Alexander Bulekov | da9bf53 | 2020-10-23 11:07:31 -0400 | [diff] [blame] | 1 | /* |
| 2 | * Generic Virtual-Device Fuzzing Target |
| 3 | * |
| 4 | * Copyright Red Hat Inc., 2020 |
| 5 | * |
| 6 | * Authors: |
| 7 | * Alexander Bulekov <alxndr@bu.edu> |
| 8 | * |
| 9 | * This work is licensed under the terms of the GNU GPL, version 2 or later. |
| 10 | * See the COPYING file in the top-level directory. |
| 11 | */ |
| 12 | |
| 13 | #include "qemu/osdep.h" |
| 14 | |
| 15 | #include <wordexp.h> |
| 16 | |
| 17 | #include "hw/core/cpu.h" |
Marc-André Lureau | 907b510 | 2022-03-30 13:39:05 +0400 | [diff] [blame] | 18 | #include "tests/qtest/libqtest.h" |
Alexander Bulekov | b677001 | 2020-12-21 13:12:03 -0500 | [diff] [blame] | 19 | #include "tests/qtest/libqos/pci-pc.h" |
Alexander Bulekov | da9bf53 | 2020-10-23 11:07:31 -0400 | [diff] [blame] | 20 | #include "fuzz.h" |
Alexander Bulekov | da9bf53 | 2020-10-23 11:07:31 -0400 | [diff] [blame] | 21 | #include "string.h" |
| 22 | #include "exec/memory.h" |
| 23 | #include "exec/ramblock.h" |
Alexander Bulekov | da9bf53 | 2020-10-23 11:07:31 -0400 | [diff] [blame] | 24 | #include "hw/qdev-core.h" |
Alexander Bulekov | 05efbf2 | 2020-10-23 11:07:32 -0400 | [diff] [blame] | 25 | #include "hw/pci/pci.h" |
Markus Armbruster | edf5ca5 | 2022-12-22 11:03:28 +0100 | [diff] [blame] | 26 | #include "hw/pci/pci_device.h" |
Alexander Bulekov | 20f5a30 | 2020-10-23 11:07:33 -0400 | [diff] [blame] | 27 | #include "hw/boards.h" |
Alexander Bulekov | 7fdb505 | 2020-10-23 11:07:44 -0400 | [diff] [blame] | 28 | #include "generic_fuzz_configs.h" |
Alexander Bulekov | 25d309f | 2021-03-15 10:05:11 -0400 | [diff] [blame] | 29 | #include "hw/mem/sparse-mem.h" |
Alexander Bulekov | da9bf53 | 2020-10-23 11:07:31 -0400 | [diff] [blame] | 30 | |
Alexander Bulekov | 1375104 | 2023-02-04 23:29:44 -0500 | [diff] [blame] | 31 | static void pci_enum(gpointer pcidev, gpointer bus); |
| 32 | |
Alexander Bulekov | da9bf53 | 2020-10-23 11:07:31 -0400 | [diff] [blame] | 33 | /* |
| 34 | * SEPARATOR is used to separate "operations" in the fuzz input |
| 35 | */ |
| 36 | #define SEPARATOR "FUZZ" |
| 37 | |
| 38 | enum cmds { |
| 39 | OP_IN, |
| 40 | OP_OUT, |
| 41 | OP_READ, |
| 42 | OP_WRITE, |
Alexander Bulekov | 05efbf2 | 2020-10-23 11:07:32 -0400 | [diff] [blame] | 43 | OP_PCI_READ, |
| 44 | OP_PCI_WRITE, |
Alexander Bulekov | ccbd4bc | 2020-10-23 11:07:37 -0400 | [diff] [blame] | 45 | OP_DISABLE_PCI, |
Alexander Bulekov | 20f5a30 | 2020-10-23 11:07:33 -0400 | [diff] [blame] | 46 | OP_ADD_DMA_PATTERN, |
| 47 | OP_CLEAR_DMA_PATTERNS, |
Alexander Bulekov | da9bf53 | 2020-10-23 11:07:31 -0400 | [diff] [blame] | 48 | OP_CLOCK_STEP, |
| 49 | }; |
| 50 | |
Alexander Bulekov | da9bf53 | 2020-10-23 11:07:31 -0400 | [diff] [blame] | 51 | #define USEC_IN_SEC 1000000000 |
| 52 | |
Alexander Bulekov | 20f5a30 | 2020-10-23 11:07:33 -0400 | [diff] [blame] | 53 | #define MAX_DMA_FILL_SIZE 0x10000 |
Alexander Bulekov | b8b5217 | 2023-02-04 23:29:45 -0500 | [diff] [blame] | 54 | #define MAX_TOTAL_DMA_SIZE 0x10000000 |
Alexander Bulekov | 20f5a30 | 2020-10-23 11:07:33 -0400 | [diff] [blame] | 55 | |
Alexander Bulekov | 05efbf2 | 2020-10-23 11:07:32 -0400 | [diff] [blame] | 56 | #define PCI_HOST_BRIDGE_CFG 0xcf8 |
| 57 | #define PCI_HOST_BRIDGE_DATA 0xcfc |
| 58 | |
Alexander Bulekov | da9bf53 | 2020-10-23 11:07:31 -0400 | [diff] [blame] | 59 | typedef struct { |
| 60 | ram_addr_t addr; |
| 61 | ram_addr_t size; /* The number of bytes until the end of the I/O region */ |
| 62 | } address_range; |
| 63 | |
Alexander Bulekov | da9bf53 | 2020-10-23 11:07:31 -0400 | [diff] [blame] | 64 | static bool qtest_log_enabled; |
Alexander Bulekov | b8b5217 | 2023-02-04 23:29:45 -0500 | [diff] [blame] | 65 | size_t dma_bytes_written; |
Alexander Bulekov | da9bf53 | 2020-10-23 11:07:31 -0400 | [diff] [blame] | 66 | |
Alexander Bulekov | 25d309f | 2021-03-15 10:05:11 -0400 | [diff] [blame] | 67 | MemoryRegion *sparse_mem_mr; |
| 68 | |
Alexander Bulekov | da9bf53 | 2020-10-23 11:07:31 -0400 | [diff] [blame] | 69 | /* |
Alexander Bulekov | 20f5a30 | 2020-10-23 11:07:33 -0400 | [diff] [blame] | 70 | * A pattern used to populate a DMA region or perform a memwrite. This is |
| 71 | * useful for e.g. populating tables of unique addresses. |
| 72 | * Example {.index = 1; .stride = 2; .len = 3; .data = "\x00\x01\x02"} |
| 73 | * Renders as: 00 01 02 00 03 02 00 05 02 00 07 02 ... |
| 74 | */ |
| 75 | typedef struct { |
| 76 | uint8_t index; /* Index of a byte to increment by stride */ |
| 77 | uint8_t stride; /* Increment each index'th byte by this amount */ |
| 78 | size_t len; |
| 79 | const uint8_t *data; |
| 80 | } pattern; |
| 81 | |
| 82 | /* Avoid filling the same DMA region between MMIO/PIO commands ? */ |
| 83 | static bool avoid_double_fetches; |
| 84 | |
| 85 | static QTestState *qts_global; /* Need a global for the DMA callback */ |
| 86 | |
| 87 | /* |
Alexander Bulekov | da9bf53 | 2020-10-23 11:07:31 -0400 | [diff] [blame] | 88 | * List of memory regions that are children of QOM objects specified by the |
| 89 | * user for fuzzing. |
| 90 | */ |
| 91 | static GHashTable *fuzzable_memoryregions; |
Alexander Bulekov | 05efbf2 | 2020-10-23 11:07:32 -0400 | [diff] [blame] | 92 | static GPtrArray *fuzzable_pci_devices; |
Alexander Bulekov | da9bf53 | 2020-10-23 11:07:31 -0400 | [diff] [blame] | 93 | |
| 94 | struct get_io_cb_info { |
| 95 | int index; |
| 96 | int found; |
| 97 | address_range result; |
| 98 | }; |
| 99 | |
Peter Maydell | d1e8cf7 | 2021-03-18 17:48:19 +0000 | [diff] [blame] | 100 | static bool get_io_address_cb(Int128 start, Int128 size, |
