Tom Musta | 72ac97c | 2014-04-21 15:54:45 -0500 | [diff] [blame] | 1 | /* Decimal 64-bit format module for the decNumber C Library. |
| 2 | Copyright (C) 2005, 2007 Free Software Foundation, Inc. |
| 3 | Contributed by IBM Corporation. Author Mike Cowlishaw. |
| 4 | |
| 5 | This file is part of GCC. |
| 6 | |
| 7 | GCC is free software; you can redistribute it and/or modify it under |
| 8 | the terms of the GNU General Public License as published by the Free |
| 9 | Software Foundation; either version 2, or (at your option) any later |
| 10 | version. |
| 11 | |
| 12 | In addition to the permissions in the GNU General Public License, |
| 13 | the Free Software Foundation gives you unlimited permission to link |
| 14 | the compiled version of this file into combinations with other |
| 15 | programs, and to distribute those combinations without any |
| 16 | restriction coming from the use of this file. (The General Public |
| 17 | License restrictions do apply in other respects; for example, they |
| 18 | cover modification of the file, and distribution when not linked |
| 19 | into a combine executable.) |
| 20 | |
| 21 | GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| 22 | WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 23 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 24 | for more details. |
| 25 | |
| 26 | You should have received a copy of the GNU General Public License |
| 27 | along with GCC; see the file COPYING. If not, write to the Free |
| 28 | Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA |
| 29 | 02110-1301, USA. */ |
| 30 | |
| 31 | /* ------------------------------------------------------------------ */ |
| 32 | /* Decimal 64-bit format module */ |
| 33 | /* ------------------------------------------------------------------ */ |
| 34 | /* This module comprises the routines for decimal64 format numbers. */ |
| 35 | /* Conversions are supplied to and from decNumber and String. */ |
| 36 | /* */ |
| 37 | /* This is used when decNumber provides operations, either for all */ |
| 38 | /* operations or as a proxy between decNumber and decSingle. */ |
| 39 | /* */ |
| 40 | /* Error handling is the same as decNumber (qv.). */ |
| 41 | /* ------------------------------------------------------------------ */ |
Peter Maydell | 7a4e543 | 2016-02-09 11:02:46 +0000 | [diff] [blame] | 42 | #include "qemu/osdep.h" |
Tom Musta | 72ac97c | 2014-04-21 15:54:45 -0500 | [diff] [blame] | 43 | |
Tom Musta | 0f2d373 | 2014-04-21 15:54:47 -0500 | [diff] [blame] | 44 | #include "libdecnumber/dconfig.h" |
Tom Musta | 72ac97c | 2014-04-21 15:54:45 -0500 | [diff] [blame] | 45 | #define DECNUMDIGITS 16 /* make decNumbers with space for 16 */ |
Tom Musta | 0f2d373 | 2014-04-21 15:54:47 -0500 | [diff] [blame] | 46 | #include "libdecnumber/decNumber.h" |
| 47 | #include "libdecnumber/decNumberLocal.h" |
| 48 | #include "libdecnumber/dpd/decimal64.h" |
Tom Musta | 72ac97c | 2014-04-21 15:54:45 -0500 | [diff] [blame] | 49 | |
| 50 | /* Utility routines and tables [in decimal64.c]; externs for C++ */ |
| 51 | extern const uInt COMBEXP[32], COMBMSD[32]; |
Tom Musta | 72ac97c | 2014-04-21 15:54:45 -0500 | [diff] [blame] | 52 | extern const uByte BIN2CHAR[4001]; |
| 53 | |
| 54 | extern void decDigitsFromDPD(decNumber *, const uInt *, Int); |
| 55 | extern void decDigitsToDPD(const decNumber *, uInt *, Int); |
| 56 | |
| 57 | #if DECTRACE || DECCHECK |
| 58 | void decimal64Show(const decimal64 *); /* for debug */ |
| 59 | extern void decNumberShow(const decNumber *); /* .. */ |
| 60 | #endif |
| 61 | |
| 62 | /* Useful macro */ |
| 63 | /* Clear a structure (e.g., a decNumber) */ |
| 64 | #define DEC_clear(d) memset(d, 0, sizeof(*d)) |
| 65 | |
| 66 | /* define and include the tables to use for conversions */ |
| 67 | #define DEC_BIN2CHAR 1 |
| 68 | #define DEC_DPD2BIN 1 |
| 69 | #define DEC_BIN2DPD 1 /* used for all sizes */ |
Tom Musta | 0f2d373 | 2014-04-21 15:54:47 -0500 | [diff] [blame] | 70 | #include "libdecnumber/decDPD.h" |
Tom Musta | 72ac97c | 2014-04-21 15:54:45 -0500 | [diff] [blame] | 71 | |
| 72 | /* ------------------------------------------------------------------ */ |
| 73 | /* decimal64FromNumber -- convert decNumber to decimal64 */ |
| 74 | /* */ |
| 75 | /* ds is the target decimal64 */ |
| 76 | /* dn is the source number (assumed valid) */ |
| 77 | /* set is the context, used only for reporting errors */ |
| 78 | /* */ |
| 79 | /* The set argument is used only for status reporting and for the */ |
| 80 | /* rounding mode (used if the coefficient is more than DECIMAL64_Pmax */ |
| 81 | /* digits or an overflow is detected). If the exponent is out of the */ |
| 82 | /* valid range then Overflow or Underflow will be raised. */ |
| 83 | /* After Underflow a subnormal result is possible. */ |
