhs->lsu, rip=zrhi; count>0; rip++) |
| 5046 | for (p=0, *rip=0; p<FASTDIGS && count>0; |
| 5047 | p+=DECDPUN, cup++, count-=DECDPUN) |
| 5048 | *rip+=*cup*powers[p]; |
| 5049 | rmsi=rip-1; /* save -> msi */ |
| 5050 | |
| 5051 | /* zero the accumulator */ |
| 5052 | for (lp=zacc; lp<zacc+iacc; lp++) *lp=0; |
| 5053 | |
| 5054 | /* Start the multiplication */ |
| 5055 | /* Resolving carries can dominate the cost of accumulating the */ |
| 5056 | /* partial products, so this is only done when necessary. */ |
| 5057 | /* Each uLong item in the accumulator can hold values up to */ |
| 5058 | /* 2**64-1, and each partial product can be as large as */ |
| 5059 | /* (10**FASTDIGS-1)**2. When FASTDIGS=9, this can be added to */ |
| 5060 | /* itself 18.4 times in a uLong without overflowing, so during */ |
| 5061 | /* the main calculation resolution is carried out every 18th */ |
| 5062 | /* add -- every 162 digits. Similarly, when FASTDIGS=8, the */ |
| 5063 | /* partial products can be added to themselves 1844.6 times in */ |
| 5064 | /* a uLong without overflowing, so intermediate carry */ |
| 5065 | /* resolution occurs only every 14752 digits. Hence for common */ |
| 5066 | /* short numbers usually only the one final carry resolution */ |
| 5067 | /* occurs. */ |
| 5068 | /* (The count is set via FASTLAZY to simplify experiments to */ |
| 5069 | /* measure the value of this approach: a 35% improvement on a */ |
| 5070 | /* [34x34] multiply.) */ |
| 5071 | lazy=FASTLAZY; /* carry delay count */ |
| 5072 | for (rip=zrhi; rip<=rmsi; rip++) { /* over each item in rhs */ |
| 5073 | lp=zacc+(rip-zrhi); /* where to add the lhs */ |
| 5074 | for (lip=zlhi; lip<=lmsi; lip++, lp++) { /* over each item in lhs */ |
| 5075 | *lp+=(uLong)(*lip)*(*rip); /* [this should in-line] */ |
| 5076 | } /* lip loop */ |
| 5077 | lazy--; |
| 5078 | if (lazy>0 && rip!=rmsi) continue; |
| 5079 | lazy=FASTLAZY; /* reset delay count */ |
| 5080 | /* spin up the accumulator resolving overflows */ |
| 5081 | for (lp=zacc; lp<zacc+iacc; lp++) { |
| 5082 | if (*lp<FASTBASE) continue; /* it fits */ |
| 5083 | lcarry=*lp/FASTBASE; /* top part [slow divide] */ |
| 5084 | /* lcarry can exceed 2**32-1, so check again; this check */ |
| 5085 | /* and occasional extra divide (slow) is well worth it, as */ |
| 5086 | /* it allows FASTLAZY to be increased to 18 rather than 4 */ |
| 5087 | /* in the FASTDIGS=9 case */ |
| 5088 | if (lcarry<FASTBASE) carry=(uInt)lcarry; /* [usual] */ |
| 5089 | else { /* two-place carry [fairly rare] */ |
| 5090 | uInt carry2=(uInt)(lcarry/FASTBASE); /* top top part */ |
| 5091 | *(lp+2)+=carry2; /* add to item+2 */ |
| 5092 | *lp-=((uLong)FASTBASE*FASTBASE*carry2); /* [slow] */ |
| 5093 | carry=(uInt)(lcarry-((uLong)FASTBASE*carry2)); /* [inline] */ |
| 5094 | } |
| 5095 | *(lp+1)+=carry; /* add to item above [inline] */ |
| 5096 | *lp-=((uLong)FASTBASE*carry); /* [inline] */ |
| 5097 | } /* carry resolution */ |
| 5098 | } /* rip loop */ |
| 5099 | |
| 5100 | /* The multiplication is complete; time to convert back into */ |
| 5101 | /* units. This can be done in-place in the accumulator and in */ |
| 5102 | /* 32-bit operations, because carries were resolved after the */ |
| 5103 | /* final add. This needs N-1 divides and multiplies for */ |
| 5104 | /* each item in the accumulator (which will become up to N */ |
| 5105 | /* units, where 2<=N<=9). */ |
| 5106 | for (lp=zacc, up=acc; lp<zacc+iacc; lp++) { |
| 5107 | uInt item=(uInt)*lp; /* decapitate to uInt */ |
| 5108 | for (p=0; p<FASTDIGS-DECDPUN; p+=DECDPUN, up++) { |
| 5109 | uInt part=item/(DECDPUNMAX+1); |
| 5110 | *up=(Unit)(item-(part*(DECDPUNMAX+1))); |
| 5111 | item=part; |
| 5112 | } /* p */ |
| 5113 | *up=(Unit)item; up++; /* [final needs no division] */ |
| 5114 | } /* lp */ |
| 5115 | accunits=up-acc; /* count of units */ |
| 5116 | } |
| 5117 | else { /* here to use units directly, without chunking ['old code'] */ |
| 5118 | #endif |
| 5119 | |
| 5120 | /* if accumulator will be too long for local storage, then allocate */ |
| 5121 | acc=accbuff; /* -> assume buffer for accumulator */ |
| 5122 | needbytes=(D2U(lhs->digits)+D2U(rhs->digits))*sizeof(Unit); |
| 5123 | if (needbytes>(Int)sizeof(accbuff)) { |
| 5124 | allocacc=(Unit *)malloc(needbytes); |
| 5125 | if (allocacc==NULL) {*status|=DEC_Insufficient_storage; break;} |
| 5126 | acc=(Unit *)allocacc; /* use the allocated space */ |
| 5127 | } |
| 5128 | |
| 5129 | /* Now the main long multiplication loop */ |
| 5130 | /* Unlike the equivalent in the IBM Java implementation, there */ |
| 5131 | /* is no advantage in calculating from msu to lsu. So, do it */ |
| 5132 | /* by the book, as it were. */ |
| 5133 | /* Each iteration calculates ACC=ACC+MULTAND*MULT */ |
| 5134 | accunits=1; /* accumulator starts at '0' */ |
| 5135 | *acc=0; /* .. (lsu=0) */ |
| 5136 | shift=0; /* no multiplicand shift at first */ |
| 5137 | madlength=D2U(lhs->digits); /* this won't change */ |
| 5138 | mermsup=rhs->lsu+D2U(rhs->digits); /* -> msu+1 of multiplier */ |
| 5139 | |
| 5140 | for (mer=rhs->lsu; mer<mermsup; mer++) { |
| 5141 | /* Here, *mer is the next Unit in the multiplier to use */ |
| 5142 | /* If non-zero [optimization] add it... */ |
| 5143 | if (*mer!=0) accunits=decUnitAddSub(&acc[shift], accunits-shift, |
| 5144 | lhs->lsu, madlength, 0, |
| 5145 | &acc[shift], *mer) |
| 5146 | + shift; |
| 5147 | else { /* extend acc with a 0; it will be used shortly */ |
| 5148 | *(acc+accunits)=0; /* [this avoids length of <=0 later] */ |
| 5149 | accunits++; |
| 5150 | } |
| 5151 | /* multiply multiplicand by 10**DECDPUN for next Unit to left */ |
| 5152 | shift++; /* add this for 'logical length' */ |
| 5153 | } /* n */ |
| 5154 | #if FASTMUL |
| 5155 | } /* unchunked units */ |
| 5156 | #endif |
| 5157 | /* common end-path */ |
| 5158 | #if DECTRACE |
| 5159 | decDumpAr('*', acc, accunits); /* Show exact result */ |
| 5160 | #endif |
| 5161 | |
| 5162 | /* acc now contains the exact result of the multiplication, */ |
| 5163 | /* possibly with a leading zero unit; build the decNumber from */ |
| 5164 | /* it, noting if any residue */ |
| 5165 | res->bits=bits; /* set sign */ |
| 5166 | res->digits=decGetDigits(acc, accunits); /* count digits exactly */ |
| 5167 | |
| 5168 | /* There can be a 31-bit wrap in calculating the exponent. */ |
| 5169 | /* This can only happen if both input exponents are negative and */ |
| 5170 | /* both their magnitudes are large. If there was a wrap, set a */ |
| 5171 | /* safe very negative exponent, from which decFinalize() will */ |
| 5172 | /* raise a hard underflow shortly. */ |
| 5173 | exponent=lhs->exponent+rhs->exponent; /* calculate exponent */ |
| 5174 | if (lhs->exponent<0 && rhs->exponent<0 && exponent>0) |
| 5175 | exponent=-2*DECNUMMAXE; /* force underflow */ |
| 5176 | res->exponent=exponent; /* OK to overwrite now */ |
| 5177 | |
| 5178 | |
| 5179 | /* Set the coefficient. If any rounding, residue records */ |
| 5180 | decSetCoeff(res, set, acc, res->digits, &residue, status); |
| 5181 | decFinish(res, set, &residue, status); /* final cleanup */ |
| 5182 | } while(0); /* end protected */ |
| 5183 | |
| 5184 | if (allocacc!=NULL) free(allocacc); /* drop any storage used */ |
| 5185 | #if DECSUBSET |
| 5186 | if (allocrhs!=NULL) free(allocrhs); /* .. */ |
| 5187 | if (alloclhs!=NULL) free(alloclhs); /* .. */ |
| 5188 | #endif |
| 5189 | #if FASTMUL |
| 5190 | if (allocrhi!=NULL) free(allocrhi); /* .. */ |
| 5191 | if (alloclhi!=NULL) free(alloclhi); /* .. */ |
| 5192 | #endif |
| 5193 | return res; |
| 5194 | } /* decMultiplyOp */ |
| 5195 | |
| 5196 | /* ------------------------------------------------------------------ */ |
| 5197 | /* decExpOp -- effect exponentiation */ |
| 5198 | /* */ |
| 5199 | /* This computes C = exp(A) */ |
| 5200 | /* */ |
| 5201 | /* res is C, the result. C may be A */ |
| 5202 | /* rhs is A */ |
| 5203 | /* set is the context; note that rounding mode has no effect */ |
| 5204 | /* */ |
| 5205 | /* C must have space for set->digits digits. status is updated but */ |
| 5206 | /* not set. */ |
| 5207 | /* */ |
| 5208 | /* Restrictions: */ |
| 5209 | /* */ |
| 5210 | /* digits, emax, and -emin in the context must be less than */ |
| 5211 | /* 2*DEC_MAX_MATH (1999998), and the rhs must be within these */ |
| 5212 | /* bounds or a zero. This is an internal routine, so these */ |
| 5213 | /* restrictions are contractual and not enforced. */ |
| 5214 | /* */ |
| 5215 | /* A finite result is rounded using DEC_ROUND_HALF_EVEN; it will */ |
| 5216 | /* almost always be correctly rounded, but may be up to 1 ulp in */ |
| 5217 | /* error in rare cases. */ |
| 5218 | /* */ |
| 5219 | /* Finite results will always be full precision and Inexact, except */ |
| 5220 | /* when A is a zero or -Infinity (giving 1 or 0 respectively). */ |
| 5221 | /* ------------------------------------------------------------------ */ |
| 5222 | /* This approach used here is similar to the algorithm described in */ |
| 5223 | /* */ |
| 5224 | /* Variable Precision Exponential Function, T. E. Hull and */ |
| 5225 | /* A. Abrham, ACM Transactions on Mathematical Software, Vol 12 #2, */ |
| 5226 | /* pp79-91, ACM, June 1986. */ |
| 5227 | /* */ |
| 5228 | /* with the main difference being that the iterations in the series */ |
| 5229 | /* evaluation are terminated dynamically (which does not require the */ |
| 5230 | /* extra variable-precision variables which are expensive in this */ |
| 5231 | /* context). */ |
| 5232 | /* */ |
| 5233 | /* The error analysis in Hull & Abrham's paper applies except for the */ |
| 5234 | /* round-off error accumulation during the series evaluation. This */ |
| 5235 | /* code does not precalculate the number of iterations and so cannot */ |
| 5236 | /* use Horner's scheme. Instead, the accumulation is done at double- */ |
| 5237 | /* precision, which ensures that the additions of the terms are exact */ |
| 5238 | /* and do not accumulate round-off (and any round-off errors in the */ |
| 5239 | /* terms themselves move 'to the right' faster than they can */ |
| 5240 | /* accumulate). This code also extends the calculation by allowing, */ |
| 5241 | /* in the spirit of other decNumber operators, the input to be more */ |
| 5242 | /* precise than the result (the precision used is based on the more */ |
| 5243 | /* precise of the input or requested result). */ |
| 5244 | /* */ |
| 5245 | /* Implementation notes: */ |
| 5246 | /* */ |
| 5247 | /* 1. This is separated out as decExpOp so it can be called from */ |
| 5248 | /* other Mathematical functions (notably Ln) with a wider range */ |
| 5249 | /* than normal. In particular, it can handle the slightly wider */ |
| 5250 | /* (double) range needed by Ln (which has to be able to calculate */ |
| 5251 | /* exp(-x) where x can be the tiniest number (Ntiny). */ |
| 5252 | /* */ |
| 5253 | /* 2. Normalizing x to be <=0.1 (instead of <=1) reduces loop */ |
Veres Lajos | 67cc32e | 2015-09-08 22:45:14 +0100 | [diff] [blame] | 5254 | /* iterations by approximately a third with additional (although */ |
Tom Musta | 72ac97c | 2014-04-21 15:54:45 -0500 | [diff] [blame] | 5255 | /* diminishing) returns as the range is reduced to even smaller */ |
| 5256 | /* fractions. However, h (the power of 10 used to correct the */ |
| 5257 | /* result at the end, see below) must be kept <=8 as otherwise */ |
| 5258 | /* the final result cannot be computed. Hence the leverage is a */ |
| 5259 | /* sliding value (8-h), where potentially the range is reduced */ |
| 5260 | /* more for smaller values. */ |
| 5261 | /* */ |
| 5262 | /* The leverage that can be applied in this way is severely */ |
| 5263 | /* limited by the cost of the raise-to-the power at the end, */ |
| 5264 | /* which dominates when the number of iterations is small (less */ |
| 5265 | /* than ten) or when rhs is short. As an example, the adjustment */ |
| 5266 | /* x**10,000,000 needs 31 multiplications, all but one full-width. */ |
| 5267 | /* */ |
| 5268 | /* 3. The restrictions (especially precision) could be raised with */ |
| 5269 | /* care, but the full decNumber range seems very hard within the */ |
| 5270 | /* 32-bit limits. */ |
| 5271 | /* */ |
| 5272 | /* 4. The working precisions for the static buffers are twice the */ |
| 5273 | /* obvious size to allow for calls from decNumberPower. */ |
| 5274 | /* ------------------------------------------------------------------ */ |
Stefan Weil | d072cdf | 2014-08-20 11:02:10 +0200 | [diff] [blame] | 5275 | static decNumber *decExpOp(decNumber *res, const decNumber *rhs, |
| 5276 | decContext *set, uInt *status) { |
Tom Musta | 72ac97c | 2014-04-21 15:54:45 -0500 | [diff] [blame] | 5277 | uInt ignore=0; /* working status */ |
| 5278 | Int h; /* adjusted exponent for 0.xxxx */ |
| 5279 | Int p; /* working precision */ |
| 5280 | Int residue; /* rounding residue */ |
| 5281 | uInt needbytes; /* for space calculations */ |
| 5282 | const decNumber *x=rhs; /* (may point to safe copy later) */ |
| 5283 | decContext aset, tset, dset; /* working contexts */ |
| 5284 | Int comp; /* work */ |
| 5285 | |
| 5286 | /* the argument is often copied to normalize it, so (unusually) it */ |
| 5287 | /* is treated like other buffers, using DECBUFFER, +1 in case */ |
| 5288 | /* DECBUFFER is 0 */ |
| 5289 | decNumber bufr[D2N(DECBUFFER*2+1)]; |
| 5290 | decNumber *allocrhs=NULL; /* non-NULL if rhs buffer allocated */ |
| 5291 | |
| 5292 | /* the working precision will be no more than set->digits+8+1 */ |
| 5293 | /* so for on-stack buffers DECBUFFER+9 is used, +1 in case DECBUFFER */ |
| 5294 | /* is 0 (and twice that for the accumulator) */ |
| 5295 | |
| 5296 | /* buffer for t, term (working precision plus) */ |
| 5297 | decNumber buft[D2N(DECBUFFER*2+9+1)]; |
| 5298 | decNumber *allocbuft=NULL; /* -> allocated buft, iff allocated */ |
| 5299 | decNumber *t=buft; /* term */ |
| 5300 | /* buffer for a, accumulator (working precision * 2), at least 9 */ |
| 5301 | decNumber bufa[D2N(DECBUFFER*4+18+1)]; |
| 5302 | decNumber *allocbufa=NULL; /* -> allocated bufa, iff allocated */ |
| 5303 | decNumber *a=bufa; /* accumulator */ |
| 5304 | /* decNumber for the divisor term; this needs at most 9 digits */ |
| 5305 | /* and so can be fixed size [16 so can use standard context] */ |
| 5306 | decNumber bufd[D2N(16)]; |
| 5307 | decNumber *d=bufd; /* divisor */ |
| 5308 | decNumber numone; /* constant 1 */ |
| 5309 | |
| 5310 | #if DECCHECK |
| 5311 | Int iterations=0; /* for later sanity check */ |
| 5312 | if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; |
| 5313 | #endif |
| 5314 | |
| 5315 | do { /* protect allocated storage */ |
| 5316 | if (SPECIALARG) { /* handle infinities and NaNs */ |
| 5317 | if (decNumberIsInfinite(rhs)) { /* an infinity */ |
| 5318 | if (decNumberIsNegative(rhs)) /* -Infinity -> +0 */ |
| 5319 | decNumberZero(res); |
| 5320 | else decNumberCopy(res, rhs); /* +Infinity -> self */ |
| 5321 | } |
| 5322 | else decNaNs(res, rhs, NULL, set, status); /* a NaN */ |
| 5323 | break;} |
| 5324 | |
| 5325 | if (ISZERO(rhs)) { /* zeros -> exact 1 */ |
| 5326 | decNumberZero(res); /* make clean 1 */ |
| 5327 | *res->lsu=1; /* .. */ |
| 5328 | break;} /* [no status to set] */ |
| 5329 | |
| 5330 | /* e**x when 0 < x < 0.66 is < 1+3x/2, hence can fast-path */ |
| 5331 | /* positive and negative tiny cases which will result in inexact */ |
| 5332 | /* 1. This also allows the later add-accumulate to always be */ |
| 5333 | /* exact (because its length will never be more than twice the */ |
| 5334 | /* working precision). */ |
| 5335 | /* The comparator (tiny) needs just one digit, so use the */ |
| 5336 | /* decNumber d for it (reused as the divisor, etc., below); its */ |
| 5337 | /* exponent is such that if x is positive it will have */ |
| 5338 | /* set->digits-1 zeros between the decimal point and the digit, */ |
| 5339 | /* which is 4, and if x is negative one more zero there as the */ |
| 5340 | /* more precise result will be of the form 0.9999999 rather than */ |
| 5341 | /* 1.0000001. Hence, tiny will be 0.0000004 if digits=7 and x>0 */ |
| 5342 | /* or 0.00000004 if digits=7 and x<0. If RHS not larger than */ |
| 5343 | /* this then the result will be 1.000000 */ |
| 5344 | decNumberZero(d); /* clean */ |
| 5345 | *d->lsu=4; /* set 4 .. */ |
| 5346 | d->exponent=-set->digits; /* * 10**(-d) */ |
| 5347 | if (decNumberIsNegative(rhs)) d->exponent--; /* negative case */ |
| 5348 | comp=decCompare(d, rhs, 1); /* signless compare */ |
| 5349 | if (comp==BADINT) { |
| 5350 | *status|=DEC_Insufficient_storage; |
| 5351 | break;} |
| 5352 | if (comp>=0) { /* rhs < d */ |
| 5353 | Int shift=set->digits-1; |
| 5354 | decNumberZero(res); /* set 1 */ |
| 5355 | *res->lsu=1; /* .. */ |
| 5356 | res->digits=decShiftToMost(res->lsu, 1, shift); |
| 5357 | res->exponent=-shift; /* make 1.0000... */ |
| 5358 | *status|=DEC_Inexact | DEC_Rounded; /* .. inexactly */ |
| 5359 | break;} /* tiny */ |
| 5360 | |
| 5361 | /* set up the context to be used for calculating a, as this is */ |
| 5362 | /* used on both paths below */ |
| 5363 | decContextDefault(&aset, DEC_INIT_DECIMAL64); |
| 5364 | /* accumulator bounds are as requested (could underflow) */ |
| 5365 | aset.emax=set->emax; /* usual bounds */ |
| 5366 | aset.emin=set->emin; /* .. */ |
| 5367 | aset.clamp=0; /* and no concrete format */ |
| 5368 | |
| 5369 | /* calculate the adjusted (Hull & Abrham) exponent (where the */ |
| 5370 | /* decimal point is just to the left of the coefficient msd) */ |
| 5371 | h=rhs->exponent+rhs->digits; |
| 5372 | /* if h>8 then 10**h cannot be calculated safely; however, when */ |
| 5373 | /* h=8 then exp(|rhs|) will be at least exp(1E+7) which is at */ |
| 5374 | /* least 6.59E+4342944, so (due to the restriction on Emax/Emin) */ |
| 5375 | /* overflow (or underflow to 0) is guaranteed -- so this case can */ |
| 5376 | /* be handled by simply forcing the appropriate excess */ |
| 5377 | if (h>8) { /* overflow/underflow */ |
| 5378 | /* set up here so Power call below will over or underflow to */ |
| 5379 | /* zero; set accumulator to either 2 or 0.02 */ |
| 5380 | /* [stack buffer for a is always big enough for this] */ |
| 5381 | decNumberZero(a); |
| 5382 | *a->lsu=2; /* not 1 but < exp(1) */ |
| 5383 | if (decNumberIsNegative(rhs)) a->exponent=-2; /* make 0.02 */ |