Peter Maydell | b356600 | 2021-03-18 17:48:21 +0000 | [diff] [blame] | 101 | const MemoryRegion *mr, |
| 102 | hwaddr offset_in_region, |
| 103 | void *opaque) |
| 104 | { |
Alexander Bulekov | da9bf53 | 2020-10-23 11:07:31 -0400 | [diff] [blame] | 105 | struct get_io_cb_info *info = opaque; |
| 106 | if (g_hash_table_lookup(fuzzable_memoryregions, mr)) { |
| 107 | if (info->index == 0) { |
| 108 | info->result.addr = (ram_addr_t)start; |
| 109 | info->result.size = (ram_addr_t)size; |
| 110 | info->found = 1; |
Peter Maydell | d1e8cf7 | 2021-03-18 17:48:19 +0000 | [diff] [blame] | 111 | return true; |
Alexander Bulekov | da9bf53 | 2020-10-23 11:07:31 -0400 | [diff] [blame] | 112 | } |
| 113 | info->index--; |
| 114 | } |
Peter Maydell | d1e8cf7 | 2021-03-18 17:48:19 +0000 | [diff] [blame] | 115 | return false; |
Alexander Bulekov | da9bf53 | 2020-10-23 11:07:31 -0400 | [diff] [blame] | 116 | } |
| 117 | |
| 118 | /* |
Alexander Bulekov | 20f5a30 | 2020-10-23 11:07:33 -0400 | [diff] [blame] | 119 | * List of dma regions populated since the last fuzzing command. Used to ensure |
| 120 | * that we only write to each DMA address once, to avoid race conditions when |
| 121 | * building reproducers. |
| 122 | */ |
| 123 | static GArray *dma_regions; |
| 124 | |
| 125 | static GArray *dma_patterns; |
| 126 | static int dma_pattern_index; |
Alexander Bulekov | ccbd4bc | 2020-10-23 11:07:37 -0400 | [diff] [blame] | 127 | static bool pci_disabled; |
Alexander Bulekov | 20f5a30 | 2020-10-23 11:07:33 -0400 | [diff] [blame] | 128 | |
| 129 | /* |
| 130 | * Allocate a block of memory and populate it with a pattern. |
| 131 | */ |
| 132 | static void *pattern_alloc(pattern p, size_t len) |
| 133 | { |
| 134 | int i; |
| 135 | uint8_t *buf = g_malloc(len); |
| 136 | uint8_t sum = 0; |
| 137 | |
| 138 | for (i = 0; i < len; ++i) { |
| 139 | buf[i] = p.data[i % p.len]; |
| 140 | if ((i % p.len) == p.index) { |
| 141 | buf[i] += sum; |
| 142 | sum += p.stride; |
| 143 | } |
| 144 | } |
| 145 | return buf; |
| 146 | } |
| 147 | |
Jagannathan Raman | 3123f93 | 2022-06-13 16:26:32 -0400 | [diff] [blame] | 148 | static int fuzz_memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr) |
Alexander Bulekov | 20f5a30 | 2020-10-23 11:07:33 -0400 | [diff] [blame] | 149 | { |
| 150 | unsigned access_size_max = mr->ops->valid.max_access_size; |
| 151 | |
| 152 | /* |
| 153 | * Regions are assumed to support 1-4 byte accesses unless |
| 154 | * otherwise specified. |
| 155 | */ |
| 156 | if (access_size_max == 0) { |
| 157 | access_size_max = 4; |
| 158 | } |
| 159 | |
| 160 | /* Bound the maximum access by the alignment of the address. */ |
| 161 | if (!mr->ops->impl.unaligned) { |
| 162 | unsigned align_size_max = addr & -addr; |
| 163 | if (align_size_max != 0 && align_size_max < access_size_max) { |
| 164 | access_size_max = align_size_max; |
| 165 | } |
| 166 | } |
| 167 | |
| 168 | /* Don't attempt accesses larger than the maximum. */ |
| 169 | if (l > access_size_max) { |
| 170 | l = access_size_max; |
| 171 | } |
| 172 | l = pow2floor(l); |
| 173 | |
| 174 | return l; |
| 175 | } |
| 176 | |
| 177 | /* |
| 178 | * Call-back for functions that perform DMA reads from guest memory. Confirm |
| 179 | * that the region has not already been populated since the last loop in |
| 180 | * generic_fuzz(), avoiding potential race-conditions, which we don't have |
| 181 | * a good way for reproducing right now. |
| 182 | */ |
Alexander Bulekov | fc1c834 | 2021-01-20 01:02:55 -0500 | [diff] [blame] | 183 | void fuzz_dma_read_cb(size_t addr, size_t len, MemoryRegion *mr) |
Alexander Bulekov | 20f5a30 | 2020-10-23 11:07:33 -0400 | [diff] [blame] | 184 | { |
| 185 | /* Are we in the generic-fuzzer or are we using another fuzz-target? */ |
| 186 | if (!qts_global) { |
| 187 | return; |
| 188 | } |
| 189 | |
| 190 | /* |
| 191 | * Return immediately if: |
| 192 | * - We have no DMA patterns defined |
| 193 | * - The length of the DMA read request is zero |
| 194 | * - The DMA read is hitting an MR other than the machine's main RAM |
Alexander Bulekov | 20f5a30 | 2020-10-23 11:07:33 -0400 | [diff] [blame] | 195 | * - The DMA request hits past the bounds of our RAM |
| 196 | */ |
| 197 | if (dma_patterns->len == 0 |
| 198 | || len == 0 |
Alexander Bulekov | b8b5217 | 2023-02-04 23:29:45 -0500 | [diff] [blame] | 199 | || dma_bytes_written + len > MAX_TOTAL_DMA_SIZE |
Alexander Bulekov | 25d309f | 2021-03-15 10:05:11 -0400 | [diff] [blame] | 200 | || (mr != current_machine->ram && mr != sparse_mem_mr)) { |
Alexander Bulekov | 20f5a30 | 2020-10-23 11:07:33 -0400 | [diff] [blame] | 201 | return; |
| 202 | } |
| 203 | |
| 204 | /* |
| 205 | * If we overlap with any existing dma_regions, split the range and only |
| 206 | * populate the non-overlapping parts. |
| 207 | */ |
| 208 | address_range region; |
| 209 | bool double_fetch = false; |
| 210 | for (int i = 0; |
| 211 | i < dma_regions->len && (avoid_double_fetches || qtest_log_enabled); |
| 212 | ++i) { |
| 213 | region = g_array_index(dma_regions, address_range, i); |
| 214 | if (addr < region.addr + region.size && addr + len > region.addr) { |
| 215 | double_fetch = true; |
| 216 | if (addr < region.addr |
| 217 | && avoid_double_fetches) { |
Alexander Bulekov | fc1c834 | 2021-01-20 01:02:55 -0500 | [diff] [blame] | 218 | fuzz_dma_read_cb(addr, region.addr - addr, mr); |
Alexander Bulekov | 20f5a30 | 2020-10-23 11:07:33 -0400 | [diff] [blame] | 219 | } |
| 220 | if (addr + len > region.addr + region.size |
| 221 | && avoid_double_fetches) { |
| 222 | fuzz_dma_read_cb(region.addr + region.size, |
