Peter A. G. Crosthwaite | 35548b0 | 2012-03-05 14:39:10 +1000 | [diff] [blame] | 1 | /* |
| 2 | * Device model for Cadence UART |
| 3 | * |
| 4 | * Copyright (c) 2010 Xilinx Inc. |
| 5 | * Copyright (c) 2012 Peter A.G. Crosthwaite (peter.crosthwaite@petalogix.com) |
| 6 | * Copyright (c) 2012 PetaLogix Pty Ltd. |
| 7 | * Written by Haibing Ma |
| 8 | * M.Habib |
| 9 | * |
| 10 | * This program is free software; you can redistribute it and/or |
| 11 | * modify it under the terms of the GNU General Public License |
| 12 | * as published by the Free Software Foundation; either version |
| 13 | * 2 of the License, or (at your option) any later version. |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License along |
| 16 | * with this program; if not, see <http://www.gnu.org/licenses/>. |
| 17 | */ |
| 18 | |
| 19 | #include "sysbus.h" |
| 20 | #include "qemu-char.h" |
| 21 | #include "qemu-timer.h" |
| 22 | |
| 23 | #ifdef CADENCE_UART_ERR_DEBUG |
| 24 | #define DB_PRINT(...) do { \ |
| 25 | fprintf(stderr, ": %s: ", __func__); \ |
| 26 | fprintf(stderr, ## __VA_ARGS__); \ |
| 27 | } while (0); |
| 28 | #else |
| 29 | #define DB_PRINT(...) |
| 30 | #endif |
| 31 | |
| 32 | #define UART_SR_INTR_RTRIG 0x00000001 |
| 33 | #define UART_SR_INTR_REMPTY 0x00000002 |
| 34 | #define UART_SR_INTR_RFUL 0x00000004 |
| 35 | #define UART_SR_INTR_TEMPTY 0x00000008 |
| 36 | #define UART_SR_INTR_TFUL 0x00000010 |
| 37 | /* bits fields in CSR that correlate to CISR. If any of these bits are set in |
| 38 | * SR, then the same bit in CISR is set high too */ |
| 39 | #define UART_SR_TO_CISR_MASK 0x0000001F |
| 40 | |
| 41 | #define UART_INTR_ROVR 0x00000020 |
| 42 | #define UART_INTR_FRAME 0x00000040 |
| 43 | #define UART_INTR_PARE 0x00000080 |
| 44 | #define UART_INTR_TIMEOUT 0x00000100 |
| 45 | #define UART_INTR_DMSI 0x00000200 |
| 46 | |
| 47 | #define UART_SR_RACTIVE 0x00000400 |
| 48 | #define UART_SR_TACTIVE 0x00000800 |
| 49 | #define UART_SR_FDELT 0x00001000 |
| 50 | |
| 51 | #define UART_CR_RXRST 0x00000001 |
| 52 | #define UART_CR_TXRST 0x00000002 |
| 53 | #define UART_CR_RX_EN 0x00000004 |
| 54 | #define UART_CR_RX_DIS 0x00000008 |
| 55 | #define UART_CR_TX_EN 0x00000010 |
| 56 | #define UART_CR_TX_DIS 0x00000020 |
| 57 | #define UART_CR_RST_TO 0x00000040 |
| 58 | #define UART_CR_STARTBRK 0x00000080 |
| 59 | #define UART_CR_STOPBRK 0x00000100 |
| 60 | |
| 61 | #define UART_MR_CLKS 0x00000001 |
| 62 | #define UART_MR_CHRL 0x00000006 |
| 63 | #define UART_MR_CHRL_SH 1 |
| 64 | #define UART_MR_PAR 0x00000038 |
| 65 | #define UART_MR_PAR_SH 3 |
| 66 | #define UART_MR_NBSTOP 0x000000C0 |
| 67 | #define UART_MR_NBSTOP_SH 6 |
| 68 | #define UART_MR_CHMODE 0x00000300 |