| 5384 | h=8; /* clamp so 10**h computable */ |
| 5385 | p=9; /* set a working precision */ |
| 5386 | } |
| 5387 | else { /* h<=8 */ |
| 5388 | Int maxlever=(rhs->digits>8?1:0); |
| 5389 | /* [could/should increase this for precisions >40 or so, too] */ |
| 5390 | |
| 5391 | /* if h is 8, cannot normalize to a lower upper limit because */ |
| 5392 | /* the final result will not be computable (see notes above), */ |
| 5393 | /* but leverage can be applied whenever h is less than 8. */ |
| 5394 | /* Apply as much as possible, up to a MAXLEVER digits, which */ |
| 5395 | /* sets the tradeoff against the cost of the later a**(10**h). */ |
| 5396 | /* As h is increased, the working precision below also */ |
| 5397 | /* increases to compensate for the "constant digits at the */ |
| 5398 | /* front" effect. */ |
| 5399 | Int lever=MINI(8-h, maxlever); /* leverage attainable */ |
| 5400 | Int use=-rhs->digits-lever; /* exponent to use for RHS */ |
| 5401 | h+=lever; /* apply leverage selected */ |
| 5402 | if (h<0) { /* clamp */ |
| 5403 | use+=h; /* [may end up subnormal] */ |
| 5404 | h=0; |
| 5405 | } |
| 5406 | /* Take a copy of RHS if it needs normalization (true whenever x>=1) */ |
| 5407 | if (rhs->exponent!=use) { |
| 5408 | decNumber *newrhs=bufr; /* assume will fit on stack */ |
| 5409 | needbytes=sizeof(decNumber)+(D2U(rhs->digits)-1)*sizeof(Unit); |
| 5410 | if (needbytes>sizeof(bufr)) { /* need malloc space */ |
| 5411 | allocrhs=(decNumber *)malloc(needbytes); |
| 5412 | if (allocrhs==NULL) { /* hopeless -- abandon */ |
| 5413 | *status|=DEC_Insufficient_storage; |
| 5414 | break;} |
| 5415 | newrhs=allocrhs; /* use the allocated space */ |
| 5416 | } |
| 5417 | decNumberCopy(newrhs, rhs); /* copy to safe space */ |
| 5418 | newrhs->exponent=use; /* normalize; now <1 */ |
| 5419 | x=newrhs; /* ready for use */ |
| 5420 | /* decNumberShow(x); */ |
| 5421 | } |
| 5422 | |
| 5423 | /* Now use the usual power series to evaluate exp(x). The */ |
| 5424 | /* series starts as 1 + x + x^2/2 ... so prime ready for the */ |
| 5425 | /* third term by setting the term variable t=x, the accumulator */ |
| 5426 | /* a=1, and the divisor d=2. */ |
| 5427 | |
| 5428 | /* First determine the working precision. From Hull & Abrham */ |
| 5429 | /* this is set->digits+h+2. However, if x is 'over-precise' we */ |
| 5430 | /* need to allow for all its digits to potentially participate */ |
| 5431 | /* (consider an x where all the excess digits are 9s) so in */ |
| 5432 | /* this case use x->digits+h+2 */ |
| 5433 | p=MAXI(x->digits, set->digits)+h+2; /* [h<=8] */ |
| 5434 | |
| 5435 | /* a and t are variable precision, and depend on p, so space */ |
| 5436 | /* must be allocated for them if necessary */ |
| 5437 | |
| 5438 | /* the accumulator needs to be able to hold 2p digits so that */ |
| 5439 | /* the additions on the second and subsequent iterations are */ |
| 5440 | /* sufficiently exact. */ |
| 5441 | needbytes=sizeof(decNumber)+(D2U(p*2)-1)*sizeof(Unit); |
| 5442 | if (needbytes>sizeof(bufa)) { /* need malloc space */ |
| 5443 | allocbufa=(decNumber *)malloc(needbytes); |
| 5444 | if (allocbufa==NULL) { /* hopeless -- abandon */ |
| 5445 | *status|=DEC_Insufficient_storage; |
| 5446 | break;} |
| 5447 | a=allocbufa; /* use the allocated space */ |
| 5448 | } |
| 5449 | /* the term needs to be able to hold p digits (which is */ |
| 5450 | /* guaranteed to be larger than x->digits, so the initial copy */ |
| 5451 | /* is safe); it may also be used for the raise-to-power */ |
| 5452 | /* calculation below, which needs an extra two digits */ |
| 5453 | needbytes=sizeof(decNumber)+(D2U(p+2)-1)*sizeof(Unit); |
| 5454 | if (needbytes>sizeof(buft)) { /* need malloc space */ |
| 5455 | allocbuft=(decNumber *)malloc(needbytes); |
| 5456 | if (allocbuft==NULL) { /* hopeless -- abandon */ |
| 5457 | *status|=DEC_Insufficient_storage; |
| 5458 | break;} |
| 5459 | t=allocbuft; /* use the allocated space */ |
| 5460 | } |
| 5461 | |
| 5462 | decNumberCopy(t, x); /* term=x */ |
| 5463 | decNumberZero(a); *a->lsu=1; /* accumulator=1 */ |
| 5464 | decNumberZero(d); *d->lsu=2; /* divisor=2 */ |
| 5465 | decNumberZero(&numone); *numone.lsu=1; /* constant 1 for increment */ |
| 5466 | |
| 5467 | /* set up the contexts for calculating a, t, and d */ |
| 5468 | decContextDefault(&tset, DEC_INIT_DECIMAL64); |
| 5469 | dset=tset; |
| 5470 | /* accumulator bounds are set above, set precision now */ |
| 5471 | aset.digits=p*2; /* double */ |
| 5472 | /* term bounds avoid any underflow or overflow */ |
| 5473 | tset.digits=p; |
| 5474 | tset.emin=DEC_MIN_EMIN; /* [emax is plenty] */ |
| 5475 | /* [dset.digits=16, etc., are sufficient] */ |
| 5476 | |
| 5477 | /* finally ready to roll */ |
| 5478 | for (;;) { |
| 5479 | #if DECCHECK |
| 5480 | iterations++; |
| 5481 | #endif |
| 5482 | /* only the status from the accumulation is interesting */ |
| 5483 | /* [but it should remain unchanged after first add] */ |
| 5484 | decAddOp(a, a, t, &aset, 0, status); /* a=a+t */ |
| 5485 | decMultiplyOp(t, t, x, &tset, &ignore); /* t=t*x */ |
| 5486 | decDivideOp(t, t, d, &tset, DIVIDE, &ignore); /* t=t/d */ |
| 5487 | /* the iteration ends when the term cannot affect the result, */ |
| 5488 | /* if rounded to p digits, which is when its value is smaller */ |
| 5489 | /* than the accumulator by p+1 digits. There must also be */ |
| 5490 | /* full precision in a. */ |
| 5491 | if (((a->digits+a->exponent)>=(t->digits+t->exponent+p+1)) |
| 5492 | && (a->digits>=p)) break; |
| 5493 | decAddOp(d, d, &numone, &dset, 0, &ignore); /* d=d+1 */ |
| 5494 | } /* iterate */ |
| 5495 | |
| 5496 | #if DECCHECK |
| 5497 | /* just a sanity check; comment out test to show always */ |
| 5498 | if (iterations>p+3) |
| 5499 | printf("Exp iterations=%ld, status=%08lx, p=%ld, d=%ld\n", |
| 5500 | iterations, *status, p, x->digits); |
| 5501 | #endif |
| 5502 | } /* h<=8 */ |
| 5503 | |
| 5504 | /* apply postconditioning: a=a**(10**h) -- this is calculated */ |
| 5505 | /* at a slightly higher precision than Hull & Abrham suggest */ |
| 5506 | if (h>0) { |
| 5507 | Int seenbit=0; /* set once a 1-bit is seen */ |
| 5508 | Int i; /* counter */ |
| 5509 | Int n=powers[h]; /* always positive */ |
| 5510 | aset.digits=p+2; /* sufficient precision */ |
| 5511 | /* avoid the overhead and many extra digits of decNumberPower */ |
| 5512 | /* as all that is needed is the short 'multipliers' loop; here */ |
| 5513 | /* accumulate the answer into t */ |
| 5514 | decNumberZero(t); *t->lsu=1; /* acc=1 */ |
| 5515 | for (i=1;;i++){ /* for each bit [top bit ignored] */ |
| 5516 | /* abandon if have had overflow or terminal underflow */ |
| 5517 | if (*status & (DEC_Overflow|DEC_Underflow)) { /* interesting? */ |
| 5518 | if (*status&DEC_Overflow || ISZERO(t)) break;} |
| 5519 | n=n<<1; /* move next bit to testable position */ |
| 5520 | if (n<0) { /* top bit is set */ |
| 5521 | seenbit=1; /* OK, have a significant bit */ |
| 5522 | decMultiplyOp(t, t, a, &aset, status); /* acc=acc*x */ |
| 5523 | } |
| 5524 | if (i==31) break; /* that was the last bit */ |
| 5525 | if (!seenbit) continue; /* no need to square 1 */ |
| 5526 | decMultiplyOp(t, t, t, &aset, status); /* acc=acc*acc [square] */ |
| 5527 | } /*i*/ /* 32 bits */ |
| 5528 | /* decNumberShow(t); */ |
| 5529 | a=t; /* and carry on using t instead of a */ |
| 5530 | } |
| 5531 | |
| 5532 | /* Copy and round the result to res */ |
| 5533 | residue=1; /* indicate dirt to right .. */ |
| 5534 | if (ISZERO(a)) residue=0; /* .. unless underflowed to 0 */ |
| 5535 | aset.digits=set->digits; /* [use default rounding] */ |
| 5536 | decCopyFit(res, a, &aset, &residue, status); /* copy & shorten */ |
| 5537 | decFinish(res, set, &residue, status); /* cleanup/set flags */ |
| 5538 | } while(0); /* end protected */ |
| 5539 | |
| 5540 | if (allocrhs !=NULL) free(allocrhs); /* drop any storage used */ |
| 5541 | if (allocbufa!=NULL) free(allocbufa); /* .. */ |
| 5542 | if (allocbuft!=NULL) free(allocbuft); /* .. */ |
| 5543 | /* [status is handled by caller] */ |
| 5544 | return res; |
| 5545 | } /* decExpOp */ |
| 5546 | |
| 5547 | /* ------------------------------------------------------------------ */ |
| 5548 | /* Initial-estimate natural logarithm table */ |
| 5549 | /* */ |
| 5550 | /* LNnn -- 90-entry 16-bit table for values from .10 through .99. */ |
| 5551 | /* The result is a 4-digit encode of the coefficient (c=the */ |
| 5552 | /* top 14 bits encoding 0-9999) and a 2-digit encode of the */ |
| 5553 | /* exponent (e=the bottom 2 bits encoding 0-3) */ |
| 5554 | /* */ |
| 5555 | /* The resulting value is given by: */ |
| 5556 | /* */ |
| 5557 | /* v = -c * 10**(-e-3) */ |
| 5558 | /* */ |
| 5559 | /* where e and c are extracted from entry k = LNnn[x-10] */ |
| 5560 | /* where x is truncated (NB) into the range 10 through 99, */ |
| 5561 | /* and then c = k>>2 and e = k&3. */ |
| 5562 | /* ------------------------------------------------------------------ */ |
Stefan Weil | d072cdf | 2014-08-20 11:02:10 +0200 | [diff] [blame] | 5563 | static const uShort LNnn[90] = { |
| 5564 | 9016, 8652, 8316, 8008, 7724, 7456, 7208, |
Tom Musta | 72ac97c | 2014-04-21 15:54:45 -0500 | [diff] [blame] | 5565 | 6972, 6748, 6540, 6340, 6148, 5968, 5792, 5628, 5464, 5312, |
| 5566 | 5164, 5020, 4884, 4748, 4620, 4496, 4376, 4256, 4144, 4032, |
| 5567 | 39233, 38181, 37157, 36157, 35181, 34229, 33297, 32389, 31501, 30629, |
| 5568 | 29777, 28945, 28129, 27329, 26545, 25777, 25021, 24281, 23553, 22837, |
| 5569 | 22137, 21445, 20769, 20101, 19445, 18801, 18165, 17541, 16925, 16321, |
| 5570 | 15721, 15133, 14553, 13985, 13421, 12865, 12317, 11777, 11241, 10717, |
| 5571 | 10197, 9685, 9177, 8677, 8185, 7697, 7213, 6737, 6269, 5801, |
| 5572 | 5341, 4889, 4437, 39930, 35534, 31186, 26886, 22630, 18418, 14254, |
| 5573 | 10130, 6046, 20055}; |
| 5574 | |
| 5575 | /* ------------------------------------------------------------------ */ |
| 5576 | /* decLnOp -- effect natural logarithm */ |
| 5577 | /* */ |
| 5578 | /* This computes C = ln(A) */ |
| 5579 | /* */ |
| 5580 | /* res is C, the result. C may be A */ |
| 5581 | /* rhs is A */ |
| 5582 | /* set is the context; note that rounding mode has no effect */ |
| 5583 | /* */ |
| 5584 | /* C must have space for set->digits digits. */ |
| 5585 | /* */ |
| 5586 | /* Notable cases: */ |
| 5587 | /* A<0 -> Invalid */ |
| 5588 | /* A=0 -> -Infinity (Exact) */ |
| 5589 | /* A=+Infinity -> +Infinity (Exact) */ |
| 5590 | /* A=1 exactly -> 0 (Exact) */ |
| 5591 | /* */ |
| 5592 | /* Restrictions (as for Exp): */ |
| 5593 | /* */ |
| 5594 | /* digits, emax, and -emin in the context must be less than */ |
| 5595 | /* DEC_MAX_MATH+11 (1000010), and the rhs must be within these */ |
| 5596 | /* bounds or a zero. This is an internal routine, so these */ |
| 5597 | /* restrictions are contractual and not enforced. */ |
| 5598 | /* */ |
| 5599 | /* A finite result is rounded using DEC_ROUND_HALF_EVEN; it will */ |
| 5600 | /* almost always be correctly rounded, but may be up to 1 ulp in */ |
| 5601 | /* error in rare cases. */ |
| 5602 | /* ------------------------------------------------------------------ */ |
| 5603 | /* The result is calculated using Newton's method, with each */ |
| 5604 | /* iteration calculating a' = a + x * exp(-a) - 1. See, for example, */ |
| 5605 | /* Epperson 1989. */ |
| 5606 | /* */ |
| 5607 | /* The iteration ends when the adjustment x*exp(-a)-1 is tiny enough. */ |
| 5608 | /* This has to be calculated at the sum of the precision of x and the */ |
| 5609 | /* working precision. */ |
| 5610 | /* */ |
| 5611 | /* Implementation notes: */ |
| 5612 | /* */ |
| 5613 | /* 1. This is separated out as decLnOp so it can be called from */ |
| 5614 | /* other Mathematical functions (e.g., Log 10) with a wider range */ |
| 5615 | /* than normal. In particular, it can handle the slightly wider */ |
| 5616 | /* (+9+2) range needed by a power function. */ |
| 5617 | /* */ |
| 5618 | /* 2. The speed of this function is about 10x slower than exp, as */ |
| 5619 | /* it typically needs 4-6 iterations for short numbers, and the */ |
| 5620 | /* extra precision needed adds a squaring effect, twice. */ |
| 5621 | /* */ |
| 5622 | /* 3. Fastpaths are included for ln(10) and ln(2), up to length 40, */ |
| 5623 | /* as these are common requests. ln(10) is used by log10(x). */ |
| 5624 | /* */ |
| 5625 | /* 4. An iteration might be saved by widening the LNnn table, and */ |
| 5626 | /* would certainly save at least one if it were made ten times */ |
| 5627 | /* bigger, too (for truncated fractions 0.100 through 0.999). */ |
| 5628 | /* However, for most practical evaluations, at least four or five */ |
| 5629 | /* iterations will be neede -- so this would only speed up by */ |
| 5630 | /* 20-25% and that probably does not justify increasing the table */ |
| 5631 | /* size. */ |
| 5632 | /* */ |
| 5633 | /* 5. The static buffers are larger than might be expected to allow */ |
| 5634 | /* for calls from decNumberPower. */ |
| 5635 | /* ------------------------------------------------------------------ */ |
Stefan Weil | d072cdf | 2014-08-20 11:02:10 +0200 | [diff] [blame] | 5636 | static decNumber *decLnOp(decNumber *res, const decNumber *rhs, |
| 5637 | decContext *set, uInt *status) { |
Tom Musta | 72ac97c | 2014-04-21 15:54:45 -0500 | [diff] [blame] | 5638 | uInt ignore=0; /* working status accumulator */ |
| 5639 | uInt needbytes; /* for space calculations */ |
| 5640 | Int residue; /* rounding residue */ |
| 5641 | Int r; /* rhs=f*10**r [see below] */ |
| 5642 | Int p; /* working precision */ |
| 5643 | Int pp; /* precision for iteration */ |
| 5644 | Int t; /* work */ |
| 5645 | |
| 5646 | /* buffers for a (accumulator, typically precision+2) and b */ |
| 5647 | /* (adjustment calculator, same size) */ |
| 5648 | decNumber bufa[D2N(DECBUFFER+12)]; |
| 5649 | decNumber *allocbufa=NULL; /* -> allocated bufa, iff allocated */ |
| 5650 | decNumber *a=bufa; /* accumulator/work */ |
| 5651 | decNumber bufb[D2N(DECBUFFER*2+2)]; |
| 5652 | decNumber *allocbufb=NULL; /* -> allocated bufa, iff allocated */ |
| 5653 | decNumber *b=bufb; /* adjustment/work */ |
| 5654 | |
| 5655 | decNumber numone; /* constant 1 */ |
| 5656 | decNumber cmp; /* work */ |
| 5657 | decContext aset, bset; /* working contexts */ |
| 5658 | |
| 5659 | #if DECCHECK |
| 5660 | Int iterations=0; /* for later sanity check */ |
| 5661 | if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; |
| 5662 | #endif |
| 5663 | |
| 5664 | do { /* protect allocated storage */ |
| 5665 | if (SPECIALARG) { /* handle infinities and NaNs */ |
| 5666 | if (decNumberIsInfinite(rhs)) { /* an infinity */ |
| 5667 | if (decNumberIsNegative(rhs)) /* -Infinity -> error */ |
| 5668 | *status|=DEC_Invalid_operation; |
| 5669 | else decNumberCopy(res, rhs); /* +Infinity -> self */ |
| 5670 | } |
| 5671 | else decNaNs(res, rhs, NULL, set, status); /* a NaN */ |
| 5672 | break;} |
| 5673 | |
| 5674 | if (ISZERO(rhs)) { /* +/- zeros -> -Infinity */ |
| 5675 | decNumberZero(res); /* make clean */ |
| 5676 | res->bits=DECINF|DECNEG; /* set - infinity */ |
| 5677 | break;} /* [no status to set] */ |
| 5678 | |
| 5679 | /* Non-zero negatives are bad... */ |
| 5680 | if (decNumberIsNegative(rhs)) { /* -x -> error */ |
| 5681 | *status|=DEC_Invalid_operation; |
| 5682 | break;} |
| 5683 | |
| 5684 | /* Here, rhs is positive, finite, and in range */ |
| 5685 | |
| 5686 | /* lookaside fastpath code for ln(2) and ln(10) at common lengths */ |
| 5687 | if (rhs->exponent==0 && set->digits<=40) { |
| 5688 | #if DECDPUN==1 |
| 5689 | if (rhs->lsu[0]==0 && rhs->lsu[1]==1 && rhs->digits==2) { /* ln(10) */ |
| 5690 | #else |
| 5691 | if (rhs->lsu[0]==10 && rhs->digits==2) { /* ln(10) */ |
| 5692 | #endif |
| 5693 | aset=*set; aset.round=DEC_ROUND_HALF_EVEN; |
| 5694 | #define LN10 "2.302585092994045684017991454684364207601" |
| 5695 | decNumberFromString(res, LN10, &aset); |
| 5696 | *status|=(DEC_Inexact | DEC_Rounded); /* is inexact */ |
| 5697 | break;} |
| 5698 | if (rhs->lsu[0]==2 && rhs->digits==1) { /* ln(2) */ |
| 5699 | aset=*set; aset.round=DEC_ROUND_HALF_EVEN; |
| 5700 | #define LN2 "0.6931471805599453094172321214581765680755" |
| 5701 | decNumberFromString(res, LN2, &aset); |
| 5702 | *status|=(DEC_Inexact | DEC_Rounded); |
| 5703 | break;} |
| 5704 | } /* integer and short */ |
| 5705 | |
| 5706 | /* Determine the working precision. This is normally the */ |
| 5707 | /* requested precision + 2, with a minimum of 9. However, if */ |
| 5708 | /* the rhs is 'over-precise' then allow for all its digits to */ |
| 5709 | /* potentially participate (consider an rhs where all the excess */ |
| 5710 | /* digits are 9s) so in this case use rhs->digits+2. */ |
| 5711 | p=MAXI(rhs->digits, MAXI(set->digits, 7))+2; |
| 5712 | |
| 5713 | /* Allocate space for the accumulator and the high-precision */ |
| 5714 | /* adjustment calculator, if necessary. The accumulator must */ |
| 5715 | /* be able to hold p digits, and the adjustment up to */ |
| 5716 | /* rhs->digits+p digits. They are also made big enough for 16 */ |
| 5717 | /* digits so that they can be used for calculating the initial */ |
| 5718 | /* estimate. */ |
| 5719 | needbytes=sizeof(decNumber)+(D2U(MAXI(p,16))-1)*sizeof(Unit); |
| 5720 | if (needbytes>sizeof(bufa)) { /* need malloc space */ |
| 5721 | allocbufa=(decNumber *)malloc(needbytes); |
| 5722 | if (allocbufa==NULL) { /* hopeless -- abandon */ |
| 5723 | *status|=DEC_Insufficient_storage; |
| 5724 | break;} |
| 5725 | a=allocbufa; /* use the allocated space */ |
| 5726 | } |
| 5727 | pp=p+rhs->digits; |
| 5728 | needbytes=sizeof(decNumber)+(D2U(MAXI(pp,16))-1)*sizeof(Unit); |
| 5729 | if (needbytes>sizeof(bufb)) { /* need malloc space */ |
| 5730 | allocbufb=(decNumber *)malloc(needbytes); |
| 5731 | if (allocbufb==NULL) { /* hopeless -- abandon */ |
| 5732 | *status|=DEC_Insufficient_storage; |
| 5733 | break;} |
| 5734 | b=allocbufb; /* use the allocated space */ |
| 5735 | } |
| 5736 | |
| 5737 | /* Prepare an initial estimate in acc. Calculate this by */ |
| 5738 | /* considering the coefficient of x to be a normalized fraction, */ |
| 5739 | /* f, with the decimal point at far left and multiplied by */ |
| 5740 | /* 10**r. Then, rhs=f*10**r and 0.1<=f<1, and */ |
| 5741 | /* ln(x) = ln(f) + ln(10)*r */ |
