blob: d1141f7c882a3e91ca2ac384804a73b3248608b7 [file] [log] [blame]
// SPDX-License-Identifier: MIT or Apache-2.0 or GPL-2.0-or-later
/// # Definition entry point
///
/// Define a struct with a single field of type $type. Include public constants
/// for each element listed in braces.
///
/// The unnamed element at the end, if present, can be used to enlarge the set
/// of valid bits. Bits that are valid but not listed are treated normally for
/// the purpose of arithmetic operations, and are printed with their hexadecimal
/// value.
///
/// The struct implements the following traits: [`BitAnd`](std::ops::BitAnd),
/// [`BitOr`](std::ops::BitOr), [`BitXor`](std::ops::BitXor),
/// [`Not`](std::ops::Not), [`Sub`](std::ops::Sub); [`Debug`](std::fmt::Debug),
/// [`Display`](std::fmt::Display), [`Binary`](std::fmt::Binary),
/// [`Octal`](std::fmt::Octal), [`LowerHex`](std::fmt::LowerHex),
/// [`UpperHex`](std::fmt::UpperHex); [`From`]`<type>`/[`Into`]`<type>` where
/// type is the type specified in the definition.
///
/// ## Example
///
/// ```
/// # use bits::bits;
/// bits! {
/// pub struct Colors(u8) {
/// BLACK = 0,
/// RED = 1,
/// GREEN = 1 << 1,
/// BLUE = 1 << 2,
/// WHITE = (1 << 0) | (1 << 1) | (1 << 2),
/// }
/// }
/// ```
///
/// ```
/// # use bits::bits;
/// # bits! { pub struct Colors(u8) { BLACK = 0, RED = 1, GREEN = 1 << 1, BLUE = 1 << 2, } }
///
/// bits! {
/// pub struct Colors8(u8) {
/// BLACK = 0,
/// RED = 1,
/// GREEN = 1 << 1,
/// BLUE = 1 << 2,
/// WHITE = (1 << 0) | (1 << 1) | (1 << 2),
///
/// _ = 255,
/// }
/// }
///
/// // The previously defined struct ignores bits not explicitly defined.
/// assert_eq!(
/// Colors::from(255).into_bits(),
/// (Colors::RED | Colors::GREEN | Colors::BLUE).into_bits()
/// );
///
/// // Adding "_ = 255" makes it retain other bits as well.
/// assert_eq!(Colors8::from(255).into_bits(), 255);
///
/// // all() does not include the additional bits, valid_bits() does
/// assert_eq!(Colors8::all().into_bits(), Colors::all().into_bits());
/// assert_eq!(Colors8::valid_bits().into_bits(), 255);
/// ```
///
/// # Evaluation entry point
///
/// Return a constant corresponding to the boolean expression `$expr`.
/// Identifiers in the expression correspond to values defined for the
/// type `$type`. Supported operators are `!` (unary), `-`, `&`, `^`, `|`.
///
/// ## Examples
///
/// ```
/// # use bits::bits;
/// bits! {
/// pub struct Colors(u8) {
/// BLACK = 0,
/// RED = 1,
/// GREEN = 1 << 1,
/// BLUE = 1 << 2,
/// // same as "WHITE = 7",
/// WHITE = bits!(Self as u8: RED | GREEN | BLUE),
/// }
/// }
///
/// let rgb = bits! { Colors: RED | GREEN | BLUE };
/// assert_eq!(rgb, Colors::WHITE);
/// ```
#[macro_export]
macro_rules! bits {
{
$(#[$struct_meta:meta])*
$struct_vis:vis struct $struct_name:ident($field_vis:vis $type:ty) {
$($(#[$const_meta:meta])* $const:ident = $val:expr),+
$(,_ = $mask:expr)?
$(,)?
