| /* |
| * Declarations for cpu physical memory functions |
| * |
| * Copyright 2011 Red Hat, Inc. and/or its affiliates |
| * |
| * Authors: |
| * Avi Kivity <avi@redhat.com> |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2 or |
| * later. See the COPYING file in the top-level directory. |
| * |
| */ |
| |
| /* |
| * This header is for use by exec.c and memory.c ONLY. Do not include it. |
| * The functions declared here will be removed soon. |
| */ |
| |
| #ifndef RAM_ADDR_H |
| #define RAM_ADDR_H |
| |
| #ifndef CONFIG_USER_ONLY |
| #include "hw/xen/xen.h" |
| |
| struct RAMBlock { |
| struct rcu_head rcu; |
| struct MemoryRegion *mr; |
| uint8_t *host; |
| ram_addr_t offset; |
| ram_addr_t used_length; |
| ram_addr_t max_length; |
| void (*resized)(const char*, uint64_t length, void *host); |
| uint32_t flags; |
| /* Protected by iothread lock. */ |
| char idstr[256]; |
| /* RCU-enabled, writes protected by the ramlist lock */ |
| QLIST_ENTRY(RAMBlock) next; |
| int fd; |
| }; |
| |
| static inline bool offset_in_ramblock(RAMBlock *b, ram_addr_t offset) |
| { |
| return (b && b->host && offset < b->used_length) ? true : false; |
| } |
| |
| static inline void *ramblock_ptr(RAMBlock *block, ram_addr_t offset) |
| { |
| assert(offset_in_ramblock(block, offset)); |
| return (char *)block->host + offset; |
| } |
| |
| /* The dirty memory bitmap is split into fixed-size blocks to allow growth |
| * under RCU. The bitmap for a block can be accessed as follows: |
| * |
| * rcu_read_lock(); |
| * |
| * DirtyMemoryBlocks *blocks = |
| * atomic_rcu_read(&ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION]); |
| * |
| * ram_addr_t idx = (addr >> TARGET_PAGE_BITS) / DIRTY_MEMORY_BLOCK_SIZE; |
| * unsigned long *block = blocks.blocks[idx]; |
| * ...access block bitmap... |
| * |
| * rcu_read_unlock(); |
| * |
| * Remember to check for the end of the block when accessing a range of |
| * addresses. Move on to the next block if you reach the end. |
| * |
| * Organization into blocks allows dirty memory to grow (but not shrink) under |
| * RCU. When adding new RAMBlocks requires the dirty memory to grow, a new |
| * DirtyMemoryBlocks array is allocated with pointers to existing blocks kept |
| * the same. Other threads can safely access existing blocks while dirty |
| * memory is being grown. When no threads are using the old DirtyMemoryBlocks |
| * anymore it is freed by RCU (but the underlying blocks stay because they are |
| * pointed to from the new DirtyMemoryBlocks). |
| */ |
| #define DIRTY_MEMORY_BLOCK_SIZE ((ram_addr_t)256 * 1024 * 8) |
| typedef struct { |
| struct rcu_head rcu; |
| unsigned long *blocks[]; |
| } DirtyMemoryBlocks; |
| |
| typedef struct RAMList { |
| QemuMutex mutex; |
| RAMBlock *mru_block; |
| /* RCU-enabled, writes protected by the ramlist lock. */ |
| QLIST_HEAD(, RAMBlock) blocks; |
| DirtyMemoryBlocks *dirty_memory[DIRTY_MEMORY_NUM]; |
| uint32_t version; |
| } RAMList; |
| extern RAMList ram_list; |
| |
| ram_addr_t last_ram_offset(void); |
| void qemu_mutex_lock_ramlist(void); |
| void qemu_mutex_unlock_ramlist(void); |
| |
| RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr, |
| bool share, const char *mem_path, |
| Error **errp); |
| RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host, |
| MemoryRegion *mr, Error **errp); |
| RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp); |
| RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t max_size, |
| void (*resized)(const char*, |
| uint64_t length, |
| void *host), |
| MemoryRegion *mr, Error **errp); |
| void qemu_ram_free(RAMBlock *block); |
| |
| int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp); |
| |
| #define DIRTY_CLIENTS_ALL ((1 << DIRTY_MEMORY_NUM) - 1) |
| #define DIRTY_CLIENTS_NOCODE (DIRTY_CLIENTS_ALL & ~(1 << DIRTY_MEMORY_CODE)) |
| |
| static inline bool cpu_physical_memory_get_dirty(ram_addr_t start, |
| ram_addr_t length, |
| unsigned client) |
| { |
| DirtyMemoryBlocks *blocks; |
| unsigned long end, page; |
| unsigned long idx, offset, base; |
| bool dirty = false; |
| |
| assert(client < DIRTY_MEMORY_NUM); |
| |
| end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; |
| page = start >> TARGET_PAGE_BITS; |
| |
| rcu_read_lock(); |
| |
| blocks = atomic_rcu_read(&ram_list.dirty_memory[client]); |
| |
| idx = page / DIRTY_MEMORY_BLOCK_SIZE; |
| offset = page % DIRTY_MEMORY_BLOCK_SIZE; |
| base = page - offset; |
| while (page < end) { |
| unsigned long next = MIN(end, base + DIRTY_MEMORY_BLOCK_SIZE); |
| unsigned long num = next - base; |
| unsigned long found = find_next_bit(blocks->blocks[idx], num, offset); |
| if (found < num) { |
| dirty = true; |
| break; |
| } |
| |
| page = next; |
| idx++; |
| offset = 0; |
| base += DIRTY_MEMORY_BLOCK_SIZE; |
| } |
| |
| rcu_read_unlock(); |
| |
| return dirty; |
| } |
| |
| static inline bool cpu_physical_memory_all_dirty(ram_addr_t start, |
| ram_addr_t length, |
| unsigned client) |
| { |
| DirtyMemoryBlocks *blocks; |
| unsigned long end, page; |
| unsigned long idx, offset, base; |
| bool dirty = true; |
| |
| assert(client < DIRTY_MEMORY_NUM); |
| |
| end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; |
| page = start >> TARGET_PAGE_BITS; |
| |
| rcu_read_lock(); |
| |
| blocks = atomic_rcu_read(&ram_list.dirty_memory[client]); |
| |
| idx = page / DIRTY_MEMORY_BLOCK_SIZE; |
| offset = page % DIRTY_MEMORY_BLOCK_SIZE; |
| base = page - offset; |
| while (page < end) { |
| unsigned long next = MIN(end, base + DIRTY_MEMORY_BLOCK_SIZE); |
| unsigned long num = next - base; |
| unsigned long found = find_next_zero_bit(blocks->blocks[idx], num, offset); |
| if (found < num) { |
| dirty = false; |
| break; |
| } |
| |
| page = next; |
| idx++; |
| offset = 0; |
| base += DIRTY_MEMORY_BLOCK_SIZE; |
| } |
| |
| rcu_read_unlock(); |
| |
| return dirty; |
| } |
| |
| static inline bool cpu_physical_memory_get_dirty_flag(ram_addr_t addr, |
| unsigned client) |
| { |
| return cpu_physical_memory_get_dirty(addr, 1, client); |
| } |
| |
| static inline bool cpu_physical_memory_is_clean(ram_addr_t addr) |
| { |
| bool vga = cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_VGA); |
| bool code = cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_CODE); |
| bool migration = |
| cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_MIGRATION); |
| return !(vga && code && migration); |
| } |
| |
| static inline uint8_t cpu_physical_memory_range_includes_clean(ram_addr_t start, |
| ram_addr_t length, |
| uint8_t mask) |
| { |
| uint8_t ret = 0; |
| |
| if (mask & (1 << DIRTY_MEMORY_VGA) && |
| !cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_VGA)) { |
