| /* |
| * device quirks for PCI devices |
| * |
| * Copyright Red Hat, Inc. 2012-2015 |
| * |
| * Authors: |
| * Alex Williamson <alex.williamson@redhat.com> |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2. See |
| * the COPYING file in the top-level directory. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu/error-report.h" |
| #include "qemu/range.h" |
| #include "qapi/error.h" |
| #include "hw/nvram/fw_cfg.h" |
| #include "pci.h" |
| #include "trace.h" |
| |
| /* Use uin32_t for vendor & device so PCI_ANY_ID expands and cannot match hw */ |
| static bool vfio_pci_is(VFIOPCIDevice *vdev, uint32_t vendor, uint32_t device) |
| { |
| return (vendor == PCI_ANY_ID || vendor == vdev->vendor_id) && |
| (device == PCI_ANY_ID || device == vdev->device_id); |
| } |
| |
| static bool vfio_is_vga(VFIOPCIDevice *vdev) |
| { |
| PCIDevice *pdev = &vdev->pdev; |
| uint16_t class = pci_get_word(pdev->config + PCI_CLASS_DEVICE); |
| |
| return class == PCI_CLASS_DISPLAY_VGA; |
| } |
| |
| /* |
| * List of device ids/vendor ids for which to disable |
| * option rom loading. This avoids the guest hangs during rom |
| * execution as noticed with the BCM 57810 card for lack of a |
| * more better way to handle such issues. |
| * The user can still override by specifying a romfile or |
| * rombar=1. |
| * Please see https://bugs.launchpad.net/qemu/+bug/1284874 |
| * for an analysis of the 57810 card hang. When adding |
| * a new vendor id/device id combination below, please also add |
| * your card/environment details and information that could |
| * help in debugging to the bug tracking this issue |
| */ |
| static const struct { |
| uint32_t vendor; |
| uint32_t device; |
| } romblacklist[] = { |
| { 0x14e4, 0x168e }, /* Broadcom BCM 57810 */ |
| }; |
| |
| bool vfio_blacklist_opt_rom(VFIOPCIDevice *vdev) |
| { |
| int i; |
| |
| for (i = 0 ; i < ARRAY_SIZE(romblacklist); i++) { |
| if (vfio_pci_is(vdev, romblacklist[i].vendor, romblacklist[i].device)) { |
| trace_vfio_quirk_rom_blacklisted(vdev->vbasedev.name, |
| romblacklist[i].vendor, |
| romblacklist[i].device); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| /* |
| * Device specific region quirks (mostly backdoors to PCI config space) |
| */ |
| |
| /* |
| * The generic window quirks operate on an address and data register, |
| * vfio_generic_window_address_quirk handles the address register and |
| * vfio_generic_window_data_quirk handles the data register. These ops |
| * pass reads and writes through to hardware until a value matching the |
| * stored address match/mask is written. When this occurs, the data |
| * register access emulated PCI config space for the device rather than |
| * passing through accesses. This enables devices where PCI config space |
| * is accessible behind a window register to maintain the virtualization |
| * provided through vfio. |
| */ |
| typedef struct VFIOConfigWindowMatch { |
| uint32_t match; |
| uint32_t mask; |
| } VFIOConfigWindowMatch; |
| |
| typedef struct VFIOConfigWindowQuirk { |
| struct VFIOPCIDevice *vdev; |
| |
| uint32_t address_val; |
| |
| uint32_t address_offset; |
| uint32_t data_offset; |
| |
| bool window_enabled; |
| uint8_t bar; |
| |
| MemoryRegion *addr_mem; |
| MemoryRegion *data_mem; |
| |
| uint32_t nr_matches; |
| VFIOConfigWindowMatch matches[]; |
| } VFIOConfigWindowQuirk; |
| |
| static uint64_t vfio_generic_window_quirk_address_read(void *opaque, |
| hwaddr addr, |
| unsigned size) |
| { |
| VFIOConfigWindowQuirk *window = opaque; |
| VFIOPCIDevice *vdev = window->vdev; |
| |
| return vfio_region_read(&vdev->bars[window->bar].region, |
| addr + window->address_offset, size); |
| } |
| |
| static void vfio_generic_window_quirk_address_write(void *opaque, hwaddr addr, |
| uint64_t data, |
| unsigned size) |
| { |
| VFIOConfigWindowQuirk *window = opaque; |
| VFIOPCIDevice *vdev = window->vdev; |
| int i; |
| |
| window->window_enabled = false; |
| |
| vfio_region_write(&vdev->bars[window->bar].region, |
| addr + window->address_offset, data, size); |
| |
| for (i = 0; i < window->nr_matches; i++) { |
| if ((data & ~window->matches[i].mask) == window->matches[i].match) { |
| window->window_enabled = true; |
| window->address_val = data & window->matches[i].mask; |
| trace_vfio_quirk_generic_window_address_write(vdev->vbasedev.name, |
| memory_region_name(window->addr_mem), data); |
| break; |
| } |
| } |
| } |
| |
| static const MemoryRegionOps vfio_generic_window_address_quirk = { |
| .read = vfio_generic_window_quirk_address_read, |
| .write = vfio_generic_window_quirk_address_write, |
| .endianness = DEVICE_LITTLE_ENDIAN, |
| }; |
| |
| static uint64_t vfio_generic_window_quirk_data_read(void *opaque, |
| hwaddr addr, unsigned size) |
| { |
| VFIOConfigWindowQuirk *window = opaque; |
| VFIOPCIDevice *vdev = window->vdev; |
| uint64_t data; |
| |
| /* Always read data reg, discard if window enabled */ |
| data = vfio_region_read(&vdev->bars[window->bar].region, |
| addr + window->data_offset, size); |
| |
| if (window->window_enabled) { |
| data = vfio_pci_read_config(&vdev->pdev, window->address_val, size); |
| trace_vfio_quirk_generic_window_data_read(vdev->vbasedev.name, |