| 69 | #define UART_MR_CHMODE_SH 8 |
| 70 | #define UART_MR_UCLKEN 0x00000400 |
| 71 | #define UART_MR_IRMODE 0x00000800 |
| 72 | |
| 73 | #define UART_DATA_BITS_6 (0x3 << UART_MR_CHRL_SH) |
| 74 | #define UART_DATA_BITS_7 (0x2 << UART_MR_CHRL_SH) |
| 75 | #define UART_PARITY_ODD (0x1 << UART_MR_PAR_SH) |
| 76 | #define UART_PARITY_EVEN (0x0 << UART_MR_PAR_SH) |
| 77 | #define UART_STOP_BITS_1 (0x3 << UART_MR_NBSTOP_SH) |
| 78 | #define UART_STOP_BITS_2 (0x2 << UART_MR_NBSTOP_SH) |
| 79 | #define NORMAL_MODE (0x0 << UART_MR_CHMODE_SH) |
| 80 | #define ECHO_MODE (0x1 << UART_MR_CHMODE_SH) |
| 81 | #define LOCAL_LOOPBACK (0x2 << UART_MR_CHMODE_SH) |
| 82 | #define REMOTE_LOOPBACK (0x3 << UART_MR_CHMODE_SH) |
| 83 | |
| 84 | #define RX_FIFO_SIZE 16 |
| 85 | #define TX_FIFO_SIZE 16 |
| 86 | #define UART_INPUT_CLK 50000000 |
| 87 | |
| 88 | #define R_CR (0x00/4) |
| 89 | #define R_MR (0x04/4) |
| 90 | #define R_IER (0x08/4) |
| 91 | #define R_IDR (0x0C/4) |
| 92 | #define R_IMR (0x10/4) |
| 93 | #define R_CISR (0x14/4) |
| 94 | #define R_BRGR (0x18/4) |
| 95 | #define R_RTOR (0x1C/4) |
| 96 | #define R_RTRIG (0x20/4) |
| 97 | #define R_MCR (0x24/4) |
| 98 | #define R_MSR (0x28/4) |
| 99 | #define R_SR (0x2C/4) |
| 100 | #define R_TX_RX (0x30/4) |
| 101 | #define R_BDIV (0x34/4) |
| 102 | #define R_FDEL (0x38/4) |
| 103 | #define R_PMIN (0x3C/4) |
| 104 | #define R_PWID (0x40/4) |
| 105 | #define R_TTRIG (0x44/4) |
| 106 | |
| 107 | #define R_MAX (R_TTRIG + 1) |
| 108 | |
| 109 | typedef struct { |
| 110 | SysBusDevice busdev; |
| 111 | MemoryRegion iomem; |
| 112 | uint32_t r[R_MAX]; |
| 113 | uint8_t r_fifo[RX_FIFO_SIZE]; |
| 114 | uint32_t rx_wpos; |
| 115 | uint32_t rx_count; |
| 116 | uint64_t char_tx_time; |
| 117 | CharDriverState *chr; |
| 118 | qemu_irq irq; |
| 119 | struct QEMUTimer *fifo_trigger_handle; |
| 120 | struct QEMUTimer *tx_time_handle; |
| 121 | } UartState; |
| 122 | |
| 123 | static void uart_update_status(UartState *s) |
| 124 | { |
| 125 | s->r[R_CISR] |= s->r[R_SR] & UART_SR_TO_CISR_MASK; |
| 126 | qemu_set_irq(s->irq, !!(s->r[R_IMR] & s->r[R_CISR])); |
| 127 | } |
| 128 | |
| 129 | static void fifo_trigger_update(void *opaque) |
| 130 | { |
| 131 | UartState *s = (UartState *)opaque; |
| 132 | |
| 133 | s->r[R_CISR] |= UART_INTR_TIMEOUT; |
| 134 | |
| 135 | uart_update_status(s); |
| 136 | } |
| 137 | |
| 138 | static void uart_tx_redo(UartState *s) |
| 139 | { |
| 140 | uint64_t new_tx_time = qemu_get_clock_ns(vm_clock); |
| 141 | |
| 142 | qemu_mod_timer(s->tx_time_handle, new_tx_time + s->char_tx_time); |
| 143 | |
| 144 | s->r[R_SR] |= UART_SR_INTR_TEMPTY; |
| 145 | |
| 146 | uart_update_status(s); |
| 147 | } |
| 148 | |
| 149 | static void uart_tx_write(void *opaque) |