Alexander Bulekov | fc1c834 | 2021-01-20 01:02:55 -0500 | [diff] [blame] | 223 | addr + len - (region.addr + region.size), mr); |
Alexander Bulekov | 20f5a30 | 2020-10-23 11:07:33 -0400 | [diff] [blame] | 224 | } |
| 225 | return; |
| 226 | } |
| 227 | } |
| 228 | |
| 229 | /* Cap the length of the DMA access to something reasonable */ |
| 230 | len = MIN(len, MAX_DMA_FILL_SIZE); |
| 231 | |
| 232 | address_range ar = {addr, len}; |
| 233 | g_array_append_val(dma_regions, ar); |
| 234 | pattern p = g_array_index(dma_patterns, pattern, dma_pattern_index); |
Alexander Bulekov | a9f67c1 | 2020-10-29 13:28:58 -0400 | [diff] [blame] | 235 | void *buf_base = pattern_alloc(p, ar.size); |
| 236 | void *buf = buf_base; |
Alexander Bulekov | 20f5a30 | 2020-10-23 11:07:33 -0400 | [diff] [blame] | 237 | hwaddr l, addr1; |
| 238 | MemoryRegion *mr1; |
Alexander Bulekov | 20f5a30 | 2020-10-23 11:07:33 -0400 | [diff] [blame] | 239 | while (len > 0) { |
| 240 | l = len; |
| 241 | mr1 = address_space_translate(first_cpu->as, |
| 242 | addr, &addr1, &l, true, |
| 243 | MEMTXATTRS_UNSPECIFIED); |
| 244 | |
Alexander Bulekov | af16990 | 2021-07-13 11:00:34 -0400 | [diff] [blame] | 245 | /* |
| 246 | * If mr1 isn't RAM, address_space_translate doesn't update l. Use |
Jagannathan Raman | 3123f93 | 2022-06-13 16:26:32 -0400 | [diff] [blame] | 247 | * fuzz_memory_access_size to identify the number of bytes that it |
| 248 | * is safe to write without accidentally writing to another |
| 249 | * MemoryRegion. |
Alexander Bulekov | af16990 | 2021-07-13 11:00:34 -0400 | [diff] [blame] | 250 | */ |
| 251 | if (!memory_region_is_ram(mr1)) { |
Jagannathan Raman | 3123f93 | 2022-06-13 16:26:32 -0400 | [diff] [blame] | 252 | l = fuzz_memory_access_size(mr1, l, addr1); |
Alexander Bulekov | af16990 | 2021-07-13 11:00:34 -0400 | [diff] [blame] | 253 | } |
| 254 | if (memory_region_is_ram(mr1) || |
| 255 | memory_region_is_romd(mr1) || |
| 256 | mr1 == sparse_mem_mr) { |
Alexander Bulekov | 20f5a30 | 2020-10-23 11:07:33 -0400 | [diff] [blame] | 257 | /* ROM/RAM case */ |
Alexander Bulekov | a9f67c1 | 2020-10-29 13:28:58 -0400 | [diff] [blame] | 258 | if (qtest_log_enabled) { |
| 259 | /* |
| 260 | * With QTEST_LOG, use a normal, slow QTest memwrite. Prefix the log |
| 261 | * that will be written by qtest.c with a DMA tag, so we can reorder |
| 262 | * the resulting QTest trace so the DMA fills precede the last PIO/MMIO |
| 263 | * command. |
| 264 | */ |
| 265 | fprintf(stderr, "[DMA] "); |
| 266 | if (double_fetch) { |
| 267 | fprintf(stderr, "[DOUBLE-FETCH] "); |
| 268 | } |
| 269 | fflush(stderr); |
| 270 | } |
| 271 | qtest_memwrite(qts_global, addr, buf, l); |
Alexander Bulekov | b8b5217 | 2023-02-04 23:29:45 -0500 | [diff] [blame] | 272 | dma_bytes_written += l; |
Alexander Bulekov | 20f5a30 | 2020-10-23 11:07:33 -0400 | [diff] [blame] | 273 | } |
| 274 | len -= l; |
| 275 | buf += l; |
| 276 | addr += l; |
| 277 | |
| 278 | } |
Alexander Bulekov | a9f67c1 | 2020-10-29 13:28:58 -0400 | [diff] [blame] | 279 | g_free(buf_base); |
Alexander Bulekov | 20f5a30 | 2020-10-23 11:07:33 -0400 | [diff] [blame] | 280 | |
| 281 | /* Increment the index of the pattern for the next DMA access */ |
| 282 | dma_pattern_index = (dma_pattern_index + 1) % dma_patterns->len; |
| 283 | } |
| 284 | |
| 285 | /* |
Alexander Bulekov | da9bf53 | 2020-10-23 11:07:31 -0400 | [diff] [blame] | 286 | * Here we want to convert a fuzzer-provided [io-region-index, offset] to |
| 287 | * a physical address. To do this, we iterate over all of the matched |
| 288 | * MemoryRegions. Check whether each region exists within the particular io |
| 289 | * space. Return the absolute address of the offset within the index'th region |
| 290 | * that is a subregion of the io_space and the distance until the end of the |
| 291 | * memory region. |
| 292 | */ |
| 293 | static bool get_io_address(address_range *result, AddressSpace *as, |
| 294 | uint8_t index, |
| 295 | uint32_t offset) { |
| 296 | FlatView *view; |
| 297 | view = as->current_map; |
| 298 | g_assert(view); |
| 299 | struct get_io_cb_info cb_info = {}; |
| 300 | |
| 301 | cb_info.index = index; |
| 302 | |
| 303 | /* |
| 304 | * Loop around the FlatView until we match "index" number of |
| 305 | * fuzzable_memoryregions, or until we know that there are no matching |
| 306 | * memory_regions. |
| 307 | */ |
| 308 | do { |
| 309 | flatview_for_each_range(view, get_io_address_cb , &cb_info); |
| 310 | } while (cb_info.index != index && !cb_info.found); |
| 311 | |
| 312 | *result = cb_info.result; |
Alexander Bulekov | 953e6d7 | 2020-10-29 13:29:00 -0400 | [diff] [blame] | 313 | if (result->size) { |
| 314 | offset = offset % result->size; |
| 315 | result->addr += offset; |
| 316 | result->size -= offset; |
| 317 | } |
Alexander Bulekov | da9bf53 | 2020-10-23 11:07:31 -0400 | [diff] [blame] | 318 | return cb_info.found; |
| 319 | } |
| 320 | |
| 321 | static bool get_pio_address(address_range *result, |
| 322 | uint8_t index, uint16_t offset) |
| 323 | { |
| 324 | /* |
| 325 | * PIO BARs can be set past the maximum port address (0xFFFF). Thus, result |
| 326 | * can contain an addr that extends past the PIO space. When we pass this |
| 327 | * address to qtest_in/qtest_out, it is cast to a uint16_t, so we might end |
| 328 | * up fuzzing a completely different MemoryRegion/Device. Therefore, check |
| 329 | * that the address here is within the PIO space limits. |
| 330 | */ |
| 331 | bool found = get_io_address(result, &address_space_io, index, offset); |
| 332 | return result->addr <= 0xFFFF ? found : false; |