| memory_region_name(window->data_mem), data); |
| } |
| |
| return data; |
| } |
| |
| static void vfio_generic_window_quirk_data_write(void *opaque, hwaddr addr, |
| uint64_t data, unsigned size) |
| { |
| VFIOConfigWindowQuirk *window = opaque; |
| VFIOPCIDevice *vdev = window->vdev; |
| |
| if (window->window_enabled) { |
| vfio_pci_write_config(&vdev->pdev, window->address_val, data, size); |
| trace_vfio_quirk_generic_window_data_write(vdev->vbasedev.name, |
| memory_region_name(window->data_mem), data); |
| return; |
| } |
| |
| vfio_region_write(&vdev->bars[window->bar].region, |
| addr + window->data_offset, data, size); |
| } |
| |
| static const MemoryRegionOps vfio_generic_window_data_quirk = { |
| .read = vfio_generic_window_quirk_data_read, |
| .write = vfio_generic_window_quirk_data_write, |
| .endianness = DEVICE_LITTLE_ENDIAN, |
| }; |
| |
| /* |
| * The generic mirror quirk handles devices which expose PCI config space |
| * through a region within a BAR. When enabled, reads and writes are |
| * redirected through to emulated PCI config space. XXX if PCI config space |
| * used memory regions, this could just be an alias. |
| */ |
| typedef struct VFIOConfigMirrorQuirk { |
| struct VFIOPCIDevice *vdev; |
| uint32_t offset; |
| uint8_t bar; |
| MemoryRegion *mem; |
| } VFIOConfigMirrorQuirk; |
| |
| static uint64_t vfio_generic_quirk_mirror_read(void *opaque, |
| hwaddr addr, unsigned size) |
| { |
| VFIOConfigMirrorQuirk *mirror = opaque; |
| VFIOPCIDevice *vdev = mirror->vdev; |
| uint64_t data; |
| |
| /* Read and discard in case the hardware cares */ |
| (void)vfio_region_read(&vdev->bars[mirror->bar].region, |
| addr + mirror->offset, size); |
| |
| data = vfio_pci_read_config(&vdev->pdev, addr, size); |
| trace_vfio_quirk_generic_mirror_read(vdev->vbasedev.name, |
| memory_region_name(mirror->mem), |
| addr, data); |
| return data; |
| } |
| |
| static void vfio_generic_quirk_mirror_write(void *opaque, hwaddr addr, |
| uint64_t data, unsigned size) |
| { |
| VFIOConfigMirrorQuirk *mirror = opaque; |
| VFIOPCIDevice *vdev = mirror->vdev; |
| |
| vfio_pci_write_config(&vdev->pdev, addr, data, size); |
| trace_vfio_quirk_generic_mirror_write(vdev->vbasedev.name, |
| memory_region_name(mirror->mem), |
| addr, data); |
| } |
| |
| static const MemoryRegionOps vfio_generic_mirror_quirk = { |
| .read = vfio_generic_quirk_mirror_read, |
| .write = vfio_generic_quirk_mirror_write, |
| .endianness = DEVICE_LITTLE_ENDIAN, |
| }; |
| |
| /* Is range1 fully contained within range2? */ |
| static bool vfio_range_contained(uint64_t first1, uint64_t len1, |
| uint64_t first2, uint64_t len2) { |
| return (first1 >= first2 && first1 + len1 <= first2 + len2); |
| } |
| |
| #define PCI_VENDOR_ID_ATI 0x1002 |
| |
| /* |
| * Radeon HD cards (HD5450 & HD7850) report the upper byte of the I/O port BAR |
| * through VGA register 0x3c3. On newer cards, the I/O port BAR is always |
| * BAR4 (older cards like the X550 used BAR1, but we don't care to support |
| * those). Note that on bare metal, a read of 0x3c3 doesn't always return the |
| * I/O port BAR address. Originally this was coded to return the virtual BAR |
| * address only if the physical register read returns the actual BAR address, |
| * but users have reported greater success if we return the virtual address |
| * unconditionally. |
| */ |
| static uint64_t vfio_ati_3c3_quirk_read(void *opaque, |
| hwaddr addr, unsigned size) |
| { |
| VFIOPCIDevice *vdev = opaque; |
| uint64_t data = vfio_pci_read_config(&vdev->pdev, |
| PCI_BASE_ADDRESS_4 + 1, size); |
| |
| trace_vfio_quirk_ati_3c3_read(vdev->vbasedev.name, data); |
| |
| return data; |
| } |
| |
| static const MemoryRegionOps vfio_ati_3c3_quirk = { |
| .read = vfio_ati_3c3_quirk_read, |
| .endianness = DEVICE_LITTLE_ENDIAN, |
| }; |
| |
| static void vfio_vga_probe_ati_3c3_quirk(VFIOPCIDevice *vdev) |
| { |
| VFIOQuirk *quirk; |
| |
| /* |
| * As long as the BAR is >= 256 bytes it will be aligned such that the |
| * lower byte is always zero. Filter out anything else, if it exists. |
| */ |
| if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) || |
| !vdev->bars[4].ioport || vdev->bars[4].region.size < 256) { |
| return; |
| } |
| |
| quirk = g_malloc0(sizeof(*quirk)); |
| quirk->mem = g_new0(MemoryRegion, 1); |
| quirk->nr_mem = 1; |
| |
| memory_region_init_io(quirk->mem, OBJECT(vdev), &vfio_ati_3c3_quirk, vdev, |
| "vfio-ati-3c3-quirk", 1); |
| memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem, |
| 3 /* offset 3 bytes from 0x3c0 */, quirk->mem); |
| |
| QLIST_INSERT_HEAD(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].quirks, |
| quirk, next); |
| |
| trace_vfio_quirk_ati_3c3_probe(vdev->vbasedev.name); |
| } |
| |
| /* |
| * Newer ATI/AMD devices, including HD5450 and HD7850, have a mirror to PCI |
| * config space through MMIO BAR2 at offset 0x4000. Nothing seems to access |
| * the MMIO space directly, but a window to this space is provided through |
| * I/O port BAR4. Offset 0x0 is the address register and offset 0x4 is the |
| * data register. When the address is programmed to a range of 0x4000-0x4fff |