| 5742 | /* Get the initial estimate for ln(f) from a small lookup */ |
| 5743 | /* table (see above) indexed by the first two digits of f, */ |
| 5744 | /* truncated. */ |
| 5745 | |
| 5746 | decContextDefault(&aset, DEC_INIT_DECIMAL64); /* 16-digit extended */ |
| 5747 | r=rhs->exponent+rhs->digits; /* 'normalised' exponent */ |
| 5748 | decNumberFromInt32(a, r); /* a=r */ |
| 5749 | decNumberFromInt32(b, 2302585); /* b=ln(10) (2.302585) */ |
| 5750 | b->exponent=-6; /* .. */ |
| 5751 | decMultiplyOp(a, a, b, &aset, &ignore); /* a=a*b */ |
| 5752 | /* now get top two digits of rhs into b by simple truncate and */ |
| 5753 | /* force to integer */ |
| 5754 | residue=0; /* (no residue) */ |
| 5755 | aset.digits=2; aset.round=DEC_ROUND_DOWN; |
| 5756 | decCopyFit(b, rhs, &aset, &residue, &ignore); /* copy & shorten */ |
| 5757 | b->exponent=0; /* make integer */ |
| 5758 | t=decGetInt(b); /* [cannot fail] */ |
| 5759 | if (t<10) t=X10(t); /* adjust single-digit b */ |
| 5760 | t=LNnn[t-10]; /* look up ln(b) */ |
| 5761 | decNumberFromInt32(b, t>>2); /* b=ln(b) coefficient */ |
| 5762 | b->exponent=-(t&3)-3; /* set exponent */ |
| 5763 | b->bits=DECNEG; /* ln(0.10)->ln(0.99) always -ve */ |
| 5764 | aset.digits=16; aset.round=DEC_ROUND_HALF_EVEN; /* restore */ |
| 5765 | decAddOp(a, a, b, &aset, 0, &ignore); /* acc=a+b */ |
| 5766 | /* the initial estimate is now in a, with up to 4 digits correct. */ |
| 5767 | /* When rhs is at or near Nmax the estimate will be low, so we */ |
| 5768 | /* will approach it from below, avoiding overflow when calling exp. */ |
| 5769 | |
| 5770 | decNumberZero(&numone); *numone.lsu=1; /* constant 1 for adjustment */ |
| 5771 | |
| 5772 | /* accumulator bounds are as requested (could underflow, but */ |
| 5773 | /* cannot overflow) */ |
| 5774 | aset.emax=set->emax; |
| 5775 | aset.emin=set->emin; |
| 5776 | aset.clamp=0; /* no concrete format */ |
| 5777 | /* set up a context to be used for the multiply and subtract */ |
| 5778 | bset=aset; |
| 5779 | bset.emax=DEC_MAX_MATH*2; /* use double bounds for the */ |
| 5780 | bset.emin=-DEC_MAX_MATH*2; /* adjustment calculation */ |
| 5781 | /* [see decExpOp call below] */ |
| 5782 | /* for each iteration double the number of digits to calculate, */ |
| 5783 | /* up to a maximum of p */ |
| 5784 | pp=9; /* initial precision */ |
| 5785 | /* [initially 9 as then the sequence starts 7+2, 16+2, and */ |
| 5786 | /* 34+2, which is ideal for standard-sized numbers] */ |
| 5787 | aset.digits=pp; /* working context */ |
| 5788 | bset.digits=pp+rhs->digits; /* wider context */ |
| 5789 | for (;;) { /* iterate */ |
| 5790 | #if DECCHECK |
| 5791 | iterations++; |
| 5792 | if (iterations>24) break; /* consider 9 * 2**24 */ |
| 5793 | #endif |
| 5794 | /* calculate the adjustment (exp(-a)*x-1) into b. This is a */ |
| 5795 | /* catastrophic subtraction but it really is the difference */ |
| 5796 | /* from 1 that is of interest. */ |
| 5797 | /* Use the internal entry point to Exp as it allows the double */ |
| 5798 | /* range for calculating exp(-a) when a is the tiniest subnormal. */ |
| 5799 | a->bits^=DECNEG; /* make -a */ |
| 5800 | decExpOp(b, a, &bset, &ignore); /* b=exp(-a) */ |
| 5801 | a->bits^=DECNEG; /* restore sign of a */ |
| 5802 | /* now multiply by rhs and subtract 1, at the wider precision */ |
| 5803 | decMultiplyOp(b, b, rhs, &bset, &ignore); /* b=b*rhs */ |
| 5804 | decAddOp(b, b, &numone, &bset, DECNEG, &ignore); /* b=b-1 */ |
| 5805 | |
| 5806 | /* the iteration ends when the adjustment cannot affect the */ |
| 5807 | /* result by >=0.5 ulp (at the requested digits), which */ |
| 5808 | /* is when its value is smaller than the accumulator by */ |
| 5809 | /* set->digits+1 digits (or it is zero) -- this is a looser */ |
| 5810 | /* requirement than for Exp because all that happens to the */ |
| 5811 | /* accumulator after this is the final rounding (but note that */ |
| 5812 | /* there must also be full precision in a, or a=0). */ |
| 5813 | |
| 5814 | if (decNumberIsZero(b) || |
| 5815 | (a->digits+a->exponent)>=(b->digits+b->exponent+set->digits+1)) { |
| 5816 | if (a->digits==p) break; |
| 5817 | if (decNumberIsZero(a)) { |
| 5818 | decCompareOp(&cmp, rhs, &numone, &aset, COMPARE, &ignore); /* rhs=1 ? */ |
| 5819 | if (cmp.lsu[0]==0) a->exponent=0; /* yes, exact 0 */ |
| 5820 | else *status|=(DEC_Inexact | DEC_Rounded); /* no, inexact */ |
| 5821 | break; |
| 5822 | } |
| 5823 | /* force padding if adjustment has gone to 0 before full length */ |
| 5824 | if (decNumberIsZero(b)) b->exponent=a->exponent-p; |
| 5825 | } |
| 5826 | |
| 5827 | /* not done yet ... */ |
| 5828 | decAddOp(a, a, b, &aset, 0, &ignore); /* a=a+b for next estimate */ |
| 5829 | if (pp==p) continue; /* precision is at maximum */ |
| 5830 | /* lengthen the next calculation */ |
| 5831 | pp=pp*2; /* double precision */ |
| 5832 | if (pp>p) pp=p; /* clamp to maximum */ |
| 5833 | aset.digits=pp; /* working context */ |
| 5834 | bset.digits=pp+rhs->digits; /* wider context */ |
| 5835 | } /* Newton's iteration */ |
| 5836 | |
| 5837 | #if DECCHECK |
| 5838 | /* just a sanity check; remove the test to show always */ |
| 5839 | if (iterations>24) |
| 5840 | printf("Ln iterations=%ld, status=%08lx, p=%ld, d=%ld\n", |
| 5841 | iterations, *status, p, rhs->digits); |
| 5842 | #endif |
| 5843 | |
| 5844 | /* Copy and round the result to res */ |
| 5845 | residue=1; /* indicate dirt to right */ |
| 5846 | if (ISZERO(a)) residue=0; /* .. unless underflowed to 0 */ |
| 5847 | aset.digits=set->digits; /* [use default rounding] */ |
| 5848 | decCopyFit(res, a, &aset, &residue, status); /* copy & shorten */ |
| 5849 | decFinish(res, set, &residue, status); /* cleanup/set flags */ |
| 5850 | } while(0); /* end protected */ |
| 5851 | |
| 5852 | if (allocbufa!=NULL) free(allocbufa); /* drop any storage used */ |
| 5853 | if (allocbufb!=NULL) free(allocbufb); /* .. */ |
| 5854 | /* [status is handled by caller] */ |
| 5855 | return res; |
| 5856 | } /* decLnOp */ |
| 5857 | |
| 5858 | /* ------------------------------------------------------------------ */ |
| 5859 | /* decQuantizeOp -- force exponent to requested value */ |
| 5860 | /* */ |
| 5861 | /* This computes C = op(A, B), where op adjusts the coefficient */ |
| 5862 | /* of C (by rounding or shifting) such that the exponent (-scale) */ |
| 5863 | /* of C has the value B or matches the exponent of B. */ |
| 5864 | /* The numerical value of C will equal A, except for the effects of */ |
| 5865 | /* any rounding that occurred. */ |
| 5866 | /* */ |
| 5867 | /* res is C, the result. C may be A or B */ |
| 5868 | /* lhs is A, the number to adjust */ |
| 5869 | /* rhs is B, the requested exponent */ |
| 5870 | /* set is the context */ |
| 5871 | /* quant is 1 for quantize or 0 for rescale */ |
| 5872 | /* status is the status accumulator (this can be called without */ |
| 5873 | /* risk of control loss) */ |
| 5874 | /* */ |
| 5875 | /* C must have space for set->digits digits. */ |
| 5876 | /* */ |
| 5877 | /* Unless there is an error or the result is infinite, the exponent */ |
| 5878 | /* after the operation is guaranteed to be that requested. */ |
| 5879 | /* ------------------------------------------------------------------ */ |
| 5880 | static decNumber * decQuantizeOp(decNumber *res, const decNumber *lhs, |
| 5881 | const decNumber *rhs, decContext *set, |
| 5882 | Flag quant, uInt *status) { |
| 5883 | #if DECSUBSET |
| 5884 | decNumber *alloclhs=NULL; /* non-NULL if rounded lhs allocated */ |
| 5885 | decNumber *allocrhs=NULL; /* .., rhs */ |
| 5886 | #endif |
| 5887 | const decNumber *inrhs=rhs; /* save original rhs */ |
| 5888 | Int reqdigits=set->digits; /* requested DIGITS */ |
| 5889 | Int reqexp; /* requested exponent [-scale] */ |
| 5890 | Int residue=0; /* rounding residue */ |
| 5891 | Int etiny=set->emin-(reqdigits-1); |
| 5892 | |
| 5893 | #if DECCHECK |
| 5894 | if (decCheckOperands(res, lhs, rhs, set)) return res; |
| 5895 | #endif |
| 5896 | |
| 5897 | do { /* protect allocated storage */ |
| 5898 | #if DECSUBSET |
| 5899 | if (!set->extended) { |
| 5900 | /* reduce operands and set lostDigits status, as needed */ |
| 5901 | if (lhs->digits>reqdigits) { |
| 5902 | alloclhs=decRoundOperand(lhs, set, status); |
| 5903 | if (alloclhs==NULL) break; |
| 5904 | lhs=alloclhs; |
| 5905 | } |
| 5906 | if (rhs->digits>reqdigits) { /* [this only checks lostDigits] */ |
| 5907 | allocrhs=decRoundOperand(rhs, set, status); |
| 5908 | if (allocrhs==NULL) break; |
| 5909 | rhs=allocrhs; |
| 5910 | } |
| 5911 | } |
| 5912 | #endif |
| 5913 | /* [following code does not require input rounding] */ |
| 5914 | |
| 5915 | /* Handle special values */ |
| 5916 | if (SPECIALARGS) { |
| 5917 | /* NaNs get usual processing */ |
| 5918 | if (SPECIALARGS & (DECSNAN | DECNAN)) |
| 5919 | decNaNs(res, lhs, rhs, set, status); |
| 5920 | /* one infinity but not both is bad */ |
| 5921 | else if ((lhs->bits ^ rhs->bits) & DECINF) |
| 5922 | *status|=DEC_Invalid_operation; |
| 5923 | /* both infinity: return lhs */ |
| 5924 | else decNumberCopy(res, lhs); /* [nop if in place] */ |
| 5925 | break; |
| 5926 | } |
| 5927 | |
| 5928 | /* set requested exponent */ |
| 5929 | if (quant) reqexp=inrhs->exponent; /* quantize -- match exponents */ |
| 5930 | else { /* rescale -- use value of rhs */ |
| 5931 | /* Original rhs must be an integer that fits and is in range, */ |
| 5932 | /* which could be from -1999999997 to +999999999, thanks to */ |
| 5933 | /* subnormals */ |
| 5934 | reqexp=decGetInt(inrhs); /* [cannot fail] */ |
| 5935 | } |
| 5936 | |
| 5937 | #if DECSUBSET |
| 5938 | if (!set->extended) etiny=set->emin; /* no subnormals */ |
| 5939 | #endif |
| 5940 | |
| 5941 | if (reqexp==BADINT /* bad (rescale only) or .. */ |
| 5942 | || reqexp==BIGODD || reqexp==BIGEVEN /* very big (ditto) or .. */ |
| 5943 | || (reqexp<etiny) /* < lowest */ |
| 5944 | || (reqexp>set->emax)) { /* > emax */ |
| 5945 | *status|=DEC_Invalid_operation; |
| 5946 | break;} |
| 5947 | |
| 5948 | /* the RHS has been processed, so it can be overwritten now if necessary */ |
| 5949 | if (ISZERO(lhs)) { /* zero coefficient unchanged */ |
| 5950 | decNumberCopy(res, lhs); /* [nop if in place] */ |
| 5951 | res->exponent=reqexp; /* .. just set exponent */ |
| 5952 | #if DECSUBSET |
| 5953 | if (!set->extended) res->bits=0; /* subset specification; no -0 */ |
| 5954 | #endif |
| 5955 | } |
| 5956 | else { /* non-zero lhs */ |
| 5957 | Int adjust=reqexp-lhs->exponent; /* digit adjustment needed */ |
| 5958 | /* if adjusted coefficient will definitely not fit, give up now */ |
| 5959 | if ((lhs->digits-adjust)>reqdigits) { |
| 5960 | *status|=DEC_Invalid_operation; |
| 5961 | break; |
| 5962 | } |
| 5963 | |
| 5964 | if (adjust>0) { /* increasing exponent */ |
| 5965 | /* this will decrease the length of the coefficient by adjust */ |
| 5966 | /* digits, and must round as it does so */ |
| 5967 | decContext workset; /* work */ |
| 5968 | workset=*set; /* clone rounding, etc. */ |
| 5969 | workset.digits=lhs->digits-adjust; /* set requested length */ |
| 5970 | /* [note that the latter can be <1, here] */ |
| 5971 | decCopyFit(res, lhs, &workset, &residue, status); /* fit to result */ |
| 5972 | decApplyRound(res, &workset, residue, status); /* .. and round */ |
| 5973 | residue=0; /* [used] */ |
| 5974 | /* If just rounded a 999s case, exponent will be off by one; */ |
| 5975 | /* adjust back (after checking space), if so. */ |
| 5976 | if (res->exponent>reqexp) { |
| 5977 | /* re-check needed, e.g., for quantize(0.9999, 0.001) under */ |
| 5978 | /* set->digits==3 */ |
| 5979 | if (res->digits==reqdigits) { /* cannot shift by 1 */ |
| 5980 | *status&=~(DEC_Inexact | DEC_Rounded); /* [clean these] */ |
| 5981 | *status|=DEC_Invalid_operation; |
| 5982 | break; |
| 5983 | } |
| 5984 | res->digits=decShiftToMost(res->lsu, res->digits, 1); /* shift */ |
| 5985 | res->exponent--; /* (re)adjust the exponent. */ |
| 5986 | } |
| 5987 | #if DECSUBSET |
| 5988 | if (ISZERO(res) && !set->extended) res->bits=0; /* subset; no -0 */ |
| 5989 | #endif |
| 5990 | } /* increase */ |
| 5991 | else /* adjust<=0 */ { /* decreasing or = exponent */ |
| 5992 | /* this will increase the length of the coefficient by -adjust */ |
| 5993 | /* digits, by adding zero or more trailing zeros; this is */ |
| 5994 | /* already checked for fit, above */ |
| 5995 | decNumberCopy(res, lhs); /* [it will fit] */ |
| 5996 | /* if padding needed (adjust<0), add it now... */ |
| 5997 | if (adjust<0) { |
| 5998 | res->digits=decShiftToMost(res->lsu, res->digits, -adjust); |
| 5999 | res->exponent+=adjust; /* adjust the exponent */ |
| 6000 | } |
| 6001 | } /* decrease */ |
| 6002 | } /* non-zero */ |
| 6003 | |
| 6004 | /* Check for overflow [do not use Finalize in this case, as an */ |
| 6005 | /* overflow here is a "don't fit" situation] */ |
| 6006 | if (res->exponent>set->emax-res->digits+1) { /* too big */ |
| 6007 | *status|=DEC_Invalid_operation; |
| 6008 | break; |
| 6009 | } |
| 6010 | else { |
| 6011 | decFinalize(res, set, &residue, status); /* set subnormal flags */ |
| 6012 | *status&=~DEC_Underflow; /* suppress Underflow [754r] */ |
| 6013 | } |
| 6014 | } while(0); /* end protected */ |
| 6015 | |
| 6016 | #if DECSUBSET |
| 6017 | if (allocrhs!=NULL) free(allocrhs); /* drop any storage used */ |
| 6018 | if (alloclhs!=NULL) free(alloclhs); /* .. */ |
| 6019 | #endif |
| 6020 | return res; |
| 6021 | } /* decQuantizeOp */ |
| 6022 | |
| 6023 | /* ------------------------------------------------------------------ */ |
| 6024 | /* decCompareOp -- compare, min, or max two Numbers */ |
| 6025 | /* */ |
| 6026 | /* This computes C = A ? B and carries out one of four operations: */ |
| 6027 | /* COMPARE -- returns the signum (as a number) giving the */ |
| 6028 | /* result of a comparison unless one or both */ |
| 6029 | /* operands is a NaN (in which case a NaN results) */ |
| 6030 | /* COMPSIG -- as COMPARE except that a quiet NaN raises */ |
| 6031 | /* Invalid operation. */ |
| 6032 | /* COMPMAX -- returns the larger of the operands, using the */ |
| 6033 | /* 754r maxnum operation */ |
| 6034 | /* COMPMAXMAG -- ditto, comparing absolute values */ |
| 6035 | /* COMPMIN -- the 754r minnum operation */ |
| 6036 | /* COMPMINMAG -- ditto, comparing absolute values */ |
| 6037 | /* COMTOTAL -- returns the signum (as a number) giving the */ |
| 6038 | /* result of a comparison using 754r total ordering */ |
| 6039 | /* */ |
| 6040 | /* res is C, the result. C may be A and/or B (e.g., X=X?X) */ |
| 6041 | /* lhs is A */ |
| 6042 | /* rhs is B */ |
| 6043 | /* set is the context */ |
| 6044 | /* op is the operation flag */ |
| 6045 | /* status is the usual accumulator */ |
| 6046 | /* */ |
| 6047 | /* C must have space for one digit for COMPARE or set->digits for */ |
| 6048 | /* COMPMAX, COMPMIN, COMPMAXMAG, or COMPMINMAG. */ |
| 6049 | /* ------------------------------------------------------------------ */ |
| 6050 | /* The emphasis here is on speed for common cases, and avoiding */ |
| 6051 | /* coefficient comparison if possible. */ |
| 6052 | /* ------------------------------------------------------------------ */ |
Stefan Weil | d072cdf | 2014-08-20 11:02:10 +0200 | [diff] [blame] | 6053 | static decNumber *decCompareOp(decNumber *res, const decNumber *lhs, |
| 6054 | const decNumber *rhs, decContext *set, |
| 6055 | Flag op, uInt *status) { |
Tom Musta | 72ac97c | 2014-04-21 15:54:45 -0500 | [diff] [blame] | 6056 | #if DECSUBSET |
| 6057 | decNumber *alloclhs=NULL; /* non-NULL if rounded lhs allocated */ |
| 6058 | decNumber *allocrhs=NULL; /* .., rhs */ |
| 6059 | #endif |
| 6060 | Int result=0; /* default result value */ |
| 6061 | uByte merged; /* work */ |
| 6062 | |
| 6063 | #if DECCHECK |
| 6064 | if (decCheckOperands(res, lhs, rhs, set)) return res; |
| 6065 | #endif |
| 6066 | |
| 6067 | do { /* protect allocated storage */ |
| 6068 | #if DECSUBSET |
| 6069 | if (!set->extended) { |
| 6070 | /* reduce operands and set lostDigits status, as needed */ |
| 6071 | if (lhs->digits>set->digits) { |
| 6072 | alloclhs=decRoundOperand(lhs, set, status); |
| 6073 | if (alloclhs==NULL) {result=BADINT; break;} |
| 6074 | lhs=alloclhs; |
| 6075 | } |
| 6076 | if (rhs->digits>set->digits) { |
| 6077 | allocrhs=decRoundOperand(rhs, set, status); |
| 6078 | if (allocrhs==NULL) {result=BADINT; break;} |
| 6079 | rhs=allocrhs; |
| 6080 | } |
| 6081 | } |
| 6082 | #endif |
| 6083 | /* [following code does not require input rounding] */ |
| 6084 | |
| 6085 | /* If total ordering then handle differing signs 'up front' */ |
| 6086 | if (op==COMPTOTAL) { /* total ordering */ |
Stefan Weil | d072cdf | 2014-08-20 11:02:10 +0200 | [diff] [blame] | 6087 | if (decNumberIsNegative(lhs) && !decNumberIsNegative(rhs)) { |
Tom Musta | 72ac97c | 2014-04-21 15:54:45 -0500 | [diff] [blame] | 6088 | result=-1; |
| 6089 | break; |
| 6090 | } |
Stefan Weil | d072cdf | 2014-08-20 11:02:10 +0200 | [diff] [blame] | 6091 | if (!decNumberIsNegative(lhs) && decNumberIsNegative(rhs)) { |
Tom Musta | 72ac97c | 2014-04-21 15:54:45 -0500 | [diff] [blame] | 6092 | result=+1; |
| 6093 | break; |
| 6094 | } |
| 6095 | } |
| 6096 | |
| 6097 | /* handle NaNs specially; let infinities drop through */ |
| 6098 | /* This assumes sNaN (even just one) leads to NaN. */ |
| 6099 | merged=(lhs->bits | rhs->bits) & (DECSNAN | DECNAN); |
| 6100 | if (merged) { /* a NaN bit set */ |
| 6101 | if (op==COMPARE); /* result will be NaN */ |
| 6102 | else if (op==COMPSIG) /* treat qNaN as sNaN */ |
| 6103 | *status|=DEC_Invalid_operation | DEC_sNaN; |
| 6104 | else if (op==COMPTOTAL) { /* total ordering, always finite */ |
| 6105 | /* signs are known to be the same; compute the ordering here */ |
| 6106 | /* as if the signs are both positive, then invert for negatives */ |
| 6107 | if (!decNumberIsNaN(lhs)) result=-1; |
| 6108 | else if (!decNumberIsNaN(rhs)) result=+1; |
| 6109 | /* here if both NaNs */ |
| 6110 | else if (decNumberIsSNaN(lhs) && decNumberIsQNaN(rhs)) result=-1; |
| 6111 | else if (decNumberIsQNaN(lhs) && decNumberIsSNaN(rhs)) result=+1; |
| 6112 | else { /* both NaN or both sNaN */ |
| 6113 | /* now it just depends on the payload */ |
| 6114 | result=decUnitCompare(lhs->lsu, D2U(lhs->digits), |
| 6115 | rhs->lsu, D2U(rhs->digits), 0); |