| 333 | } |
| 334 | |
| 335 | static bool get_mmio_address(address_range *result, |
| 336 | uint8_t index, uint32_t offset) |
| 337 | { |
| 338 | return get_io_address(result, &address_space_memory, index, offset); |
| 339 | } |
| 340 | |
| 341 | static void op_in(QTestState *s, const unsigned char * data, size_t len) |
| 342 | { |
| 343 | enum Sizes {Byte, Word, Long, end_sizes}; |
| 344 | struct { |
| 345 | uint8_t size; |
| 346 | uint8_t base; |
| 347 | uint16_t offset; |
| 348 | } a; |
| 349 | address_range abs; |
| 350 | |
| 351 | if (len < sizeof(a)) { |
| 352 | return; |
| 353 | } |
| 354 | memcpy(&a, data, sizeof(a)); |
| 355 | if (get_pio_address(&abs, a.base, a.offset) == 0) { |
| 356 | return; |
| 357 | } |
| 358 | |
| 359 | switch (a.size %= end_sizes) { |
| 360 | case Byte: |
| 361 | qtest_inb(s, abs.addr); |
| 362 | break; |
| 363 | case Word: |
| 364 | if (abs.size >= 2) { |
| 365 | qtest_inw(s, abs.addr); |
| 366 | } |
| 367 | break; |
| 368 | case Long: |
| 369 | if (abs.size >= 4) { |
| 370 | qtest_inl(s, abs.addr); |
| 371 | } |
| 372 | break; |
| 373 | } |
| 374 | } |
| 375 | |
| 376 | static void op_out(QTestState *s, const unsigned char * data, size_t len) |
| 377 | { |
| 378 | enum Sizes {Byte, Word, Long, end_sizes}; |
| 379 | struct { |
| 380 | uint8_t size; |
| 381 | uint8_t base; |
| 382 | uint16_t offset; |
| 383 | uint32_t value; |
| 384 | } a; |
| 385 | address_range abs; |
| 386 | |
| 387 | if (len < sizeof(a)) { |
| 388 | return; |
| 389 | } |
| 390 | memcpy(&a, data, sizeof(a)); |
| 391 | |
| 392 | if (get_pio_address(&abs, a.base, a.offset) == 0) { |
| 393 | return; |
| 394 | } |
| 395 | |
| 396 | switch (a.size %= end_sizes) { |
| 397 | case Byte: |
| 398 | qtest_outb(s, abs.addr, a.value & 0xFF); |
| 399 | break; |
| 400 | case Word: |
| 401 | if (abs.size >= 2) { |
| 402 | qtest_outw(s, abs.addr, a.value & 0xFFFF); |
| 403 | } |
| 404 | break; |
| 405 | case Long: |
| 406 | if (abs.size >= 4) { |
| 407 | qtest_outl(s, abs.addr, a.value); |
| 408 | } |
| 409 | break; |
| 410 | } |
| 411 | } |
| 412 | |
| 413 | static void op_read(QTestState *s, const unsigned char * data, size_t len) |
| 414 | { |
| 415 | enum Sizes {Byte, Word, Long, Quad, end_sizes}; |
| 416 | struct { |
| 417 | uint8_t size; |
| 418 | uint8_t base; |
| 419 | uint32_t offset; |
| 420 | } a; |
| 421 | address_range abs; |
| 422 | |
| 423 | if (len < sizeof(a)) { |
| 424 | return; |
| 425 | } |
| 426 | memcpy(&a, data, sizeof(a)); |
| 427 | |
| 428 | if (get_mmio_address(&abs, a.base, a.offset) == 0) { |
| 429 | return; |
| 430 | } |
| 431 | |
| 432 | switch (a.size %= end_sizes) { |
| 433 | case Byte: |
| 434 | qtest_readb(s, abs.addr); |
| 435 | break; |
| 436 | case Word: |
| 437 | if (abs.size >= 2) { |
| 438 | qtest_readw(s, abs.addr); |
| 439 | } |
| 440 | break; |
| 441 | case Long: |
| 442 | if (abs.size >= 4) { |
| 443 | qtest_readl(s, abs.addr); |
| 444 | } |
| 445 | break; |
| 446 | case Quad: |
| 447 | if (abs.size >= 8) { |
| 448 | qtest_readq(s, abs.addr); |
| 449 | } |
| 450 | break; |
| 451 | } |
| 452 | } |
| 453 | |
| 454 | static void op_write(QTestState *s, const unsigned char * data, size_t len) |
| 455 | { |
| 456 | enum Sizes {Byte, Word, Long, Quad, end_sizes}; |
| 457 | struct { |
| 458 | uint8_t size; |
| 459 | uint8_t base; |
| 460 | uint32_t offset; |
| 461 | uint64_t value; |
| 462 | } a; |
| 463 | address_range abs; |
| 464 | |
| 465 | if (len < sizeof(a)) { |
| 466 | return; |
| 467 | } |
| 468 | memcpy(&a, data, sizeof(a)); |
| 469 | |
| 470 | if (get_mmio_address(&abs, a.base, a.offset) == 0) { |
| 471 | return; |
| 472 | } |
| 473 | |
| 474 | switch (a.size %= end_sizes) { |
| 475 | case Byte: |
| 476 | qtest_writeb(s, abs.addr, a.value & 0xFF); |
| 477 | break; |
| 478 | case Word: |
| 479 | if (abs.size >= 2) { |
| 480 | qtest_writew(s, abs.addr, a.value & 0xFFFF); |
| 481 | } |
| 482 | break; |
| 483 | case Long: |
| 484 | if (abs.size >= 4) { |
| 485 | qtest_writel(s, abs.addr, a.value & 0xFFFFFFFF); |
| 486 | } |
| 487 | break; |
| 488 | case Quad: |
| 489 | if (abs.size >= 8) { |
| 490 | qtest_writeq(s, abs.addr, a.value); |
| 491 | } |
| 492 | break; |
| 493 | } |
| 494 | } |
| 495 | |
Alexander Bulekov | 05efbf2 | 2020-10-23 11:07:32 -0400 | [diff] [blame] | 496 | static void op_pci_read(QTestState *s, const unsigned char * data, size_t len) |
| 497 | { |
| 498 | enum Sizes {Byte, Word, Long, end_sizes}; |
| 499 | struct { |
| 500 | uint8_t size; |
| 501 | uint8_t base; |
| 502 | uint8_t offset; |
| 503 | } a; |
Alexander Bulekov | ccbd4bc | 2020-10-23 11:07:37 -0400 | [diff] [blame] | 504 | if (len < sizeof(a) || fuzzable_pci_devices->len == 0 || pci_disabled) { |
Alexander Bulekov | 05efbf2 | 2020-10-23 11:07:32 -0400 | [diff] [blame] | 505 | return; |
| 506 | } |
| 507 | memcpy(&a, data, sizeof(a)); |
| 508 | PCIDevice *dev = g_ptr_array_index(fuzzable_pci_devices, |
| 509 | a.base % fuzzable_pci_devices->len); |
| 510 | int devfn = dev->devfn; |
| 511 | qtest_outl(s, PCI_HOST_BRIDGE_CFG, (1U << 31) | (devfn << 8) | a.offset); |
| 512 | switch (a.size %= end_sizes) { |
| 513 | case Byte: |
| 514 | qtest_inb(s, PCI_HOST_BRIDGE_DATA); |
| 515 | break; |
| 516 | case Word: |
| 517 | qtest_inw(s, PCI_HOST_BRIDGE_DATA); |
| 518 | break; |
| 519 | case Long: |
| 520 | qtest_inl(s, PCI_HOST_BRIDGE_DATA); |
| 521 | break; |
| 522 | } |
| 523 | } |
| 524 | |
| 525 | static void op_pci_write(QTestState *s, const unsigned char * data, size_t len) |
| 526 | { |
| 527 | enum Sizes {Byte, Word, Long, end_sizes}; |
| 528 | struct { |
| 529 | uint8_t size; |
| 530 | uint8_t base; |