| * PCI configuration space is available. Experimentation seems to indicate |
| * that read-only may be provided by hardware. |
| */ |
| static void vfio_probe_ati_bar4_quirk(VFIOPCIDevice *vdev, int nr) |
| { |
| VFIOQuirk *quirk; |
| VFIOConfigWindowQuirk *window; |
| |
| /* This windows doesn't seem to be used except by legacy VGA code */ |
| if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) || |
| !vdev->vga || nr != 4) { |
| return; |
| } |
| |
| quirk = g_malloc0(sizeof(*quirk)); |
| quirk->mem = g_new0(MemoryRegion, 2); |
| quirk->nr_mem = 2; |
| window = quirk->data = g_malloc0(sizeof(*window) + |
| sizeof(VFIOConfigWindowMatch)); |
| window->vdev = vdev; |
| window->address_offset = 0; |
| window->data_offset = 4; |
| window->nr_matches = 1; |
| window->matches[0].match = 0x4000; |
| window->matches[0].mask = vdev->config_size - 1; |
| window->bar = nr; |
| window->addr_mem = &quirk->mem[0]; |
| window->data_mem = &quirk->mem[1]; |
| |
| memory_region_init_io(window->addr_mem, OBJECT(vdev), |
| &vfio_generic_window_address_quirk, window, |
| "vfio-ati-bar4-window-address-quirk", 4); |
| memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, |
| window->address_offset, |
| window->addr_mem, 1); |
| |
| memory_region_init_io(window->data_mem, OBJECT(vdev), |
| &vfio_generic_window_data_quirk, window, |
| "vfio-ati-bar4-window-data-quirk", 4); |
| memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, |
| window->data_offset, |
| window->data_mem, 1); |
| |
| QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); |
| |
| trace_vfio_quirk_ati_bar4_probe(vdev->vbasedev.name); |
| } |
| |
| /* |
| * Trap the BAR2 MMIO mirror to config space as well. |
| */ |
| static void vfio_probe_ati_bar2_quirk(VFIOPCIDevice *vdev, int nr) |
| { |
| VFIOQuirk *quirk; |
| VFIOConfigMirrorQuirk *mirror; |
| |
| /* Only enable on newer devices where BAR2 is 64bit */ |
| if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) || |
| !vdev->vga || nr != 2 || !vdev->bars[2].mem64) { |
| return; |
| } |
| |
| quirk = g_malloc0(sizeof(*quirk)); |
| mirror = quirk->data = g_malloc0(sizeof(*mirror)); |
| mirror->mem = quirk->mem = g_new0(MemoryRegion, 1); |
| quirk->nr_mem = 1; |
| mirror->vdev = vdev; |
| mirror->offset = 0x4000; |
| mirror->bar = nr; |
| |
| memory_region_init_io(mirror->mem, OBJECT(vdev), |
| &vfio_generic_mirror_quirk, mirror, |
| "vfio-ati-bar2-4000-quirk", PCI_CONFIG_SPACE_SIZE); |
| memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, |
| mirror->offset, mirror->mem, 1); |
| |
| QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); |
| |
| trace_vfio_quirk_ati_bar2_probe(vdev->vbasedev.name); |
| } |
| |
| /* |
| * Older ATI/AMD cards like the X550 have a similar window to that above. |
| * I/O port BAR1 provides a window to a mirror of PCI config space located |
| * in BAR2 at offset 0xf00. We don't care to support such older cards, but |
| * note it for future reference. |
| */ |
| |
| #define PCI_VENDOR_ID_NVIDIA 0x10de |
| |
| /* |
| * Nvidia has several different methods to get to config space, the |
| * nouveu project has several of these documented here: |
| * https://github.com/pathscale/envytools/tree/master/hwdocs |
| * |
| * The first quirk is actually not documented in envytools and is found |
| * on 10de:01d1 (NVIDIA Corporation G72 [GeForce 7300 LE]). This is an |
| * NV46 chipset. The backdoor uses the legacy VGA I/O ports to access |
| * the mirror of PCI config space found at BAR0 offset 0x1800. The access |
| * sequence first writes 0x338 to I/O port 0x3d4. The target offset is |
| * then written to 0x3d0. Finally 0x538 is written for a read and 0x738 |
| * is written for a write to 0x3d4. The BAR0 offset is then accessible |
| * through 0x3d0. This quirk doesn't seem to be necessary on newer cards |
| * that use the I/O port BAR5 window but it doesn't hurt to leave it. |
| */ |
| typedef enum {NONE = 0, SELECT, WINDOW, READ, WRITE} VFIONvidia3d0State; |
| static const char *nv3d0_states[] = { "NONE", "SELECT", |
| "WINDOW", "READ", "WRITE" }; |
| |
| typedef struct VFIONvidia3d0Quirk { |
| VFIOPCIDevice *vdev; |
| VFIONvidia3d0State state; |
| uint32_t offset; |
| } VFIONvidia3d0Quirk; |
| |
| static uint64_t vfio_nvidia_3d4_quirk_read(void *opaque, |
| hwaddr addr, unsigned size) |
| { |
| VFIONvidia3d0Quirk *quirk = opaque; |
| VFIOPCIDevice *vdev = quirk->vdev; |
| |
| quirk->state = NONE; |
| |
| return vfio_vga_read(&vdev->vga->region[QEMU_PCI_VGA_IO_HI], |
| addr + 0x14, size); |
| } |
| |
| static void vfio_nvidia_3d4_quirk_write(void *opaque, hwaddr addr, |
| uint64_t data, unsigned size) |
| { |
| VFIONvidia3d0Quirk *quirk = opaque; |
| VFIOPCIDevice *vdev = quirk->vdev; |
| VFIONvidia3d0State old_state = quirk->state; |
| |
| quirk->state = NONE; |
| |
| switch (data) { |
| case 0x338: |
| if (old_state == NONE) { |
| quirk->state = SELECT; |
| trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name, |
| nv3d0_states[quirk->state]); |
| } |
| break; |
| case 0x538: |
| if (old_state == WINDOW) { |
| quirk->state = READ; |
| trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name, |
| nv3d0_states[quirk->state]); |