| 6116 | /* [Error not possible, as these are 'aligned'] */ |
| 6117 | } /* both same NaNs */ |
| 6118 | if (decNumberIsNegative(lhs)) result=-result; |
| 6119 | break; |
| 6120 | } /* total order */ |
| 6121 | |
| 6122 | else if (merged & DECSNAN); /* sNaN -> qNaN */ |
| 6123 | else { /* here if MIN or MAX and one or two quiet NaNs */ |
| 6124 | /* min or max -- 754r rules ignore single NaN */ |
| 6125 | if (!decNumberIsNaN(lhs) || !decNumberIsNaN(rhs)) { |
| 6126 | /* just one NaN; force choice to be the non-NaN operand */ |
| 6127 | op=COMPMAX; |
| 6128 | if (lhs->bits & DECNAN) result=-1; /* pick rhs */ |
| 6129 | else result=+1; /* pick lhs */ |
| 6130 | break; |
| 6131 | } |
| 6132 | } /* max or min */ |
| 6133 | op=COMPNAN; /* use special path */ |
| 6134 | decNaNs(res, lhs, rhs, set, status); /* propagate NaN */ |
| 6135 | break; |
| 6136 | } |
| 6137 | /* have numbers */ |
| 6138 | if (op==COMPMAXMAG || op==COMPMINMAG) result=decCompare(lhs, rhs, 1); |
| 6139 | else result=decCompare(lhs, rhs, 0); /* sign matters */ |
| 6140 | } while(0); /* end protected */ |
| 6141 | |
| 6142 | if (result==BADINT) *status|=DEC_Insufficient_storage; /* rare */ |
| 6143 | else { |
| 6144 | if (op==COMPARE || op==COMPSIG ||op==COMPTOTAL) { /* returning signum */ |
| 6145 | if (op==COMPTOTAL && result==0) { |
| 6146 | /* operands are numerically equal or same NaN (and same sign, */ |
| 6147 | /* tested first); if identical, leave result 0 */ |
| 6148 | if (lhs->exponent!=rhs->exponent) { |
| 6149 | if (lhs->exponent<rhs->exponent) result=-1; |
| 6150 | else result=+1; |
| 6151 | if (decNumberIsNegative(lhs)) result=-result; |
| 6152 | } /* lexp!=rexp */ |
| 6153 | } /* total-order by exponent */ |
| 6154 | decNumberZero(res); /* [always a valid result] */ |
| 6155 | if (result!=0) { /* must be -1 or +1 */ |
| 6156 | *res->lsu=1; |
| 6157 | if (result<0) res->bits=DECNEG; |
| 6158 | } |
| 6159 | } |
| 6160 | else if (op==COMPNAN); /* special, drop through */ |
| 6161 | else { /* MAX or MIN, non-NaN result */ |
| 6162 | Int residue=0; /* rounding accumulator */ |
| 6163 | /* choose the operand for the result */ |
| 6164 | const decNumber *choice; |
| 6165 | if (result==0) { /* operands are numerically equal */ |
| 6166 | /* choose according to sign then exponent (see 754r) */ |
| 6167 | uByte slhs=(lhs->bits & DECNEG); |
| 6168 | uByte srhs=(rhs->bits & DECNEG); |
| 6169 | #if DECSUBSET |
| 6170 | if (!set->extended) { /* subset: force left-hand */ |
| 6171 | op=COMPMAX; |
| 6172 | result=+1; |
| 6173 | } |
| 6174 | else |
| 6175 | #endif |
| 6176 | if (slhs!=srhs) { /* signs differ */ |
| 6177 | if (slhs) result=-1; /* rhs is max */ |
| 6178 | else result=+1; /* lhs is max */ |
| 6179 | } |
| 6180 | else if (slhs && srhs) { /* both negative */ |
| 6181 | if (lhs->exponent<rhs->exponent) result=+1; |
| 6182 | else result=-1; |
| 6183 | /* [if equal, use lhs, technically identical] */ |
| 6184 | } |
| 6185 | else { /* both positive */ |
| 6186 | if (lhs->exponent>rhs->exponent) result=+1; |
| 6187 | else result=-1; |
| 6188 | /* [ditto] */ |
| 6189 | } |
| 6190 | } /* numerically equal */ |
| 6191 | /* here result will be non-0; reverse if looking for MIN */ |
| 6192 | if (op==COMPMIN || op==COMPMINMAG) result=-result; |
| 6193 | choice=(result>0 ? lhs : rhs); /* choose */ |
| 6194 | /* copy chosen to result, rounding if need be */ |
| 6195 | decCopyFit(res, choice, set, &residue, status); |
| 6196 | decFinish(res, set, &residue, status); |
| 6197 | } |
| 6198 | } |
| 6199 | #if DECSUBSET |
| 6200 | if (allocrhs!=NULL) free(allocrhs); /* free any storage used */ |
| 6201 | if (alloclhs!=NULL) free(alloclhs); /* .. */ |
| 6202 | #endif |
| 6203 | return res; |
| 6204 | } /* decCompareOp */ |
| 6205 | |
| 6206 | /* ------------------------------------------------------------------ */ |
| 6207 | /* decCompare -- compare two decNumbers by numerical value */ |
| 6208 | /* */ |
| 6209 | /* This routine compares A ? B without altering them. */ |
| 6210 | /* */ |
| 6211 | /* Arg1 is A, a decNumber which is not a NaN */ |
| 6212 | /* Arg2 is B, a decNumber which is not a NaN */ |
| 6213 | /* Arg3 is 1 for a sign-independent compare, 0 otherwise */ |
| 6214 | /* */ |
| 6215 | /* returns -1, 0, or 1 for A<B, A==B, or A>B, or BADINT if failure */ |
| 6216 | /* (the only possible failure is an allocation error) */ |
| 6217 | /* ------------------------------------------------------------------ */ |
| 6218 | static Int decCompare(const decNumber *lhs, const decNumber *rhs, |
| 6219 | Flag abs) { |
| 6220 | Int result; /* result value */ |
| 6221 | Int sigr; /* rhs signum */ |
| 6222 | Int compare; /* work */ |
| 6223 | |
| 6224 | result=1; /* assume signum(lhs) */ |
| 6225 | if (ISZERO(lhs)) result=0; |
| 6226 | if (abs) { |
| 6227 | if (ISZERO(rhs)) return result; /* LHS wins or both 0 */ |
| 6228 | /* RHS is non-zero */ |
| 6229 | if (result==0) return -1; /* LHS is 0; RHS wins */ |
| 6230 | /* [here, both non-zero, result=1] */ |
| 6231 | } |
| 6232 | else { /* signs matter */ |
| 6233 | if (result && decNumberIsNegative(lhs)) result=-1; |
| 6234 | sigr=1; /* compute signum(rhs) */ |
| 6235 | if (ISZERO(rhs)) sigr=0; |
| 6236 | else if (decNumberIsNegative(rhs)) sigr=-1; |
| 6237 | if (result > sigr) return +1; /* L > R, return 1 */ |
| 6238 | if (result < sigr) return -1; /* L < R, return -1 */ |
| 6239 | if (result==0) return 0; /* both 0 */ |
| 6240 | } |
| 6241 | |
| 6242 | /* signums are the same; both are non-zero */ |
| 6243 | if ((lhs->bits | rhs->bits) & DECINF) { /* one or more infinities */ |
| 6244 | if (decNumberIsInfinite(rhs)) { |
| 6245 | if (decNumberIsInfinite(lhs)) result=0;/* both infinite */ |
| 6246 | else result=-result; /* only rhs infinite */ |
| 6247 | } |
| 6248 | return result; |
| 6249 | } |
| 6250 | /* must compare the coefficients, allowing for exponents */ |
| 6251 | if (lhs->exponent>rhs->exponent) { /* LHS exponent larger */ |
| 6252 | /* swap sides, and sign */ |
| 6253 | const decNumber *temp=lhs; |
| 6254 | lhs=rhs; |
| 6255 | rhs=temp; |
| 6256 | result=-result; |
| 6257 | } |
| 6258 | compare=decUnitCompare(lhs->lsu, D2U(lhs->digits), |
| 6259 | rhs->lsu, D2U(rhs->digits), |
| 6260 | rhs->exponent-lhs->exponent); |
| 6261 | if (compare!=BADINT) compare*=result; /* comparison succeeded */ |
| 6262 | return compare; |
| 6263 | } /* decCompare */ |
| 6264 | |
| 6265 | /* ------------------------------------------------------------------ */ |
| 6266 | /* decUnitCompare -- compare two >=0 integers in Unit arrays */ |
| 6267 | /* */ |
| 6268 | /* This routine compares A ? B*10**E where A and B are unit arrays */ |
| 6269 | /* A is a plain integer */ |
| 6270 | /* B has an exponent of E (which must be non-negative) */ |
| 6271 | /* */ |
| 6272 | /* Arg1 is A first Unit (lsu) */ |
| 6273 | /* Arg2 is A length in Units */ |
| 6274 | /* Arg3 is B first Unit (lsu) */ |
| 6275 | /* Arg4 is B length in Units */ |
| 6276 | /* Arg5 is E (0 if the units are aligned) */ |
| 6277 | /* */ |
| 6278 | /* returns -1, 0, or 1 for A<B, A==B, or A>B, or BADINT if failure */ |
| 6279 | /* (the only possible failure is an allocation error, which can */ |
| 6280 | /* only occur if E!=0) */ |
| 6281 | /* ------------------------------------------------------------------ */ |
| 6282 | static Int decUnitCompare(const Unit *a, Int alength, |
| 6283 | const Unit *b, Int blength, Int exp) { |
| 6284 | Unit *acc; /* accumulator for result */ |
| 6285 | Unit accbuff[SD2U(DECBUFFER*2+1)]; /* local buffer */ |
| 6286 | Unit *allocacc=NULL; /* -> allocated acc buffer, iff allocated */ |
| 6287 | Int accunits, need; /* units in use or needed for acc */ |
| 6288 | const Unit *l, *r, *u; /* work */ |
| 6289 | Int expunits, exprem, result; /* .. */ |
| 6290 | |
| 6291 | if (exp==0) { /* aligned; fastpath */ |
| 6292 | if (alength>blength) return 1; |
| 6293 | if (alength<blength) return -1; |
| 6294 | /* same number of units in both -- need unit-by-unit compare */ |
| 6295 | l=a+alength-1; |
| 6296 | r=b+alength-1; |
| 6297 | for (;l>=a; l--, r--) { |
| 6298 | if (*l>*r) return 1; |
| 6299 | if (*l<*r) return -1; |
| 6300 | } |
| 6301 | return 0; /* all units match */ |
| 6302 | } /* aligned */ |
| 6303 | |
| 6304 | /* Unaligned. If one is >1 unit longer than the other, padded */ |
| 6305 | /* approximately, then can return easily */ |
| 6306 | if (alength>blength+(Int)D2U(exp)) return 1; |
| 6307 | if (alength+1<blength+(Int)D2U(exp)) return -1; |
| 6308 | |
| 6309 | /* Need to do a real subtract. For this, a result buffer is needed */ |
| 6310 | /* even though only the sign is of interest. Its length needs */ |
| 6311 | /* to be the larger of alength and padded blength, +2 */ |
| 6312 | need=blength+D2U(exp); /* maximum real length of B */ |
| 6313 | if (need<alength) need=alength; |
| 6314 | need+=2; |
| 6315 | acc=accbuff; /* assume use local buffer */ |
| 6316 | if (need*sizeof(Unit)>sizeof(accbuff)) { |
| 6317 | allocacc=(Unit *)malloc(need*sizeof(Unit)); |
| 6318 | if (allocacc==NULL) return BADINT; /* hopeless -- abandon */ |
| 6319 | acc=allocacc; |
| 6320 | } |
| 6321 | /* Calculate units and remainder from exponent. */ |
| 6322 | expunits=exp/DECDPUN; |
| 6323 | exprem=exp%DECDPUN; |
| 6324 | /* subtract [A+B*(-m)] */ |
| 6325 | accunits=decUnitAddSub(a, alength, b, blength, expunits, acc, |
| 6326 | -(Int)powers[exprem]); |
| 6327 | /* [UnitAddSub result may have leading zeros, even on zero] */ |
| 6328 | if (accunits<0) result=-1; /* negative result */ |
| 6329 | else { /* non-negative result */ |
| 6330 | /* check units of the result before freeing any storage */ |
| 6331 | for (u=acc; u<acc+accunits-1 && *u==0;) u++; |
| 6332 | result=(*u==0 ? 0 : +1); |
| 6333 | } |
| 6334 | /* clean up and return the result */ |
| 6335 | if (allocacc!=NULL) free(allocacc); /* drop any storage used */ |
| 6336 | return result; |
| 6337 | } /* decUnitCompare */ |
| 6338 | |
| 6339 | /* ------------------------------------------------------------------ */ |
| 6340 | /* decUnitAddSub -- add or subtract two >=0 integers in Unit arrays */ |
| 6341 | /* */ |
| 6342 | /* This routine performs the calculation: */ |
| 6343 | /* */ |
| 6344 | /* C=A+(B*M) */ |
| 6345 | /* */ |
| 6346 | /* Where M is in the range -DECDPUNMAX through +DECDPUNMAX. */ |
| 6347 | /* */ |
| 6348 | /* A may be shorter or longer than B. */ |
| 6349 | /* */ |
| 6350 | /* Leading zeros are not removed after a calculation. The result is */ |
| 6351 | /* either the same length as the longer of A and B (adding any */ |
| 6352 | /* shift), or one Unit longer than that (if a Unit carry occurred). */ |
| 6353 | /* */ |
| 6354 | /* A and B content are not altered unless C is also A or B. */ |
| 6355 | /* C may be the same array as A or B, but only if no zero padding is */ |
| 6356 | /* requested (that is, C may be B only if bshift==0). */ |
| 6357 | /* C is filled from the lsu; only those units necessary to complete */ |
| 6358 | /* the calculation are referenced. */ |
| 6359 | /* */ |
| 6360 | /* Arg1 is A first Unit (lsu) */ |
| 6361 | /* Arg2 is A length in Units */ |
| 6362 | /* Arg3 is B first Unit (lsu) */ |
| 6363 | /* Arg4 is B length in Units */ |
| 6364 | /* Arg5 is B shift in Units (>=0; pads with 0 units if positive) */ |
| 6365 | /* Arg6 is C first Unit (lsu) */ |
| 6366 | /* Arg7 is M, the multiplier */ |
| 6367 | /* */ |
| 6368 | /* returns the count of Units written to C, which will be non-zero */ |
| 6369 | /* and negated if the result is negative. That is, the sign of the */ |
| 6370 | /* returned Int is the sign of the result (positive for zero) and */ |
| 6371 | /* the absolute value of the Int is the count of Units. */ |
| 6372 | /* */ |
| 6373 | /* It is the caller's responsibility to make sure that C size is */ |
| 6374 | /* safe, allowing space if necessary for a one-Unit carry. */ |
| 6375 | /* */ |
| 6376 | /* This routine is severely performance-critical; *any* change here */ |
| 6377 | /* must be measured (timed) to assure no performance degradation. */ |
| 6378 | /* In particular, trickery here tends to be counter-productive, as */ |
| 6379 | /* increased complexity of code hurts register optimizations on */ |
| 6380 | /* register-poor architectures. Avoiding divisions is nearly */ |
| 6381 | /* always a Good Idea, however. */ |
| 6382 | /* */ |
| 6383 | /* Special thanks to Rick McGuire (IBM Cambridge, MA) and Dave Clark */ |
| 6384 | /* (IBM Warwick, UK) for some of the ideas used in this routine. */ |
| 6385 | /* ------------------------------------------------------------------ */ |
| 6386 | static Int decUnitAddSub(const Unit *a, Int alength, |
| 6387 | const Unit *b, Int blength, Int bshift, |
| 6388 | Unit *c, Int m) { |
| 6389 | const Unit *alsu=a; /* A lsu [need to remember it] */ |
| 6390 | Unit *clsu=c; /* C ditto */ |
| 6391 | Unit *minC; /* low water mark for C */ |
| 6392 | Unit *maxC; /* high water mark for C */ |
| 6393 | eInt carry=0; /* carry integer (could be Long) */ |
| 6394 | Int add; /* work */ |
| 6395 | #if DECDPUN<=4 /* myriadal, millenary, etc. */ |
| 6396 | Int est; /* estimated quotient */ |
| 6397 | #endif |
| 6398 | |
| 6399 | #if DECTRACE |
| 6400 | if (alength<1 || blength<1) |
| 6401 | printf("decUnitAddSub: alen blen m %ld %ld [%ld]\n", alength, blength, m); |
| 6402 | #endif |
| 6403 | |
| 6404 | maxC=c+alength; /* A is usually the longer */ |
| 6405 | minC=c+blength; /* .. and B the shorter */ |
| 6406 | if (bshift!=0) { /* B is shifted; low As copy across */ |
| 6407 | minC+=bshift; |
| 6408 | /* if in place [common], skip copy unless there's a gap [rare] */ |
| 6409 | if (a==c && bshift<=alength) { |
| 6410 | c+=bshift; |
| 6411 | a+=bshift; |
| 6412 | } |
| 6413 | else for (; c<clsu+bshift; a++, c++) { /* copy needed */ |
| 6414 | if (a<alsu+alength) *c=*a; |
| 6415 | else *c=0; |
| 6416 | } |
| 6417 | } |
| 6418 | if (minC>maxC) { /* swap */ |
| 6419 | Unit *hold=minC; |
| 6420 | minC=maxC; |
| 6421 | maxC=hold; |
| 6422 | } |
| 6423 | |
| 6424 | /* For speed, do the addition as two loops; the first where both A */ |
| 6425 | /* and B contribute, and the second (if necessary) where only one or */ |
| 6426 | /* other of the numbers contribute. */ |
| 6427 | /* Carry handling is the same (i.e., duplicated) in each case. */ |
| 6428 | for (; c<minC; c++) { |
| 6429 | carry+=*a; |
| 6430 | a++; |
| 6431 | carry+=((eInt)*b)*m; /* [special-casing m=1/-1 */ |
| 6432 | b++; /* here is not a win] */ |
| 6433 | /* here carry is new Unit of digits; it could be +ve or -ve */ |
| 6434 | if ((ueInt)carry<=DECDPUNMAX) { /* fastpath 0-DECDPUNMAX */ |
| 6435 | *c=(Unit)carry; |
| 6436 | carry=0; |
| 6437 | continue; |
| 6438 | } |
| 6439 | #if DECDPUN==4 /* use divide-by-multiply */ |
| 6440 | if (carry>=0) { |
| 6441 | est=(((ueInt)carry>>11)*53687)>>18; |
| 6442 | *c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder */ |
| 6443 | carry=est; /* likely quotient [89%] */ |
| 6444 | if (*c<DECDPUNMAX+1) continue; /* estimate was correct */ |
| 6445 | carry++; |
| 6446 | *c-=DECDPUNMAX+1; |
| 6447 | continue; |
| 6448 | } |
| 6449 | /* negative case */ |
| 6450 | carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive */ |
| 6451 | est=(((ueInt)carry>>11)*53687)>>18; |
| 6452 | *c=(Unit)(carry-est*(DECDPUNMAX+1)); |
| 6453 | carry=est-(DECDPUNMAX+1); /* correctly negative */ |
| 6454 | if (*c<DECDPUNMAX+1) continue; /* was OK */ |
| 6455 | carry++; |
| 6456 | *c-=DECDPUNMAX+1; |
| 6457 | #elif DECDPUN==3 |
| 6458 | if (carry>=0) { |
| 6459 | est=(((ueInt)carry>>3)*16777)>>21; |
| 6460 | *c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder */ |
| 6461 | carry=est; /* likely quotient [99%] */ |
| 6462 | if (*c<DECDPUNMAX+1) continue; /* estimate was correct */ |
| 6463 | carry++; |
| 6464 | *c-=DECDPUNMAX+1; |
| 6465 | continue; |
| 6466 | } |
| 6467 | /* negative case */ |
| 6468 | carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive */ |
| 6469 | est=(((ueInt)carry>>3)*16777)>>21; |
| 6470 | *c=(Unit)(carry-est*(DECDPUNMAX+1)); |
| 6471 | carry=est-(DECDPUNMAX+1); /* correctly negative */ |
| 6472 | if (*c<DECDPUNMAX+1) continue; /* was OK */ |
| 6473 | carry++; |
| 6474 | *c-=DECDPUNMAX+1; |
| 6475 | #elif DECDPUN<=2 |
| 6476 | /* Can use QUOT10 as carry <= 4 digits */ |
| 6477 | if (carry>=0) { |
| 6478 | est=QUOT10(carry, DECDPUN); |
| 6479 | *c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder */ |
| 6480 | carry=est; /* quotient */ |
| 6481 | continue; |
| 6482 | } |
| 6483 | /* negative case */ |
| 6484 | carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive */ |
| 6485 | est=QUOT10(carry, DECDPUN); |
| 6486 | *c=(Unit)(carry-est*(DECDPUNMAX+1)); |
| 6487 | carry=est-(DECDPUNMAX+1); /* correctly negative */ |
| 6488 | #else |
| 6489 | /* remainder operator is undefined if negative, so must test */ |
| 6490 | if ((ueInt)carry<(DECDPUNMAX+1)*2) { /* fastpath carry +1 */ |
| 6491 | *c=(Unit)(carry-(DECDPUNMAX+1)); /* [helps additions] */ |
| 6492 | carry=1; |
| 6493 | continue; |
| 6494 | } |
| 6495 | if (carry>=0) { |
| 6496 | *c=(Unit)(carry%(DECDPUNMAX+1)); |
| 6497 | carry=carry/(DECDPUNMAX+1); |
| 6498 | continue; |
| 6499 | } |
| 6500 | /* negative case */ |
| 6501 | carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive */ |
| 6502 | *c=(Unit)(carry%(DECDPUNMAX+1)); |
| 6503 | carry=carry/(DECDPUNMAX+1)-(DECDPUNMAX+1); |
| 6504 | #endif |
| 6505 | } /* c */ |
| 6506 | |
| 6507 | /* now may have one or other to complete */ |
| 6508 | /* [pretest to avoid loop setup/shutdown] */ |
| 6509 | if (c<maxC) for (; c<maxC; c++) { |
| 6510 | if (a<alsu+alength) { /* still in A */ |
| 6511 | carry+=*a; |
| 6512 | a++; |
| 6513 | } |
| 6514 | else { /* inside B */ |
| 6515 | carry+=((eInt)*b)*m; |
| 6516 | b++; |
| 6517 | } |
| 6518 | /* here carry is new Unit of digits; it could be +ve or -ve and */ |
| 6519 | /* magnitude up to DECDPUNMAX squared */ |
| 6520 | if ((ueInt)carry<=DECDPUNMAX) { /* fastpath 0-DECDPUNMAX */ |
| 6521 | *c=(Unit)carry; |
| 6522 | carry=0; |
| 6523 | continue; |
| 6524 | } |
| 6525 | /* result for this unit is negative or >DECDPUNMAX */ |
| 6526 | #if DECDPUN==4 /* use divide-by-multiply */ |
| 6527 | if (carry>=0) { |
| 6528 | est=(((ueInt)carry>>11)*53687)>>18; |
| 6529 | *c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder */ |
| 6530 | carry=est; /* likely quotient [79.7%] */ |