| 150 | { |
| 151 | UartState *s = (UartState *)opaque; |
| 152 | |
| 153 | uart_tx_redo(s); |
| 154 | } |
| 155 | |
| 156 | static void uart_rx_reset(UartState *s) |
| 157 | { |
| 158 | s->rx_wpos = 0; |
| 159 | s->rx_count = 0; |
| 160 | |
| 161 | s->r[R_SR] |= UART_SR_INTR_REMPTY; |
| 162 | s->r[R_SR] &= ~UART_SR_INTR_RFUL; |
| 163 | } |
| 164 | |
| 165 | static void uart_tx_reset(UartState *s) |
| 166 | { |
| 167 | s->r[R_SR] |= UART_SR_INTR_TEMPTY; |
| 168 | s->r[R_SR] &= ~UART_SR_INTR_TFUL; |
| 169 | } |
| 170 | |
| 171 | static void uart_send_breaks(UartState *s) |
| 172 | { |
| 173 | int break_enabled = 1; |
| 174 | |
| 175 | qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_BREAK, |
| 176 | &break_enabled); |
| 177 | } |
| 178 | |
| 179 | static void uart_parameters_setup(UartState *s) |
| 180 | { |
| 181 | QEMUSerialSetParams ssp; |
| 182 | unsigned int baud_rate, packet_size; |
| 183 | |
| 184 | baud_rate = (s->r[R_MR] & UART_MR_CLKS) ? |
| 185 | UART_INPUT_CLK / 8 : UART_INPUT_CLK; |
| 186 | |
| 187 | ssp.speed = baud_rate / (s->r[R_BRGR] * (s->r[R_BDIV] + 1)); |
| 188 | packet_size = 1; |
| 189 | |
| 190 | switch (s->r[R_MR] & UART_MR_PAR) { |
| 191 | case UART_PARITY_EVEN: |
| 192 | ssp.parity = 'E'; |
| 193 | packet_size++; |
| 194 | break; |
| 195 | case UART_PARITY_ODD: |
| 196 | ssp.parity = 'O'; |
| 197 | packet_size++; |
| 198 | break; |
| 199 | default: |
| 200 | ssp.parity = 'N'; |
| 201 | break; |
| 202 | } |
| 203 | |
| 204 | switch (s->r[R_MR] & UART_MR_CHRL) { |
| 205 | case UART_DATA_BITS_6: |
| 206 | ssp.data_bits = 6; |
| 207 | break; |
| 208 | case UART_DATA_BITS_7: |
| 209 | ssp.data_bits = 7; |
| 210 | break; |
| 211 | default: |
| 212 | ssp.data_bits = 8; |
| 213 | break; |
| 214 | } |
| 215 | |
| 216 | switch (s->r[R_MR] & UART_MR_NBSTOP) { |
| 217 | case UART_STOP_BITS_1: |
| 218 | ssp.stop_bits = 1; |
| 219 | break; |
| 220 | default: |
| 221 | ssp.stop_bits = 2; |
| 222 | break; |
| 223 | } |
| 224 | |
| 225 | packet_size += ssp.data_bits + ssp.stop_bits; |
| 226 | s->char_tx_time = (get_ticks_per_sec() / ssp.speed) * packet_size; |
| 227 | qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp); |
| 228 | } |
| 229 | |
| 230 | static int uart_can_receive(void *opaque) |
| 231 | { |
| 232 | UartState *s = (UartState *)opaque; |
| 233 | |
| 234 | return RX_FIFO_SIZE - s->rx_count; |
| 235 | } |
| 236 | |
| 237 | static void uart_ctrl_update(UartState *s) |
| 238 | { |
| 239 | if (s->r[R_CR] & UART_CR_TXRST) { |
| 240 | uart_tx_reset(s); |
| 241 | } |
| 242 | |
| 243 | if (s->r[R_CR] & UART_CR_RXRST) { |
| 244 | uart_rx_reset(s); |
| 245 | } |
| 246 | |
| 247 | s->r[R_CR] &= ~(UART_CR_TXRST | UART_CR_RXRST); |