| 84 | /* */ |
| 85 | /* DEC_Clamped is set if the number has to be 'folded down' to fit, */ |
| 86 | /* by reducing its exponent and multiplying the coefficient by a */ |
| 87 | /* power of ten, or if the exponent on a zero had to be clamped. */ |
| 88 | /* ------------------------------------------------------------------ */ |
| 89 | decimal64 * decimal64FromNumber(decimal64 *d64, const decNumber *dn, |
| 90 | decContext *set) { |
| 91 | uInt status=0; /* status accumulator */ |
| 92 | Int ae; /* adjusted exponent */ |
| 93 | decNumber dw; /* work */ |
| 94 | decContext dc; /* .. */ |
| 95 | uInt *pu; /* .. */ |
| 96 | uInt comb, exp; /* .. */ |
| 97 | uInt targar[2]={0, 0}; /* target 64-bit */ |
| 98 | #define targhi targar[1] /* name the word with the sign */ |
| 99 | #define targlo targar[0] /* and the other */ |
| 100 | |
| 101 | /* If the number has too many digits, or the exponent could be */ |
| 102 | /* out of range then reduce the number under the appropriate */ |
| 103 | /* constraints. This could push the number to Infinity or zero, */ |
| 104 | /* so this check and rounding must be done before generating the */ |
| 105 | /* decimal64] */ |
| 106 | ae=dn->exponent+dn->digits-1; /* [0 if special] */ |
| 107 | if (dn->digits>DECIMAL64_Pmax /* too many digits */ |
| 108 | || ae>DECIMAL64_Emax /* likely overflow */ |
| 109 | || ae<DECIMAL64_Emin) { /* likely underflow */ |
| 110 | decContextDefault(&dc, DEC_INIT_DECIMAL64); /* [no traps] */ |
| 111 | dc.round=set->round; /* use supplied rounding */ |
| 112 | decNumberPlus(&dw, dn, &dc); /* (round and check) */ |
| 113 | /* [this changes -0 to 0, so enforce the sign...] */ |
| 114 | dw.bits|=dn->bits&DECNEG; |
| 115 | status=dc.status; /* save status */ |
| 116 | dn=&dw; /* use the work number */ |
| 117 | } /* maybe out of range */ |
| 118 | |
| 119 | if (dn->bits&DECSPECIAL) { /* a special value */ |
| 120 | if (dn->bits&DECINF) targhi=DECIMAL_Inf<<24; |
| 121 | else { /* sNaN or qNaN */ |
| 122 | if ((*dn->lsu!=0 || dn->digits>1) /* non-zero coefficient */ |
| 123 | && (dn->digits<DECIMAL64_Pmax)) { /* coefficient fits */ |
| 124 | decDigitsToDPD(dn, targar, 0); |
| 125 | } |
| 126 | if (dn->bits&DECNAN) targhi|=DECIMAL_NaN<<24; |
| 127 | else targhi|=DECIMAL_sNaN<<24; |
| 128 | } /* a NaN */ |
| 129 | } /* special */ |
| 130 | |
| 131 | else { /* is finite */ |
| 132 | if (decNumberIsZero(dn)) { /* is a zero */ |
| 133 | /* set and clamp exponent */ |
| 134 | if (dn->exponent<-DECIMAL64_Bias) { |
| 135 | exp=0; /* low clamp */ |
| 136 | status|=DEC_Clamped; |
| 137 | } |
| 138 | else { |
| 139 | exp=dn->exponent+DECIMAL64_Bias; /* bias exponent */ |
| 140 | if (exp>DECIMAL64_Ehigh) { /* top clamp */ |
| 141 | exp=DECIMAL64_Ehigh; |
| 142 | status|=DEC_Clamped; |
| 143 | } |
| 144 | } |
| 145 | comb=(exp>>5) & 0x18; /* msd=0, exp top 2 bits .. */ |
| 146 | } |
| 147 | else { /* non-zero finite number */ |
| 148 | uInt msd; /* work */ |
| 149 | Int pad=0; /* coefficient pad digits */ |
| 150 | |
| 151 | /* the dn is known to fit, but it may need to be padded */ |
| 152 | exp=(uInt)(dn->exponent+DECIMAL64_Bias); /* bias exponent */ |
| 153 | if (exp>DECIMAL64_Ehigh) { /* fold-down case */ |
| 154 | pad=exp-DECIMAL64_Ehigh; |
| 155 | exp=DECIMAL64_Ehigh; /* [to maximum] */ |
| 156 | status|=DEC_Clamped; |
| 157 | } |
| 158 | |
| 159 | /* fastpath common case */ |
| 160 | if (DECDPUN==3 && pad==0) { |
| 161 | uInt dpd[6]={0,0,0,0,0,0}; |
| 162 | uInt i; |
| 163 | Int d=dn->digits; |
| 164 | for (i=0; d>0; i++, d-=3) dpd[i]=BIN2DPD[dn->lsu[i]]; |
| 165 | targlo =dpd[0]; |
| 166 | targlo|=dpd[1]<<10; |
| 167 | targlo|=dpd[2]<<20; |
| 168 | if (dn->digits>6) { |
| 169 | targlo|=dpd[3]<<30; |
| 170 | targhi =dpd[3]>>2; |
| 171 | targhi|=dpd[4]<<8; |
| 172 | } |
| 173 | msd=dpd[5]; /* [did not really need conversion] */ |
| 174 | } |
| 175 | else { /* general case */ |
| 176 | decDigitsToDPD(dn, targar, pad); |
| 177 | /* save and clear the top digit */ |
| 178 | msd=targhi>>18; |
| 179 | targhi&=0x0003ffff; |
| 180 | } |
| 181 | |
| 182 | /* create the combination field */ |
| 183 | if (msd>=8) comb=0x18 | ((exp>>7) & 0x06) | (msd & 0x01); |
| 184 | else comb=((exp>>5) & 0x18) | msd; |
| 185 | } |
| 186 | targhi|=comb<<26; /* add combination field .. */ |
| 187 | targhi|=(exp&0xff)<<18; /* .. and exponent continuation */ |
| 188 | } /* finite */ |
| 189 | |
| 190 | if (dn->bits&DECNEG) targhi|=0x80000000; /* add sign bit */ |
| 191 | |
| 192 | /* now write to storage; this is now always endian */ |
| 193 | pu=(uInt *)d64->bytes; /* overlay */ |
| 194 | if (DECLITEND) { |
| 195 | pu[0]=targar[0]; /* directly store the low int */ |
| 196 | pu[1]=targar[1]; /* then the high int */ |
| 197 | } |
| 198 | else { |