| 6531 | if (*c<DECDPUNMAX+1) continue; /* estimate was correct */ |
| 6532 | carry++; |
| 6533 | *c-=DECDPUNMAX+1; |
| 6534 | continue; |
| 6535 | } |
| 6536 | /* negative case */ |
| 6537 | carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive */ |
| 6538 | est=(((ueInt)carry>>11)*53687)>>18; |
| 6539 | *c=(Unit)(carry-est*(DECDPUNMAX+1)); |
| 6540 | carry=est-(DECDPUNMAX+1); /* correctly negative */ |
| 6541 | if (*c<DECDPUNMAX+1) continue; /* was OK */ |
| 6542 | carry++; |
| 6543 | *c-=DECDPUNMAX+1; |
| 6544 | #elif DECDPUN==3 |
| 6545 | if (carry>=0) { |
| 6546 | est=(((ueInt)carry>>3)*16777)>>21; |
| 6547 | *c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder */ |
| 6548 | carry=est; /* likely quotient [99%] */ |
| 6549 | if (*c<DECDPUNMAX+1) continue; /* estimate was correct */ |
| 6550 | carry++; |
| 6551 | *c-=DECDPUNMAX+1; |
| 6552 | continue; |
| 6553 | } |
| 6554 | /* negative case */ |
| 6555 | carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive */ |
| 6556 | est=(((ueInt)carry>>3)*16777)>>21; |
| 6557 | *c=(Unit)(carry-est*(DECDPUNMAX+1)); |
| 6558 | carry=est-(DECDPUNMAX+1); /* correctly negative */ |
| 6559 | if (*c<DECDPUNMAX+1) continue; /* was OK */ |
| 6560 | carry++; |
| 6561 | *c-=DECDPUNMAX+1; |
| 6562 | #elif DECDPUN<=2 |
| 6563 | if (carry>=0) { |
| 6564 | est=QUOT10(carry, DECDPUN); |
| 6565 | *c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder */ |
| 6566 | carry=est; /* quotient */ |
| 6567 | continue; |
| 6568 | } |
| 6569 | /* negative case */ |
| 6570 | carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive */ |
| 6571 | est=QUOT10(carry, DECDPUN); |
| 6572 | *c=(Unit)(carry-est*(DECDPUNMAX+1)); |
| 6573 | carry=est-(DECDPUNMAX+1); /* correctly negative */ |
| 6574 | #else |
| 6575 | if ((ueInt)carry<(DECDPUNMAX+1)*2){ /* fastpath carry 1 */ |
| 6576 | *c=(Unit)(carry-(DECDPUNMAX+1)); |
| 6577 | carry=1; |
| 6578 | continue; |
| 6579 | } |
| 6580 | /* remainder operator is undefined if negative, so must test */ |
| 6581 | if (carry>=0) { |
| 6582 | *c=(Unit)(carry%(DECDPUNMAX+1)); |
| 6583 | carry=carry/(DECDPUNMAX+1); |
| 6584 | continue; |
| 6585 | } |
| 6586 | /* negative case */ |
| 6587 | carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive */ |
| 6588 | *c=(Unit)(carry%(DECDPUNMAX+1)); |
| 6589 | carry=carry/(DECDPUNMAX+1)-(DECDPUNMAX+1); |
| 6590 | #endif |
| 6591 | } /* c */ |
| 6592 | |
| 6593 | /* OK, all A and B processed; might still have carry or borrow */ |
| 6594 | /* return number of Units in the result, negated if a borrow */ |
| 6595 | if (carry==0) return c-clsu; /* no carry, so no more to do */ |
| 6596 | if (carry>0) { /* positive carry */ |
| 6597 | *c=(Unit)carry; /* place as new unit */ |
| 6598 | c++; /* .. */ |
| 6599 | return c-clsu; |
| 6600 | } |
| 6601 | /* -ve carry: it's a borrow; complement needed */ |
| 6602 | add=1; /* temporary carry... */ |
| 6603 | for (c=clsu; c<maxC; c++) { |
| 6604 | add=DECDPUNMAX+add-*c; |
| 6605 | if (add<=DECDPUNMAX) { |
| 6606 | *c=(Unit)add; |
| 6607 | add=0; |
| 6608 | } |
| 6609 | else { |
| 6610 | *c=0; |
| 6611 | add=1; |
| 6612 | } |
| 6613 | } |
| 6614 | /* add an extra unit iff it would be non-zero */ |
| 6615 | #if DECTRACE |
| 6616 | printf("UAS borrow: add %ld, carry %ld\n", add, carry); |
| 6617 | #endif |
| 6618 | if ((add-carry-1)!=0) { |
| 6619 | *c=(Unit)(add-carry-1); |
| 6620 | c++; /* interesting, include it */ |
| 6621 | } |
| 6622 | return clsu-c; /* -ve result indicates borrowed */ |
| 6623 | } /* decUnitAddSub */ |
| 6624 | |
| 6625 | /* ------------------------------------------------------------------ */ |
| 6626 | /* decTrim -- trim trailing zeros or normalize */ |
| 6627 | /* */ |
| 6628 | /* dn is the number to trim or normalize */ |
| 6629 | /* set is the context to use to check for clamp */ |
| 6630 | /* all is 1 to remove all trailing zeros, 0 for just fraction ones */ |
| 6631 | /* dropped returns the number of discarded trailing zeros */ |
| 6632 | /* returns dn */ |
| 6633 | /* */ |
| 6634 | /* If clamp is set in the context then the number of zeros trimmed */ |
| 6635 | /* may be limited if the exponent is high. */ |
| 6636 | /* All fields are updated as required. This is a utility operation, */ |
| 6637 | /* so special values are unchanged and no error is possible. */ |
| 6638 | /* ------------------------------------------------------------------ */ |
| 6639 | static decNumber * decTrim(decNumber *dn, decContext *set, Flag all, |
| 6640 | Int *dropped) { |
| 6641 | Int d, exp; /* work */ |
| 6642 | uInt cut; /* .. */ |
| 6643 | Unit *up; /* -> current Unit */ |
| 6644 | |
| 6645 | #if DECCHECK |
| 6646 | if (decCheckOperands(dn, DECUNUSED, DECUNUSED, DECUNCONT)) return dn; |
| 6647 | #endif |
| 6648 | |
| 6649 | *dropped=0; /* assume no zeros dropped */ |
| 6650 | if ((dn->bits & DECSPECIAL) /* fast exit if special .. */ |
| 6651 | || (*dn->lsu & 0x01)) return dn; /* .. or odd */ |
| 6652 | if (ISZERO(dn)) { /* .. or 0 */ |
| 6653 | dn->exponent=0; /* (sign is preserved) */ |
| 6654 | return dn; |
| 6655 | } |
| 6656 | |
| 6657 | /* have a finite number which is even */ |
| 6658 | exp=dn->exponent; |
| 6659 | cut=1; /* digit (1-DECDPUN) in Unit */ |
| 6660 | up=dn->lsu; /* -> current Unit */ |
| 6661 | for (d=0; d<dn->digits-1; d++) { /* [don't strip the final digit] */ |
| 6662 | /* slice by powers */ |
| 6663 | #if DECDPUN<=4 |
| 6664 | uInt quot=QUOT10(*up, cut); |
| 6665 | if ((*up-quot*powers[cut])!=0) break; /* found non-0 digit */ |
| 6666 | #else |
| 6667 | if (*up%powers[cut]!=0) break; /* found non-0 digit */ |
| 6668 | #endif |
| 6669 | /* have a trailing 0 */ |
| 6670 | if (!all) { /* trimming */ |
| 6671 | /* [if exp>0 then all trailing 0s are significant for trim] */ |
| 6672 | if (exp<=0) { /* if digit might be significant */ |
| 6673 | if (exp==0) break; /* then quit */ |
| 6674 | exp++; /* next digit might be significant */ |
| 6675 | } |
| 6676 | } |
| 6677 | cut++; /* next power */ |
| 6678 | if (cut>DECDPUN) { /* need new Unit */ |
| 6679 | up++; |
| 6680 | cut=1; |
| 6681 | } |
| 6682 | } /* d */ |
| 6683 | if (d==0) return dn; /* none to drop */ |
| 6684 | |
| 6685 | /* may need to limit drop if clamping */ |
| 6686 | if (set->clamp) { |
| 6687 | Int maxd=set->emax-set->digits+1-dn->exponent; |
| 6688 | if (maxd<=0) return dn; /* nothing possible */ |
| 6689 | if (d>maxd) d=maxd; |
| 6690 | } |
| 6691 | |
| 6692 | /* effect the drop */ |
| 6693 | decShiftToLeast(dn->lsu, D2U(dn->digits), d); |
| 6694 | dn->exponent+=d; /* maintain numerical value */ |
| 6695 | dn->digits-=d; /* new length */ |
| 6696 | *dropped=d; /* report the count */ |
| 6697 | return dn; |
| 6698 | } /* decTrim */ |
| 6699 | |
| 6700 | /* ------------------------------------------------------------------ */ |
| 6701 | /* decReverse -- reverse a Unit array in place */ |
| 6702 | /* */ |
| 6703 | /* ulo is the start of the array */ |
| 6704 | /* uhi is the end of the array (highest Unit to include) */ |
| 6705 | /* */ |
| 6706 | /* The units ulo through uhi are reversed in place (if the number */ |
| 6707 | /* of units is odd, the middle one is untouched). Note that the */ |
| 6708 | /* digit(s) in each unit are unaffected. */ |
| 6709 | /* ------------------------------------------------------------------ */ |
| 6710 | static void decReverse(Unit *ulo, Unit *uhi) { |
| 6711 | Unit temp; |
| 6712 | for (; ulo<uhi; ulo++, uhi--) { |
| 6713 | temp=*ulo; |
| 6714 | *ulo=*uhi; |
| 6715 | *uhi=temp; |
| 6716 | } |
| 6717 | return; |
| 6718 | } /* decReverse */ |
| 6719 | |
| 6720 | /* ------------------------------------------------------------------ */ |
| 6721 | /* decShiftToMost -- shift digits in array towards most significant */ |
| 6722 | /* */ |
| 6723 | /* uar is the array */ |
| 6724 | /* digits is the count of digits in use in the array */ |
| 6725 | /* shift is the number of zeros to pad with (least significant); */ |
| 6726 | /* it must be zero or positive */ |
| 6727 | /* */ |
| 6728 | /* returns the new length of the integer in the array, in digits */ |
| 6729 | /* */ |
| 6730 | /* No overflow is permitted (that is, the uar array must be known to */ |
| 6731 | /* be large enough to hold the result, after shifting). */ |
| 6732 | /* ------------------------------------------------------------------ */ |
| 6733 | static Int decShiftToMost(Unit *uar, Int digits, Int shift) { |
| 6734 | Unit *target, *source, *first; /* work */ |
| 6735 | Int cut; /* odd 0's to add */ |
| 6736 | uInt next; /* work */ |
| 6737 | |
| 6738 | if (shift==0) return digits; /* [fastpath] nothing to do */ |
| 6739 | if ((digits+shift)<=DECDPUN) { /* [fastpath] single-unit case */ |
| 6740 | *uar=(Unit)(*uar*powers[shift]); |
| 6741 | return digits+shift; |
| 6742 | } |
| 6743 | |
| 6744 | next=0; /* all paths */ |
| 6745 | source=uar+D2U(digits)-1; /* where msu comes from */ |
| 6746 | target=source+D2U(shift); /* where upper part of first cut goes */ |
| 6747 | cut=DECDPUN-MSUDIGITS(shift); /* where to slice */ |
| 6748 | if (cut==0) { /* unit-boundary case */ |
| 6749 | for (; source>=uar; source--, target--) *target=*source; |
| 6750 | } |
| 6751 | else { |
| 6752 | first=uar+D2U(digits+shift)-1; /* where msu of source will end up */ |
| 6753 | for (; source>=uar; source--, target--) { |
| 6754 | /* split the source Unit and accumulate remainder for next */ |
| 6755 | #if DECDPUN<=4 |
| 6756 | uInt quot=QUOT10(*source, cut); |
| 6757 | uInt rem=*source-quot*powers[cut]; |
| 6758 | next+=quot; |
| 6759 | #else |
| 6760 | uInt rem=*source%powers[cut]; |
| 6761 | next+=*source/powers[cut]; |
| 6762 | #endif |
| 6763 | if (target<=first) *target=(Unit)next; /* write to target iff valid */ |
| 6764 | next=rem*powers[DECDPUN-cut]; /* save remainder for next Unit */ |
| 6765 | } |
| 6766 | } /* shift-move */ |
| 6767 | |
| 6768 | /* propagate any partial unit to one below and clear the rest */ |
| 6769 | for (; target>=uar; target--) { |
| 6770 | *target=(Unit)next; |
| 6771 | next=0; |
| 6772 | } |
| 6773 | return digits+shift; |
| 6774 | } /* decShiftToMost */ |
| 6775 | |
| 6776 | /* ------------------------------------------------------------------ */ |
| 6777 | /* decShiftToLeast -- shift digits in array towards least significant */ |
| 6778 | /* */ |
| 6779 | /* uar is the array */ |
| 6780 | /* units is length of the array, in units */ |
| 6781 | /* shift is the number of digits to remove from the lsu end; it */ |
| 6782 | /* must be zero or positive and <= than units*DECDPUN. */ |
| 6783 | /* */ |
| 6784 | /* returns the new length of the integer in the array, in units */ |
| 6785 | /* */ |
| 6786 | /* Removed digits are discarded (lost). Units not required to hold */ |
| 6787 | /* the final result are unchanged. */ |
| 6788 | /* ------------------------------------------------------------------ */ |
| 6789 | static Int decShiftToLeast(Unit *uar, Int units, Int shift) { |
| 6790 | Unit *target, *up; /* work */ |
| 6791 | Int cut, count; /* work */ |
| 6792 | Int quot, rem; /* for division */ |
| 6793 | |
| 6794 | if (shift==0) return units; /* [fastpath] nothing to do */ |
| 6795 | if (shift==units*DECDPUN) { /* [fastpath] little to do */ |
| 6796 | *uar=0; /* all digits cleared gives zero */ |
| 6797 | return 1; /* leaves just the one */ |
| 6798 | } |
| 6799 | |
| 6800 | target=uar; /* both paths */ |
| 6801 | cut=MSUDIGITS(shift); |
| 6802 | if (cut==DECDPUN) { /* unit-boundary case; easy */ |
| 6803 | up=uar+D2U(shift); |
| 6804 | for (; up<uar+units; target++, up++) *target=*up; |
| 6805 | return target-uar; |
| 6806 | } |
| 6807 | |
| 6808 | /* messier */ |
| 6809 | up=uar+D2U(shift-cut); /* source; correct to whole Units */ |
| 6810 | count=units*DECDPUN-shift; /* the maximum new length */ |
| 6811 | #if DECDPUN<=4 |
| 6812 | quot=QUOT10(*up, cut); |
| 6813 | #else |
| 6814 | quot=*up/powers[cut]; |
| 6815 | #endif |
| 6816 | for (; ; target++) { |
| 6817 | *target=(Unit)quot; |
| 6818 | count-=(DECDPUN-cut); |
| 6819 | if (count<=0) break; |
| 6820 | up++; |
| 6821 | quot=*up; |
| 6822 | #if DECDPUN<=4 |
| 6823 | quot=QUOT10(quot, cut); |
| 6824 | rem=*up-quot*powers[cut]; |
| 6825 | #else |
| 6826 | rem=quot%powers[cut]; |
| 6827 | quot=quot/powers[cut]; |
| 6828 | #endif |
| 6829 | *target=(Unit)(*target+rem*powers[DECDPUN-cut]); |
| 6830 | count-=cut; |
| 6831 | if (count<=0) break; |
| 6832 | } |
| 6833 | return target-uar+1; |
| 6834 | } /* decShiftToLeast */ |
| 6835 | |
| 6836 | #if DECSUBSET |
| 6837 | /* ------------------------------------------------------------------ */ |
| 6838 | /* decRoundOperand -- round an operand [used for subset only] */ |
| 6839 | /* */ |
| 6840 | /* dn is the number to round (dn->digits is > set->digits) */ |
| 6841 | /* set is the relevant context */ |
| 6842 | /* status is the status accumulator */ |
| 6843 | /* */ |
| 6844 | /* returns an allocated decNumber with the rounded result. */ |
| 6845 | /* */ |
| 6846 | /* lostDigits and other status may be set by this. */ |
| 6847 | /* */ |
| 6848 | /* Since the input is an operand, it must not be modified. */ |
| 6849 | /* Instead, return an allocated decNumber, rounded as required. */ |
| 6850 | /* It is the caller's responsibility to free the allocated storage. */ |
| 6851 | /* */ |
| 6852 | /* If no storage is available then the result cannot be used, so NULL */ |
| 6853 | /* is returned. */ |
| 6854 | /* ------------------------------------------------------------------ */ |
| 6855 | static decNumber *decRoundOperand(const decNumber *dn, decContext *set, |
| 6856 | uInt *status) { |
| 6857 | decNumber *res; /* result structure */ |
| 6858 | uInt newstatus=0; /* status from round */ |
| 6859 | Int residue=0; /* rounding accumulator */ |
| 6860 | |
| 6861 | /* Allocate storage for the returned decNumber, big enough for the */ |
| 6862 | /* length specified by the context */ |
| 6863 | res=(decNumber *)malloc(sizeof(decNumber) |
| 6864 | +(D2U(set->digits)-1)*sizeof(Unit)); |
| 6865 | if (res==NULL) { |
| 6866 | *status|=DEC_Insufficient_storage; |
| 6867 | return NULL; |
| 6868 | } |
| 6869 | decCopyFit(res, dn, set, &residue, &newstatus); |
| 6870 | decApplyRound(res, set, residue, &newstatus); |
| 6871 | |
| 6872 | /* If that set Inexact then "lost digits" is raised... */ |
| 6873 | if (newstatus & DEC_Inexact) newstatus|=DEC_Lost_digits; |
| 6874 | *status|=newstatus; |
| 6875 | return res; |
| 6876 | } /* decRoundOperand */ |
| 6877 | #endif |
| 6878 | |
| 6879 | /* ------------------------------------------------------------------ */ |
| 6880 | /* decCopyFit -- copy a number, truncating the coefficient if needed */ |
| 6881 | /* */ |
| 6882 | /* dest is the target decNumber */ |
| 6883 | /* src is the source decNumber */ |
| 6884 | /* set is the context [used for length (digits) and rounding mode] */ |
| 6885 | /* residue is the residue accumulator */ |
| 6886 | /* status contains the current status to be updated */ |
| 6887 | /* */ |
| 6888 | /* (dest==src is allowed and will be a no-op if fits) */ |
| 6889 | /* All fields are updated as required. */ |
| 6890 | /* ------------------------------------------------------------------ */ |
| 6891 | static void decCopyFit(decNumber *dest, const decNumber *src, |
| 6892 | decContext *set, Int *residue, uInt *status) { |
| 6893 | dest->bits=src->bits; |
| 6894 | dest->exponent=src->exponent; |
| 6895 | decSetCoeff(dest, set, src->lsu, src->digits, residue, status); |
| 6896 | } /* decCopyFit */ |
| 6897 | |
| 6898 | /* ------------------------------------------------------------------ */ |
| 6899 | /* decSetCoeff -- set the coefficient of a number */ |
| 6900 | /* */ |
| 6901 | /* dn is the number whose coefficient array is to be set. */ |
| 6902 | /* It must have space for set->digits digits */ |
| 6903 | /* set is the context [for size] */ |
| 6904 | /* lsu -> lsu of the source coefficient [may be dn->lsu] */ |
| 6905 | /* len is digits in the source coefficient [may be dn->digits] */ |
| 6906 | /* residue is the residue accumulator. This has values as in */ |
| 6907 | /* decApplyRound, and will be unchanged unless the */ |
| 6908 | /* target size is less than len. In this case, the */ |
| 6909 | /* coefficient is truncated and the residue is updated to */ |
| 6910 | /* reflect the previous residue and the dropped digits. */ |
| 6911 | /* status is the status accumulator, as usual */ |
| 6912 | /* */ |
| 6913 | /* The coefficient may already be in the number, or it can be an */ |
| 6914 | /* external intermediate array. If it is in the number, lsu must == */ |
| 6915 | /* dn->lsu and len must == dn->digits. */ |
| 6916 | /* */ |
| 6917 | /* Note that the coefficient length (len) may be < set->digits, and */ |
| 6918 | /* in this case this merely copies the coefficient (or is a no-op */ |
| 6919 | /* if dn->lsu==lsu). */ |
| 6920 | /* */ |
| 6921 | /* Note also that (only internally, from decQuantizeOp and */ |
| 6922 | /* decSetSubnormal) the value of set->digits may be less than one, */ |
| 6923 | /* indicating a round to left. This routine handles that case */ |
| 6924 | /* correctly; caller ensures space. */ |
| 6925 | /* */ |
| 6926 | /* dn->digits, dn->lsu (and as required), and dn->exponent are */ |
| 6927 | /* updated as necessary. dn->bits (sign) is unchanged. */ |
| 6928 | /* */ |
| 6929 | /* DEC_Rounded status is set if any digits are discarded. */ |
| 6930 | /* DEC_Inexact status is set if any non-zero digits are discarded, or */ |
| 6931 | /* incoming residue was non-0 (implies rounded) */ |
| 6932 | /* ------------------------------------------------------------------ */ |
| 6933 | /* mapping array: maps 0-9 to canonical residues, so that a residue */ |
| 6934 | /* can be adjusted in the range [-1, +1] and achieve correct rounding */ |
| 6935 | /* 0 1 2 3 4 5 6 7 8 9 */ |
| 6936 | static const uByte resmap[10]={0, 3, 3, 3, 3, 5, 7, 7, 7, 7}; |
| 6937 | static void decSetCoeff(decNumber *dn, decContext *set, const Unit *lsu, |
| 6938 | Int len, Int *residue, uInt *status) { |
| 6939 | Int discard; /* number of digits to discard */ |
| 6940 | uInt cut; /* cut point in Unit */ |
| 6941 | const Unit *up; /* work */ |
| 6942 | Unit *target; /* .. */ |
| 6943 | Int count; /* .. */ |
| 6944 | #if DECDPUN<=4 |
| 6945 | uInt temp; /* .. */ |
| 6946 | #endif |
| 6947 | |
| 6948 | discard=len-set->digits; /* digits to discard */ |
