blob: 6592193b5e0055cba72f0d2b72d250a174ae8b57 [file] [log] [blame]
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001-2012 The Bochs Project
// Copyright (C) 2017 Google Inc.
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, see
// <https://www.gnu.org/licenses/>.
/////////////////////////////////////////////////////////////////////////
/*
* flags functions
*/
#include "qemu/osdep.h"
#include "panic.h"
#include "cpu.h"
#include "x86_flags.h"
#include "x86.h"
/*
* The algorithms here are similar to those in Bochs. After an ALU
* operation, CC_DST can be used to compute ZF, SF and PF, whereas
* CC_SRC is used to compute AF, CF and OF. In reality, SF and PF are the
* XOR of the value computed from CC_DST and the value found in bits 7 and 2
* of CC_SRC; this way the same logic can be used to compute the flags
* both before and after an ALU operation.
*
* Compared to the TCG CC_OP codes, this avoids conditionals when converting
* to and from the RFLAGS representation.
*/
#define LF_SIGN_BIT (TARGET_LONG_BITS - 1)
#define LF_BIT_PD (2) /* lazy Parity Delta, same bit as PF */
#define LF_BIT_AF (3) /* lazy Adjust flag */
#define LF_BIT_SD (7) /* lazy Sign Flag Delta, same bit as SF */
#define LF_BIT_CF (TARGET_LONG_BITS - 1) /* lazy Carry Flag */
#define LF_BIT_PO (TARGET_LONG_BITS - 2) /* lazy Partial Overflow = CF ^ OF */
#define LF_MASK_PD ((target_ulong)0x01 << LF_BIT_PD)
#define LF_MASK_AF ((target_ulong)0x01 << LF_BIT_AF)
#define LF_MASK_SD ((target_ulong)0x01 << LF_BIT_SD)
#define LF_MASK_CF ((target_ulong)0x01 << LF_BIT_CF)
#define LF_MASK_PO ((target_ulong)0x01 << LF_BIT_PO)
/* ******************* */
/* OSZAPC */
/* ******************* */
/* use carries to fill in AF, PO and CF, while ensuring PD and SD are clear.
* for full-word operations just clear PD and SD; for smaller operand
* sizes only keep AF in the low byte and shift the carries left to
* place PO and CF in the top two bits.
*/
#define SET_FLAGS_OSZAPC_SIZE(size, lf_carries, lf_result) { \
env->cc_dst = (target_ulong)(int##size##_t)(lf_result); \
target_ulong temp = (lf_carries); \
if ((size) == TARGET_LONG_BITS) { \
temp = temp & ~(LF_MASK_PD | LF_MASK_SD); \
} else { \
temp = (temp & LF_MASK_AF) | (temp << (TARGET_LONG_BITS - (size))); \
} \
env->cc_src = temp; \
}
/* carries, result */
#define SET_FLAGS_OSZAPC_8(carries, result) \
SET_FLAGS_OSZAPC_SIZE(8, carries, result)
#define SET_FLAGS_OSZAPC_16(carries, result) \
SET_FLAGS_OSZAPC_SIZE(16, carries, result)
#define SET_FLAGS_OSZAPC_32(carries, result) \
SET_FLAGS_OSZAPC_SIZE(32, carries, result)
/* ******************* */
/* OSZAP */
/* ******************* */
/* same as setting OSZAPC, but preserve CF and flip PO if the old value of CF
* did not match the high bit of lf_carries. */
#define SET_FLAGS_OSZAP_SIZE(size, lf_carries, lf_result) { \
env->cc_dst = (target_ulong)(int##size##_t)(lf_result); \
target_ulong temp = (lf_carries); \
if ((size) == TARGET_LONG_BITS) { \
temp = (temp & ~(LF_MASK_PD | LF_MASK_SD)); \
} else { \
temp = (temp & LF_MASK_AF) | (temp << (TARGET_LONG_BITS - (size))); \
} \
target_ulong cf_changed = ((target_long)(env->cc_src ^ temp)) < 0; \
env->cc_src = temp ^ (cf_changed * (LF_MASK_PO | LF_MASK_CF)); \
}
/* carries, result */
#define SET_FLAGS_OSZAP_8(carries, result) \
SET_FLAGS_OSZAP_SIZE(8, carries, result)
#define SET_FLAGS_OSZAP_16(carries, result) \
SET_FLAGS_OSZAP_SIZE(16, carries, result)
#define SET_FLAGS_OSZAP_32(carries, result) \
SET_FLAGS_OSZAP_SIZE(32, carries, result)
void SET_FLAGS_OxxxxC(CPUX86State *env, bool new_of, bool new_cf)
{
env->cc_src &= ~(LF_MASK_PO | LF_MASK_CF);
env->cc_src |= (-(target_ulong)new_cf << LF_BIT_PO);
env->cc_src ^= ((target_ulong)new_of << LF_BIT_PO);
}