| } |
| break; |
| case 0x738: |
| if (old_state == WINDOW) { |
| quirk->state = WRITE; |
| trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name, |
| nv3d0_states[quirk->state]); |
| } |
| break; |
| } |
| |
| vfio_vga_write(&vdev->vga->region[QEMU_PCI_VGA_IO_HI], |
| addr + 0x14, data, size); |
| } |
| |
| static const MemoryRegionOps vfio_nvidia_3d4_quirk = { |
| .read = vfio_nvidia_3d4_quirk_read, |
| .write = vfio_nvidia_3d4_quirk_write, |
| .endianness = DEVICE_LITTLE_ENDIAN, |
| }; |
| |
| static uint64_t vfio_nvidia_3d0_quirk_read(void *opaque, |
| hwaddr addr, unsigned size) |
| { |
| VFIONvidia3d0Quirk *quirk = opaque; |
| VFIOPCIDevice *vdev = quirk->vdev; |
| VFIONvidia3d0State old_state = quirk->state; |
| uint64_t data = vfio_vga_read(&vdev->vga->region[QEMU_PCI_VGA_IO_HI], |
| addr + 0x10, size); |
| |
| quirk->state = NONE; |
| |
| if (old_state == READ && |
| (quirk->offset & ~(PCI_CONFIG_SPACE_SIZE - 1)) == 0x1800) { |
| uint8_t offset = quirk->offset & (PCI_CONFIG_SPACE_SIZE - 1); |
| |
| data = vfio_pci_read_config(&vdev->pdev, offset, size); |
| trace_vfio_quirk_nvidia_3d0_read(vdev->vbasedev.name, |
| offset, size, data); |
| } |
| |
| return data; |
| } |
| |
| static void vfio_nvidia_3d0_quirk_write(void *opaque, hwaddr addr, |
| uint64_t data, unsigned size) |
| { |
| VFIONvidia3d0Quirk *quirk = opaque; |
| VFIOPCIDevice *vdev = quirk->vdev; |
| VFIONvidia3d0State old_state = quirk->state; |
| |
| quirk->state = NONE; |
| |
| if (old_state == SELECT) { |
| quirk->offset = (uint32_t)data; |
| quirk->state = WINDOW; |
| trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name, |
| nv3d0_states[quirk->state]); |
| } else if (old_state == WRITE) { |
| if ((quirk->offset & ~(PCI_CONFIG_SPACE_SIZE - 1)) == 0x1800) { |
| uint8_t offset = quirk->offset & (PCI_CONFIG_SPACE_SIZE - 1); |
| |
| vfio_pci_write_config(&vdev->pdev, offset, data, size); |
| trace_vfio_quirk_nvidia_3d0_write(vdev->vbasedev.name, |
| offset, data, size); |
| return; |
| } |
| } |
| |
| vfio_vga_write(&vdev->vga->region[QEMU_PCI_VGA_IO_HI], |
| addr + 0x10, data, size); |
| } |
| |
| static const MemoryRegionOps vfio_nvidia_3d0_quirk = { |
| .read = vfio_nvidia_3d0_quirk_read, |
| .write = vfio_nvidia_3d0_quirk_write, |
| .endianness = DEVICE_LITTLE_ENDIAN, |
| }; |
| |
| static void vfio_vga_probe_nvidia_3d0_quirk(VFIOPCIDevice *vdev) |
| { |
| VFIOQuirk *quirk; |
| VFIONvidia3d0Quirk *data; |
| |
| if (!vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) || |
| !vdev->bars[1].region.size) { |
| return; |
| } |
| |
| quirk = g_malloc0(sizeof(*quirk)); |
| quirk->data = data = g_malloc0(sizeof(*data)); |
| quirk->mem = g_new0(MemoryRegion, 2); |
| quirk->nr_mem = 2; |
| data->vdev = vdev; |
| |
| memory_region_init_io(&quirk->mem[0], OBJECT(vdev), &vfio_nvidia_3d4_quirk, |
| data, "vfio-nvidia-3d4-quirk", 2); |
| memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem, |
| 0x14 /* 0x3c0 + 0x14 */, &quirk->mem[0]); |
| |
| memory_region_init_io(&quirk->mem[1], OBJECT(vdev), &vfio_nvidia_3d0_quirk, |
| data, "vfio-nvidia-3d0-quirk", 2); |
| memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem, |
| 0x10 /* 0x3c0 + 0x10 */, &quirk->mem[1]); |
| |
| QLIST_INSERT_HEAD(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].quirks, |
| quirk, next); |
| |
| trace_vfio_quirk_nvidia_3d0_probe(vdev->vbasedev.name); |
| } |
| |
| /* |
| * The second quirk is documented in envytools. The I/O port BAR5 is just |
| * a set of address/data ports to the MMIO BARs. The BAR we care about is |
| * again BAR0. This backdoor is apparently a bit newer than the one above |
| * so we need to not only trap 256 bytes @0x1800, but all of PCI config |
| * space, including extended space is available at the 4k @0x88000. |
| */ |
| typedef struct VFIONvidiaBAR5Quirk { |
| uint32_t master; |
| uint32_t enable; |
| MemoryRegion *addr_mem; |
| MemoryRegion *data_mem; |
| bool enabled; |
| VFIOConfigWindowQuirk window; /* last for match data */ |
| } VFIONvidiaBAR5Quirk; |
| |
| static void vfio_nvidia_bar5_enable(VFIONvidiaBAR5Quirk *bar5) |
| { |
| VFIOPCIDevice *vdev = bar5->window.vdev; |
| |
| if (((bar5->master & bar5->enable) & 0x1) == bar5->enabled) { |
| return; |
| } |
| |
| bar5->enabled = !bar5->enabled; |
| trace_vfio_quirk_nvidia_bar5_state(vdev->vbasedev.name, |
| bar5->enabled ? "Enable" : "Disable"); |
| memory_region_set_enabled(bar5->addr_mem, bar5->enabled); |
| memory_region_set_enabled(bar5->data_mem, bar5->enabled); |
| } |
| |
| static uint64_t vfio_nvidia_bar5_quirk_master_read(void *opaque, |
| hwaddr addr, unsigned size) |
| { |
| VFIONvidiaBAR5Quirk *bar5 = opaque; |
| VFIOPCIDevice *vdev = bar5->window.vdev; |
| |
| return vfio_region_read(&vdev->bars[5].region, addr, size); |
| } |
| |
| static void vfio_nvidia_bar5_quirk_master_write(void *opaque, hwaddr addr, |
| uint64_t data, unsigned size) |
| { |
| VFIONvidiaBAR5Quirk *bar5 = opaque; |
| VFIOPCIDevice *vdev = bar5->window.vdev; |
| |
| vfio_region_write(&vdev->bars[5].region, addr, data, size); |
| |
| bar5->master = data; |
| vfio_nvidia_bar5_enable(bar5); |
| } |
| |