| 199 | pu[0]=targar[1]; /* directly store the high int */ |
| 200 | pu[1]=targar[0]; /* then the low int */ |
| 201 | } |
| 202 | |
| 203 | if (status!=0) decContextSetStatus(set, status); /* pass on status */ |
| 204 | /* decimal64Show(d64); */ |
| 205 | return d64; |
| 206 | } /* decimal64FromNumber */ |
| 207 | |
| 208 | /* ------------------------------------------------------------------ */ |
| 209 | /* decimal64ToNumber -- convert decimal64 to decNumber */ |
| 210 | /* d64 is the source decimal64 */ |
| 211 | /* dn is the target number, with appropriate space */ |
| 212 | /* No error is possible. */ |
| 213 | /* ------------------------------------------------------------------ */ |
| 214 | decNumber * decimal64ToNumber(const decimal64 *d64, decNumber *dn) { |
| 215 | uInt msd; /* coefficient MSD */ |
| 216 | uInt exp; /* exponent top two bits */ |
| 217 | uInt comb; /* combination field */ |
| 218 | const uInt *pu; /* work */ |
| 219 | Int need; /* .. */ |
| 220 | uInt sourar[2]; /* source 64-bit */ |
| 221 | #define sourhi sourar[1] /* name the word with the sign */ |
| 222 | #define sourlo sourar[0] /* and the lower word */ |
| 223 | |
| 224 | /* load source from storage; this is endian */ |
| 225 | pu=(const uInt *)d64->bytes; /* overlay */ |
| 226 | if (DECLITEND) { |
| 227 | sourlo=pu[0]; /* directly load the low int */ |
| 228 | sourhi=pu[1]; /* then the high int */ |
| 229 | } |
| 230 | else { |
| 231 | sourhi=pu[0]; /* directly load the high int */ |
| 232 | sourlo=pu[1]; /* then the low int */ |
| 233 | } |
| 234 | |
| 235 | comb=(sourhi>>26)&0x1f; /* combination field */ |
| 236 | |
| 237 | decNumberZero(dn); /* clean number */ |
| 238 | if (sourhi&0x80000000) dn->bits=DECNEG; /* set sign if negative */ |
| 239 | |
| 240 | msd=COMBMSD[comb]; /* decode the combination field */ |
| 241 | exp=COMBEXP[comb]; /* .. */ |
| 242 | |
| 243 | if (exp==3) { /* is a special */ |
| 244 | if (msd==0) { |
| 245 | dn->bits|=DECINF; |
| 246 | return dn; /* no coefficient needed */ |
| 247 | } |
| 248 | else if (sourhi&0x02000000) dn->bits|=DECSNAN; |
| 249 | else dn->bits|=DECNAN; |
| 250 | msd=0; /* no top digit */ |
| 251 | } |
| 252 | else { /* is a finite number */ |
| 253 | dn->exponent=(exp<<8)+((sourhi>>18)&0xff)-DECIMAL64_Bias; /* unbiased */ |
| 254 | } |
| 255 | |
| 256 | /* get the coefficient */ |
| 257 | sourhi&=0x0003ffff; /* clean coefficient continuation */ |
| 258 | if (msd) { /* non-zero msd */ |
| 259 | sourhi|=msd<<18; /* prefix to coefficient */ |
| 260 | need=6; /* process 6 declets */ |
| 261 | } |
| 262 | else { /* msd=0 */ |
| 263 | if (!sourhi) { /* top word 0 */ |
| 264 | if (!sourlo) return dn; /* easy: coefficient is 0 */ |
| 265 | need=3; /* process at least 3 declets */ |
| 266 | if (sourlo&0xc0000000) need++; /* process 4 declets */ |
| 267 | /* [could reduce some more, here] */ |
| 268 | } |
| 269 | else { /* some bits in top word, msd=0 */ |
| 270 | need=4; /* process at least 4 declets */ |
| 271 | if (sourhi&0x0003ff00) need++; /* top declet!=0, process 5 */ |
| 272 | } |
| 273 | } /*msd=0 */ |
| 274 | |
| 275 | decDigitsFromDPD(dn, sourar, need); /* process declets */ |
| 276 | return dn; |
| 277 | } /* decimal64ToNumber */ |
| 278 | |
| 279 | |
| 280 | /* ------------------------------------------------------------------ */ |
| 281 | /* to-scientific-string -- conversion to numeric string */ |
| 282 | /* to-engineering-string -- conversion to numeric string */ |
| 283 | /* */ |
| 284 | /* decimal64ToString(d64, string); */ |
| 285 | /* decimal64ToEngString(d64, string); */ |
| 286 | /* */ |
| 287 | /* d64 is the decimal64 format number to convert */ |
| 288 | /* string is the string where the result will be laid out */ |
| 289 | /* */ |
| 290 | /* string must be at least 24 characters */ |
| 291 | /* */ |
| 292 | /* No error is possible, and no status can be set. */ |
| 293 | /* ------------------------------------------------------------------ */ |
| 294 | char * decimal64ToEngString(const decimal64 *d64, char *string){ |
| 295 | decNumber dn; /* work */ |
| 296 | decimal64ToNumber(d64, &dn); |
| 297 | decNumberToEngString(&dn, string); |
| 298 | return string; |
| 299 | } /* decimal64ToEngString */ |
| 300 | |
| 301 | char * decimal64ToString(const decimal64 *d64, char *string){ |
| 302 | uInt msd; /* coefficient MSD */ |
| 303 | Int exp; /* exponent top two bits or full */ |
| 304 | uInt comb; /* combination field */ |
| 305 | char *cstart; /* coefficient start */ |
| 306 | char *c; /* output pointer in string */ |
| 307 | const uInt *pu; /* work */ |
| 308 | char *s, *t; /* .. (source, target) */ |
| 309 | Int dpd; /* .. */ |
| 310 | Int pre, e; /* .. */ |
| 311 | const uByte *u; /* .. */ |
| 312 | |
| 313 | uInt sourar[2]; /* source 64-bit */ |