| 531 | uint8_t offset; |
| 532 | uint32_t value; |
| 533 | } a; |
Alexander Bulekov | ccbd4bc | 2020-10-23 11:07:37 -0400 | [diff] [blame] | 534 | if (len < sizeof(a) || fuzzable_pci_devices->len == 0 || pci_disabled) { |
Alexander Bulekov | 05efbf2 | 2020-10-23 11:07:32 -0400 | [diff] [blame] | 535 | return; |
| 536 | } |
| 537 | memcpy(&a, data, sizeof(a)); |
| 538 | PCIDevice *dev = g_ptr_array_index(fuzzable_pci_devices, |
| 539 | a.base % fuzzable_pci_devices->len); |
| 540 | int devfn = dev->devfn; |
| 541 | qtest_outl(s, PCI_HOST_BRIDGE_CFG, (1U << 31) | (devfn << 8) | a.offset); |
| 542 | switch (a.size %= end_sizes) { |
| 543 | case Byte: |
| 544 | qtest_outb(s, PCI_HOST_BRIDGE_DATA, a.value & 0xFF); |
| 545 | break; |
| 546 | case Word: |
| 547 | qtest_outw(s, PCI_HOST_BRIDGE_DATA, a.value & 0xFFFF); |
| 548 | break; |
| 549 | case Long: |
| 550 | qtest_outl(s, PCI_HOST_BRIDGE_DATA, a.value & 0xFFFFFFFF); |
| 551 | break; |
| 552 | } |
| 553 | } |
| 554 | |
Alexander Bulekov | 20f5a30 | 2020-10-23 11:07:33 -0400 | [diff] [blame] | 555 | static void op_add_dma_pattern(QTestState *s, |
| 556 | const unsigned char *data, size_t len) |
| 557 | { |
| 558 | struct { |
| 559 | /* |
| 560 | * index and stride can be used to increment the index-th byte of the |
| 561 | * pattern by the value stride, for each loop of the pattern. |
| 562 | */ |
| 563 | uint8_t index; |
| 564 | uint8_t stride; |
| 565 | } a; |
| 566 | |
| 567 | if (len < sizeof(a) + 1) { |
| 568 | return; |
| 569 | } |
| 570 | memcpy(&a, data, sizeof(a)); |
| 571 | pattern p = {a.index, a.stride, len - sizeof(a), data + sizeof(a)}; |
| 572 | p.index = a.index % p.len; |
| 573 | g_array_append_val(dma_patterns, p); |
| 574 | return; |
| 575 | } |
| 576 | |
| 577 | static void op_clear_dma_patterns(QTestState *s, |
| 578 | const unsigned char *data, size_t len) |
| 579 | { |
| 580 | g_array_set_size(dma_patterns, 0); |
| 581 | dma_pattern_index = 0; |
| 582 | } |
| 583 | |
Alexander Bulekov | da9bf53 | 2020-10-23 11:07:31 -0400 | [diff] [blame] | 584 | static void op_clock_step(QTestState *s, const unsigned char *data, size_t len) |
| 585 | { |
| 586 | qtest_clock_step_next(s); |
| 587 | } |
| 588 | |
Alexander Bulekov | ccbd4bc | 2020-10-23 11:07:37 -0400 | [diff] [blame] | 589 | static void op_disable_pci(QTestState *s, const unsigned char *data, size_t len) |
| 590 | { |
| 591 | pci_disabled = true; |
| 592 | } |
| 593 | |
Alexander Bulekov | da9bf53 | 2020-10-23 11:07:31 -0400 | [diff] [blame] | 594 | /* |
| 595 | * Here, we interpret random bytes from the fuzzer, as a sequence of commands. |
| 596 | * Some commands can be variable-width, so we use a separator, SEPARATOR, to |
| 597 | * specify the boundaries between commands. SEPARATOR is used to separate |
| 598 | * "operations" in the fuzz input. Why use a separator, instead of just using |
| 599 | * the operations' length to identify operation boundaries? |
| 600 | * 1. This is a simple way to support variable-length operations |
| 601 | * 2. This adds "stability" to the input. |
| 602 | * For example take the input "AbBcgDefg", where there is no separator and |
| 603 | * Opcodes are capitalized. |
| 604 | * Simply, by removing the first byte, we end up with a very different |
| 605 | * sequence: |
| 606 | * BbcGdefg... |
| 607 | * By adding a separator, we avoid this problem: |
| 608 | * Ab SEP Bcg SEP Defg -> B SEP Bcg SEP Defg |
| 609 | * Since B uses two additional bytes as operands, the first "B" will be |
| 610 | * ignored. The fuzzer actively tries to reduce inputs, so such unused |
| 611 | * bytes are likely to be pruned, eventually. |
| 612 | * |
| 613 | * SEPARATOR is trivial for the fuzzer to discover when using ASan. Optionally, |
| 614 | * SEPARATOR can be manually specified as a dictionary value (see libfuzzer's |
| 615 | * -dict), though this should not be necessary. |
| 616 | * |
| 617 | * As a result, the stream of bytes is converted into a sequence of commands. |
| 618 | * In a simplified example where SEPARATOR is 0xFF: |
| 619 | * 00 01 02 FF 03 04 05 06 FF 01 FF ... |
| 620 | * becomes this sequence of commands: |
| 621 | * 00 01 02 -> op00 (0102) -> in (0102, 2) |
| 622 | * 03 04 05 06 -> op03 (040506) -> write (040506, 3) |
| 623 | * 01 -> op01 (-,0) -> out (-,0) |
| 624 | * ... |
| 625 | * |
| 626 | * Note here that it is the job of the individual opcode functions to check |
| 627 | * that enough data was provided. I.e. in the last command out (,0), out needs |
| 628 | * to check that there is not enough data provided to select an address/value |
| 629 | * for the operation. |
| 630 | */ |
| 631 | static void generic_fuzz(QTestState *s, const unsigned char *Data, size_t Size) |
| 632 | { |
| 633 | void (*ops[]) (QTestState *s, const unsigned char* , size_t) = { |
| 634 | [OP_IN] = op_in, |
| 635 | [OP_OUT] = op_out, |
| 636 | [OP_READ] = op_read, |
| 637 | [OP_WRITE] = op_write, |
Alexander Bulekov | 05efbf2 | 2020-10-23 11:07:32 -0400 | [diff] [blame] | 638 | [OP_PCI_READ] = op_pci_read, |
| 639 | [OP_PCI_WRITE] = op_pci_write, |
Alexander Bulekov | ccbd4bc | 2020-10-23 11:07:37 -0400 | [diff] [blame] | 640 | [OP_DISABLE_PCI] = op_disable_pci, |
Alexander Bulekov | 20f5a30 | 2020-10-23 11:07:33 -0400 | [diff] [blame] | 641 | [OP_ADD_DMA_PATTERN] = op_add_dma_pattern, |
| 642 | [OP_CLEAR_DMA_PATTERNS] = op_clear_dma_patterns, |
Alexander Bulekov | da9bf53 | 2020-10-23 11:07:31 -0400 | [diff] [blame] | 643 | [OP_CLOCK_STEP] = op_clock_step, |
| 644 | }; |
| 645 | const unsigned char *cmd = Data; |
| 646 | const unsigned char *nextcmd; |
| 647 | size_t cmd_len; |
