Philippe Mathieu-Daudé | e21b551 | 2019-07-01 17:26:21 +0100 | [diff] [blame] | 1 | /* |
| 2 | * ARM TLB (Translation lookaside buffer) helpers. |
| 3 | * |
| 4 | * This code is licensed under the GNU GPL v2 or later. |
| 5 | * |
| 6 | * SPDX-License-Identifier: GPL-2.0-or-later |
| 7 | */ |
| 8 | #include "qemu/osdep.h" |
| 9 | #include "cpu.h" |
| 10 | #include "internals.h" |
| 11 | #include "exec/exec-all.h" |
| 12 | |
Philippe Mathieu-Daudé | e21b551 | 2019-07-01 17:26:21 +0100 | [diff] [blame] | 13 | static inline uint32_t merge_syn_data_abort(uint32_t template_syn, |
| 14 | unsigned int target_el, |
| 15 | bool same_el, bool ea, |
| 16 | bool s1ptw, bool is_write, |
| 17 | int fsc) |
| 18 | { |
| 19 | uint32_t syn; |
| 20 | |
| 21 | /* |
| 22 | * ISV is only set for data aborts routed to EL2 and |
| 23 | * never for stage-1 page table walks faulting on stage 2. |
| 24 | * |
| 25 | * Furthermore, ISV is only set for certain kinds of load/stores. |
| 26 | * If the template syndrome does not have ISV set, we should leave |
| 27 | * it cleared. |
| 28 | * |
| 29 | * See ARMv8 specs, D7-1974: |
| 30 | * ISS encoding for an exception from a Data Abort, the |
| 31 | * ISV field. |
| 32 | */ |
| 33 | if (!(template_syn & ARM_EL_ISV) || target_el != 2 || s1ptw) { |
Dongjiu Geng | e24fd07 | 2020-05-12 11:06:08 +0800 | [diff] [blame] | 34 | syn = syn_data_abort_no_iss(same_el, 0, |
Philippe Mathieu-Daudé | e21b551 | 2019-07-01 17:26:21 +0100 | [diff] [blame] | 35 | ea, 0, s1ptw, is_write, fsc); |
| 36 | } else { |
| 37 | /* |
| 38 | * Fields: IL, ISV, SAS, SSE, SRT, SF and AR come from the template |
| 39 | * syndrome created at translation time. |
| 40 | * Now we create the runtime syndrome with the remaining fields. |
| 41 | */ |
| 42 | syn = syn_data_abort_with_iss(same_el, |
| 43 | 0, 0, 0, 0, 0, |
| 44 | ea, 0, s1ptw, is_write, fsc, |
Jeff Kubascik | 30d5448 | 2020-01-17 14:09:31 +0000 | [diff] [blame] | 45 | true); |
Philippe Mathieu-Daudé | e21b551 | 2019-07-01 17:26:21 +0100 | [diff] [blame] | 46 | /* Merge the runtime syndrome with the template syndrome. */ |
| 47 | syn |= template_syn; |
| 48 | } |
| 49 | return syn; |
| 50 | } |
| 51 | |
| 52 | static void QEMU_NORETURN arm_deliver_fault(ARMCPU *cpu, vaddr addr, |
| 53 | MMUAccessType access_type, |
| 54 | int mmu_idx, ARMMMUFaultInfo *fi) |
| 55 | { |
| 56 | CPUARMState *env = &cpu->env; |
| 57 | int target_el; |
| 58 | bool same_el; |
| 59 | uint32_t syn, exc, fsr, fsc; |
| 60 | ARMMMUIdx arm_mmu_idx = core_to_arm_mmu_idx(env, mmu_idx); |
| 61 | |
| 62 | target_el = exception_target_el(env); |
| 63 | if (fi->stage2) { |
| 64 | target_el = 2; |
| 65 | env->cp15.hpfar_el2 = extract64(fi->s2addr, 12, 47) << 4; |
| 66 | } |
| 67 | same_el = (arm_current_el(env) == target_el); |
| 68 | |
| 69 | if (target_el == 2 || arm_el_is_aa64(env, target_el) || |