| 314 | #define sourhi sourar[1] /* name the word with the sign */ |
| 315 | #define sourlo sourar[0] /* and the lower word */ |
| 316 | |
| 317 | /* load source from storage; this is endian */ |
| 318 | pu=(const uInt *)d64->bytes; /* overlay */ |
| 319 | if (DECLITEND) { |
| 320 | sourlo=pu[0]; /* directly load the low int */ |
| 321 | sourhi=pu[1]; /* then the high int */ |
| 322 | } |
| 323 | else { |
| 324 | sourhi=pu[0]; /* directly load the high int */ |
| 325 | sourlo=pu[1]; /* then the low int */ |
| 326 | } |
| 327 | |
| 328 | c=string; /* where result will go */ |
| 329 | if (((Int)sourhi)<0) *c++='-'; /* handle sign */ |
| 330 | |
| 331 | comb=(sourhi>>26)&0x1f; /* combination field */ |
| 332 | msd=COMBMSD[comb]; /* decode the combination field */ |
| 333 | exp=COMBEXP[comb]; /* .. */ |
| 334 | |
| 335 | if (exp==3) { |
| 336 | if (msd==0) { /* infinity */ |
| 337 | strcpy(c, "Inf"); |
| 338 | strcpy(c+3, "inity"); |
| 339 | return string; /* easy */ |
| 340 | } |
| 341 | if (sourhi&0x02000000) *c++='s'; /* sNaN */ |
| 342 | strcpy(c, "NaN"); /* complete word */ |
| 343 | c+=3; /* step past */ |
| 344 | if (sourlo==0 && (sourhi&0x0003ffff)==0) return string; /* zero payload */ |
| 345 | /* otherwise drop through to add integer; set correct exp */ |
| 346 | exp=0; msd=0; /* setup for following code */ |
| 347 | } |
| 348 | else exp=(exp<<8)+((sourhi>>18)&0xff)-DECIMAL64_Bias; |
| 349 | |
| 350 | /* convert 16 digits of significand to characters */ |
| 351 | cstart=c; /* save start of coefficient */ |
| 352 | if (msd) *c++='0'+(char)msd; /* non-zero most significant digit */ |
| 353 | |
| 354 | /* Now decode the declets. After extracting each one, it is */ |
| 355 | /* decoded to binary and then to a 4-char sequence by table lookup; */ |
| 356 | /* the 4-chars are a 1-char length (significant digits, except 000 */ |
| 357 | /* has length 0). This allows us to left-align the first declet */ |
| 358 | /* with non-zero content, then remaining ones are full 3-char */ |
| 359 | /* length. We use fixed-length memcpys because variable-length */ |
| 360 | /* causes a subroutine call in GCC. (These are length 4 for speed */ |
| 361 | /* and are safe because the array has an extra terminator byte.) */ |
| 362 | #define dpd2char u=&BIN2CHAR[DPD2BIN[dpd]*4]; \ |
| 363 | if (c!=cstart) {memcpy(c, u+1, 4); c+=3;} \ |
| 364 | else if (*u) {memcpy(c, u+4-*u, 4); c+=*u;} |
| 365 | |
| 366 | dpd=(sourhi>>8)&0x3ff; /* declet 1 */ |
| 367 | dpd2char; |
| 368 | dpd=((sourhi&0xff)<<2) | (sourlo>>30); /* declet 2 */ |
| 369 | dpd2char; |
| 370 | dpd=(sourlo>>20)&0x3ff; /* declet 3 */ |
| 371 | dpd2char; |
| 372 | dpd=(sourlo>>10)&0x3ff; /* declet 4 */ |
| 373 | dpd2char; |
| 374 | dpd=(sourlo)&0x3ff; /* declet 5 */ |
| 375 | dpd2char; |
| 376 | |
| 377 | if (c==cstart) *c++='0'; /* all zeros -- make 0 */ |
| 378 | |
| 379 | if (exp==0) { /* integer or NaN case -- easy */ |
| 380 | *c='\0'; /* terminate */ |
| 381 | return string; |
| 382 | } |
| 383 | |
| 384 | /* non-0 exponent */ |
| 385 | e=0; /* assume no E */ |
| 386 | pre=c-cstart+exp; |
| 387 | /* [here, pre-exp is the digits count (==1 for zero)] */ |
| 388 | if (exp>0 || pre<-5) { /* need exponential form */ |
| 389 | e=pre-1; /* calculate E value */ |
| 390 | pre=1; /* assume one digit before '.' */ |
| 391 | } /* exponential form */ |
| 392 | |
| 393 | /* modify the coefficient, adding 0s, '.', and E+nn as needed */ |
| 394 | s=c-1; /* source (LSD) */ |
| 395 | if (pre>0) { /* ddd.ddd (plain), perhaps with E */ |
| 396 | char *dotat=cstart+pre; |
| 397 | if (dotat<c) { /* if embedded dot needed... */ |
| 398 | t=c; /* target */ |
| 399 | for (; s>=dotat; s--, t--) *t=*s; /* open the gap; leave t at gap */ |
| 400 | *t='.'; /* insert the dot */ |
| 401 | c++; /* length increased by one */ |
| 402 | } |
| 403 | |
| 404 | /* finally add the E-part, if needed; it will never be 0, and has */ |
| 405 | /* a maximum length of 3 digits */ |
| 406 | if (e!=0) { |
| 407 | *c++='E'; /* starts with E */ |
| 408 | *c++='+'; /* assume positive */ |
| 409 | if (e<0) { |
| 410 | *(c-1)='-'; /* oops, need '-' */ |
| 411 | e=-e; /* uInt, please */ |
| 412 | } |
| 413 | u=&BIN2CHAR[e*4]; /* -> length byte */ |
| 414 | memcpy(c, u+4-*u, 4); /* copy fixed 4 characters [is safe] */ |
| 415 | c+=*u; /* bump pointer appropriately */ |
| 416 | } |
| 417 | *c='\0'; /* add terminator */ |
| 418 | /*printf("res %s\n", string); */ |
| 419 | return string; |
| 420 | } /* pre>0 */ |
| 421 | |
| 422 | /* -5<=pre<=0: here for plain 0.ddd or 0.000ddd forms (can never have E) */ |
| 423 | t=c+1-pre; |
| 424 | *(t+1)='\0'; /* can add terminator now */ |
| 425 | for (; s>=cstart; s--, t--) *t=*s; /* shift whole coefficient right */ |
| 426 | c=cstart; |
| 427 | *c++='0'; /* always starts with 0. */ |
| 428 | *c++='.'; |