| 6949 | if (discard<=0) { /* no digits are being discarded */ |
| 6950 | if (dn->lsu!=lsu) { /* copy needed */ |
| 6951 | /* copy the coefficient array to the result number; no shift needed */ |
| 6952 | count=len; /* avoids D2U */ |
| 6953 | up=lsu; |
| 6954 | for (target=dn->lsu; count>0; target++, up++, count-=DECDPUN) |
| 6955 | *target=*up; |
| 6956 | dn->digits=len; /* set the new length */ |
| 6957 | } |
| 6958 | /* dn->exponent and residue are unchanged, record any inexactitude */ |
| 6959 | if (*residue!=0) *status|=(DEC_Inexact | DEC_Rounded); |
| 6960 | return; |
| 6961 | } |
| 6962 | |
| 6963 | /* some digits must be discarded ... */ |
| 6964 | dn->exponent+=discard; /* maintain numerical value */ |
| 6965 | *status|=DEC_Rounded; /* accumulate Rounded status */ |
| 6966 | if (*residue>1) *residue=1; /* previous residue now to right, so reduce */ |
| 6967 | |
| 6968 | if (discard>len) { /* everything, +1, is being discarded */ |
| 6969 | /* guard digit is 0 */ |
| 6970 | /* residue is all the number [NB could be all 0s] */ |
| 6971 | if (*residue<=0) { /* not already positive */ |
| 6972 | count=len; /* avoids D2U */ |
| 6973 | for (up=lsu; count>0; up++, count-=DECDPUN) if (*up!=0) { /* found non-0 */ |
| 6974 | *residue=1; |
| 6975 | break; /* no need to check any others */ |
| 6976 | } |
| 6977 | } |
| 6978 | if (*residue!=0) *status|=DEC_Inexact; /* record inexactitude */ |
| 6979 | *dn->lsu=0; /* coefficient will now be 0 */ |
| 6980 | dn->digits=1; /* .. */ |
| 6981 | return; |
| 6982 | } /* total discard */ |
| 6983 | |
| 6984 | /* partial discard [most common case] */ |
| 6985 | /* here, at least the first (most significant) discarded digit exists */ |
| 6986 | |
| 6987 | /* spin up the number, noting residue during the spin, until get to */ |
| 6988 | /* the Unit with the first discarded digit. When reach it, extract */ |
| 6989 | /* it and remember its position */ |
| 6990 | count=0; |
| 6991 | for (up=lsu;; up++) { |
| 6992 | count+=DECDPUN; |
| 6993 | if (count>=discard) break; /* full ones all checked */ |
| 6994 | if (*up!=0) *residue=1; |
| 6995 | } /* up */ |
| 6996 | |
| 6997 | /* here up -> Unit with first discarded digit */ |
| 6998 | cut=discard-(count-DECDPUN)-1; |
| 6999 | if (cut==DECDPUN-1) { /* unit-boundary case (fast) */ |
| 7000 | Unit half=(Unit)powers[DECDPUN]>>1; |
| 7001 | /* set residue directly */ |
| 7002 | if (*up>=half) { |
| 7003 | if (*up>half) *residue=7; |
| 7004 | else *residue+=5; /* add sticky bit */ |
| 7005 | } |
| 7006 | else { /* <half */ |
| 7007 | if (*up!=0) *residue=3; /* [else is 0, leave as sticky bit] */ |
| 7008 | } |
| 7009 | if (set->digits<=0) { /* special for Quantize/Subnormal :-( */ |
| 7010 | *dn->lsu=0; /* .. result is 0 */ |
| 7011 | dn->digits=1; /* .. */ |
| 7012 | } |
| 7013 | else { /* shift to least */ |
| 7014 | count=set->digits; /* now digits to end up with */ |
| 7015 | dn->digits=count; /* set the new length */ |
| 7016 | up++; /* move to next */ |
| 7017 | /* on unit boundary, so shift-down copy loop is simple */ |
| 7018 | for (target=dn->lsu; count>0; target++, up++, count-=DECDPUN) |
| 7019 | *target=*up; |
| 7020 | } |
| 7021 | } /* unit-boundary case */ |
| 7022 | |
| 7023 | else { /* discard digit is in low digit(s), and not top digit */ |
| 7024 | uInt discard1; /* first discarded digit */ |
| 7025 | uInt quot, rem; /* for divisions */ |
| 7026 | if (cut==0) quot=*up; /* is at bottom of unit */ |
| 7027 | else /* cut>0 */ { /* it's not at bottom of unit */ |
| 7028 | #if DECDPUN<=4 |
| 7029 | quot=QUOT10(*up, cut); |
| 7030 | rem=*up-quot*powers[cut]; |
| 7031 | #else |
| 7032 | rem=*up%powers[cut]; |
| 7033 | quot=*up/powers[cut]; |
| 7034 | #endif |
| 7035 | if (rem!=0) *residue=1; |
| 7036 | } |
| 7037 | /* discard digit is now at bottom of quot */ |
| 7038 | #if DECDPUN<=4 |
| 7039 | temp=(quot*6554)>>16; /* fast /10 */ |
| 7040 | /* Vowels algorithm here not a win (9 instructions) */ |
| 7041 | discard1=quot-X10(temp); |
| 7042 | quot=temp; |
| 7043 | #else |
| 7044 | discard1=quot%10; |
| 7045 | quot=quot/10; |
| 7046 | #endif |
| 7047 | /* here, discard1 is the guard digit, and residue is everything */ |
| 7048 | /* else [use mapping array to accumulate residue safely] */ |
| 7049 | *residue+=resmap[discard1]; |
| 7050 | cut++; /* update cut */ |
| 7051 | /* here: up -> Unit of the array with bottom digit */ |
| 7052 | /* cut is the division point for each Unit */ |
| 7053 | /* quot holds the uncut high-order digits for the current unit */ |
| 7054 | if (set->digits<=0) { /* special for Quantize/Subnormal :-( */ |
| 7055 | *dn->lsu=0; /* .. result is 0 */ |
| 7056 | dn->digits=1; /* .. */ |
| 7057 | } |
| 7058 | else { /* shift to least needed */ |
| 7059 | count=set->digits; /* now digits to end up with */ |
| 7060 | dn->digits=count; /* set the new length */ |
| 7061 | /* shift-copy the coefficient array to the result number */ |
| 7062 | for (target=dn->lsu; ; target++) { |
| 7063 | *target=(Unit)quot; |
| 7064 | count-=(DECDPUN-cut); |
| 7065 | if (count<=0) break; |
| 7066 | up++; |
| 7067 | quot=*up; |
| 7068 | #if DECDPUN<=4 |
| 7069 | quot=QUOT10(quot, cut); |
| 7070 | rem=*up-quot*powers[cut]; |
| 7071 | #else |
| 7072 | rem=quot%powers[cut]; |
| 7073 | quot=quot/powers[cut]; |
| 7074 | #endif |
| 7075 | *target=(Unit)(*target+rem*powers[DECDPUN-cut]); |
| 7076 | count-=cut; |
| 7077 | if (count<=0) break; |
| 7078 | } /* shift-copy loop */ |
| 7079 | } /* shift to least */ |
| 7080 | } /* not unit boundary */ |
| 7081 | |
| 7082 | if (*residue!=0) *status|=DEC_Inexact; /* record inexactitude */ |
| 7083 | return; |
| 7084 | } /* decSetCoeff */ |
| 7085 | |
| 7086 | /* ------------------------------------------------------------------ */ |
| 7087 | /* decApplyRound -- apply pending rounding to a number */ |
| 7088 | /* */ |
| 7089 | /* dn is the number, with space for set->digits digits */ |
| 7090 | /* set is the context [for size and rounding mode] */ |
| 7091 | /* residue indicates pending rounding, being any accumulated */ |
| 7092 | /* guard and sticky information. It may be: */ |
| 7093 | /* 6-9: rounding digit is >5 */ |
| 7094 | /* 5: rounding digit is exactly half-way */ |
| 7095 | /* 1-4: rounding digit is <5 and >0 */ |
| 7096 | /* 0: the coefficient is exact */ |
| 7097 | /* -1: as 1, but the hidden digits are subtractive, that */ |
| 7098 | /* is, of the opposite sign to dn. In this case the */ |
| 7099 | /* coefficient must be non-0. This case occurs when */ |
| 7100 | /* subtracting a small number (which can be reduced to */ |
| 7101 | /* a sticky bit); see decAddOp. */ |
| 7102 | /* status is the status accumulator, as usual */ |
| 7103 | /* */ |
| 7104 | /* This routine applies rounding while keeping the length of the */ |
| 7105 | /* coefficient constant. The exponent and status are unchanged */ |
| 7106 | /* except if: */ |
| 7107 | /* */ |
| 7108 | /* -- the coefficient was increased and is all nines (in which */ |
| 7109 | /* case Overflow could occur, and is handled directly here so */ |
| 7110 | /* the caller does not need to re-test for overflow) */ |
| 7111 | /* */ |
| 7112 | /* -- the coefficient was decreased and becomes all nines (in which */ |
| 7113 | /* case Underflow could occur, and is also handled directly). */ |
| 7114 | /* */ |
| 7115 | /* All fields in dn are updated as required. */ |
| 7116 | /* */ |
| 7117 | /* ------------------------------------------------------------------ */ |
| 7118 | static void decApplyRound(decNumber *dn, decContext *set, Int residue, |
| 7119 | uInt *status) { |
| 7120 | Int bump; /* 1 if coefficient needs to be incremented */ |
| 7121 | /* -1 if coefficient needs to be decremented */ |
| 7122 | |
| 7123 | if (residue==0) return; /* nothing to apply */ |
| 7124 | |
| 7125 | bump=0; /* assume a smooth ride */ |
| 7126 | |
| 7127 | /* now decide whether, and how, to round, depending on mode */ |
| 7128 | switch (set->round) { |
| 7129 | case DEC_ROUND_05UP: { /* round zero or five up (for reround) */ |
| 7130 | /* This is the same as DEC_ROUND_DOWN unless there is a */ |
| 7131 | /* positive residue and the lsd of dn is 0 or 5, in which case */ |
| 7132 | /* it is bumped; when residue is <0, the number is therefore */ |
| 7133 | /* bumped down unless the final digit was 1 or 6 (in which */ |
| 7134 | /* case it is bumped down and then up -- a no-op) */ |
| 7135 | Int lsd5=*dn->lsu%5; /* get lsd and quintate */ |
| 7136 | if (residue<0 && lsd5!=1) bump=-1; |
| 7137 | else if (residue>0 && lsd5==0) bump=1; |
| 7138 | /* [bump==1 could be applied directly; use common path for clarity] */ |
| 7139 | break;} /* r-05 */ |
| 7140 | |
| 7141 | case DEC_ROUND_DOWN: { |
| 7142 | /* no change, except if negative residue */ |
| 7143 | if (residue<0) bump=-1; |
| 7144 | break;} /* r-d */ |
| 7145 | |
| 7146 | case DEC_ROUND_HALF_DOWN: { |
| 7147 | if (residue>5) bump=1; |
| 7148 | break;} /* r-h-d */ |
| 7149 | |
| 7150 | case DEC_ROUND_HALF_EVEN: { |
| 7151 | if (residue>5) bump=1; /* >0.5 goes up */ |
| 7152 | else if (residue==5) { /* exactly 0.5000... */ |
| 7153 | /* 0.5 goes up iff [new] lsd is odd */ |
| 7154 | if (*dn->lsu & 0x01) bump=1; |
| 7155 | } |
| 7156 | break;} /* r-h-e */ |
| 7157 | |
| 7158 | case DEC_ROUND_HALF_UP: { |
| 7159 | if (residue>=5) bump=1; |
| 7160 | break;} /* r-h-u */ |
| 7161 | |
| 7162 | case DEC_ROUND_UP: { |
| 7163 | if (residue>0) bump=1; |
| 7164 | break;} /* r-u */ |
| 7165 | |
| 7166 | case DEC_ROUND_CEILING: { |
| 7167 | /* same as _UP for positive numbers, and as _DOWN for negatives */ |
| 7168 | /* [negative residue cannot occur on 0] */ |
| 7169 | if (decNumberIsNegative(dn)) { |
| 7170 | if (residue<0) bump=-1; |
| 7171 | } |
| 7172 | else { |
| 7173 | if (residue>0) bump=1; |
| 7174 | } |
| 7175 | break;} /* r-c */ |
| 7176 | |
| 7177 | case DEC_ROUND_FLOOR: { |
| 7178 | /* same as _UP for negative numbers, and as _DOWN for positive */ |
| 7179 | /* [negative residue cannot occur on 0] */ |
| 7180 | if (!decNumberIsNegative(dn)) { |
| 7181 | if (residue<0) bump=-1; |
| 7182 | } |
| 7183 | else { |
| 7184 | if (residue>0) bump=1; |
| 7185 | } |
| 7186 | break;} /* r-f */ |
| 7187 | |
| 7188 | default: { /* e.g., DEC_ROUND_MAX */ |
| 7189 | *status|=DEC_Invalid_context; |
| 7190 | #if DECTRACE || (DECCHECK && DECVERB) |
| 7191 | printf("Unknown rounding mode: %d\n", set->round); |
| 7192 | #endif |
| 7193 | break;} |
| 7194 | } /* switch */ |
| 7195 | |
| 7196 | /* now bump the number, up or down, if need be */ |
| 7197 | if (bump==0) return; /* no action required */ |
| 7198 | |
| 7199 | /* Simply use decUnitAddSub unless bumping up and the number is */ |
| 7200 | /* all nines. In this special case set to 100... explicitly */ |
| 7201 | /* and adjust the exponent by one (as otherwise could overflow */ |
| 7202 | /* the array) */ |
| 7203 | /* Similarly handle all-nines result if bumping down. */ |
| 7204 | if (bump>0) { |
| 7205 | Unit *up; /* work */ |
| 7206 | uInt count=dn->digits; /* digits to be checked */ |
| 7207 | for (up=dn->lsu; ; up++) { |
| 7208 | if (count<=DECDPUN) { |
| 7209 | /* this is the last Unit (the msu) */ |
| 7210 | if (*up!=powers[count]-1) break; /* not still 9s */ |
| 7211 | /* here if it, too, is all nines */ |
| 7212 | *up=(Unit)powers[count-1]; /* here 999 -> 100 etc. */ |
| 7213 | for (up=up-1; up>=dn->lsu; up--) *up=0; /* others all to 0 */ |
| 7214 | dn->exponent++; /* and bump exponent */ |
| 7215 | /* [which, very rarely, could cause Overflow...] */ |
| 7216 | if ((dn->exponent+dn->digits)>set->emax+1) { |
| 7217 | decSetOverflow(dn, set, status); |
| 7218 | } |
| 7219 | return; /* done */ |
| 7220 | } |
| 7221 | /* a full unit to check, with more to come */ |
| 7222 | if (*up!=DECDPUNMAX) break; /* not still 9s */ |
| 7223 | count-=DECDPUN; |
| 7224 | } /* up */ |
| 7225 | } /* bump>0 */ |
| 7226 | else { /* -1 */ |
| 7227 | /* here checking for a pre-bump of 1000... (leading 1, all */ |
| 7228 | /* other digits zero) */ |
| 7229 | Unit *up, *sup; /* work */ |
| 7230 | uInt count=dn->digits; /* digits to be checked */ |
| 7231 | for (up=dn->lsu; ; up++) { |
| 7232 | if (count<=DECDPUN) { |
| 7233 | /* this is the last Unit (the msu) */ |
| 7234 | if (*up!=powers[count-1]) break; /* not 100.. */ |
| 7235 | /* here if have the 1000... case */ |
| 7236 | sup=up; /* save msu pointer */ |
| 7237 | *up=(Unit)powers[count]-1; /* here 100 in msu -> 999 */ |
| 7238 | /* others all to all-nines, too */ |
| 7239 | for (up=up-1; up>=dn->lsu; up--) *up=(Unit)powers[DECDPUN]-1; |
| 7240 | dn->exponent--; /* and bump exponent */ |
| 7241 | |
| 7242 | /* iff the number was at the subnormal boundary (exponent=etiny) */ |
| 7243 | /* then the exponent is now out of range, so it will in fact get */ |
| 7244 | /* clamped to etiny and the final 9 dropped. */ |
| 7245 | /* printf(">> emin=%d exp=%d sdig=%d\n", set->emin, */ |
| 7246 | /* dn->exponent, set->digits); */ |
| 7247 | if (dn->exponent+1==set->emin-set->digits+1) { |
| 7248 | if (count==1 && dn->digits==1) *sup=0; /* here 9 -> 0[.9] */ |
| 7249 | else { |
| 7250 | *sup=(Unit)powers[count-1]-1; /* here 999.. in msu -> 99.. */ |
| 7251 | dn->digits--; |
| 7252 | } |
| 7253 | dn->exponent++; |
| 7254 | *status|=DEC_Underflow | DEC_Subnormal | DEC_Inexact | DEC_Rounded; |
| 7255 | } |
| 7256 | return; /* done */ |
| 7257 | } |
| 7258 | |
| 7259 | /* a full unit to check, with more to come */ |
| 7260 | if (*up!=0) break; /* not still 0s */ |
| 7261 | count-=DECDPUN; |
| 7262 | } /* up */ |
| 7263 | |
| 7264 | } /* bump<0 */ |
| 7265 | |
| 7266 | /* Actual bump needed. Do it. */ |
| 7267 | decUnitAddSub(dn->lsu, D2U(dn->digits), uarrone, 1, 0, dn->lsu, bump); |
| 7268 | } /* decApplyRound */ |
| 7269 | |
| 7270 | #if DECSUBSET |
| 7271 | /* ------------------------------------------------------------------ */ |
| 7272 | /* decFinish -- finish processing a number */ |
| 7273 | /* */ |
| 7274 | /* dn is the number */ |
| 7275 | /* set is the context */ |
| 7276 | /* residue is the rounding accumulator (as in decApplyRound) */ |
| 7277 | /* status is the accumulator */ |
| 7278 | /* */ |
| 7279 | /* This finishes off the current number by: */ |
| 7280 | /* 1. If not extended: */ |
| 7281 | /* a. Converting a zero result to clean '0' */ |
| 7282 | /* b. Reducing positive exponents to 0, if would fit in digits */ |
| 7283 | /* 2. Checking for overflow and subnormals (always) */ |
| 7284 | /* Note this is just Finalize when no subset arithmetic. */ |
| 7285 | /* All fields are updated as required. */ |
| 7286 | /* ------------------------------------------------------------------ */ |
| 7287 | static void decFinish(decNumber *dn, decContext *set, Int *residue, |
| 7288 | uInt *status) { |
| 7289 | if (!set->extended) { |
| 7290 | if ISZERO(dn) { /* value is zero */ |
| 7291 | dn->exponent=0; /* clean exponent .. */ |
| 7292 | dn->bits=0; /* .. and sign */ |
| 7293 | return; /* no error possible */ |
| 7294 | } |
| 7295 | if (dn->exponent>=0) { /* non-negative exponent */ |
| 7296 | /* >0; reduce to integer if possible */ |
| 7297 | if (set->digits >= (dn->exponent+dn->digits)) { |
| 7298 | dn->digits=decShiftToMost(dn->lsu, dn->digits, dn->exponent); |
| 7299 | dn->exponent=0; |
| 7300 | } |
| 7301 | } |
| 7302 | } /* !extended */ |
| 7303 | |
| 7304 | decFinalize(dn, set, residue, status); |
| 7305 | } /* decFinish */ |
| 7306 | #endif |
| 7307 | |
| 7308 | /* ------------------------------------------------------------------ */ |
| 7309 | /* decFinalize -- final check, clamp, and round of a number */ |
| 7310 | /* */ |
| 7311 | /* dn is the number */ |
| 7312 | /* set is the context */ |
| 7313 | /* residue is the rounding accumulator (as in decApplyRound) */ |
| 7314 | /* status is the status accumulator */ |
| 7315 | /* */ |
| 7316 | /* This finishes off the current number by checking for subnormal */ |
| 7317 | /* results, applying any pending rounding, checking for overflow, */ |
| 7318 | /* and applying any clamping. */ |
| 7319 | /* Underflow and overflow conditions are raised as appropriate. */ |
| 7320 | /* All fields are updated as required. */ |
| 7321 | /* ------------------------------------------------------------------ */ |
| 7322 | static void decFinalize(decNumber *dn, decContext *set, Int *residue, |
| 7323 | uInt *status) { |
| 7324 | Int shift; /* shift needed if clamping */ |
| 7325 | Int tinyexp=set->emin-dn->digits+1; /* precalculate subnormal boundary */ |
| 7326 | |
| 7327 | /* Must be careful, here, when checking the exponent as the */ |
| 7328 | /* adjusted exponent could overflow 31 bits [because it may already */ |
| 7329 | /* be up to twice the expected]. */ |
| 7330 | |
| 7331 | /* First test for subnormal. This must be done before any final */ |
| 7332 | /* round as the result could be rounded to Nmin or 0. */ |
| 7333 | if (dn->exponent<=tinyexp) { /* prefilter */ |
| 7334 | Int comp; |
| 7335 | decNumber nmin; |
| 7336 | /* A very nasty case here is dn == Nmin and residue<0 */ |
| 7337 | if (dn->exponent<tinyexp) { |
| 7338 | /* Go handle subnormals; this will apply round if needed. */ |
| 7339 | decSetSubnormal(dn, set, residue, status); |
| 7340 | return; |
| 7341 | } |
| 7342 | /* Equals case: only subnormal if dn=Nmin and negative residue */ |
| 7343 | decNumberZero(&nmin); |
| 7344 | nmin.lsu[0]=1; |
| 7345 | nmin.exponent=set->emin; |
| 7346 | comp=decCompare(dn, &nmin, 1); /* (signless compare) */ |
| 7347 | if (comp==BADINT) { /* oops */ |
| 7348 | *status|=DEC_Insufficient_storage; /* abandon... */ |
| 7349 | return; |
| 7350 | } |
| 7351 | if (*residue<0 && comp==0) { /* neg residue and dn==Nmin */ |
| 7352 | decApplyRound(dn, set, *residue, status); /* might force down */ |
| 7353 | decSetSubnormal(dn, set, residue, status); |
| 7354 | return; |
| 7355 | } |
| 7356 | } |
| 7357 | |
| 7358 | /* now apply any pending round (this could raise overflow). */ |
| 7359 | if (*residue!=0) decApplyRound(dn, set, *residue, status); |
| 7360 | |
| 7361 | /* Check for overflow [redundant in the 'rare' case] or clamp */ |
| 7362 | if (dn->exponent<=set->emax-set->digits+1) return; /* neither needed */ |
| 7363 | |
| 7364 | |
| 7365 | /* here when might have an overflow or clamp to do */ |
| 7366 | if (dn->exponent>set->emax-dn->digits+1) { /* too big */ |
| 7367 | decSetOverflow(dn, set, status); |
| 7368 | return; |
| 7369 | } |