| 70 | arm_s1_regime_using_lpae_format(env, arm_mmu_idx)) { |
| 71 | /* |
| 72 | * LPAE format fault status register : bottom 6 bits are |
| 73 | * status code in the same form as needed for syndrome |
| 74 | */ |
| 75 | fsr = arm_fi_to_lfsc(fi); |
| 76 | fsc = extract32(fsr, 0, 6); |
| 77 | } else { |
| 78 | fsr = arm_fi_to_sfsc(fi); |
| 79 | /* |
| 80 | * Short format FSR : this fault will never actually be reported |
| 81 | * to an EL that uses a syndrome register. Use a (currently) |
| 82 | * reserved FSR code in case the constructed syndrome does leak |
| 83 | * into the guest somehow. |
| 84 | */ |
| 85 | fsc = 0x3f; |
| 86 | } |
| 87 | |
| 88 | if (access_type == MMU_INST_FETCH) { |
| 89 | syn = syn_insn_abort(same_el, fi->ea, fi->s1ptw, fsc); |
| 90 | exc = EXCP_PREFETCH_ABORT; |
| 91 | } else { |
| 92 | syn = merge_syn_data_abort(env->exception.syndrome, target_el, |
| 93 | same_el, fi->ea, fi->s1ptw, |
| 94 | access_type == MMU_DATA_STORE, |
| 95 | fsc); |
| 96 | if (access_type == MMU_DATA_STORE |
| 97 | && arm_feature(env, ARM_FEATURE_V6)) { |
| 98 | fsr |= (1 << 11); |
| 99 | } |
| 100 | exc = EXCP_DATA_ABORT; |
| 101 | } |
| 102 | |
| 103 | env->exception.vaddress = addr; |
| 104 | env->exception.fsr = fsr; |
| 105 | raise_exception(env, exc, syn, target_el); |
| 106 | } |
| 107 | |
| 108 | /* Raise a data fault alignment exception for the specified virtual address */ |
| 109 | void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr, |
| 110 | MMUAccessType access_type, |
| 111 | int mmu_idx, uintptr_t retaddr) |
| 112 | { |
| 113 | ARMCPU *cpu = ARM_CPU(cs); |
| 114 | ARMMMUFaultInfo fi = {}; |
| 115 | |
| 116 | /* now we have a real cpu fault */ |
| 117 | cpu_restore_state(cs, retaddr, true); |
| 118 | |
| 119 | fi.type = ARMFault_Alignment; |
| 120 | arm_deliver_fault(cpu, vaddr, access_type, mmu_idx, &fi); |
| 121 | } |
| 122 | |
Richard Henderson | 0d1762e | 2020-06-25 20:31:12 -0700 | [diff] [blame] | 123 | #if !defined(CONFIG_USER_ONLY) |
| 124 | |
Philippe Mathieu-Daudé | e21b551 | 2019-07-01 17:26:21 +0100 | [diff] [blame] | 125 | /* |
| 126 | * arm_cpu_do_transaction_failed: handle a memory system error response |
| 127 | * (eg "no device/memory present at address") by raising an external abort |
| 128 | * exception |
| 129 | */ |
| 130 | void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr, |
| 131 | vaddr addr, unsigned size, |
| 132 | MMUAccessType access_type, |
| 133 | int mmu_idx, MemTxAttrs attrs, |
| 134 | MemTxResult response, uintptr_t retaddr) |
| 135 | { |
| 136 | ARMCPU *cpu = ARM_CPU(cs); |
| 137 | ARMMMUFaultInfo fi = {}; |
| 138 | |
| 139 | /* now we have a real cpu fault */ |
| 140 | cpu_restore_state(cs, retaddr, true); |
| 141 | |
| 142 | fi.ea = arm_extabort_type(response); |
| 143 | fi.type = ARMFault_SyncExternal; |