| 248 | |
| 249 | if ((s->r[R_CR] & UART_CR_TX_EN) && !(s->r[R_CR] & UART_CR_TX_DIS)) { |
| 250 | uart_tx_redo(s); |
| 251 | } |
| 252 | |
| 253 | if (s->r[R_CR] & UART_CR_STARTBRK && !(s->r[R_CR] & UART_CR_STOPBRK)) { |
| 254 | uart_send_breaks(s); |
| 255 | } |
| 256 | } |
| 257 | |
| 258 | static void uart_write_rx_fifo(void *opaque, const uint8_t *buf, int size) |
| 259 | { |
| 260 | UartState *s = (UartState *)opaque; |
| 261 | uint64_t new_rx_time = qemu_get_clock_ns(vm_clock); |
| 262 | int i; |
| 263 | |
| 264 | if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) { |
| 265 | return; |
| 266 | } |
| 267 | |
| 268 | s->r[R_SR] &= ~UART_SR_INTR_REMPTY; |
| 269 | |
| 270 | if (s->rx_count == RX_FIFO_SIZE) { |
| 271 | s->r[R_CISR] |= UART_INTR_ROVR; |
| 272 | } else { |
| 273 | for (i = 0; i < size; i++) { |
| 274 | s->r_fifo[s->rx_wpos] = buf[i]; |
| 275 | s->rx_wpos = (s->rx_wpos + 1) % RX_FIFO_SIZE; |
| 276 | s->rx_count++; |
| 277 | |
| 278 | if (s->rx_count == RX_FIFO_SIZE) { |
| 279 | s->r[R_SR] |= UART_SR_INTR_RFUL; |
| 280 | break; |
| 281 | } |
| 282 | |
| 283 | if (s->rx_count >= s->r[R_RTRIG]) { |
| 284 | s->r[R_SR] |= UART_SR_INTR_RTRIG; |
| 285 | } |
| 286 | } |
| 287 | qemu_mod_timer(s->fifo_trigger_handle, new_rx_time + |
| 288 | (s->char_tx_time * 4)); |
| 289 | } |
| 290 | uart_update_status(s); |
| 291 | } |
| 292 | |
| 293 | static void uart_write_tx_fifo(UartState *s, const uint8_t *buf, int size) |
| 294 | { |
| 295 | if ((s->r[R_CR] & UART_CR_TX_DIS) || !(s->r[R_CR] & UART_CR_TX_EN)) { |
| 296 | return; |
| 297 | } |
| 298 | |
| 299 | while (size) { |
| 300 | size -= qemu_chr_fe_write(s->chr, buf, size); |
| 301 | } |
| 302 | } |
| 303 | |
| 304 | static void uart_receive(void *opaque, const uint8_t *buf, int size) |
| 305 | { |
| 306 | UartState *s = (UartState *)opaque; |
| 307 | uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE; |
| 308 | |
| 309 | if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) { |
| 310 | uart_write_rx_fifo(opaque, buf, size); |
| 311 | } |
| 312 | if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) { |
| 313 | uart_write_tx_fifo(s, buf, size); |
| 314 | } |
| 315 | } |
| 316 | |
| 317 | static void uart_event(void *opaque, int event) |
| 318 | { |
| 319 | UartState *s = (UartState *)opaque; |
| 320 | uint8_t buf = '\0'; |
| 321 | |
| 322 | if (event == CHR_EVENT_BREAK) { |
| 323 | uart_write_rx_fifo(opaque, &buf, 1); |
| 324 | } |
| 325 | |
| 326 | uart_update_status(s); |
| 327 | } |
| 328 | |
| 329 | static void uart_read_rx_fifo(UartState *s, uint32_t *c) |
| 330 | { |
| 331 | if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) { |
| 332 | return; |
| 333 | } |
| 334 | |