| 429 | for (; pre<0; pre++) *c++='0'; /* add any 0's after '.' */ |
| 430 | /*printf("res %s\n", string); */ |
| 431 | return string; |
| 432 | } /* decimal64ToString */ |
| 433 | |
| 434 | /* ------------------------------------------------------------------ */ |
| 435 | /* to-number -- conversion from numeric string */ |
| 436 | /* */ |
| 437 | /* decimal64FromString(result, string, set); */ |
| 438 | /* */ |
| 439 | /* result is the decimal64 format number which gets the result of */ |
| 440 | /* the conversion */ |
| 441 | /* *string is the character string which should contain a valid */ |
| 442 | /* number (which may be a special value) */ |
| 443 | /* set is the context */ |
| 444 | /* */ |
| 445 | /* The context is supplied to this routine is used for error handling */ |
| 446 | /* (setting of status and traps) and for the rounding mode, only. */ |
| 447 | /* If an error occurs, the result will be a valid decimal64 NaN. */ |
| 448 | /* ------------------------------------------------------------------ */ |
| 449 | decimal64 * decimal64FromString(decimal64 *result, const char *string, |
| 450 | decContext *set) { |
| 451 | decContext dc; /* work */ |
| 452 | decNumber dn; /* .. */ |
| 453 | |
| 454 | decContextDefault(&dc, DEC_INIT_DECIMAL64); /* no traps, please */ |
| 455 | dc.round=set->round; /* use supplied rounding */ |
| 456 | |
| 457 | decNumberFromString(&dn, string, &dc); /* will round if needed */ |
| 458 | |
| 459 | decimal64FromNumber(result, &dn, &dc); |
| 460 | if (dc.status!=0) { /* something happened */ |
| 461 | decContextSetStatus(set, dc.status); /* .. pass it on */ |
| 462 | } |
| 463 | return result; |
| 464 | } /* decimal64FromString */ |
| 465 | |
| 466 | /* ------------------------------------------------------------------ */ |
| 467 | /* decimal64IsCanonical -- test whether encoding is canonical */ |
| 468 | /* d64 is the source decimal64 */ |
| 469 | /* returns 1 if the encoding of d64 is canonical, 0 otherwise */ |
| 470 | /* No error is possible. */ |
| 471 | /* ------------------------------------------------------------------ */ |
| 472 | uint32_t decimal64IsCanonical(const decimal64 *d64) { |
| 473 | decNumber dn; /* work */ |
| 474 | decimal64 canon; /* .. */ |
| 475 | decContext dc; /* .. */ |
| 476 | decContextDefault(&dc, DEC_INIT_DECIMAL64); |
| 477 | decimal64ToNumber(d64, &dn); |
| 478 | decimal64FromNumber(&canon, &dn, &dc);/* canon will now be canonical */ |
| 479 | return memcmp(d64, &canon, DECIMAL64_Bytes)==0; |
| 480 | } /* decimal64IsCanonical */ |
| 481 | |
| 482 | /* ------------------------------------------------------------------ */ |
| 483 | /* decimal64Canonical -- copy an encoding, ensuring it is canonical */ |
| 484 | /* d64 is the source decimal64 */ |
| 485 | /* result is the target (may be the same decimal64) */ |
| 486 | /* returns result */ |
| 487 | /* No error is possible. */ |
| 488 | /* ------------------------------------------------------------------ */ |
| 489 | decimal64 * decimal64Canonical(decimal64 *result, const decimal64 *d64) { |
| 490 | decNumber dn; /* work */ |
| 491 | decContext dc; /* .. */ |
| 492 | decContextDefault(&dc, DEC_INIT_DECIMAL64); |
| 493 | decimal64ToNumber(d64, &dn); |
| 494 | decimal64FromNumber(result, &dn, &dc);/* result will now be canonical */ |
| 495 | return result; |
| 496 | } /* decimal64Canonical */ |
| 497 | |
| 498 | #if DECTRACE || DECCHECK |
| 499 | /* Macros for accessing decimal64 fields. These assume the |
| 500 | argument is a reference (pointer) to the decimal64 structure, |
| 501 | and the decimal64 is in network byte order (big-endian) */ |
| 502 | /* Get sign */ |
| 503 | #define decimal64Sign(d) ((unsigned)(d)->bytes[0]>>7) |
| 504 | |
| 505 | /* Get combination field */ |
| 506 | #define decimal64Comb(d) (((d)->bytes[0] & 0x7c)>>2) |
| 507 | |
| 508 | /* Get exponent continuation [does not remove bias] */ |
| 509 | #define decimal64ExpCon(d) ((((d)->bytes[0] & 0x03)<<6) \ |
| 510 | | ((unsigned)(d)->bytes[1]>>2)) |
| 511 | |
| 512 | /* Set sign [this assumes sign previously 0] */ |
| 513 | #define decimal64SetSign(d, b) { \ |
| 514 | (d)->bytes[0]|=((unsigned)(b)<<7);} |
| 515 | |
| 516 | /* Set exponent continuation [does not apply bias] */ |
| 517 | /* This assumes range has been checked and exponent previously 0; */ |
| 518 | /* type of exponent must be unsigned */ |
| 519 | #define decimal64SetExpCon(d, e) { \ |
| 520 | (d)->bytes[0]|=(uint8_t)((e)>>6); \ |
| 521 | (d)->bytes[1]|=(uint8_t)(((e)&0x3F)<<2);} |
| 522 | |
| 523 | /* ------------------------------------------------------------------ */ |
| 524 | /* decimal64Show -- display a decimal64 in hexadecimal [debug aid] */ |
| 525 | /* d64 -- the number to show */ |
| 526 | /* ------------------------------------------------------------------ */ |