| 144 | arm_deliver_fault(cpu, addr, access_type, mmu_idx, &fi); |
| 145 | } |
| 146 | |
| 147 | #endif /* !defined(CONFIG_USER_ONLY) */ |
| 148 | |
| 149 | bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size, |
| 150 | MMUAccessType access_type, int mmu_idx, |
| 151 | bool probe, uintptr_t retaddr) |
| 152 | { |
| 153 | ARMCPU *cpu = ARM_CPU(cs); |
| 154 | |
| 155 | #ifdef CONFIG_USER_ONLY |
| 156 | cpu->env.exception.vaddress = address; |
| 157 | if (access_type == MMU_INST_FETCH) { |
| 158 | cs->exception_index = EXCP_PREFETCH_ABORT; |
| 159 | } else { |
| 160 | cs->exception_index = EXCP_DATA_ABORT; |
| 161 | } |
| 162 | cpu_loop_exit_restore(cs, retaddr); |
| 163 | #else |
| 164 | hwaddr phys_addr; |
| 165 | target_ulong page_size; |
| 166 | int prot, ret; |
| 167 | MemTxAttrs attrs = {}; |
| 168 | ARMMMUFaultInfo fi = {}; |
Richard Henderson | 7e98e21 | 2020-06-25 20:31:39 -0700 | [diff] [blame] | 169 | ARMCacheAttrs cacheattrs = {}; |
Philippe Mathieu-Daudé | e21b551 | 2019-07-01 17:26:21 +0100 | [diff] [blame] | 170 | |
| 171 | /* |
| 172 | * Walk the page table and (if the mapping exists) add the page |
| 173 | * to the TLB. On success, return true. Otherwise, if probing, |
| 174 | * return false. Otherwise populate fsr with ARM DFSR/IFSR fault |
| 175 | * register format, and signal the fault. |
| 176 | */ |
| 177 | ret = get_phys_addr(&cpu->env, address, access_type, |
| 178 | core_to_arm_mmu_idx(&cpu->env, mmu_idx), |
Richard Henderson | 7e98e21 | 2020-06-25 20:31:39 -0700 | [diff] [blame] | 179 | &phys_addr, &attrs, &prot, &page_size, |
| 180 | &fi, &cacheattrs); |
Philippe Mathieu-Daudé | e21b551 | 2019-07-01 17:26:21 +0100 | [diff] [blame] | 181 | if (likely(!ret)) { |
| 182 | /* |
| 183 | * Map a single [sub]page. Regions smaller than our declared |
| 184 | * target page size are handled specially, so for those we |
| 185 | * pass in the exact addresses. |
| 186 | */ |
| 187 | if (page_size >= TARGET_PAGE_SIZE) { |
| 188 | phys_addr &= TARGET_PAGE_MASK; |
| 189 | address &= TARGET_PAGE_MASK; |
| 190 | } |
Richard Henderson | 337a03f | 2020-06-25 20:31:40 -0700 | [diff] [blame^] | 191 | /* Notice and record tagged memory. */ |
| 192 | if (cpu_isar_feature(aa64_mte, cpu) && cacheattrs.attrs == 0xf0) { |
| 193 | arm_tlb_mte_tagged(&attrs) = true; |
| 194 | } |
| 195 | |
Philippe Mathieu-Daudé | e21b551 | 2019-07-01 17:26:21 +0100 | [diff] [blame] | 196 | tlb_set_page_with_attrs(cs, address, phys_addr, attrs, |
| 197 | prot, mmu_idx, page_size); |
| 198 | return true; |
| 199 | } else if (probe) { |
| 200 | return false; |
| 201 | } else { |
| 202 | /* now we have a real cpu fault */ |
| 203 | cpu_restore_state(cs, retaddr, true); |
| 204 | arm_deliver_fault(cpu, address, access_type, mmu_idx, &fi); |
| 205 | } |
| 206 | #endif |
| 207 | } |