| static const MemoryRegionOps vfio_nvidia_bar5_quirk_master = { |
| .read = vfio_nvidia_bar5_quirk_master_read, |
| .write = vfio_nvidia_bar5_quirk_master_write, |
| .endianness = DEVICE_LITTLE_ENDIAN, |
| }; |
| |
| static uint64_t vfio_nvidia_bar5_quirk_enable_read(void *opaque, |
| hwaddr addr, unsigned size) |
| { |
| VFIONvidiaBAR5Quirk *bar5 = opaque; |
| VFIOPCIDevice *vdev = bar5->window.vdev; |
| |
| return vfio_region_read(&vdev->bars[5].region, addr + 4, size); |
| } |
| |
| static void vfio_nvidia_bar5_quirk_enable_write(void *opaque, hwaddr addr, |
| uint64_t data, unsigned size) |
| { |
| VFIONvidiaBAR5Quirk *bar5 = opaque; |
| VFIOPCIDevice *vdev = bar5->window.vdev; |
| |
| vfio_region_write(&vdev->bars[5].region, addr + 4, data, size); |
| |
| bar5->enable = data; |
| vfio_nvidia_bar5_enable(bar5); |
| } |
| |
| static const MemoryRegionOps vfio_nvidia_bar5_quirk_enable = { |
| .read = vfio_nvidia_bar5_quirk_enable_read, |
| .write = vfio_nvidia_bar5_quirk_enable_write, |
| .endianness = DEVICE_LITTLE_ENDIAN, |
| }; |
| |
| static void vfio_probe_nvidia_bar5_quirk(VFIOPCIDevice *vdev, int nr) |
| { |
| VFIOQuirk *quirk; |
| VFIONvidiaBAR5Quirk *bar5; |
| VFIOConfigWindowQuirk *window; |
| |
| if (!vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) || |
| !vdev->vga || nr != 5) { |
| return; |
| } |
| |
| quirk = g_malloc0(sizeof(*quirk)); |
| quirk->mem = g_new0(MemoryRegion, 4); |
| quirk->nr_mem = 4; |
| bar5 = quirk->data = g_malloc0(sizeof(*bar5) + |
| (sizeof(VFIOConfigWindowMatch) * 2)); |
| window = &bar5->window; |
| |
| window->vdev = vdev; |
| window->address_offset = 0x8; |
| window->data_offset = 0xc; |
| window->nr_matches = 2; |
| window->matches[0].match = 0x1800; |
| window->matches[0].mask = PCI_CONFIG_SPACE_SIZE - 1; |
| window->matches[1].match = 0x88000; |
| window->matches[1].mask = vdev->config_size - 1; |
| window->bar = nr; |
| window->addr_mem = bar5->addr_mem = &quirk->mem[0]; |
| window->data_mem = bar5->data_mem = &quirk->mem[1]; |
| |
| memory_region_init_io(window->addr_mem, OBJECT(vdev), |
| &vfio_generic_window_address_quirk, window, |
| "vfio-nvidia-bar5-window-address-quirk", 4); |
| memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, |
| window->address_offset, |
| window->addr_mem, 1); |
| memory_region_set_enabled(window->addr_mem, false); |
| |
| memory_region_init_io(window->data_mem, OBJECT(vdev), |
| &vfio_generic_window_data_quirk, window, |
| "vfio-nvidia-bar5-window-data-quirk", 4); |
| memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, |
| window->data_offset, |
| window->data_mem, 1); |
| memory_region_set_enabled(window->data_mem, false); |
| |
| memory_region_init_io(&quirk->mem[2], OBJECT(vdev), |
| &vfio_nvidia_bar5_quirk_master, bar5, |
| "vfio-nvidia-bar5-master-quirk", 4); |
| memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, |
| 0, &quirk->mem[2], 1); |
| |
| memory_region_init_io(&quirk->mem[3], OBJECT(vdev), |
| &vfio_nvidia_bar5_quirk_enable, bar5, |
| "vfio-nvidia-bar5-enable-quirk", 4); |
| memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, |
| 4, &quirk->mem[3], 1); |
| |
| QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); |
| |
| trace_vfio_quirk_nvidia_bar5_probe(vdev->vbasedev.name); |
| } |
| |
| /* |
| * Finally, BAR0 itself. We want to redirect any accesses to either |
| * 0x1800 or 0x88000 through the PCI config space access functions. |
| */ |
| static void vfio_nvidia_quirk_mirror_write(void *opaque, hwaddr addr, |
| uint64_t data, unsigned size) |
| { |
| VFIOConfigMirrorQuirk *mirror = opaque; |
| VFIOPCIDevice *vdev = mirror->vdev; |
| PCIDevice *pdev = &vdev->pdev; |
| |
| vfio_generic_quirk_mirror_write(opaque, addr, data, size); |
| |
| /* |
| * Nvidia seems to acknowledge MSI interrupts by writing 0xff to the |
| * MSI capability ID register. Both the ID and next register are |
| * read-only, so we allow writes covering either of those to real hw. |
| */ |
| if ((pdev->cap_present & QEMU_PCI_CAP_MSI) && |
| vfio_range_contained(addr, size, pdev->msi_cap, PCI_MSI_FLAGS)) { |
| vfio_region_write(&vdev->bars[mirror->bar].region, |
| addr + mirror->offset, data, size); |
| trace_vfio_quirk_nvidia_bar0_msi_ack(vdev->vbasedev.name); |
| } |
| } |
| |
| static const MemoryRegionOps vfio_nvidia_mirror_quirk = { |
| .read = vfio_generic_quirk_mirror_read, |
| .write = vfio_nvidia_quirk_mirror_write, |
| .endianness = DEVICE_LITTLE_ENDIAN, |
| }; |
| |
| static void vfio_probe_nvidia_bar0_quirk(VFIOPCIDevice *vdev, int nr) |
| { |
| VFIOQuirk *quirk; |
| VFIOConfigMirrorQuirk *mirror; |
| |
| if (!vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) || |
| !vfio_is_vga(vdev) || nr != 0) { |
| return; |
| } |
| |
| quirk = g_malloc0(sizeof(*quirk)); |
| mirror = quirk->data = g_malloc0(sizeof(*mirror)); |
| mirror->mem = quirk->mem = g_new0(MemoryRegion, 1); |
| quirk->nr_mem = 1; |
| mirror->vdev = vdev; |
| mirror->offset = 0x88000; |
| mirror->bar = nr; |
| |
| memory_region_init_io(mirror->mem, OBJECT(vdev), |
| &vfio_nvidia_mirror_quirk, mirror, |
| "vfio-nvidia-bar0-88000-mirror-quirk", |
| vdev->config_size); |
| memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, |