| ret |= (1 << DIRTY_MEMORY_VGA); |
| } |
| if (mask & (1 << DIRTY_MEMORY_CODE) && |
| !cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_CODE)) { |
| ret |= (1 << DIRTY_MEMORY_CODE); |
| } |
| if (mask & (1 << DIRTY_MEMORY_MIGRATION) && |
| !cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_MIGRATION)) { |
| ret |= (1 << DIRTY_MEMORY_MIGRATION); |
| } |
| return ret; |
| } |
| |
| static inline void cpu_physical_memory_set_dirty_flag(ram_addr_t addr, |
| unsigned client) |
| { |
| unsigned long page, idx, offset; |
| DirtyMemoryBlocks *blocks; |
| |
| assert(client < DIRTY_MEMORY_NUM); |
| |
| page = addr >> TARGET_PAGE_BITS; |
| idx = page / DIRTY_MEMORY_BLOCK_SIZE; |
| offset = page % DIRTY_MEMORY_BLOCK_SIZE; |
| |
| rcu_read_lock(); |
| |
| blocks = atomic_rcu_read(&ram_list.dirty_memory[client]); |
| |
| set_bit_atomic(offset, blocks->blocks[idx]); |
| |
| rcu_read_unlock(); |
| } |
| |
| static inline void cpu_physical_memory_set_dirty_range(ram_addr_t start, |
| ram_addr_t length, |
| uint8_t mask) |
| { |
| DirtyMemoryBlocks *blocks[DIRTY_MEMORY_NUM]; |
| unsigned long end, page; |
| unsigned long idx, offset, base; |
| int i; |
| |
| if (!mask && !xen_enabled()) { |
| return; |
| } |
| |
| end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; |
| page = start >> TARGET_PAGE_BITS; |
| |
| rcu_read_lock(); |
| |
| for (i = 0; i < DIRTY_MEMORY_NUM; i++) { |
| blocks[i] = atomic_rcu_read(&ram_list.dirty_memory[i]); |
| } |
| |
| idx = page / DIRTY_MEMORY_BLOCK_SIZE; |
| offset = page % DIRTY_MEMORY_BLOCK_SIZE; |
| base = page - offset; |
| while (page < end) { |
| unsigned long next = MIN(end, base + DIRTY_MEMORY_BLOCK_SIZE); |
| |
| if (likely(mask & (1 << DIRTY_MEMORY_MIGRATION))) { |
| bitmap_set_atomic(blocks[DIRTY_MEMORY_MIGRATION]->blocks[idx], |
| offset, next - page); |
| } |
| if (unlikely(mask & (1 << DIRTY_MEMORY_VGA))) { |
| bitmap_set_atomic(blocks[DIRTY_MEMORY_VGA]->blocks[idx], |
| offset, next - page); |
| } |
| if (unlikely(mask & (1 << DIRTY_MEMORY_CODE))) { |
| bitmap_set_atomic(blocks[DIRTY_MEMORY_CODE]->blocks[idx], |
| offset, next - page); |
| } |
| |
| page = next; |
| idx++; |
| offset = 0; |
| base += DIRTY_MEMORY_BLOCK_SIZE; |
| } |
| |
| rcu_read_unlock(); |
| |
| xen_modified_memory(start, length); |
| } |
| |
| #if !defined(_WIN32) |
| static inline void cpu_physical_memory_set_dirty_lebitmap(unsigned long *bitmap, |
| ram_addr_t start, |
| ram_addr_t pages) |
| { |
| unsigned long i, j; |
| unsigned long page_number, c; |
| hwaddr addr; |
| ram_addr_t ram_addr; |
| unsigned long len = (pages + HOST_LONG_BITS - 1) / HOST_LONG_BITS; |
| unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE; |
| unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS); |
| |
| /* start address is aligned at the start of a word? */ |
| if ((((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) && |
| (hpratio == 1)) { |
| unsigned long **blocks[DIRTY_MEMORY_NUM]; |
| unsigned long idx; |
| unsigned long offset; |
| long k; |
| long nr = BITS_TO_LONGS(pages); |
| |
| idx = (start >> TARGET_PAGE_BITS) / DIRTY_MEMORY_BLOCK_SIZE; |
| offset = BIT_WORD((start >> TARGET_PAGE_BITS) % |
| DIRTY_MEMORY_BLOCK_SIZE); |
| |
| rcu_read_lock(); |
| |
| for (i = 0; i < DIRTY_MEMORY_NUM; i++) { |