| 335 | s->r[R_SR] &= ~UART_SR_INTR_RFUL; |
| 336 | |
| 337 | if (s->rx_count) { |
| 338 | uint32_t rx_rpos = |
| 339 | (RX_FIFO_SIZE + s->rx_wpos - s->rx_count) % RX_FIFO_SIZE; |
| 340 | *c = s->r_fifo[rx_rpos]; |
| 341 | s->rx_count--; |
| 342 | |
| 343 | if (!s->rx_count) { |
| 344 | s->r[R_SR] |= UART_SR_INTR_REMPTY; |
| 345 | } |
| 346 | } else { |
| 347 | *c = 0; |
| 348 | s->r[R_SR] |= UART_SR_INTR_REMPTY; |
| 349 | } |
| 350 | |
| 351 | if (s->rx_count < s->r[R_RTRIG]) { |
| 352 | s->r[R_SR] &= ~UART_SR_INTR_RTRIG; |
| 353 | } |
| 354 | uart_update_status(s); |
| 355 | } |
| 356 | |
| 357 | static void uart_write(void *opaque, target_phys_addr_t offset, |
| 358 | uint64_t value, unsigned size) |
| 359 | { |
| 360 | UartState *s = (UartState *)opaque; |
| 361 | |
| 362 | DB_PRINT(" offset:%x data:%08x\n", offset, (unsigned)value); |
| 363 | offset >>= 2; |
| 364 | switch (offset) { |
| 365 | case R_IER: /* ier (wts imr) */ |
| 366 | s->r[R_IMR] |= value; |
| 367 | break; |
| 368 | case R_IDR: /* idr (wtc imr) */ |
| 369 | s->r[R_IMR] &= ~value; |
| 370 | break; |
| 371 | case R_IMR: /* imr (read only) */ |
| 372 | break; |
| 373 | case R_CISR: /* cisr (wtc) */ |
| 374 | s->r[R_CISR] &= ~value; |
| 375 | break; |
| 376 | case R_TX_RX: /* UARTDR */ |
| 377 | switch (s->r[R_MR] & UART_MR_CHMODE) { |
| 378 | case NORMAL_MODE: |
| 379 | uart_write_tx_fifo(s, (uint8_t *) &value, 1); |
| 380 | break; |
| 381 | case LOCAL_LOOPBACK: |
| 382 | uart_write_rx_fifo(opaque, (uint8_t *) &value, 1); |
| 383 | break; |
| 384 | } |
| 385 | break; |
| 386 | default: |
| 387 | s->r[offset] = value; |
| 388 | } |
| 389 | |
| 390 | switch (offset) { |
| 391 | case R_CR: |
| 392 | uart_ctrl_update(s); |
| 393 | break; |
| 394 | case R_MR: |
| 395 | uart_parameters_setup(s); |
| 396 | break; |
| 397 | } |
| 398 | } |
| 399 | |
| 400 | static uint64_t uart_read(void *opaque, target_phys_addr_t offset, |
| 401 | unsigned size) |
| 402 | { |
| 403 | UartState *s = (UartState *)opaque; |
| 404 | uint32_t c = 0; |
| 405 | |
| 406 | offset >>= 2; |
| 407 | if (offset > R_MAX) { |
| 408 | return 0; |
| 409 | } else if (offset == R_TX_RX) { |
| 410 | uart_read_rx_fifo(s, &c); |
| 411 | return c; |
| 412 | } |
| 413 | return s->r[offset]; |
| 414 | } |
| 415 | |
| 416 | static const MemoryRegionOps uart_ops = { |
| 417 | .read = uart_read, |
| 418 | .write = uart_write, |
| 419 | .endianness = DEVICE_NATIVE_ENDIAN, |
| 420 | }; |
| 421 | |
| 422 | static void cadence_uart_reset(UartState *s) |
| 423 | { |
| 424 | s->r[R_CR] = 0x00000128; |
| 425 | s->r[R_IMR] = 0; |
| 426 | s->r[R_CISR] = 0; |
| 427 | s->r[R_RTRIG] = 0x00000020; |
| 428 | s->r[R_BRGR] = 0x0000000F; |
| 429 | s->r[R_TTRIG] = 0x00000020; |