| mirror->offset, mirror->mem, 1); |
| |
| QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); |
| |
| /* The 0x1800 offset mirror only seems to get used by legacy VGA */ |
| if (vdev->vga) { |
| quirk = g_malloc0(sizeof(*quirk)); |
| mirror = quirk->data = g_malloc0(sizeof(*mirror)); |
| mirror->mem = quirk->mem = g_new0(MemoryRegion, 1); |
| quirk->nr_mem = 1; |
| mirror->vdev = vdev; |
| mirror->offset = 0x1800; |
| mirror->bar = nr; |
| |
| memory_region_init_io(mirror->mem, OBJECT(vdev), |
| &vfio_nvidia_mirror_quirk, mirror, |
| "vfio-nvidia-bar0-1800-mirror-quirk", |
| PCI_CONFIG_SPACE_SIZE); |
| memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, |
| mirror->offset, mirror->mem, 1); |
| |
| QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); |
| } |
| |
| trace_vfio_quirk_nvidia_bar0_probe(vdev->vbasedev.name); |
| } |
| |
| /* |
| * TODO - Some Nvidia devices provide config access to their companion HDA |
| * device and even to their parent bridge via these config space mirrors. |
| * Add quirks for those regions. |
| */ |
| |
| #define PCI_VENDOR_ID_REALTEK 0x10ec |
| |
| /* |
| * RTL8168 devices have a backdoor that can access the MSI-X table. At BAR2 |
| * offset 0x70 there is a dword data register, offset 0x74 is a dword address |
| * register. According to the Linux r8169 driver, the MSI-X table is addressed |
| * when the "type" portion of the address register is set to 0x1. This appears |
| * to be bits 16:30. Bit 31 is both a write indicator and some sort of |
| * "address latched" indicator. Bits 12:15 are a mask field, which we can |
| * ignore because the MSI-X table should always be accessed as a dword (full |
| * mask). Bits 0:11 is offset within the type. |
| * |
| * Example trace: |
| * |
| * Read from MSI-X table offset 0 |
| * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x1f000, 4) // store read addr |
| * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x8001f000 // latch |
| * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x70, 4) = 0xfee00398 // read data |
| * |
| * Write 0xfee00000 to MSI-X table offset 0 |
| * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x70, 0xfee00000, 4) // write data |
| * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x8001f000, 4) // do write |
| * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x1f000 // complete |
| */ |
| typedef struct VFIOrtl8168Quirk { |
| VFIOPCIDevice *vdev; |
| uint32_t addr; |
| uint32_t data; |
| bool enabled; |
| } VFIOrtl8168Quirk; |
| |
| static uint64_t vfio_rtl8168_quirk_address_read(void *opaque, |
| hwaddr addr, unsigned size) |
| { |
| VFIOrtl8168Quirk *rtl = opaque; |
| VFIOPCIDevice *vdev = rtl->vdev; |
| uint64_t data = vfio_region_read(&vdev->bars[2].region, addr + 0x74, size); |
| |
| if (rtl->enabled) { |
| data = rtl->addr ^ 0x80000000U; /* latch/complete */ |
| trace_vfio_quirk_rtl8168_fake_latch(vdev->vbasedev.name, data); |
| } |
| |
| return data; |
| } |
| |
| static void vfio_rtl8168_quirk_address_write(void *opaque, hwaddr addr, |
| uint64_t data, unsigned size) |
| { |
| VFIOrtl8168Quirk *rtl = opaque; |
| VFIOPCIDevice *vdev = rtl->vdev; |
| |
| rtl->enabled = false; |
| |
| if ((data & 0x7fff0000) == 0x10000) { /* MSI-X table */ |
| rtl->enabled = true; |
| rtl->addr = (uint32_t)data; |
| |
| if (data & 0x80000000U) { /* Do write */ |
| if (vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX) { |
| hwaddr offset = data & 0xfff; |
| uint64_t val = rtl->data; |
| |
| trace_vfio_quirk_rtl8168_msix_write(vdev->vbasedev.name, |
| (uint16_t)offset, val); |
| |
| /* Write to the proper guest MSI-X table instead */ |
| memory_region_dispatch_write(&vdev->pdev.msix_table_mmio, |
| offset, val, size, |
| MEMTXATTRS_UNSPECIFIED); |
| } |
| return; /* Do not write guest MSI-X data to hardware */ |
| } |
| } |
| |
| vfio_region_write(&vdev->bars[2].region, addr + 0x74, data, size); |
| } |
| |
| static const MemoryRegionOps vfio_rtl_address_quirk = { |
| .read = vfio_rtl8168_quirk_address_read, |
| .write = vfio_rtl8168_quirk_address_write, |
| .valid = { |
| .min_access_size = 4, |
| .max_access_size = 4, |
| .unaligned = false, |
| }, |
| .endianness = DEVICE_LITTLE_ENDIAN, |
| }; |
| |
| static uint64_t vfio_rtl8168_quirk_data_read(void *opaque, |
| hwaddr addr, unsigned size) |
| { |
| VFIOrtl8168Quirk *rtl = opaque; |
| VFIOPCIDevice *vdev = rtl->vdev; |
| uint64_t data = vfio_region_read(&vdev->bars[2].region, addr + 0x70, size); |
| |
| if (rtl->enabled && (vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX)) { |
| hwaddr offset = rtl->addr & 0xfff; |
| memory_region_dispatch_read(&vdev->pdev.msix_table_mmio, offset, |
| &data, size, MEMTXATTRS_UNSPECIFIED); |
| trace_vfio_quirk_rtl8168_msix_read(vdev->vbasedev.name, offset, data); |
| } |
| |
| return data; |
| } |
| |
| static void vfio_rtl8168_quirk_data_write(void *opaque, hwaddr addr, |
| uint64_t data, unsigned size) |
| { |
| VFIOrtl8168Quirk *rtl = opaque; |
| VFIOPCIDevice *vdev = rtl->vdev; |
| |
| rtl->data = (uint32_t)data; |
| |
| vfio_region_write(&vdev->bars[2].region, addr + 0x70, data, size); |
| } |
| |
| static const MemoryRegionOps vfio_rtl_data_quirk = { |