| 648 | uint8_t op; |
| 649 | |
Alexander Bulekov | 1375104 | 2023-02-04 23:29:44 -0500 | [diff] [blame] | 650 | op_clear_dma_patterns(s, NULL, 0); |
| 651 | pci_disabled = false; |
Alexander Bulekov | b8b5217 | 2023-02-04 23:29:45 -0500 | [diff] [blame] | 652 | dma_bytes_written = 0; |
Alexander Bulekov | da9bf53 | 2020-10-23 11:07:31 -0400 | [diff] [blame] | 653 | |
Alexander Bulekov | 1375104 | 2023-02-04 23:29:44 -0500 | [diff] [blame] | 654 | QPCIBus *pcibus = qpci_new_pc(s, NULL); |
| 655 | g_ptr_array_foreach(fuzzable_pci_devices, pci_enum, pcibus); |
| 656 | qpci_free_pc(pcibus); |
Alexander Bulekov | da9bf53 | 2020-10-23 11:07:31 -0400 | [diff] [blame] | 657 | |
Alexander Bulekov | 1375104 | 2023-02-04 23:29:44 -0500 | [diff] [blame] | 658 | while (cmd && Size) { |
| 659 | /* Get the length until the next command or end of input */ |
| 660 | nextcmd = memmem(cmd, Size, SEPARATOR, strlen(SEPARATOR)); |
| 661 | cmd_len = nextcmd ? nextcmd - cmd : Size; |
Alexander Bulekov | aaa94a1 | 2021-08-04 09:56:21 -0400 | [diff] [blame] | 662 | |
Alexander Bulekov | 1375104 | 2023-02-04 23:29:44 -0500 | [diff] [blame] | 663 | if (cmd_len > 0) { |
| 664 | /* Interpret the first byte of the command as an opcode */ |
| 665 | op = *cmd % (sizeof(ops) / sizeof((ops)[0])); |
| 666 | ops[op](s, cmd + 1, cmd_len - 1); |
| 667 | |
| 668 | /* Run the main loop */ |
| 669 | flush_events(s); |
Alexander Bulekov | da9bf53 | 2020-10-23 11:07:31 -0400 | [diff] [blame] | 670 | } |
Alexander Bulekov | 1375104 | 2023-02-04 23:29:44 -0500 | [diff] [blame] | 671 | /* Advance to the next command */ |
| 672 | cmd = nextcmd ? nextcmd + sizeof(SEPARATOR) - 1 : nextcmd; |
| 673 | Size = Size - (cmd_len + sizeof(SEPARATOR) - 1); |
| 674 | g_array_set_size(dma_regions, 0); |
Alexander Bulekov | da9bf53 | 2020-10-23 11:07:31 -0400 | [diff] [blame] | 675 | } |
Alexander Bulekov | 1375104 | 2023-02-04 23:29:44 -0500 | [diff] [blame] | 676 | fuzz_reset(s); |
Alexander Bulekov | da9bf53 | 2020-10-23 11:07:31 -0400 | [diff] [blame] | 677 | } |
| 678 | |
| 679 | static void usage(void) |
| 680 | { |
| 681 | printf("Please specify the following environment variables:\n"); |
| 682 | printf("QEMU_FUZZ_ARGS= the command line arguments passed to qemu\n"); |
| 683 | printf("QEMU_FUZZ_OBJECTS= " |
| 684 | "a space separated list of QOM type names for objects to fuzz\n"); |
Alexander Bulekov | 20f5a30 | 2020-10-23 11:07:33 -0400 | [diff] [blame] | 685 | printf("Optionally: QEMU_AVOID_DOUBLE_FETCH= " |
| 686 | "Try to avoid racy DMA double fetch bugs? %d by default\n", |
| 687 | avoid_double_fetches); |
Alexander Bulekov | da9bf53 | 2020-10-23 11:07:31 -0400 | [diff] [blame] | 688 | exit(0); |
| 689 | } |
| 690 | |
| 691 | static int locate_fuzz_memory_regions(Object *child, void *opaque) |
| 692 | { |
Alexander Bulekov | da9bf53 | 2020-10-23 11:07:31 -0400 | [diff] [blame] | 693 | MemoryRegion *mr; |
| 694 | if (object_dynamic_cast(child, TYPE_MEMORY_REGION)) { |
| 695 | mr = MEMORY_REGION(child); |
| 696 | if ((memory_region_is_ram(mr) || |
| 697 | memory_region_is_ram_device(mr) || |
| 698 | memory_region_is_rom(mr)) == false) { |
Alexander Bulekov | da9bf53 | 2020-10-23 11:07:31 -0400 | [diff] [blame] | 699 | /* |
| 700 | * We don't want duplicate pointers to the same MemoryRegion, so |
| 701 | * try to remove copies of the pointer, before adding it. |
| 702 | */ |
| 703 | g_hash_table_insert(fuzzable_memoryregions, mr, (gpointer)true); |
| 704 | } |
| 705 | } |
| 706 | return 0; |
| 707 | } |
| 708 | |
| 709 | static int locate_fuzz_objects(Object *child, void *opaque) |
| 710 | { |
Alexander Bulekov | f2e8b87 | 2021-07-13 11:00:36 -0400 | [diff] [blame] | 711 | GString *type_name; |
| 712 | GString *path_name; |
Alexander Bulekov | da9bf53 | 2020-10-23 11:07:31 -0400 | [diff] [blame] | 713 | char *pattern = opaque; |
Alexander Bulekov | f2e8b87 | 2021-07-13 11:00:36 -0400 | [diff] [blame] | 714 | |
| 715 | type_name = g_string_new(object_get_typename(child)); |
| 716 | g_string_ascii_down(type_name); |
| 717 | if (g_pattern_match_simple(pattern, type_name->str)) { |
Alexander Bulekov | da9bf53 | 2020-10-23 11:07:31 -0400 | [diff] [blame] | 718 | /* Find and save ptrs to any child MemoryRegions */ |
| 719 | object_child_foreach_recursive(child, locate_fuzz_memory_regions, NULL); |
| 720 | |
Alexander Bulekov | 05efbf2 | 2020-10-23 11:07:32 -0400 | [diff] [blame] | 721 | /* |
| 722 | * We matched an object. If its a PCI device, store a pointer to it so |
| 723 | * we can map BARs and fuzz its config space. |
| 724 | */ |
| 725 | if (object_dynamic_cast(OBJECT(child), TYPE_PCI_DEVICE)) { |
| 726 | /* |
| 727 | * Don't want duplicate pointers to the same PCIDevice, so remove |
| 728 | * copies of the pointer, before adding it. |
| 729 | */ |
| 730 | g_ptr_array_remove_fast(fuzzable_pci_devices, PCI_DEVICE(child)); |
| 731 | g_ptr_array_add(fuzzable_pci_devices, PCI_DEVICE(child)); |
| 732 | } |
Alexander Bulekov | da9bf53 | 2020-10-23 11:07:31 -0400 | [diff] [blame] | 733 | } else if (object_dynamic_cast(OBJECT(child), TYPE_MEMORY_REGION)) { |
Alexander Bulekov | f2e8b87 | 2021-07-13 11:00:36 -0400 | [diff] [blame] | 734 | path_name = g_string_new(object_get_canonical_path_component(child)); |
| 735 | g_string_ascii_down(path_name); |
| 736 | if (g_pattern_match_simple(pattern, path_name->str)) { |
Alexander Bulekov | da9bf53 | 2020-10-23 11:07:31 -0400 | [diff] [blame] | 737 | MemoryRegion *mr; |
| 738 | mr = MEMORY_REGION(child); |
| 739 | if ((memory_region_is_ram(mr) || |
| 740 | memory_region_is_ram_device(mr) || |
| 741 | memory_region_is_rom(mr)) == false) { |