| 527 | /* Also shows sign/cob/expconfields extracted */ |
| 528 | void decimal64Show(const decimal64 *d64) { |
| 529 | char buf[DECIMAL64_Bytes*2+1]; |
| 530 | Int i, j=0; |
| 531 | |
| 532 | if (DECLITEND) { |
| 533 | for (i=0; i<DECIMAL64_Bytes; i++, j+=2) { |
| 534 | sprintf(&buf[j], "%02x", d64->bytes[7-i]); |
| 535 | } |
| 536 | printf(" D64> %s [S:%d Cb:%02x Ec:%02x] LittleEndian\n", buf, |
| 537 | d64->bytes[7]>>7, (d64->bytes[7]>>2)&0x1f, |
| 538 | ((d64->bytes[7]&0x3)<<6)| (d64->bytes[6]>>2)); |
| 539 | } |
| 540 | else { /* big-endian */ |
| 541 | for (i=0; i<DECIMAL64_Bytes; i++, j+=2) { |
| 542 | sprintf(&buf[j], "%02x", d64->bytes[i]); |
| 543 | } |
| 544 | printf(" D64> %s [S:%d Cb:%02x Ec:%02x] BigEndian\n", buf, |
| 545 | decimal64Sign(d64), decimal64Comb(d64), decimal64ExpCon(d64)); |
| 546 | } |
| 547 | } /* decimal64Show */ |
| 548 | #endif |
| 549 | |
| 550 | /* ================================================================== */ |
| 551 | /* Shared utility routines and tables */ |
| 552 | /* ================================================================== */ |
| 553 | /* define and include the conversion tables to use for shared code */ |
| 554 | #if DECDPUN==3 |
| 555 | #define DEC_DPD2BIN 1 |
| 556 | #else |
| 557 | #define DEC_DPD2BCD 1 |
| 558 | #endif |
Tom Musta | 0f2d373 | 2014-04-21 15:54:47 -0500 | [diff] [blame] | 559 | #include "libdecnumber/decDPD.h" |
Tom Musta | 72ac97c | 2014-04-21 15:54:45 -0500 | [diff] [blame] | 560 | |
| 561 | /* The maximum number of decNumberUnits needed for a working copy of */ |
| 562 | /* the units array is the ceiling of digits/DECDPUN, where digits is */ |
| 563 | /* the maximum number of digits in any of the formats for which this */ |
| 564 | /* is used. decimal128.h must not be included in this module, so, as */ |
| 565 | /* a very special case, that number is defined as a literal here. */ |
| 566 | #define DECMAX754 34 |
| 567 | #define DECMAXUNITS ((DECMAX754+DECDPUN-1)/DECDPUN) |
| 568 | |
| 569 | /* ------------------------------------------------------------------ */ |
| 570 | /* Combination field lookup tables (uInts to save measurable work) */ |
| 571 | /* */ |
| 572 | /* COMBEXP - 2-bit most-significant-bits of exponent */ |
| 573 | /* [11 if an Infinity or NaN] */ |
| 574 | /* COMBMSD - 4-bit most-significant-digit */ |
| 575 | /* [0=Infinity, 1=NaN if COMBEXP=11] */ |
| 576 | /* */ |
| 577 | /* Both are indexed by the 5-bit combination field (0-31) */ |
| 578 | /* ------------------------------------------------------------------ */ |
| 579 | const uInt COMBEXP[32]={0, 0, 0, 0, 0, 0, 0, 0, |
| 580 | 1, 1, 1, 1, 1, 1, 1, 1, |
| 581 | 2, 2, 2, 2, 2, 2, 2, 2, |
| 582 | 0, 0, 1, 1, 2, 2, 3, 3}; |
| 583 | const uInt COMBMSD[32]={0, 1, 2, 3, 4, 5, 6, 7, |
| 584 | 0, 1, 2, 3, 4, 5, 6, 7, |
| 585 | 0, 1, 2, 3, 4, 5, 6, 7, |
| 586 | 8, 9, 8, 9, 8, 9, 0, 1}; |
| 587 | |
| 588 | /* ------------------------------------------------------------------ */ |
| 589 | /* decDigitsToDPD -- pack coefficient into DPD form */ |
| 590 | /* */ |
| 591 | /* dn is the source number (assumed valid, max DECMAX754 digits) */ |
| 592 | /* targ is 1, 2, or 4-element uInt array, which the caller must */ |
| 593 | /* have cleared to zeros */ |
| 594 | /* shift is the number of 0 digits to add on the right (normally 0) */ |
| 595 | /* */ |
| 596 | /* The coefficient must be known small enough to fit. The full */ |
| 597 | /* coefficient is copied, including the leading 'odd' digit. This */ |
| 598 | /* digit is retrieved and packed into the combination field by the */ |
| 599 | /* caller. */ |
| 600 | /* */ |
| 601 | /* The target uInts are altered only as necessary to receive the */ |
| 602 | /* digits of the decNumber. When more than one uInt is needed, they */ |
| 603 | /* are filled from left to right (that is, the uInt at offset 0 will */ |
| 604 | /* end up with the least-significant digits). */ |
| 605 | /* */ |
| 606 | /* shift is used for 'fold-down' padding. */ |
| 607 | /* */ |
| 608 | /* No error is possible. */ |
| 609 | /* ------------------------------------------------------------------ */ |
| 610 | #if DECDPUN<=4 |
| 611 | /* Constant multipliers for divide-by-power-of five using reciprocal */ |
| 612 | /* multiply, after removing powers of 2 by shifting, and final shift */ |
| 613 | /* of 17 [we only need up to **4] */ |
| 614 | static const uInt multies[]={131073, 26215, 5243, 1049, 210}; |
| 615 | /* QUOT10 -- macro to return the quotient of unit u divided by 10**n */ |
| 616 | #define QUOT10(u, n) ((((uInt)(u)>>(n))*multies[n])>>17) |
| 617 | #endif |
| 618 | void decDigitsToDPD(const decNumber *dn, uInt *targ, Int shift) { |
| 619 | Int cut; /* work */ |
| 620 | Int n; /* output bunch counter */ |