| .read = vfio_rtl8168_quirk_data_read, |
| .write = vfio_rtl8168_quirk_data_write, |
| .valid = { |
| .min_access_size = 4, |
| .max_access_size = 4, |
| .unaligned = false, |
| }, |
| .endianness = DEVICE_LITTLE_ENDIAN, |
| }; |
| |
| static void vfio_probe_rtl8168_bar2_quirk(VFIOPCIDevice *vdev, int nr) |
| { |
| VFIOQuirk *quirk; |
| VFIOrtl8168Quirk *rtl; |
| |
| if (!vfio_pci_is(vdev, PCI_VENDOR_ID_REALTEK, 0x8168) || nr != 2) { |
| return; |
| } |
| |
| quirk = g_malloc0(sizeof(*quirk)); |
| quirk->mem = g_new0(MemoryRegion, 2); |
| quirk->nr_mem = 2; |
| quirk->data = rtl = g_malloc0(sizeof(*rtl)); |
| rtl->vdev = vdev; |
| |
| memory_region_init_io(&quirk->mem[0], OBJECT(vdev), |
| &vfio_rtl_address_quirk, rtl, |
| "vfio-rtl8168-window-address-quirk", 4); |
| memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, |
| 0x74, &quirk->mem[0], 1); |
| |
| memory_region_init_io(&quirk->mem[1], OBJECT(vdev), |
| &vfio_rtl_data_quirk, rtl, |
| "vfio-rtl8168-window-data-quirk", 4); |
| memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, |
| 0x70, &quirk->mem[1], 1); |
| |
| QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); |
| |
| trace_vfio_quirk_rtl8168_probe(vdev->vbasedev.name); |
| } |
| |
| /* |
| * Intel IGD support |
| * |
| * Obviously IGD is not a discrete device, this is evidenced not only by it |
| * being integrated into the CPU, but by the various chipset and BIOS |
| * dependencies that it brings along with it. Intel is trying to move away |
| * from this and Broadwell and newer devices can run in what Intel calls |
| * "Universal Pass-Through" mode, or UPT. Theoretically in UPT mode, nothing |
| * more is required beyond assigning the IGD device to a VM. There are |
| * however support limitations to this mode. It only supports IGD as a |
| * secondary graphics device in the VM and it doesn't officially support any |
| * physical outputs. |
| * |
| * The code here attempts to enable what we'll call legacy mode assignment, |
| * IGD retains most of the capabilities we expect for it to have on bare |
| * metal. To enable this mode, the IGD device must be assigned to the VM |
| * at PCI address 00:02.0, it must have a ROM, it very likely needs VGA |
| * support, we must have VM BIOS support for reserving and populating some |
| * of the required tables, and we need to tweak the chipset with revisions |
| * and IDs and an LPC/ISA bridge device. The intention is to make all of |
| * this happen automatically by installing the device at the correct VM PCI |
| * bus address. If any of the conditions are not met, we cross our fingers |
| * and hope the user knows better. |
| * |
| * NB - It is possible to enable physical outputs in UPT mode by supplying |
| * an OpRegion table. We don't do this by default because the guest driver |
| * behaves differently if an OpRegion is provided and no monitor is attached |
| * vs no OpRegion and a monitor being attached or not. Effectively, if a |
| * headless setup is desired, the OpRegion gets in the way of that. |
| */ |
| |
| /* |
| * This presumes the device is already known to be an Intel VGA device, so we |
| * take liberties in which device ID bits match which generation. This should |
| * not be taken as an indication that all the devices are supported, or even |
| * supportable, some of them don't even support VT-d. |
| * See linux:include/drm/i915_pciids.h for IDs. |
| */ |
| static int igd_gen(VFIOPCIDevice *vdev) |
| { |
| if ((vdev->device_id & 0xfff) == 0xa84) { |
| return 8; /* Broxton */ |
| } |
| |
| switch (vdev->device_id & 0xff00) { |
| /* Old, untested, unavailable, unknown */ |
| case 0x0000: |
| case 0x2500: |
| case 0x2700: |
| case 0x2900: |
| case 0x2a00: |
| case 0x2e00: |
| case 0x3500: |
| case 0xa000: |
| return -1; |
| /* SandyBridge, IvyBridge, ValleyView, Haswell */ |
| case 0x0100: |
| case 0x0400: |
| case 0x0a00: |
| case 0x0c00: |
| case 0x0d00: |
| case 0x0f00: |
| return 6; |
| /* BroadWell, CherryView, SkyLake, KabyLake */ |
| case 0x1600: |
| case 0x1900: |
| case 0x2200: |
| case 0x5900: |
| return 8; |
| } |
| |
| return 8; /* Assume newer is compatible */ |
| } |
| |
| typedef struct VFIOIGDQuirk { |
| struct VFIOPCIDevice *vdev; |
| uint32_t index; |
| uint32_t bdsm; |
| } VFIOIGDQuirk; |
| |
| #define IGD_GMCH 0x50 /* Graphics Control Register */ |
| #define IGD_BDSM 0x5c /* Base Data of Stolen Memory */ |
| #define IGD_ASLS 0xfc /* ASL Storage Register */ |
| |
| /* |
| * The OpRegion includes the Video BIOS Table, which seems important for |
| * telling the driver what sort of outputs it has. Without this, the device |
| * may work in the guest, but we may not get output. This also requires BIOS |
| * support to reserve and populate a section of guest memory sufficient for |
| * the table and to write the base address of that memory to the ASLS register |
| * of the IGD device. |
| */ |
| int vfio_pci_igd_opregion_init(VFIOPCIDevice *vdev, |
| struct vfio_region_info *info, Error **errp) |
| { |
| int ret; |
| |
| vdev->igd_opregion = g_malloc0(info->size); |
| ret = pread(vdev->vbasedev.fd, vdev->igd_opregion, |
| info->size, info->offset); |