| 7370 | /* here when the result is normal but in clamp range */ |
| 7371 | if (!set->clamp) return; |
| 7372 | |
| 7373 | /* here when need to apply the IEEE exponent clamp (fold-down) */ |
| 7374 | shift=dn->exponent-(set->emax-set->digits+1); |
| 7375 | |
| 7376 | /* shift coefficient (if non-zero) */ |
| 7377 | if (!ISZERO(dn)) { |
| 7378 | dn->digits=decShiftToMost(dn->lsu, dn->digits, shift); |
| 7379 | } |
| 7380 | dn->exponent-=shift; /* adjust the exponent to match */ |
| 7381 | *status|=DEC_Clamped; /* and record the dirty deed */ |
| 7382 | return; |
| 7383 | } /* decFinalize */ |
| 7384 | |
| 7385 | /* ------------------------------------------------------------------ */ |
| 7386 | /* decSetOverflow -- set number to proper overflow value */ |
| 7387 | /* */ |
| 7388 | /* dn is the number (used for sign [only] and result) */ |
| 7389 | /* set is the context [used for the rounding mode, etc.] */ |
| 7390 | /* status contains the current status to be updated */ |
| 7391 | /* */ |
| 7392 | /* This sets the sign of a number and sets its value to either */ |
| 7393 | /* Infinity or the maximum finite value, depending on the sign of */ |
| 7394 | /* dn and the rounding mode, following IEEE 854 rules. */ |
| 7395 | /* ------------------------------------------------------------------ */ |
| 7396 | static void decSetOverflow(decNumber *dn, decContext *set, uInt *status) { |
| 7397 | Flag needmax=0; /* result is maximum finite value */ |
| 7398 | uByte sign=dn->bits&DECNEG; /* clean and save sign bit */ |
| 7399 | |
| 7400 | if (ISZERO(dn)) { /* zero does not overflow magnitude */ |
| 7401 | Int emax=set->emax; /* limit value */ |
| 7402 | if (set->clamp) emax-=set->digits-1; /* lower if clamping */ |
| 7403 | if (dn->exponent>emax) { /* clamp required */ |
| 7404 | dn->exponent=emax; |
| 7405 | *status|=DEC_Clamped; |
| 7406 | } |
| 7407 | return; |
| 7408 | } |
| 7409 | |
| 7410 | decNumberZero(dn); |
| 7411 | switch (set->round) { |
| 7412 | case DEC_ROUND_DOWN: { |
| 7413 | needmax=1; /* never Infinity */ |
| 7414 | break;} /* r-d */ |
| 7415 | case DEC_ROUND_05UP: { |
| 7416 | needmax=1; /* never Infinity */ |
| 7417 | break;} /* r-05 */ |
| 7418 | case DEC_ROUND_CEILING: { |
| 7419 | if (sign) needmax=1; /* Infinity if non-negative */ |
| 7420 | break;} /* r-c */ |
| 7421 | case DEC_ROUND_FLOOR: { |
| 7422 | if (!sign) needmax=1; /* Infinity if negative */ |
| 7423 | break;} /* r-f */ |
| 7424 | default: break; /* Infinity in all other cases */ |
| 7425 | } |
| 7426 | if (needmax) { |
| 7427 | decSetMaxValue(dn, set); |
| 7428 | dn->bits=sign; /* set sign */ |
| 7429 | } |
| 7430 | else dn->bits=sign|DECINF; /* Value is +/-Infinity */ |
| 7431 | *status|=DEC_Overflow | DEC_Inexact | DEC_Rounded; |
| 7432 | } /* decSetOverflow */ |
| 7433 | |
| 7434 | /* ------------------------------------------------------------------ */ |
| 7435 | /* decSetMaxValue -- set number to +Nmax (maximum normal value) */ |
| 7436 | /* */ |
| 7437 | /* dn is the number to set */ |
| 7438 | /* set is the context [used for digits and emax] */ |
| 7439 | /* */ |
| 7440 | /* This sets the number to the maximum positive value. */ |
| 7441 | /* ------------------------------------------------------------------ */ |
| 7442 | static void decSetMaxValue(decNumber *dn, decContext *set) { |
| 7443 | Unit *up; /* work */ |
| 7444 | Int count=set->digits; /* nines to add */ |
| 7445 | dn->digits=count; |
| 7446 | /* fill in all nines to set maximum value */ |
| 7447 | for (up=dn->lsu; ; up++) { |
| 7448 | if (count>DECDPUN) *up=DECDPUNMAX; /* unit full o'nines */ |
| 7449 | else { /* this is the msu */ |
| 7450 | *up=(Unit)(powers[count]-1); |
| 7451 | break; |
| 7452 | } |
| 7453 | count-=DECDPUN; /* filled those digits */ |
| 7454 | } /* up */ |
| 7455 | dn->bits=0; /* + sign */ |
| 7456 | dn->exponent=set->emax-set->digits+1; |
| 7457 | } /* decSetMaxValue */ |
| 7458 | |
| 7459 | /* ------------------------------------------------------------------ */ |
| 7460 | /* decSetSubnormal -- process value whose exponent is <Emin */ |
| 7461 | /* */ |
| 7462 | /* dn is the number (used as input as well as output; it may have */ |
| 7463 | /* an allowed subnormal value, which may need to be rounded) */ |
| 7464 | /* set is the context [used for the rounding mode] */ |
| 7465 | /* residue is any pending residue */ |
| 7466 | /* status contains the current status to be updated */ |
| 7467 | /* */ |
| 7468 | /* If subset mode, set result to zero and set Underflow flags. */ |
| 7469 | /* */ |
| 7470 | /* Value may be zero with a low exponent; this does not set Subnormal */ |
| 7471 | /* but the exponent will be clamped to Etiny. */ |
| 7472 | /* */ |
| 7473 | /* Otherwise ensure exponent is not out of range, and round as */ |
| 7474 | /* necessary. Underflow is set if the result is Inexact. */ |
| 7475 | /* ------------------------------------------------------------------ */ |
| 7476 | static void decSetSubnormal(decNumber *dn, decContext *set, Int *residue, |
| 7477 | uInt *status) { |
Tom Musta | 72ac97c | 2014-04-21 15:54:45 -0500 | [diff] [blame] | 7478 | decContext workset; /* work */ |
| 7479 | Int etiny, adjust; /* .. */ |
| 7480 | |
| 7481 | #if DECSUBSET |
| 7482 | /* simple set to zero and 'hard underflow' for subset */ |
| 7483 | if (!set->extended) { |
| 7484 | decNumberZero(dn); |
| 7485 | /* always full overflow */ |
| 7486 | *status|=DEC_Underflow | DEC_Subnormal | DEC_Inexact | DEC_Rounded; |
| 7487 | return; |
| 7488 | } |
| 7489 | #endif |
| 7490 | |
| 7491 | /* Full arithmetic -- allow subnormals, rounded to minimum exponent */ |
| 7492 | /* (Etiny) if needed */ |
| 7493 | etiny=set->emin-(set->digits-1); /* smallest allowed exponent */ |
| 7494 | |
| 7495 | if ISZERO(dn) { /* value is zero */ |
| 7496 | /* residue can never be non-zero here */ |
| 7497 | #if DECCHECK |
| 7498 | if (*residue!=0) { |
| 7499 | printf("++ Subnormal 0 residue %ld\n", (LI)*residue); |
| 7500 | *status|=DEC_Invalid_operation; |
| 7501 | } |
| 7502 | #endif |
| 7503 | if (dn->exponent<etiny) { /* clamp required */ |
| 7504 | dn->exponent=etiny; |
| 7505 | *status|=DEC_Clamped; |
| 7506 | } |
| 7507 | return; |
| 7508 | } |
| 7509 | |
| 7510 | *status|=DEC_Subnormal; /* have a non-zero subnormal */ |
| 7511 | adjust=etiny-dn->exponent; /* calculate digits to remove */ |
| 7512 | if (adjust<=0) { /* not out of range; unrounded */ |
| 7513 | /* residue can never be non-zero here, except in the Nmin-residue */ |
| 7514 | /* case (which is a subnormal result), so can take fast-path here */ |
| 7515 | /* it may already be inexact (from setting the coefficient) */ |
| 7516 | if (*status&DEC_Inexact) *status|=DEC_Underflow; |
| 7517 | return; |
| 7518 | } |
| 7519 | |
| 7520 | /* adjust>0, so need to rescale the result so exponent becomes Etiny */ |
| 7521 | /* [this code is similar to that in rescale] */ |
Tom Musta | 72ac97c | 2014-04-21 15:54:45 -0500 | [diff] [blame] | 7522 | workset=*set; /* clone rounding, etc. */ |
| 7523 | workset.digits=dn->digits-adjust; /* set requested length */ |
| 7524 | workset.emin-=adjust; /* and adjust emin to match */ |
| 7525 | /* [note that the latter can be <1, here, similar to Rescale case] */ |
| 7526 | decSetCoeff(dn, &workset, dn->lsu, dn->digits, residue, status); |
| 7527 | decApplyRound(dn, &workset, *residue, status); |
| 7528 | |
| 7529 | /* Use 754R/854 default rule: Underflow is set iff Inexact */ |
| 7530 | /* [independent of whether trapped] */ |
| 7531 | if (*status&DEC_Inexact) *status|=DEC_Underflow; |
| 7532 | |
| 7533 | /* if rounded up a 999s case, exponent will be off by one; adjust */ |
| 7534 | /* back if so [it will fit, because it was shortened earlier] */ |
| 7535 | if (dn->exponent>etiny) { |
| 7536 | dn->digits=decShiftToMost(dn->lsu, dn->digits, 1); |
| 7537 | dn->exponent--; /* (re)adjust the exponent. */ |
| 7538 | } |
| 7539 | |
| 7540 | /* if rounded to zero, it is by definition clamped... */ |
| 7541 | if (ISZERO(dn)) *status|=DEC_Clamped; |
| 7542 | } /* decSetSubnormal */ |
| 7543 | |
| 7544 | /* ------------------------------------------------------------------ */ |
| 7545 | /* decCheckMath - check entry conditions for a math function */ |
| 7546 | /* */ |
| 7547 | /* This checks the context and the operand */ |
| 7548 | /* */ |
| 7549 | /* rhs is the operand to check */ |
| 7550 | /* set is the context to check */ |
| 7551 | /* status is unchanged if both are good */ |
| 7552 | /* */ |
| 7553 | /* returns non-zero if status is changed, 0 otherwise */ |
| 7554 | /* */ |
| 7555 | /* Restrictions enforced: */ |
| 7556 | /* */ |
| 7557 | /* digits, emax, and -emin in the context must be less than */ |
| 7558 | /* DEC_MAX_MATH (999999), and A must be within these bounds if */ |
| 7559 | /* non-zero. Invalid_operation is set in the status if a */ |
| 7560 | /* restriction is violated. */ |
| 7561 | /* ------------------------------------------------------------------ */ |
| 7562 | static uInt decCheckMath(const decNumber *rhs, decContext *set, |
| 7563 | uInt *status) { |
| 7564 | uInt save=*status; /* record */ |
| 7565 | if (set->digits>DEC_MAX_MATH |
| 7566 | || set->emax>DEC_MAX_MATH |
| 7567 | || -set->emin>DEC_MAX_MATH) *status|=DEC_Invalid_context; |
| 7568 | else if ((rhs->digits>DEC_MAX_MATH |
| 7569 | || rhs->exponent+rhs->digits>DEC_MAX_MATH+1 |
| 7570 | || rhs->exponent+rhs->digits<2*(1-DEC_MAX_MATH)) |
| 7571 | && !ISZERO(rhs)) *status|=DEC_Invalid_operation; |
| 7572 | return (*status!=save); |
| 7573 | } /* decCheckMath */ |
| 7574 | |
| 7575 | /* ------------------------------------------------------------------ */ |
| 7576 | /* decGetInt -- get integer from a number */ |
| 7577 | /* */ |
| 7578 | /* dn is the number [which will not be altered] */ |
| 7579 | /* */ |
| 7580 | /* returns one of: */ |
| 7581 | /* BADINT if there is a non-zero fraction */ |
| 7582 | /* the converted integer */ |
| 7583 | /* BIGEVEN if the integer is even and magnitude > 2*10**9 */ |
| 7584 | /* BIGODD if the integer is odd and magnitude > 2*10**9 */ |
| 7585 | /* */ |
| 7586 | /* This checks and gets a whole number from the input decNumber. */ |
| 7587 | /* The sign can be determined from dn by the caller when BIGEVEN or */ |
| 7588 | /* BIGODD is returned. */ |
| 7589 | /* ------------------------------------------------------------------ */ |
| 7590 | static Int decGetInt(const decNumber *dn) { |
| 7591 | Int theInt; /* result accumulator */ |
| 7592 | const Unit *up; /* work */ |
| 7593 | Int got; /* digits (real or not) processed */ |
| 7594 | Int ilength=dn->digits+dn->exponent; /* integral length */ |
| 7595 | Flag neg=decNumberIsNegative(dn); /* 1 if -ve */ |
| 7596 | |
| 7597 | /* The number must be an integer that fits in 10 digits */ |
| 7598 | /* Assert, here, that 10 is enough for any rescale Etiny */ |
| 7599 | #if DEC_MAX_EMAX > 999999999 |
| 7600 | #error GetInt may need updating [for Emax] |
| 7601 | #endif |
| 7602 | #if DEC_MIN_EMIN < -999999999 |
| 7603 | #error GetInt may need updating [for Emin] |
| 7604 | #endif |
| 7605 | if (ISZERO(dn)) return 0; /* zeros are OK, with any exponent */ |
| 7606 | |
| 7607 | up=dn->lsu; /* ready for lsu */ |
| 7608 | theInt=0; /* ready to accumulate */ |
| 7609 | if (dn->exponent>=0) { /* relatively easy */ |
| 7610 | /* no fractional part [usual]; allow for positive exponent */ |
| 7611 | got=dn->exponent; |
| 7612 | } |
| 7613 | else { /* -ve exponent; some fractional part to check and discard */ |
| 7614 | Int count=-dn->exponent; /* digits to discard */ |
| 7615 | /* spin up whole units until reach the Unit with the unit digit */ |
| 7616 | for (; count>=DECDPUN; up++) { |
| 7617 | if (*up!=0) return BADINT; /* non-zero Unit to discard */ |
| 7618 | count-=DECDPUN; |
| 7619 | } |
| 7620 | if (count==0) got=0; /* [a multiple of DECDPUN] */ |
| 7621 | else { /* [not multiple of DECDPUN] */ |
| 7622 | Int rem; /* work */ |
| 7623 | /* slice off fraction digits and check for non-zero */ |
| 7624 | #if DECDPUN<=4 |
| 7625 | theInt=QUOT10(*up, count); |
| 7626 | rem=*up-theInt*powers[count]; |
| 7627 | #else |
| 7628 | rem=*up%powers[count]; /* slice off discards */ |
| 7629 | theInt=*up/powers[count]; |
| 7630 | #endif |
| 7631 | if (rem!=0) return BADINT; /* non-zero fraction */ |
| 7632 | /* it looks good */ |
| 7633 | got=DECDPUN-count; /* number of digits so far */ |
| 7634 | up++; /* ready for next */ |
| 7635 | } |
| 7636 | } |
| 7637 | /* now it's known there's no fractional part */ |
| 7638 | |
| 7639 | /* tricky code now, to accumulate up to 9.3 digits */ |
| 7640 | if (got==0) {theInt=*up; got+=DECDPUN; up++;} /* ensure lsu is there */ |
| 7641 | |
| 7642 | if (ilength<11) { |
| 7643 | Int save=theInt; |
| 7644 | /* collect any remaining unit(s) */ |
| 7645 | for (; got<ilength; up++) { |
| 7646 | theInt+=*up*powers[got]; |
| 7647 | got+=DECDPUN; |
| 7648 | } |
| 7649 | if (ilength==10) { /* need to check for wrap */ |
| 7650 | if (theInt/(Int)powers[got-DECDPUN]!=(Int)*(up-1)) ilength=11; |
| 7651 | /* [that test also disallows the BADINT result case] */ |
| 7652 | else if (neg && theInt>1999999997) ilength=11; |
| 7653 | else if (!neg && theInt>999999999) ilength=11; |
| 7654 | if (ilength==11) theInt=save; /* restore correct low bit */ |
| 7655 | } |
| 7656 | } |
| 7657 | |
| 7658 | if (ilength>10) { /* too big */ |
| 7659 | if (theInt&1) return BIGODD; /* bottom bit 1 */ |
| 7660 | return BIGEVEN; /* bottom bit 0 */ |
| 7661 | } |
| 7662 | |
| 7663 | if (neg) theInt=-theInt; /* apply sign */ |
| 7664 | return theInt; |
| 7665 | } /* decGetInt */ |
| 7666 | |
| 7667 | /* ------------------------------------------------------------------ */ |
| 7668 | /* decDecap -- decapitate the coefficient of a number */ |
| 7669 | /* */ |
| 7670 | /* dn is the number to be decapitated */ |
| 7671 | /* drop is the number of digits to be removed from the left of dn; */ |
| 7672 | /* this must be <= dn->digits (if equal, the coefficient is */ |
| 7673 | /* set to 0) */ |
| 7674 | /* */ |
| 7675 | /* Returns dn; dn->digits will be <= the initial digits less drop */ |
| 7676 | /* (after removing drop digits there may be leading zero digits */ |
| 7677 | /* which will also be removed). Only dn->lsu and dn->digits change. */ |
| 7678 | /* ------------------------------------------------------------------ */ |
| 7679 | static decNumber *decDecap(decNumber *dn, Int drop) { |
| 7680 | Unit *msu; /* -> target cut point */ |
| 7681 | Int cut; /* work */ |
| 7682 | if (drop>=dn->digits) { /* losing the whole thing */ |
| 7683 | #if DECCHECK |
| 7684 | if (drop>dn->digits) |
| 7685 | printf("decDecap called with drop>digits [%ld>%ld]\n", |
| 7686 | (LI)drop, (LI)dn->digits); |
| 7687 | #endif |
| 7688 | dn->lsu[0]=0; |
| 7689 | dn->digits=1; |
| 7690 | return dn; |
| 7691 | } |
| 7692 | msu=dn->lsu+D2U(dn->digits-drop)-1; /* -> likely msu */ |
| 7693 | cut=MSUDIGITS(dn->digits-drop); /* digits to be in use in msu */ |
| 7694 | if (cut!=DECDPUN) *msu%=powers[cut]; /* clear left digits */ |
| 7695 | /* that may have left leading zero digits, so do a proper count... */ |
| 7696 | dn->digits=decGetDigits(dn->lsu, msu-dn->lsu+1); |
| 7697 | return dn; |
| 7698 | } /* decDecap */ |
| 7699 | |
| 7700 | /* ------------------------------------------------------------------ */ |
| 7701 | /* decBiStr -- compare string with pairwise options */ |
| 7702 | /* */ |
| 7703 | /* targ is the string to compare */ |
| 7704 | /* str1 is one of the strings to compare against (length may be 0) */ |
| 7705 | /* str2 is the other; it must be the same length as str1 */ |
| 7706 | /* */ |
| 7707 | /* returns 1 if strings compare equal, (that is, it is the same */ |
| 7708 | /* length as str1 and str2, and each character of targ is in either */ |
| 7709 | /* str1 or str2 in the corresponding position), or 0 otherwise */ |
| 7710 | /* */ |
| 7711 | /* This is used for generic caseless compare, including the awkward */ |
| 7712 | /* case of the Turkish dotted and dotless Is. Use as (for example): */ |
| 7713 | /* if (decBiStr(test, "mike", "MIKE")) ... */ |
| 7714 | /* ------------------------------------------------------------------ */ |
| 7715 | static Flag decBiStr(const char *targ, const char *str1, const char *str2) { |
| 7716 | for (;;targ++, str1++, str2++) { |
| 7717 | if (*targ!=*str1 && *targ!=*str2) return 0; |
| 7718 | /* *targ has a match in one (or both, if terminator) */ |
| 7719 | if (*targ=='\0') break; |
| 7720 | } /* forever */ |
| 7721 | return 1; |
| 7722 | } /* decBiStr */ |
| 7723 | |
| 7724 | /* ------------------------------------------------------------------ */ |
| 7725 | /* decNaNs -- handle NaN operand or operands */ |
| 7726 | /* */ |
| 7727 | /* res is the result number */ |
| 7728 | /* lhs is the first operand */ |
| 7729 | /* rhs is the second operand, or NULL if none */ |
| 7730 | /* context is used to limit payload length */ |
| 7731 | /* status contains the current status */ |
| 7732 | /* returns res in case convenient */ |
| 7733 | /* */ |
| 7734 | /* Called when one or both operands is a NaN, and propagates the */ |
| 7735 | /* appropriate result to res. When an sNaN is found, it is changed */ |
| 7736 | /* to a qNaN and Invalid operation is set. */ |
| 7737 | /* ------------------------------------------------------------------ */ |
| 7738 | static decNumber * decNaNs(decNumber *res, const decNumber *lhs, |
| 7739 | const decNumber *rhs, decContext *set, |
| 7740 | uInt *status) { |
| 7741 | /* This decision tree ends up with LHS being the source pointer, */ |
| 7742 | /* and status updated if need be */ |
| 7743 | if (lhs->bits & DECSNAN) |
| 7744 | *status|=DEC_Invalid_operation | DEC_sNaN; |
| 7745 | else if (rhs==NULL); |
| 7746 | else if (rhs->bits & DECSNAN) { |
| 7747 | lhs=rhs; |
| 7748 | *status|=DEC_Invalid_operation | DEC_sNaN; |
| 7749 | } |
| 7750 | else if (lhs->bits & DECNAN); |
| 7751 | else lhs=rhs; |
| 7752 | |
| 7753 | /* propagate the payload */ |
| 7754 | if (lhs->digits<=set->digits) decNumberCopy(res, lhs); /* easy */ |
| 7755 | else { /* too long */ |
| 7756 | const Unit *ul; |
| 7757 | Unit *ur, *uresp1; |
| 7758 | /* copy safe number of units, then decapitate */ |
| 7759 | res->bits=lhs->bits; /* need sign etc. */ |
| 7760 | uresp1=res->lsu+D2U(set->digits); |
| 7761 | for (ur=res->lsu, ul=lhs->lsu; ur<uresp1; ur++, ul++) *ur=*ul; |
| 7762 | res->digits=D2U(set->digits)*DECDPUN; |