}
} => {
$(#[$struct_meta])*
#[derive(Clone, Copy, PartialEq, Eq)]
#[repr(transparent)]
$struct_vis struct $struct_name($field_vis $type);
impl $struct_name {
$( #[allow(dead_code)] $(#[$const_meta])*
pub const $const: $struct_name = $struct_name($val); )+
#[doc(hidden)]
const VALID__: $type = $( Self::$const.0 )|+ $(|$mask)?;
#[allow(dead_code)]
#[inline(always)]
pub const fn empty() -> Self {
Self(0)
}
#[allow(dead_code)]
#[inline(always)]
pub const fn all() -> Self {
Self($( Self::$const.0 )|+)
}
#[allow(dead_code)]
#[inline(always)]
pub const fn valid_bits() -> Self {
Self(Self::VALID__)
}
#[allow(dead_code)]
#[inline(always)]
pub const fn valid(val: $type) -> bool {
(val & !Self::VALID__) == 0
}
#[allow(dead_code)]
#[inline(always)]
pub const fn any_set(self, mask: Self) -> bool {
(self.0 & mask.0) != 0
}
#[allow(dead_code)]
#[inline(always)]
pub const fn all_set(self, mask: Self) -> bool {
(self.0 & mask.0) == mask.0
}
#[allow(dead_code)]
#[inline(always)]
pub const fn none_set(self, mask: Self) -> bool {
(self.0 & mask.0) == 0
}
#[allow(dead_code)]
#[inline(always)]
pub const fn from_bits(value: $type) -> Self {
$struct_name(value)
}
#[allow(dead_code)]
#[inline(always)]
pub const fn into_bits(self) -> $type {
self.0
}
#[allow(dead_code)]
#[inline(always)]
pub const fn set(&mut self, rhs: Self) {
self.0 |= rhs.0;
}
#[allow(dead_code)]
#[inline(always)]
pub const fn clear(&mut self, rhs: Self) {
self.0 &= !rhs.0;
}
#[allow(dead_code)]
#[inline(always)]
pub const fn toggle(&mut self, rhs: Self) {
self.0 ^= rhs.0;
}
#[allow(dead_code)]
#[inline(always)]
pub const fn intersection(self, rhs: Self) -> Self {
$struct_name(self.0 & rhs.0)
}
#[allow(dead_code)]
#[inline(always)]
pub const fn difference(self, rhs: Self) -> Self {
$struct_name(self.0 & !rhs.0)
}
#[allow(dead_code)]
#[inline(always)]
pub const fn symmetric_difference(self, rhs: Self) -> Self {
$struct_name(self.0 ^ rhs.0)
}
#[allow(dead_code)]
#[inline(always)]
pub const fn union(self, rhs: Self) -> Self {
$struct_name(self.0 | rhs.0)
}
#[allow(dead_code)]
#[inline(always)]
pub const fn invert(self) -> Self {
$struct_name(self.0 ^ Self::VALID__)
}
}
impl ::std::fmt::Binary for $struct_name {
fn fmt(&self, f: &mut ::std::fmt::Formatter<'_>) -> ::std::fmt::Result {
// If no width, use the highest valid bit
let width = f.width().unwrap_or((Self::VALID__.ilog2() + 1) as usize);
write!(f, "{:0>width$.precision$b}", self.0,
width = width,
precision = f.precision().unwrap_or(width))
}
}
impl ::std::fmt::LowerHex for $struct_name {
fn fmt(&self, f: &mut ::std::fmt::Formatter<'_>) -> ::std::fmt::Result {
<$type as ::std::fmt::LowerHex>::fmt(&self.0, f)
}
}
impl ::std::fmt::Octal for $struct_name {
fn fmt(&self, f: &mut ::std::fmt::Formatter<'_>) -> ::std::fmt::Result {
<$type as ::std::fmt::Octal>::fmt(&self.0, f)
}
}
impl ::std::fmt::UpperHex for $struct_name {
fn fmt(&self, f: &mut ::std::fmt::Formatter<'_>) -> ::std::fmt::Result {
<$type as ::std::fmt::UpperHex>::fmt(&self.0, f)
}
}
impl ::std::fmt::Debug for $struct_name {
fn fmt(&self, f: &mut ::std::fmt::Formatter<'_>) -> ::std::fmt::Result {
write!(f, "{}({})", stringify!($struct_name), self)
}
}
impl ::std::fmt::Display for $struct_name {
fn fmt(&self, f: &mut ::std::fmt::Formatter<'_>) -> ::std::fmt::Result {
use ::std::fmt::Display;
let mut first = true;
let mut left = self.0;
$(if Self::$const.0.is_power_of_two() && (self & Self::$const).0 != 0 {
if first { first = false } else { Display::fmt(&'|', f)?; }
Display::fmt(stringify!($const), f)?;
left -= Self::$const.0;
})+
if first {
Display::fmt(&'0', f)
} else if left != 0 {