void SET_FLAGS_OSZAPC_SUB32(CPUX86State *env, uint32_t v1, uint32_t v2,
uint32_t diff)
{
SET_FLAGS_OSZAPC_32(SUB_COUT_VEC(v1, v2, diff), diff);
}
void SET_FLAGS_OSZAPC_SUB16(CPUX86State *env, uint16_t v1, uint16_t v2,
uint16_t diff)
{
SET_FLAGS_OSZAPC_16(SUB_COUT_VEC(v1, v2, diff), diff);
}
void SET_FLAGS_OSZAPC_SUB8(CPUX86State *env, uint8_t v1, uint8_t v2,
uint8_t diff)
{
SET_FLAGS_OSZAPC_8(SUB_COUT_VEC(v1, v2, diff), diff);
}
void SET_FLAGS_OSZAPC_ADD32(CPUX86State *env, uint32_t v1, uint32_t v2,
uint32_t diff)
{
SET_FLAGS_OSZAPC_32(ADD_COUT_VEC(v1, v2, diff), diff);
}
void SET_FLAGS_OSZAPC_ADD16(CPUX86State *env, uint16_t v1, uint16_t v2,
uint16_t diff)
{
SET_FLAGS_OSZAPC_16(ADD_COUT_VEC(v1, v2, diff), diff);
}
void SET_FLAGS_OSZAPC_ADD8(CPUX86State *env, uint8_t v1, uint8_t v2,
uint8_t diff)
{
SET_FLAGS_OSZAPC_8(ADD_COUT_VEC(v1, v2, diff), diff);
}
void SET_FLAGS_OSZAP_SUB32(CPUX86State *env, uint32_t v1, uint32_t v2,
uint32_t diff)
{
SET_FLAGS_OSZAP_32(SUB_COUT_VEC(v1, v2, diff), diff);
}
void SET_FLAGS_OSZAP_SUB16(CPUX86State *env, uint16_t v1, uint16_t v2,
uint16_t diff)
{
SET_FLAGS_OSZAP_16(SUB_COUT_VEC(v1, v2, diff), diff);
}
void SET_FLAGS_OSZAP_SUB8(CPUX86State *env, uint8_t v1, uint8_t v2,
uint8_t diff)
{
SET_FLAGS_OSZAP_8(SUB_COUT_VEC(v1, v2, diff), diff);
}
void SET_FLAGS_OSZAP_ADD32(CPUX86State *env, uint32_t v1, uint32_t v2,
uint32_t diff)
{
SET_FLAGS_OSZAP_32(ADD_COUT_VEC(v1, v2, diff), diff);
}
void SET_FLAGS_OSZAP_ADD16(CPUX86State *env, uint16_t v1, uint16_t v2,
uint16_t diff)
{
SET_FLAGS_OSZAP_16(ADD_COUT_VEC(v1, v2, diff), diff);
}
void SET_FLAGS_OSZAP_ADD8(CPUX86State *env, uint8_t v1, uint8_t v2,
uint8_t diff)
{
SET_FLAGS_OSZAP_8(ADD_COUT_VEC(v1, v2, diff), diff);
}
void SET_FLAGS_OSZAPC_LOGIC32(CPUX86State *env, uint32_t v1, uint32_t v2,
uint32_t diff)
{
SET_FLAGS_OSZAPC_32(0, diff);
}
void SET_FLAGS_OSZAPC_LOGIC16(CPUX86State *env, uint16_t v1, uint16_t v2,
uint16_t diff)
{
SET_FLAGS_OSZAPC_16(0, diff);
}
void SET_FLAGS_OSZAPC_LOGIC8(CPUX86State *env, uint8_t v1, uint8_t v2,
uint8_t diff)
{
SET_FLAGS_OSZAPC_8(0, diff);
}
static inline uint32_t get_PF(CPUX86State *env)
{
return ((parity8(env->cc_dst) - 1) ^ env->cc_src) & CC_P;
}
static inline uint32_t get_OF(CPUX86State *env)
{
return ((env->cc_src >> (LF_BIT_CF - 11)) + CC_O / 2) & CC_O;
}
bool get_CF(CPUX86State *env)
{
return ((target_long)env->cc_src) < 0;
}
void set_CF(CPUX86State *env, bool val)
{
/* If CF changes, flip PO and CF */
target_ulong temp = -(target_ulong)val;
target_ulong cf_changed = ((target_long)(env->cc_src ^ temp)) < 0;
env->cc_src ^= cf_changed * (LF_MASK_PO | LF_MASK_CF);
}
static inline uint32_t get_ZF(CPUX86State *env)
{
return env->cc_dst ? 0 : CC_Z;
}
static inline uint32_t get_SF(CPUX86State *env)
{
return ((env->cc_dst >> (LF_SIGN_BIT - LF_BIT_SD)) ^
env->cc_src) & CC_S;
}
void lflags_to_rflags(CPUX86State *env)
{
env->eflags &= ~(CC_C|CC_P|CC_A|CC_Z|CC_S|CC_O);
/* rotate left by one to move carry-out bits into CF and AF */
env->eflags |= (
(env->cc_src << 1) |
(env->cc_src >> (TARGET_LONG_BITS - 1))) & (CC_C | CC_A);
env->eflags |= get_SF(env);
env->eflags |= get_PF(env);
env->eflags |= get_ZF(env);
env->eflags |= get_OF(env);
}
void rflags_to_lflags(CPUX86State *env)
{
target_ulong cf_af, cf_xor_of;
/* Leave the low byte zero so that parity is always even... */
env->cc_dst = !(env->eflags & CC_Z) << 8;
/* ... and therefore cc_src always uses opposite polarity. */
env->cc_src = CC_P;
env->cc_src ^= env->eflags & (CC_S | CC_P);
/* rotate right by one to move CF and AF into the carry-out positions */
cf_af = env->eflags & (CC_C | CC_A);
env->cc_src |= ((cf_af >> 1) | (cf_af << (TARGET_LONG_BITS - 1)));
cf_xor_of = ((env->eflags & (CC_C | CC_O)) + (CC_O - CC_C)) & CC_O;
env->cc_src |= -cf_xor_of & LF_MASK_PO;
}