| 7763 | /* maybe still too long */ |
| 7764 | if (res->digits>set->digits) decDecap(res, res->digits-set->digits); |
| 7765 | } |
| 7766 | |
| 7767 | res->bits&=~DECSNAN; /* convert any sNaN to NaN, while */ |
| 7768 | res->bits|=DECNAN; /* .. preserving sign */ |
| 7769 | res->exponent=0; /* clean exponent */ |
| 7770 | /* [coefficient was copied/decapitated] */ |
| 7771 | return res; |
| 7772 | } /* decNaNs */ |
| 7773 | |
| 7774 | /* ------------------------------------------------------------------ */ |
| 7775 | /* decStatus -- apply non-zero status */ |
| 7776 | /* */ |
| 7777 | /* dn is the number to set if error */ |
| 7778 | /* status contains the current status (not yet in context) */ |
| 7779 | /* set is the context */ |
| 7780 | /* */ |
| 7781 | /* If the status is an error status, the number is set to a NaN, */ |
| 7782 | /* unless the error was an overflow, divide-by-zero, or underflow, */ |
| 7783 | /* in which case the number will have already been set. */ |
| 7784 | /* */ |
| 7785 | /* The context status is then updated with the new status. Note that */ |
| 7786 | /* this may raise a signal, so control may never return from this */ |
| 7787 | /* routine (hence resources must be recovered before it is called). */ |
| 7788 | /* ------------------------------------------------------------------ */ |
| 7789 | static void decStatus(decNumber *dn, uInt status, decContext *set) { |
| 7790 | if (status & DEC_NaNs) { /* error status -> NaN */ |
| 7791 | /* if cause was an sNaN, clear and propagate [NaN is already set up] */ |
| 7792 | if (status & DEC_sNaN) status&=~DEC_sNaN; |
| 7793 | else { |
| 7794 | decNumberZero(dn); /* other error: clean throughout */ |
| 7795 | dn->bits=DECNAN; /* and make a quiet NaN */ |
| 7796 | } |
| 7797 | } |
| 7798 | decContextSetStatus(set, status); /* [may not return] */ |
| 7799 | return; |
| 7800 | } /* decStatus */ |
| 7801 | |
| 7802 | /* ------------------------------------------------------------------ */ |
| 7803 | /* decGetDigits -- count digits in a Units array */ |
| 7804 | /* */ |
| 7805 | /* uar is the Unit array holding the number (this is often an */ |
| 7806 | /* accumulator of some sort) */ |
| 7807 | /* len is the length of the array in units [>=1] */ |
| 7808 | /* */ |
| 7809 | /* returns the number of (significant) digits in the array */ |
| 7810 | /* */ |
| 7811 | /* All leading zeros are excluded, except the last if the array has */ |
| 7812 | /* only zero Units. */ |
| 7813 | /* ------------------------------------------------------------------ */ |
| 7814 | /* This may be called twice during some operations. */ |
| 7815 | static Int decGetDigits(Unit *uar, Int len) { |
| 7816 | Unit *up=uar+(len-1); /* -> msu */ |
| 7817 | Int digits=(len-1)*DECDPUN+1; /* possible digits excluding msu */ |
| 7818 | #if DECDPUN>4 |
| 7819 | uInt const *pow; /* work */ |
| 7820 | #endif |
| 7821 | /* (at least 1 in final msu) */ |
| 7822 | #if DECCHECK |
| 7823 | if (len<1) printf("decGetDigits called with len<1 [%ld]\n", (LI)len); |
| 7824 | #endif |
| 7825 | |
| 7826 | for (; up>=uar; up--) { |
| 7827 | if (*up==0) { /* unit is all 0s */ |
| 7828 | if (digits==1) break; /* a zero has one digit */ |
| 7829 | digits-=DECDPUN; /* adjust for 0 unit */ |
| 7830 | continue;} |
| 7831 | /* found the first (most significant) non-zero Unit */ |
| 7832 | #if DECDPUN>1 /* not done yet */ |
| 7833 | if (*up<10) break; /* is 1-9 */ |
| 7834 | digits++; |
| 7835 | #if DECDPUN>2 /* not done yet */ |
| 7836 | if (*up<100) break; /* is 10-99 */ |
| 7837 | digits++; |
| 7838 | #if DECDPUN>3 /* not done yet */ |
| 7839 | if (*up<1000) break; /* is 100-999 */ |
| 7840 | digits++; |
| 7841 | #if DECDPUN>4 /* count the rest ... */ |
| 7842 | for (pow=&powers[4]; *up>=*pow; pow++) digits++; |
| 7843 | #endif |
| 7844 | #endif |
| 7845 | #endif |
| 7846 | #endif |
| 7847 | break; |
| 7848 | } /* up */ |
| 7849 | return digits; |
| 7850 | } /* decGetDigits */ |
| 7851 | |
| 7852 | #if DECTRACE | DECCHECK |
| 7853 | /* ------------------------------------------------------------------ */ |
| 7854 | /* decNumberShow -- display a number [debug aid] */ |
| 7855 | /* dn is the number to show */ |
| 7856 | /* */ |
| 7857 | /* Shows: sign, exponent, coefficient (msu first), digits */ |
| 7858 | /* or: sign, special-value */ |
| 7859 | /* ------------------------------------------------------------------ */ |
| 7860 | /* this is public so other modules can use it */ |
| 7861 | void decNumberShow(const decNumber *dn) { |
| 7862 | const Unit *up; /* work */ |
| 7863 | uInt u, d; /* .. */ |
| 7864 | Int cut; /* .. */ |
| 7865 | char isign='+'; /* main sign */ |
| 7866 | if (dn==NULL) { |
| 7867 | printf("NULL\n"); |
| 7868 | return;} |
| 7869 | if (decNumberIsNegative(dn)) isign='-'; |
| 7870 | printf(" >> %c ", isign); |
| 7871 | if (dn->bits&DECSPECIAL) { /* Is a special value */ |
| 7872 | if (decNumberIsInfinite(dn)) printf("Infinity"); |
| 7873 | else { /* a NaN */ |
| 7874 | if (dn->bits&DECSNAN) printf("sNaN"); /* signalling NaN */ |
| 7875 | else printf("NaN"); |
| 7876 | } |
| 7877 | /* if coefficient and exponent are 0, no more to do */ |
| 7878 | if (dn->exponent==0 && dn->digits==1 && *dn->lsu==0) { |
| 7879 | printf("\n"); |
| 7880 | return;} |
| 7881 | /* drop through to report other information */ |
| 7882 | printf(" "); |
| 7883 | } |
| 7884 | |
| 7885 | /* now carefully display the coefficient */ |
| 7886 | up=dn->lsu+D2U(dn->digits)-1; /* msu */ |
| 7887 | printf("%ld", (LI)*up); |
| 7888 | for (up=up-1; up>=dn->lsu; up--) { |
| 7889 | u=*up; |
| 7890 | printf(":"); |
| 7891 | for (cut=DECDPUN-1; cut>=0; cut--) { |
| 7892 | d=u/powers[cut]; |
| 7893 | u-=d*powers[cut]; |
| 7894 | printf("%ld", (LI)d); |
| 7895 | } /* cut */ |
| 7896 | } /* up */ |
| 7897 | if (dn->exponent!=0) { |
| 7898 | char esign='+'; |
| 7899 | if (dn->exponent<0) esign='-'; |
| 7900 | printf(" E%c%ld", esign, (LI)abs(dn->exponent)); |
| 7901 | } |
| 7902 | printf(" [%ld]\n", (LI)dn->digits); |
| 7903 | } /* decNumberShow */ |
| 7904 | #endif |
| 7905 | |
| 7906 | #if DECTRACE || DECCHECK |
| 7907 | /* ------------------------------------------------------------------ */ |
| 7908 | /* decDumpAr -- display a unit array [debug/check aid] */ |
| 7909 | /* name is a single-character tag name */ |
| 7910 | /* ar is the array to display */ |
| 7911 | /* len is the length of the array in Units */ |
| 7912 | /* ------------------------------------------------------------------ */ |
| 7913 | static void decDumpAr(char name, const Unit *ar, Int len) { |
| 7914 | Int i; |
| 7915 | const char *spec; |
| 7916 | #if DECDPUN==9 |
| 7917 | spec="%09d "; |
| 7918 | #elif DECDPUN==8 |
| 7919 | spec="%08d "; |
| 7920 | #elif DECDPUN==7 |
| 7921 | spec="%07d "; |
| 7922 | #elif DECDPUN==6 |
| 7923 | spec="%06d "; |
| 7924 | #elif DECDPUN==5 |
| 7925 | spec="%05d "; |
| 7926 | #elif DECDPUN==4 |
| 7927 | spec="%04d "; |
| 7928 | #elif DECDPUN==3 |
| 7929 | spec="%03d "; |
| 7930 | #elif DECDPUN==2 |
| 7931 | spec="%02d "; |
| 7932 | #else |
| 7933 | spec="%d "; |
| 7934 | #endif |
| 7935 | printf(" :%c: ", name); |
| 7936 | for (i=len-1; i>=0; i--) { |
| 7937 | if (i==len-1) printf("%ld ", (LI)ar[i]); |
| 7938 | else printf(spec, ar[i]); |
| 7939 | } |
| 7940 | printf("\n"); |
| 7941 | return;} |
| 7942 | #endif |
| 7943 | |
| 7944 | #if DECCHECK |
| 7945 | /* ------------------------------------------------------------------ */ |
| 7946 | /* decCheckOperands -- check operand(s) to a routine */ |
| 7947 | /* res is the result structure (not checked; it will be set to */ |
| 7948 | /* quiet NaN if error found (and it is not NULL)) */ |
| 7949 | /* lhs is the first operand (may be DECUNRESU) */ |
| 7950 | /* rhs is the second (may be DECUNUSED) */ |
| 7951 | /* set is the context (may be DECUNCONT) */ |
| 7952 | /* returns 0 if both operands, and the context are clean, or 1 */ |
| 7953 | /* otherwise (in which case the context will show an error, */ |
| 7954 | /* unless NULL). Note that res is not cleaned; caller should */ |
| 7955 | /* handle this so res=NULL case is safe. */ |
| 7956 | /* The caller is expected to abandon immediately if 1 is returned. */ |
| 7957 | /* ------------------------------------------------------------------ */ |
| 7958 | static Flag decCheckOperands(decNumber *res, const decNumber *lhs, |
| 7959 | const decNumber *rhs, decContext *set) { |
| 7960 | Flag bad=0; |
| 7961 | if (set==NULL) { /* oops; hopeless */ |
| 7962 | #if DECTRACE || DECVERB |
| 7963 | printf("Reference to context is NULL.\n"); |
| 7964 | #endif |
| 7965 | bad=1; |
| 7966 | return 1;} |
| 7967 | else if (set!=DECUNCONT |
| 7968 | && (set->digits<1 || set->round>=DEC_ROUND_MAX)) { |
| 7969 | bad=1; |
| 7970 | #if DECTRACE || DECVERB |
| 7971 | printf("Bad context [digits=%ld round=%ld].\n", |
| 7972 | (LI)set->digits, (LI)set->round); |
| 7973 | #endif |
| 7974 | } |
| 7975 | else { |
| 7976 | if (res==NULL) { |
| 7977 | bad=1; |
| 7978 | #if DECTRACE |
| 7979 | /* this one not DECVERB as standard tests include NULL */ |
| 7980 | printf("Reference to result is NULL.\n"); |
| 7981 | #endif |
| 7982 | } |
| 7983 | if (!bad && lhs!=DECUNUSED) bad=(decCheckNumber(lhs)); |
| 7984 | if (!bad && rhs!=DECUNUSED) bad=(decCheckNumber(rhs)); |
| 7985 | } |
| 7986 | if (bad) { |
| 7987 | if (set!=DECUNCONT) decContextSetStatus(set, DEC_Invalid_operation); |
| 7988 | if (res!=DECUNRESU && res!=NULL) { |
| 7989 | decNumberZero(res); |
| 7990 | res->bits=DECNAN; /* qNaN */ |
| 7991 | } |
| 7992 | } |
| 7993 | return bad; |
| 7994 | } /* decCheckOperands */ |
| 7995 | |
| 7996 | /* ------------------------------------------------------------------ */ |
| 7997 | /* decCheckNumber -- check a number */ |
| 7998 | /* dn is the number to check */ |
| 7999 | /* returns 0 if the number is clean, or 1 otherwise */ |
| 8000 | /* */ |
| 8001 | /* The number is considered valid if it could be a result from some */ |
| 8002 | /* operation in some valid context. */ |
| 8003 | /* ------------------------------------------------------------------ */ |
| 8004 | static Flag decCheckNumber(const decNumber *dn) { |
| 8005 | const Unit *up; /* work */ |
| 8006 | uInt maxuint; /* .. */ |
| 8007 | Int ae, d, digits; /* .. */ |
| 8008 | Int emin, emax; /* .. */ |
| 8009 | |
| 8010 | if (dn==NULL) { /* hopeless */ |
| 8011 | #if DECTRACE |
| 8012 | /* this one not DECVERB as standard tests include NULL */ |
| 8013 | printf("Reference to decNumber is NULL.\n"); |
| 8014 | #endif |
| 8015 | return 1;} |
| 8016 | |
| 8017 | /* check special values */ |
| 8018 | if (dn->bits & DECSPECIAL) { |
| 8019 | if (dn->exponent!=0) { |
| 8020 | #if DECTRACE || DECVERB |
| 8021 | printf("Exponent %ld (not 0) for a special value [%02x].\n", |
| 8022 | (LI)dn->exponent, dn->bits); |
| 8023 | #endif |
| 8024 | return 1;} |
| 8025 | |
| 8026 | /* 2003.09.08: NaNs may now have coefficients, so next tests Inf only */ |
| 8027 | if (decNumberIsInfinite(dn)) { |
| 8028 | if (dn->digits!=1) { |
| 8029 | #if DECTRACE || DECVERB |
| 8030 | printf("Digits %ld (not 1) for an infinity.\n", (LI)dn->digits); |
| 8031 | #endif |
| 8032 | return 1;} |
| 8033 | if (*dn->lsu!=0) { |
| 8034 | #if DECTRACE || DECVERB |
| 8035 | printf("LSU %ld (not 0) for an infinity.\n", (LI)*dn->lsu); |
| 8036 | #endif |
| 8037 | decDumpAr('I', dn->lsu, D2U(dn->digits)); |
| 8038 | return 1;} |
| 8039 | } /* Inf */ |
| 8040 | /* 2002.12.26: negative NaNs can now appear through proposed IEEE */ |
| 8041 | /* concrete formats (decimal64, etc.). */ |
| 8042 | return 0; |
| 8043 | } |
| 8044 | |
| 8045 | /* check the coefficient */ |
| 8046 | if (dn->digits<1 || dn->digits>DECNUMMAXP) { |
| 8047 | #if DECTRACE || DECVERB |
| 8048 | printf("Digits %ld in number.\n", (LI)dn->digits); |
| 8049 | #endif |
| 8050 | return 1;} |
| 8051 | |
| 8052 | d=dn->digits; |
| 8053 | |
| 8054 | for (up=dn->lsu; d>0; up++) { |
| 8055 | if (d>DECDPUN) maxuint=DECDPUNMAX; |
| 8056 | else { /* reached the msu */ |
| 8057 | maxuint=powers[d]-1; |
| 8058 | if (dn->digits>1 && *up<powers[d-1]) { |
| 8059 | #if DECTRACE || DECVERB |
| 8060 | printf("Leading 0 in number.\n"); |
| 8061 | decNumberShow(dn); |
| 8062 | #endif |
| 8063 | return 1;} |
| 8064 | } |
| 8065 | if (*up>maxuint) { |
| 8066 | #if DECTRACE || DECVERB |
| 8067 | printf("Bad Unit [%08lx] in %ld-digit number at offset %ld [maxuint %ld].\n", |
| 8068 | (LI)*up, (LI)dn->digits, (LI)(up-dn->lsu), (LI)maxuint); |
| 8069 | #endif |
| 8070 | return 1;} |
| 8071 | d-=DECDPUN; |
| 8072 | } |
| 8073 | |
| 8074 | /* check the exponent. Note that input operands can have exponents */ |
| 8075 | /* which are out of the set->emin/set->emax and set->digits range */ |
| 8076 | /* (just as they can have more digits than set->digits). */ |
| 8077 | ae=dn->exponent+dn->digits-1; /* adjusted exponent */ |
| 8078 | emax=DECNUMMAXE; |
| 8079 | emin=DECNUMMINE; |
| 8080 | digits=DECNUMMAXP; |
| 8081 | if (ae<emin-(digits-1)) { |
| 8082 | #if DECTRACE || DECVERB |
| 8083 | printf("Adjusted exponent underflow [%ld].\n", (LI)ae); |
| 8084 | decNumberShow(dn); |
| 8085 | #endif |
| 8086 | return 1;} |
| 8087 | if (ae>+emax) { |
| 8088 | #if DECTRACE || DECVERB |
| 8089 | printf("Adjusted exponent overflow [%ld].\n", (LI)ae); |
| 8090 | decNumberShow(dn); |
| 8091 | #endif |
| 8092 | return 1;} |
| 8093 | |
| 8094 | return 0; /* it's OK */ |
| 8095 | } /* decCheckNumber */ |
| 8096 | |
| 8097 | /* ------------------------------------------------------------------ */ |
| 8098 | /* decCheckInexact -- check a normal finite inexact result has digits */ |
| 8099 | /* dn is the number to check */ |
| 8100 | /* set is the context (for status and precision) */ |
| 8101 | /* sets Invalid operation, etc., if some digits are missing */ |
| 8102 | /* [this check is not made for DECSUBSET compilation or when */ |
| 8103 | /* subnormal is not set] */ |
| 8104 | /* ------------------------------------------------------------------ */ |
| 8105 | static void decCheckInexact(const decNumber *dn, decContext *set) { |
| 8106 | #if !DECSUBSET && DECEXTFLAG |
| 8107 | if ((set->status & (DEC_Inexact|DEC_Subnormal))==DEC_Inexact |
| 8108 | && (set->digits!=dn->digits) && !(dn->bits & DECSPECIAL)) { |
| 8109 | #if DECTRACE || DECVERB |
| 8110 | printf("Insufficient digits [%ld] on normal Inexact result.\n", |
| 8111 | (LI)dn->digits); |
| 8112 | decNumberShow(dn); |
| 8113 | #endif |
| 8114 | decContextSetStatus(set, DEC_Invalid_operation); |
| 8115 | } |
| 8116 | #else |
| 8117 | /* next is a noop for quiet compiler */ |
| 8118 | if (dn!=NULL && dn->digits==0) set->status|=DEC_Invalid_operation; |
| 8119 | #endif |
| 8120 | return; |
| 8121 | } /* decCheckInexact */ |
| 8122 | #endif |
| 8123 | |
| 8124 | #if DECALLOC |
| 8125 | #undef malloc |
| 8126 | #undef free |
| 8127 | /* ------------------------------------------------------------------ */ |
| 8128 | /* decMalloc -- accountable allocation routine */ |
| 8129 | /* n is the number of bytes to allocate */ |
| 8130 | /* */ |
| 8131 | /* Semantics is the same as the stdlib malloc routine, but bytes */ |
| 8132 | /* allocated are accounted for globally, and corruption fences are */ |
| 8133 | /* added before and after the 'actual' storage. */ |
| 8134 | /* ------------------------------------------------------------------ */ |
| 8135 | /* This routine allocates storage with an extra twelve bytes; 8 are */ |
| 8136 | /* at the start and hold: */ |
| 8137 | /* 0-3 the original length requested */ |
| 8138 | /* 4-7 buffer corruption detection fence (DECFENCE, x4) */ |
| 8139 | /* The 4 bytes at the end also hold a corruption fence (DECFENCE, x4) */ |
| 8140 | /* ------------------------------------------------------------------ */ |
| 8141 | static void *decMalloc(size_t n) { |
| 8142 | uInt size=n+12; /* true size */ |
| 8143 | void *alloc; /* -> allocated storage */ |
| 8144 | uInt *j; /* work */ |
| 8145 | uByte *b, *b0; /* .. */ |
| 8146 | |
| 8147 | alloc=malloc(size); /* -> allocated storage */ |
| 8148 | if (alloc==NULL) return NULL; /* out of strorage */ |
| 8149 | b0=(uByte *)alloc; /* as bytes */ |
| 8150 | decAllocBytes+=n; /* account for storage */ |
| 8151 | j=(uInt *)alloc; /* -> first four bytes */ |
| 8152 | *j=n; /* save n */ |
| 8153 | /* printf(" alloc ++ dAB: %ld (%d)\n", decAllocBytes, n); */ |
| 8154 | for (b=b0+4; b<b0+8; b++) *b=DECFENCE; |
| 8155 | for (b=b0+n+8; b<b0+n+12; b++) *b=DECFENCE; |
| 8156 | return b0+8; /* -> play area */ |
| 8157 | } /* decMalloc */ |
| 8158 | |
| 8159 | /* ------------------------------------------------------------------ */ |
| 8160 | /* decFree -- accountable free routine */ |
| 8161 | /* alloc is the storage to free */ |
| 8162 | /* */ |
| 8163 | /* Semantics is the same as the stdlib malloc routine, except that */ |
| 8164 | /* the global storage accounting is updated and the fences are */ |
| 8165 | /* checked to ensure that no routine has written 'out of bounds'. */ |
| 8166 | /* ------------------------------------------------------------------ */ |
| 8167 | /* This routine first checks that the fences have not been corrupted. */ |
| 8168 | /* It then frees the storage using the 'truw' storage address (that */ |
| 8169 | /* is, offset by 8). */ |
| 8170 | /* ------------------------------------------------------------------ */ |
| 8171 | static void decFree(void *alloc) { |
| 8172 | uInt *j, n; /* pointer, original length */ |
| 8173 | uByte *b, *b0; /* work */ |
| 8174 | |
| 8175 | if (alloc==NULL) return; /* allowed; it's a nop */ |
| 8176 | b0=(uByte *)alloc; /* as bytes */ |
| 8177 | b0-=8; /* -> true start of storage */ |
| 8178 | j=(uInt *)b0; /* -> first four bytes */ |
| 8179 | n=*j; /* lift */ |
| 8180 | for (b=b0+4; b<b0+8; b++) if (*b!=DECFENCE) |
| 8181 | printf("=== Corrupt byte [%02x] at offset %d from %ld ===\n", *b, |
| 8182 | b-b0-8, (Int)b0); |
| 8183 | for (b=b0+n+8; b<b0+n+12; b++) if (*b!=DECFENCE) |
| 8184 | printf("=== Corrupt byte [%02x] at offset +%d from %ld, n=%ld ===\n", *b, |
| 8185 | b-b0-8, (Int)b0, n); |
| 8186 | free(b0); /* drop the storage */ |
| 8187 | decAllocBytes-=n; /* account for storage */ |
| 8188 | /* printf(" free -- dAB: %d (%d)\n", decAllocBytes, -n); */ |
| 8189 | } /* decFree */ |
| 8190 | #define malloc(a) decMalloc(a) |
| 8191 | #define free(a) decFree(a) |
| 8192 | #endif |