write!(f, "|{left:#x}")
} else {
Ok(())
}
}
}
impl ::std::cmp::PartialEq<$type> for $struct_name {
fn eq(&self, rhs: &$type) -> bool {
self.0 == *rhs
}
}
impl ::std::ops::BitAnd<$struct_name> for &$struct_name {
type Output = $struct_name;
fn bitand(self, rhs: $struct_name) -> Self::Output {
$struct_name(self.0 & rhs.0)
}
}
impl ::std::ops::BitAndAssign<$struct_name> for $struct_name {
fn bitand_assign(&mut self, rhs: $struct_name) {
self.0 = self.0 & rhs.0
}
}
impl ::std::ops::BitXor<$struct_name> for &$struct_name {
type Output = $struct_name;
fn bitxor(self, rhs: $struct_name) -> Self::Output {
$struct_name(self.0 ^ rhs.0)
}
}
impl ::std::ops::BitXorAssign<$struct_name> for $struct_name {
fn bitxor_assign(&mut self, rhs: $struct_name) {
self.0 = self.0 ^ rhs.0
}
}
impl ::std::ops::BitOr<$struct_name> for &$struct_name {
type Output = $struct_name;
fn bitor(self, rhs: $struct_name) -> Self::Output {
$struct_name(self.0 | rhs.0)
}
}
impl ::std::ops::BitOrAssign<$struct_name> for $struct_name {
fn bitor_assign(&mut self, rhs: $struct_name) {
self.0 = self.0 | rhs.0
}
}
impl ::std::ops::Sub<$struct_name> for &$struct_name {
type Output = $struct_name;
fn sub(self, rhs: $struct_name) -> Self::Output {
$struct_name(self.0 & !rhs.0)
}
}
impl ::std::ops::SubAssign<$struct_name> for $struct_name {
fn sub_assign(&mut self, rhs: $struct_name) {
self.0 = self.0 - rhs.0
}
}
impl ::std::ops::Not for &$struct_name {
type Output = $struct_name;
fn not(self) -> Self::Output {
$struct_name(self.0 ^ $struct_name::VALID__)
}
}
impl ::std::ops::BitAnd<$struct_name> for $struct_name {
type Output = Self;
fn bitand(self, rhs: Self) -> Self::Output {
$struct_name(self.0 & rhs.0)
}
}
impl ::std::ops::BitXor<$struct_name> for $struct_name {
type Output = Self;
fn bitxor(self, rhs: Self) -> Self::Output {
$struct_name(self.0 ^ rhs.0)
}
}
impl ::std::ops::BitOr<$struct_name> for $struct_name {
type Output = Self;
fn bitor(self, rhs: Self) -> Self::Output {
$struct_name(self.0 | rhs.0)
}
}
impl ::std::ops::Sub<$struct_name> for $struct_name {
type Output = Self;
fn sub(self, rhs: Self) -> Self::Output {
$struct_name(self.0 & !rhs.0)
}
}
impl ::std::ops::Not for $struct_name {
type Output = Self;
fn not(self) -> Self::Output {
$struct_name(self.0 ^ Self::VALID__)
}
}
impl From<$struct_name> for $type {
fn from(x: $struct_name) -> $type {
x.0
}
}
impl From<$type> for $struct_name {
fn from(x: $type) -> Self {
$struct_name(x & Self::VALID__)
}
}
};
{ $type:ty: $expr:expr } => {
$crate::bits_const_internal! { $type @ ($expr) }
};
{ $type:ty as $int_type:ty: $expr:expr } => {
($crate::bits_const_internal! { $type @ ($expr) }.into_bits()) as $int_type
};
}
#[doc(hidden)]
pub use qemu_macros::bits_const_internal;
#[cfg(test)]
mod test {
bits! {
pub struct InterruptMask(u32) {
OE = 1 << 10,
BE = 1 << 9,
PE = 1 << 8,
FE = 1 << 7,
RT = 1 << 6,
TX = 1 << 5,
RX = 1 << 4,
DSR = 1 << 3,
DCD = 1 << 2,
CTS = 1 << 1,
RI = 1 << 0,
E = bits!(Self as u32: OE | BE | PE | FE),
MS = bits!(Self as u32: RI | DSR | DCD | CTS),
}
}
#[test]
pub fn test_not() {
assert_eq!(
!InterruptMask::from(InterruptMask::RT.0),
InterruptMask::E | InterruptMask::MS | InterruptMask::TX | InterruptMask::RX
);
}
#[test]
pub fn test_and() {
assert_eq!(
InterruptMask::from(0),
InterruptMask::MS & InterruptMask::OE
)
}
#[test]
pub fn test_or() {
assert_eq!(
InterruptMask::E,
InterruptMask::OE | InterruptMask::BE | InterruptMask::PE | InterruptMask::FE
);
}
#[test]
pub fn test_xor() {
assert_eq!(
InterruptMask::E ^ InterruptMask::BE,
InterruptMask::OE | InterruptMask::PE | InterruptMask::FE
);
}
}