| 742 | g_hash_table_insert(fuzzable_memoryregions, mr, (gpointer)true); |
| 743 | } |
| 744 | } |
Alexander Bulekov | f2e8b87 | 2021-07-13 11:00:36 -0400 | [diff] [blame] | 745 | g_string_free(path_name, true); |
Alexander Bulekov | da9bf53 | 2020-10-23 11:07:31 -0400 | [diff] [blame] | 746 | } |
Alexander Bulekov | f2e8b87 | 2021-07-13 11:00:36 -0400 | [diff] [blame] | 747 | g_string_free(type_name, true); |
Alexander Bulekov | da9bf53 | 2020-10-23 11:07:31 -0400 | [diff] [blame] | 748 | return 0; |
| 749 | } |
| 750 | |
Alexander Bulekov | b677001 | 2020-12-21 13:12:03 -0500 | [diff] [blame] | 751 | |
| 752 | static void pci_enum(gpointer pcidev, gpointer bus) |
| 753 | { |
| 754 | PCIDevice *dev = pcidev; |
| 755 | QPCIDevice *qdev; |
| 756 | int i; |
| 757 | |
| 758 | qdev = qpci_device_find(bus, dev->devfn); |
| 759 | g_assert(qdev != NULL); |
| 760 | for (i = 0; i < 6; i++) { |
| 761 | if (dev->io_regions[i].size) { |
| 762 | qpci_iomap(qdev, i, NULL); |
| 763 | } |
| 764 | } |
| 765 | qpci_device_enable(qdev); |
| 766 | g_free(qdev); |
| 767 | } |
| 768 | |
Alexander Bulekov | da9bf53 | 2020-10-23 11:07:31 -0400 | [diff] [blame] | 769 | static void generic_pre_fuzz(QTestState *s) |
| 770 | { |
| 771 | GHashTableIter iter; |
| 772 | MemoryRegion *mr; |
| 773 | char **result; |
Alexander Bulekov | f2e8b87 | 2021-07-13 11:00:36 -0400 | [diff] [blame] | 774 | GString *name_pattern; |
Alexander Bulekov | da9bf53 | 2020-10-23 11:07:31 -0400 | [diff] [blame] | 775 | |
| 776 | if (!getenv("QEMU_FUZZ_OBJECTS")) { |
| 777 | usage(); |
| 778 | } |
| 779 | if (getenv("QTEST_LOG")) { |
| 780 | qtest_log_enabled = 1; |
| 781 | } |
Alexander Bulekov | 20f5a30 | 2020-10-23 11:07:33 -0400 | [diff] [blame] | 782 | if (getenv("QEMU_AVOID_DOUBLE_FETCH")) { |
| 783 | avoid_double_fetches = 1; |
| 784 | } |
Alexander Bulekov | 20f5a30 | 2020-10-23 11:07:33 -0400 | [diff] [blame] | 785 | qts_global = s; |
| 786 | |
Alexander Bulekov | 25d309f | 2021-03-15 10:05:11 -0400 | [diff] [blame] | 787 | /* |
| 788 | * Create a special device that we can use to back DMA buffers at very |
| 789 | * high memory addresses |
| 790 | */ |
| 791 | sparse_mem_mr = sparse_mem_init(0, UINT64_MAX); |
| 792 | |
Alexander Bulekov | 20f5a30 | 2020-10-23 11:07:33 -0400 | [diff] [blame] | 793 | dma_regions = g_array_new(false, false, sizeof(address_range)); |
| 794 | dma_patterns = g_array_new(false, false, sizeof(pattern)); |
Alexander Bulekov | da9bf53 | 2020-10-23 11:07:31 -0400 | [diff] [blame] | 795 | |
| 796 | fuzzable_memoryregions = g_hash_table_new(NULL, NULL); |
Alexander Bulekov | 05efbf2 | 2020-10-23 11:07:32 -0400 | [diff] [blame] | 797 | fuzzable_pci_devices = g_ptr_array_new(); |
Alexander Bulekov | da9bf53 | 2020-10-23 11:07:31 -0400 | [diff] [blame] | 798 | |
| 799 | result = g_strsplit(getenv("QEMU_FUZZ_OBJECTS"), " ", -1); |
| 800 | for (int i = 0; result[i] != NULL; i++) { |
Alexander Bulekov | f2e8b87 | 2021-07-13 11:00:36 -0400 | [diff] [blame] | 801 | name_pattern = g_string_new(result[i]); |
| 802 | /* |
| 803 | * Make the pattern lowercase. We do the same for all the MemoryRegion |
| 804 | * and Type names so the configs are case-insensitive. |
| 805 | */ |
| 806 | g_string_ascii_down(name_pattern); |
Alexander Bulekov | da9bf53 | 2020-10-23 11:07:31 -0400 | [diff] [blame] | 807 | printf("Matching objects by name %s\n", result[i]); |
| 808 | object_child_foreach_recursive(qdev_get_machine(), |
| 809 | locate_fuzz_objects, |
Alexander Bulekov | f2e8b87 | 2021-07-13 11:00:36 -0400 | [diff] [blame] | 810 | name_pattern->str); |
| 811 | g_string_free(name_pattern, true); |
Alexander Bulekov | da9bf53 | 2020-10-23 11:07:31 -0400 | [diff] [blame] | 812 | } |
| 813 | g_strfreev(result); |
| 814 | printf("This process will try to fuzz the following MemoryRegions:\n"); |
| 815 | |
| 816 | g_hash_table_iter_init(&iter, fuzzable_memoryregions); |
| 817 | while (g_hash_table_iter_next(&iter, (gpointer)&mr, NULL)) { |
Philippe Mathieu-Daudé | a8fbec7 | 2021-06-12 21:58:42 +0200 | [diff] [blame] | 818 | printf(" * %s (size 0x%" PRIx64 ")\n", |
Alexander Bulekov | da9bf53 | 2020-10-23 11:07:31 -0400 | [diff] [blame] | 819 | object_get_canonical_path_component(&(mr->parent_obj)), |
Philippe Mathieu-Daudé | a8fbec7 | 2021-06-12 21:58:42 +0200 | [diff] [blame] | 820 | memory_region_size(mr)); |
Alexander Bulekov | da9bf53 | 2020-10-23 11:07:31 -0400 | [diff] [blame] | 821 | } |
| 822 | |
| 823 | if (!g_hash_table_size(fuzzable_memoryregions)) { |
| 824 | printf("No fuzzable memory regions found...\n"); |
| 825 | exit(1); |
| 826 | } |
Alexander Bulekov | da9bf53 | 2020-10-23 11:07:31 -0400 | [diff] [blame] | 827 | } |
| 828 | |
Alexander Bulekov | a253932 | 2020-10-23 11:07:38 -0400 | [diff] [blame] | 829 | /* |
| 830 | * When libfuzzer gives us two inputs to combine, return a new input with the |
| 831 | * following structure: |
| 832 | * |
| 833 | * Input 1 (data1) |
| 834 | * SEPARATOR |
| 835 | * Clear out the DMA Patterns |
| 836 | * SEPARATOR |
| 837 | * Disable the pci_read/write instructions |
| 838 | * SEPARATOR |
| 839 | * Input 2 (data2) |
| 840 | * |
| 841 | * The idea is to collate the core behaviors of the two inputs. |
| 842 | * For example: |
| 843 | * Input 1: maps a device's BARs, sets up three DMA patterns, and triggers |
| 844 | * device functionality A |
| 845 | * Input 2: maps a device's BARs, sets up one DMA pattern, and triggers device |
| 846 | * functionality B |
| 847 | * |
| 848 | * This function attempts to produce an input that: |
| 849 | * Ouptut: maps a device's BARs, set up three DMA patterns, triggers |