| 621 | Int digits=dn->digits; /* digit countdown */ |
| 622 | uInt dpd; /* densely packed decimal value */ |
| 623 | uInt bin; /* binary value 0-999 */ |
| 624 | uInt *uout=targ; /* -> current output uInt */ |
| 625 | uInt uoff=0; /* -> current output offset [from right] */ |
| 626 | const Unit *inu=dn->lsu; /* -> current input unit */ |
| 627 | Unit uar[DECMAXUNITS]; /* working copy of units, iff shifted */ |
| 628 | #if DECDPUN!=3 /* not fast path */ |
| 629 | Unit in; /* current unit */ |
| 630 | #endif |
| 631 | |
| 632 | if (shift!=0) { /* shift towards most significant required */ |
| 633 | /* shift the units array to the left by pad digits and copy */ |
| 634 | /* [this code is a special case of decShiftToMost, which could */ |
| 635 | /* be used instead if exposed and the array were copied first] */ |
| 636 | const Unit *source; /* .. */ |
| 637 | Unit *target, *first; /* .. */ |
| 638 | uInt next=0; /* work */ |
| 639 | |
| 640 | source=dn->lsu+D2U(digits)-1; /* where msu comes from */ |
| 641 | target=uar+D2U(digits)-1+D2U(shift);/* where upper part of first cut goes */ |
| 642 | cut=DECDPUN-MSUDIGITS(shift); /* where to slice */ |
| 643 | if (cut==0) { /* unit-boundary case */ |
| 644 | for (; source>=dn->lsu; source--, target--) *target=*source; |
| 645 | } |
| 646 | else { |
| 647 | first=uar+D2U(digits+shift)-1; /* where msu will end up */ |
| 648 | for (; source>=dn->lsu; source--, target--) { |
| 649 | /* split the source Unit and accumulate remainder for next */ |
| 650 | #if DECDPUN<=4 |
| 651 | uInt quot=QUOT10(*source, cut); |
| 652 | uInt rem=*source-quot*DECPOWERS[cut]; |
| 653 | next+=quot; |
| 654 | #else |
| 655 | uInt rem=*source%DECPOWERS[cut]; |
| 656 | next+=*source/DECPOWERS[cut]; |
| 657 | #endif |
| 658 | if (target<=first) *target=(Unit)next; /* write to target iff valid */ |
| 659 | next=rem*DECPOWERS[DECDPUN-cut]; /* save remainder for next Unit */ |
| 660 | } |
| 661 | } /* shift-move */ |
| 662 | /* propagate remainder to one below and clear the rest */ |
| 663 | for (; target>=uar; target--) { |
| 664 | *target=(Unit)next; |
| 665 | next=0; |
| 666 | } |
| 667 | digits+=shift; /* add count (shift) of zeros added */ |
| 668 | inu=uar; /* use units in working array */ |
| 669 | } |
| 670 | |
| 671 | /* now densely pack the coefficient into DPD declets */ |
| 672 | |
| 673 | #if DECDPUN!=3 /* not fast path */ |
| 674 | in=*inu; /* current unit */ |
| 675 | cut=0; /* at lowest digit */ |
| 676 | bin=0; /* [keep compiler quiet] */ |
| 677 | #endif |
| 678 | |
| 679 | for(n=0; digits>0; n++) { /* each output bunch */ |
| 680 | #if DECDPUN==3 /* fast path, 3-at-a-time */ |
| 681 | bin=*inu; /* 3 digits ready for convert */ |
| 682 | digits-=3; /* [may go negative] */ |
| 683 | inu++; /* may need another */ |
| 684 | |
| 685 | #else /* must collect digit-by-digit */ |
| 686 | Unit dig; /* current digit */ |
| 687 | Int j; /* digit-in-declet count */ |
| 688 | for (j=0; j<3; j++) { |
| 689 | #if DECDPUN<=4 |
| 690 | Unit temp=(Unit)((uInt)(in*6554)>>16); |
| 691 | dig=(Unit)(in-X10(temp)); |
| 692 | in=temp; |
| 693 | #else |
| 694 | dig=in%10; |
| 695 | in=in/10; |
| 696 | #endif |
| 697 | if (j==0) bin=dig; |
| 698 | else if (j==1) bin+=X10(dig); |
| 699 | else /* j==2 */ bin+=X100(dig); |
| 700 | digits--; |
| 701 | if (digits==0) break; /* [also protects *inu below] */ |
| 702 | cut++; |
| 703 | if (cut==DECDPUN) {inu++; in=*inu; cut=0;} |
| 704 | } |
| 705 | #endif |
| 706 | /* here there are 3 digits in bin, or have used all input digits */ |
| 707 | |
| 708 | dpd=BIN2DPD[bin]; |
| 709 | |
| 710 | /* write declet to uInt array */ |
| 711 | *uout|=dpd<<uoff; |
| 712 | uoff+=10; |
| 713 | if (uoff<32) continue; /* no uInt boundary cross */ |
| 714 | uout++; |
| 715 | uoff-=32; |
| 716 | *uout|=dpd>>(10-uoff); /* collect top bits */ |
| 717 | } /* n declets */ |
| 718 | return; |
| 719 | } /* decDigitsToDPD */ |
| 720 | |
| 721 | /* ------------------------------------------------------------------ */ |
| 722 | /* decDigitsFromDPD -- unpack a format's coefficient */ |
| 723 | /* */ |
| 724 | /* dn is the target number, with 7, 16, or 34-digit space. */ |
| 725 | /* sour is a 1, 2, or 4-element uInt array containing only declets */ |
| 726 | /* declets is the number of (right-aligned) declets in sour to */ |
| 727 | /* be processed. This may be 1 more than the obvious number in */ |
| 728 | /* a format, as any top digit is prefixed to the coefficient */ |
| 729 | /* continuation field. It also may be as small as 1, as the */ |
| 730 | /* caller may pre-process leading zero declets. */ |
| 731 | /* */ |
| 732 | /* When doing the 'extra declet' case care is taken to avoid writing */ |
| 733 | /* extra digits when there are leading zeros, as these could overflow */ |