| 430 | |
| 431 | uart_rx_reset(s); |
| 432 | uart_tx_reset(s); |
| 433 | |
| 434 | s->rx_count = 0; |
| 435 | s->rx_wpos = 0; |
| 436 | } |
| 437 | |
| 438 | static int cadence_uart_init(SysBusDevice *dev) |
| 439 | { |
| 440 | UartState *s = FROM_SYSBUS(UartState, dev); |
| 441 | |
| 442 | memory_region_init_io(&s->iomem, &uart_ops, s, "uart", 0x1000); |
| 443 | sysbus_init_mmio(dev, &s->iomem); |
| 444 | sysbus_init_irq(dev, &s->irq); |
| 445 | |
| 446 | s->fifo_trigger_handle = qemu_new_timer_ns(vm_clock, |
| 447 | (QEMUTimerCB *)fifo_trigger_update, s); |
| 448 | |
| 449 | s->tx_time_handle = qemu_new_timer_ns(vm_clock, |
| 450 | (QEMUTimerCB *)uart_tx_write, s); |
| 451 | |
| 452 | s->char_tx_time = (get_ticks_per_sec() / 9600) * 10; |
| 453 | |
| 454 | s->chr = qemu_char_get_next_serial(); |
| 455 | |
| 456 | cadence_uart_reset(s); |
| 457 | |
| 458 | if (s->chr) { |
| 459 | qemu_chr_add_handlers(s->chr, uart_can_receive, uart_receive, |
| 460 | uart_event, s); |
| 461 | } |
| 462 | |
| 463 | return 0; |
| 464 | } |
| 465 | |
| 466 | static int cadence_uart_post_load(void *opaque, int version_id) |
| 467 | { |
| 468 | UartState *s = opaque; |
| 469 | |
| 470 | uart_parameters_setup(s); |
| 471 | uart_update_status(s); |
| 472 | return 0; |
| 473 | } |
| 474 | |
| 475 | static const VMStateDescription vmstate_cadence_uart = { |
| 476 | .name = "cadence_uart", |
| 477 | .version_id = 1, |
| 478 | .minimum_version_id = 1, |
| 479 | .minimum_version_id_old = 1, |
| 480 | .post_load = cadence_uart_post_load, |
| 481 | .fields = (VMStateField[]) { |
| 482 | VMSTATE_UINT32_ARRAY(r, UartState, R_MAX), |
| 483 | VMSTATE_UINT8_ARRAY(r_fifo, UartState, RX_FIFO_SIZE), |
| 484 | VMSTATE_UINT32(rx_count, UartState), |
| 485 | VMSTATE_UINT32(rx_wpos, UartState), |
| 486 | VMSTATE_TIMER(fifo_trigger_handle, UartState), |
| 487 | VMSTATE_TIMER(tx_time_handle, UartState), |
| 488 | VMSTATE_END_OF_LIST() |
| 489 | } |
| 490 | }; |
| 491 | |
| 492 | static void cadence_uart_class_init(ObjectClass *klass, void *data) |
| 493 | { |
| 494 | DeviceClass *dc = DEVICE_CLASS(klass); |
| 495 | SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass); |
| 496 | |
| 497 | sdc->init = cadence_uart_init; |
| 498 | dc->vmsd = &vmstate_cadence_uart; |
| 499 | } |
| 500 | |
| 501 | static TypeInfo cadence_uart_info = { |
| 502 | .name = "cadence_uart", |
| 503 | .parent = TYPE_SYS_BUS_DEVICE, |
| 504 | .instance_size = sizeof(UartState), |
| 505 | .class_init = cadence_uart_class_init, |
| 506 | }; |
| 507 | |
| 508 | static void cadence_uart_register_types(void) |
| 509 | { |
| 510 | type_register_static(&cadence_uart_info); |
| 511 | } |
| 512 | |
| 513 | type_init(cadence_uart_register_types) |