| blocks[i] = atomic_rcu_read(&ram_list.dirty_memory[i])->blocks; |
| } |
| |
| for (k = 0; k < nr; k++) { |
| if (bitmap[k]) { |
| unsigned long temp = leul_to_cpu(bitmap[k]); |
| |
| atomic_or(&blocks[DIRTY_MEMORY_MIGRATION][idx][offset], temp); |
| atomic_or(&blocks[DIRTY_MEMORY_VGA][idx][offset], temp); |
| if (tcg_enabled()) { |
| atomic_or(&blocks[DIRTY_MEMORY_CODE][idx][offset], temp); |
| } |
| } |
| |
| if (++offset >= BITS_TO_LONGS(DIRTY_MEMORY_BLOCK_SIZE)) { |
| offset = 0; |
| idx++; |
| } |
| } |
| |
| rcu_read_unlock(); |
| |
| xen_modified_memory(start, pages << TARGET_PAGE_BITS); |
| } else { |
| uint8_t clients = tcg_enabled() ? DIRTY_CLIENTS_ALL : DIRTY_CLIENTS_NOCODE; |
| /* |
| * bitmap-traveling is faster than memory-traveling (for addr...) |
| * especially when most of the memory is not dirty. |
| */ |
| for (i = 0; i < len; i++) { |
| if (bitmap[i] != 0) { |
| c = leul_to_cpu(bitmap[i]); |
| do { |
| j = ctzl(c); |
| c &= ~(1ul << j); |
| page_number = (i * HOST_LONG_BITS + j) * hpratio; |
| addr = page_number * TARGET_PAGE_SIZE; |
| ram_addr = start + addr; |
| cpu_physical_memory_set_dirty_range(ram_addr, |
| TARGET_PAGE_SIZE * hpratio, clients); |
| } while (c != 0); |
| } |
| } |
| } |
| } |
| #endif /* not _WIN32 */ |
| |
| bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start, |
| ram_addr_t length, |
| unsigned client); |
| |
| static inline void cpu_physical_memory_clear_dirty_range(ram_addr_t start, |
| ram_addr_t length) |
| { |
| cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_MIGRATION); |
| cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_VGA); |
| cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_CODE); |
| } |
| |
| |
| static inline |
| uint64_t cpu_physical_memory_sync_dirty_bitmap(unsigned long *dest, |
| ram_addr_t start, |
| ram_addr_t length) |
| { |
| ram_addr_t addr; |
| unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS); |
| uint64_t num_dirty = 0; |
| |
| /* start address is aligned at the start of a word? */ |
| if (((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) { |
| int k; |
| int nr = BITS_TO_LONGS(length >> TARGET_PAGE_BITS); |
| unsigned long * const *src; |
| unsigned long idx = (page * BITS_PER_LONG) / DIRTY_MEMORY_BLOCK_SIZE; |
| unsigned long offset = BIT_WORD((page * BITS_PER_LONG) % |
| DIRTY_MEMORY_BLOCK_SIZE); |
| |
| rcu_read_lock(); |
| |
| src = atomic_rcu_read( |
| &ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION])->blocks; |
| |
| for (k = page; k < page + nr; k++) { |
| if (src[idx][offset]) { |
| unsigned long bits = atomic_xchg(&src[idx][offset], 0); |
| unsigned long new_dirty; |
| new_dirty = ~dest[k]; |
| dest[k] |= bits; |
| new_dirty &= bits; |
| num_dirty += ctpopl(new_dirty); |
| } |
| |
| if (++offset >= BITS_TO_LONGS(DIRTY_MEMORY_BLOCK_SIZE)) { |
| offset = 0; |
| idx++; |
| } |
| } |
| |
| rcu_read_unlock(); |
| } else { |
| for (addr = 0; addr < length; addr += TARGET_PAGE_SIZE) { |
| if (cpu_physical_memory_test_and_clear_dirty( |
| start + addr, |
| TARGET_PAGE_SIZE, |
| DIRTY_MEMORY_MIGRATION)) { |
| long k = (start + addr) >> TARGET_PAGE_BITS; |
| if (!test_and_set_bit(k, dest)) { |
| num_dirty++; |
| } |
| } |
| } |
| } |
| |
| return num_dirty; |
| } |
| |
| void migration_bitmap_extend(ram_addr_t old, ram_addr_t new); |
| #endif |
| #endif |