| 850 | * functionality A device, replaces the DMA patterns with a single |
| 851 | * patten, and triggers device functionality B. |
| 852 | */ |
| 853 | static size_t generic_fuzz_crossover(const uint8_t *data1, size_t size1, const |
| 854 | uint8_t *data2, size_t size2, uint8_t *out, |
| 855 | size_t max_out_size, unsigned int seed) |
| 856 | { |
| 857 | size_t copy_len = 0, size = 0; |
| 858 | |
| 859 | /* Check that we have enough space for data1 and at least part of data2 */ |
| 860 | if (max_out_size <= size1 + strlen(SEPARATOR) * 3 + 2) { |
| 861 | return 0; |
| 862 | } |
| 863 | |
| 864 | /* Copy_Len in the first input */ |
| 865 | copy_len = size1; |
| 866 | memcpy(out + size, data1, copy_len); |
| 867 | size += copy_len; |
| 868 | max_out_size -= copy_len; |
| 869 | |
| 870 | /* Append a separator */ |
| 871 | copy_len = strlen(SEPARATOR); |
| 872 | memcpy(out + size, SEPARATOR, copy_len); |
| 873 | size += copy_len; |
| 874 | max_out_size -= copy_len; |
| 875 | |
| 876 | /* Clear out the DMA Patterns */ |
| 877 | copy_len = 1; |
| 878 | if (copy_len) { |
| 879 | out[size] = OP_CLEAR_DMA_PATTERNS; |
| 880 | } |
| 881 | size += copy_len; |
| 882 | max_out_size -= copy_len; |
| 883 | |
| 884 | /* Append a separator */ |
| 885 | copy_len = strlen(SEPARATOR); |
| 886 | memcpy(out + size, SEPARATOR, copy_len); |
| 887 | size += copy_len; |
| 888 | max_out_size -= copy_len; |
| 889 | |
| 890 | /* Disable PCI ops. Assume data1 took care of setting up PCI */ |
| 891 | copy_len = 1; |
| 892 | if (copy_len) { |
| 893 | out[size] = OP_DISABLE_PCI; |
| 894 | } |
| 895 | size += copy_len; |
| 896 | max_out_size -= copy_len; |
| 897 | |
| 898 | /* Append a separator */ |
| 899 | copy_len = strlen(SEPARATOR); |
| 900 | memcpy(out + size, SEPARATOR, copy_len); |
| 901 | size += copy_len; |
| 902 | max_out_size -= copy_len; |
| 903 | |
| 904 | /* Copy_Len over the second input */ |
| 905 | copy_len = MIN(size2, max_out_size); |
| 906 | memcpy(out + size, data2, copy_len); |
| 907 | size += copy_len; |
| 908 | max_out_size -= copy_len; |
| 909 | |
| 910 | return size; |
| 911 | } |
| 912 | |
| 913 | |
Alexander Bulekov | da9bf53 | 2020-10-23 11:07:31 -0400 | [diff] [blame] | 914 | static GString *generic_fuzz_cmdline(FuzzTarget *t) |
| 915 | { |
| 916 | GString *cmd_line = g_string_new(TARGET_NAME); |
| 917 | if (!getenv("QEMU_FUZZ_ARGS")) { |
| 918 | usage(); |
| 919 | } |
| 920 | g_string_append_printf(cmd_line, " -display none \ |
| 921 | -machine accel=qtest, \ |
| 922 | -m 512M %s ", getenv("QEMU_FUZZ_ARGS")); |
| 923 | return cmd_line; |
| 924 | } |
| 925 | |
Alexander Bulekov | 7fdb505 | 2020-10-23 11:07:44 -0400 | [diff] [blame] | 926 | static GString *generic_fuzz_predefined_config_cmdline(FuzzTarget *t) |
| 927 | { |
Alexander Bulekov | 8630b43 | 2021-01-17 18:09:22 -0500 | [diff] [blame] | 928 | gchar *args; |
Alexander Bulekov | 7fdb505 | 2020-10-23 11:07:44 -0400 | [diff] [blame] | 929 | const generic_fuzz_config *config; |
| 930 | g_assert(t->opaque); |
| 931 | |
| 932 | config = t->opaque; |
Bin Meng | a47ea61 | 2022-08-24 17:39:39 +0800 | [diff] [blame] | 933 | g_setenv("QEMU_AVOID_DOUBLE_FETCH", "1", 1); |
Alexander Bulekov | 8630b43 | 2021-01-17 18:09:22 -0500 | [diff] [blame] | 934 | if (config->argfunc) { |
| 935 | args = config->argfunc(); |
Bin Meng | a47ea61 | 2022-08-24 17:39:39 +0800 | [diff] [blame] | 936 | g_setenv("QEMU_FUZZ_ARGS", args, 1); |
Alexander Bulekov | 8630b43 | 2021-01-17 18:09:22 -0500 | [diff] [blame] | 937 | g_free(args); |
| 938 | } else { |
| 939 | g_assert_nonnull(config->args); |
Bin Meng | a47ea61 | 2022-08-24 17:39:39 +0800 | [diff] [blame] | 940 | g_setenv("QEMU_FUZZ_ARGS", config->args, 1); |
Alexander Bulekov | 8630b43 | 2021-01-17 18:09:22 -0500 | [diff] [blame] | 941 | } |
Bin Meng | a47ea61 | 2022-08-24 17:39:39 +0800 | [diff] [blame] | 942 | g_setenv("QEMU_FUZZ_OBJECTS", config->objects, 1); |
Alexander Bulekov | 7fdb505 | 2020-10-23 11:07:44 -0400 | [diff] [blame] | 943 | return generic_fuzz_cmdline(t); |
| 944 | } |
| 945 | |
Alexander Bulekov | da9bf53 | 2020-10-23 11:07:31 -0400 | [diff] [blame] | 946 | static void register_generic_fuzz_targets(void) |
| 947 | { |
| 948 | fuzz_add_target(&(FuzzTarget){ |
| 949 | .name = "generic-fuzz", |
| 950 | .description = "Fuzz based on any qemu command-line args. ", |
| 951 | .get_init_cmdline = generic_fuzz_cmdline, |
| 952 | .pre_fuzz = generic_pre_fuzz, |
| 953 | .fuzz = generic_fuzz, |
Alexander Bulekov | a253932 | 2020-10-23 11:07:38 -0400 | [diff] [blame] | 954 | .crossover = generic_fuzz_crossover |
Alexander Bulekov | da9bf53 | 2020-10-23 11:07:31 -0400 | [diff] [blame] | 955 | }); |
Alexander Bulekov | 7fdb505 | 2020-10-23 11:07:44 -0400 | [diff] [blame] | 956 | |
| 957 | GString *name; |
| 958 | const generic_fuzz_config *config; |
| 959 | |
| 960 | for (int i = 0; |
| 961 | i < sizeof(predefined_configs) / sizeof(generic_fuzz_config); |
| 962 | i++) { |
| 963 | config = predefined_configs + i; |
| 964 | name = g_string_new("generic-fuzz"); |
| 965 | g_string_append_printf(name, "-%s", config->name); |
| 966 | fuzz_add_target(&(FuzzTarget){ |
| 967 | .name = name->str, |
| 968 | .description = "Predefined generic-fuzz config.", |
| 969 | .get_init_cmdline = generic_fuzz_predefined_config_cmdline, |
| 970 | .pre_fuzz = generic_pre_fuzz, |
| 971 | .fuzz = generic_fuzz, |
| 972 | .crossover = generic_fuzz_crossover, |
| 973 | .opaque = (void *)config |
| 974 | }); |
| 975 | } |
Alexander Bulekov | da9bf53 | 2020-10-23 11:07:31 -0400 | [diff] [blame] | 976 | } |
| 977 | |
| 978 | fuzz_target_init(register_generic_fuzz_targets); |