| 734 | /* the units array when DECDPUN is not 3. */ |
| 735 | /* */ |
| 736 | /* The target uInts are used only as necessary to process declets */ |
| 737 | /* declets into the decNumber. When more than one uInt is needed, */ |
| 738 | /* they are used from left to right (that is, the uInt at offset 0 */ |
| 739 | /* provides the least-significant digits). */ |
| 740 | /* */ |
| 741 | /* dn->digits is set, but not the sign or exponent. */ |
| 742 | /* No error is possible [the redundant 888 codes are allowed]. */ |
| 743 | /* ------------------------------------------------------------------ */ |
| 744 | void decDigitsFromDPD(decNumber *dn, const uInt *sour, Int declets) { |
| 745 | |
| 746 | uInt dpd; /* collector for 10 bits */ |
| 747 | Int n; /* counter */ |
| 748 | Unit *uout=dn->lsu; /* -> current output unit */ |
| 749 | Unit *last=uout; /* will be unit containing msd */ |
| 750 | const uInt *uin=sour; /* -> current input uInt */ |
| 751 | uInt uoff=0; /* -> current input offset [from right] */ |
| 752 | |
| 753 | #if DECDPUN!=3 |
| 754 | uInt bcd; /* BCD result */ |
| 755 | uInt nibble; /* work */ |
| 756 | Unit out=0; /* accumulator */ |
| 757 | Int cut=0; /* power of ten in current unit */ |
| 758 | #endif |
| 759 | #if DECDPUN>4 |
| 760 | uInt const *pow; /* work */ |
| 761 | #endif |
| 762 | |
| 763 | /* Expand the densely-packed integer, right to left */ |
| 764 | for (n=declets-1; n>=0; n--) { /* count down declets of 10 bits */ |
| 765 | dpd=*uin>>uoff; |
| 766 | uoff+=10; |
| 767 | if (uoff>32) { /* crossed uInt boundary */ |
| 768 | uin++; |
| 769 | uoff-=32; |
| 770 | dpd|=*uin<<(10-uoff); /* get waiting bits */ |
| 771 | } |
| 772 | dpd&=0x3ff; /* clear uninteresting bits */ |
| 773 | |
| 774 | #if DECDPUN==3 |
| 775 | if (dpd==0) *uout=0; |
| 776 | else { |
| 777 | *uout=DPD2BIN[dpd]; /* convert 10 bits to binary 0-999 */ |
| 778 | last=uout; /* record most significant unit */ |
| 779 | } |
| 780 | uout++; |
| 781 | } /* n */ |
| 782 | |
| 783 | #else /* DECDPUN!=3 */ |
| 784 | if (dpd==0) { /* fastpath [e.g., leading zeros] */ |
| 785 | /* write out three 0 digits (nibbles); out may have digit(s) */ |
| 786 | cut++; |
| 787 | if (cut==DECDPUN) {*uout=out; if (out) {last=uout; out=0;} uout++; cut=0;} |
| 788 | if (n==0) break; /* [as below, works even if MSD=0] */ |
| 789 | cut++; |
| 790 | if (cut==DECDPUN) {*uout=out; if (out) {last=uout; out=0;} uout++; cut=0;} |
| 791 | cut++; |
| 792 | if (cut==DECDPUN) {*uout=out; if (out) {last=uout; out=0;} uout++; cut=0;} |
| 793 | continue; |
| 794 | } |
| 795 | |
| 796 | bcd=DPD2BCD[dpd]; /* convert 10 bits to 12 bits BCD */ |
| 797 | |
| 798 | /* now accumulate the 3 BCD nibbles into units */ |
| 799 | nibble=bcd & 0x00f; |
| 800 | if (nibble) out=(Unit)(out+nibble*DECPOWERS[cut]); |
| 801 | cut++; |
| 802 | if (cut==DECDPUN) {*uout=out; if (out) {last=uout; out=0;} uout++; cut=0;} |
| 803 | bcd>>=4; |
| 804 | |
| 805 | /* if this is the last declet and the remaining nibbles in bcd */ |
| 806 | /* are 00 then process no more nibbles, because this could be */ |
| 807 | /* the 'odd' MSD declet and writing any more Units would then */ |
| 808 | /* overflow the unit array */ |
| 809 | if (n==0 && !bcd) break; |
| 810 | |
| 811 | nibble=bcd & 0x00f; |
| 812 | if (nibble) out=(Unit)(out+nibble*DECPOWERS[cut]); |
| 813 | cut++; |
| 814 | if (cut==DECDPUN) {*uout=out; if (out) {last=uout; out=0;} uout++; cut=0;} |
| 815 | bcd>>=4; |
| 816 | |
| 817 | nibble=bcd & 0x00f; |
| 818 | if (nibble) out=(Unit)(out+nibble*DECPOWERS[cut]); |
| 819 | cut++; |
| 820 | if (cut==DECDPUN) {*uout=out; if (out) {last=uout; out=0;} uout++; cut=0;} |
| 821 | } /* n */ |
| 822 | if (cut!=0) { /* some more left over */ |
| 823 | *uout=out; /* write out final unit */ |
| 824 | if (out) last=uout; /* and note if non-zero */ |
| 825 | } |
| 826 | #endif |
| 827 | |
| 828 | /* here, last points to the most significant unit with digits; */ |
| 829 | /* inspect it to get the final digits count -- this is essentially */ |
| 830 | /* the same code as decGetDigits in decNumber.c */ |
| 831 | dn->digits=(last-dn->lsu)*DECDPUN+1; /* floor of digits, plus */ |
| 832 | /* must be at least 1 digit */ |
| 833 | #if DECDPUN>1 |
| 834 | if (*last<10) return; /* common odd digit or 0 */ |
| 835 | dn->digits++; /* must be 2 at least */ |
| 836 | #if DECDPUN>2 |
| 837 | if (*last<100) return; /* 10-99 */ |
| 838 | dn->digits++; /* must be 3 at least */ |
| 839 | #if DECDPUN>3 |
| 840 | if (*last<1000) return; /* 100-999 */ |
| 841 | dn->digits++; /* must be 4 at least */ |
| 842 | #if DECDPUN>4 |
| 843 | for (pow=&DECPOWERS[4]; *last>=*pow; pow++) dn->digits++; |
| 844 | #endif |
| 845 | #endif |
| 846 | #endif |
| 847 | #endif |
| 848 | return; |
| 849 | } /*decDigitsFromDPD */ |