| if (ret != info->size) { |
| error_setg(errp, "failed to read IGD OpRegion"); |
| g_free(vdev->igd_opregion); |
| vdev->igd_opregion = NULL; |
| return -EINVAL; |
| } |
| |
| /* |
| * Provide fw_cfg with a copy of the OpRegion which the VM firmware is to |
| * allocate 32bit reserved memory for, copy these contents into, and write |
| * the reserved memory base address to the device ASLS register at 0xFC. |
| * Alignment of this reserved region seems flexible, but using a 4k page |
| * alignment seems to work well. This interface assumes a single IGD |
| * device, which may be at VM address 00:02.0 in legacy mode or another |
| * address in UPT mode. |
| * |
| * NB, there may be future use cases discovered where the VM should have |
| * direct interaction with the host OpRegion, in which case the write to |
| * the ASLS register would trigger MemoryRegion setup to enable that. |
| */ |
| fw_cfg_add_file(fw_cfg_find(), "etc/igd-opregion", |
| vdev->igd_opregion, info->size); |
| |
| trace_vfio_pci_igd_opregion_enabled(vdev->vbasedev.name); |
| |
| pci_set_long(vdev->pdev.config + IGD_ASLS, 0); |
| pci_set_long(vdev->pdev.wmask + IGD_ASLS, ~0); |
| pci_set_long(vdev->emulated_config_bits + IGD_ASLS, ~0); |
| |
| return 0; |
| } |
| |
| /* |
| * The rather short list of registers that we copy from the host devices. |
| * The LPC/ISA bridge values are definitely needed to support the vBIOS, the |
| * host bridge values may or may not be needed depending on the guest OS. |
| * Since we're only munging revision and subsystem values on the host bridge, |
| * we don't require our own device. The LPC/ISA bridge needs to be our very |
| * own though. |
| */ |
| typedef struct { |
| uint8_t offset; |
| uint8_t len; |
| } IGDHostInfo; |
| |
| static const IGDHostInfo igd_host_bridge_infos[] = { |
| {PCI_REVISION_ID, 2}, |
| {PCI_SUBSYSTEM_VENDOR_ID, 2}, |
| {PCI_SUBSYSTEM_ID, 2}, |
| }; |
| |
| static const IGDHostInfo igd_lpc_bridge_infos[] = { |
| {PCI_VENDOR_ID, 2}, |
| {PCI_DEVICE_ID, 2}, |
| {PCI_REVISION_ID, 2}, |
| {PCI_SUBSYSTEM_VENDOR_ID, 2}, |
| {PCI_SUBSYSTEM_ID, 2}, |
| }; |
| |
| static int vfio_pci_igd_copy(VFIOPCIDevice *vdev, PCIDevice *pdev, |
| struct vfio_region_info *info, |
| const IGDHostInfo *list, int len) |
| { |
| int i, ret; |
| |
| for (i = 0; i < len; i++) { |
| ret = pread(vdev->vbasedev.fd, pdev->config + list[i].offset, |
| list[i].len, info->offset + list[i].offset); |
| if (ret != list[i].len) { |
| error_report("IGD copy failed: %m"); |
| return -errno; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Stuff a few values into the host bridge. |
| */ |
| static int vfio_pci_igd_host_init(VFIOPCIDevice *vdev, |
| struct vfio_region_info *info) |
| { |
| PCIBus *bus; |
| PCIDevice *host_bridge; |
| int ret; |
| |
| bus = pci_device_root_bus(&vdev->pdev); |
| host_bridge = pci_find_device(bus, 0, PCI_DEVFN(0, 0)); |
| |
| if (!host_bridge) { |
| error_report("Can't find host bridge"); |
| return -ENODEV; |
| } |
| |
| ret = vfio_pci_igd_copy(vdev, host_bridge, info, igd_host_bridge_infos, |
| ARRAY_SIZE(igd_host_bridge_infos)); |
| if (!ret) { |
| trace_vfio_pci_igd_host_bridge_enabled(vdev->vbasedev.name); |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * IGD LPC/ISA bridge support code. The vBIOS needs this, but we can't write |
| * arbitrary values into just any bridge, so we must create our own. We try |
| * to handle if the user has created it for us, which they might want to do |
| * to enable multifunction so we don't occupy the whole PCI slot. |
| */ |
| static void vfio_pci_igd_lpc_bridge_realize(PCIDevice *pdev, Error **errp) |
| { |
| if (pdev->devfn != PCI_DEVFN(0x1f, 0)) { |
| error_setg(errp, "VFIO dummy ISA/LPC bridge must have address 1f.0"); |
| } |
| } |
| |
| static void vfio_pci_igd_lpc_bridge_class_init(ObjectClass *klass, void *data) |
| { |
| DeviceClass *dc = DEVICE_CLASS(klass); |
| PCIDeviceClass *k = PCI_DEVICE_CLASS(klass); |
| |
| set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories); |
| dc->desc = "VFIO dummy ISA/LPC bridge for IGD assignment"; |
| dc->hotpluggable = false; |
| k->realize = vfio_pci_igd_lpc_bridge_realize; |
| k->class_id = PCI_CLASS_BRIDGE_ISA; |
| } |
| |
| static TypeInfo vfio_pci_igd_lpc_bridge_info = { |
| .name = "vfio-pci-igd-lpc-bridge", |
| .parent = TYPE_PCI_DEVICE, |
| .class_init = vfio_pci_igd_lpc_bridge_class_init, |
| }; |
| |
| static void vfio_pci_igd_register_types(void) |
| { |
| type_register_static(&vfio_pci_igd_lpc_bridge_info); |
| } |
| |
| type_init(vfio_pci_igd_register_types) |
| |
| static int vfio_pci_igd_lpc_init(VFIOPCIDevice *vdev, |
| struct vfio_region_info *info) |
| { |
| PCIDevice *lpc_bridge; |
| int ret; |
| |
| lpc_bridge = pci_find_device(pci_device_root_bus(&vdev->pdev), |
| 0, PCI_DEVFN(0x1f, 0)); |
| if (!lpc_bridge) { |
| lpc_bridge = pci_create_simple(pci_device_root_bus(&vdev->pdev), |
| PCI_DEVFN(0x1f, 0), "vfio-pci-igd-lpc-bridge"); |
| } |
| |
| ret = vfio_pci_igd_copy(vdev, lpc_bridge, info, igd_lpc_bridge_infos, |
| ARRAY_SIZE(igd_lpc_bridge_infos)); |
| if (!ret) { |
| trace_vfio_pci_igd_lpc_bridge_enabled(vdev->vbasedev.name); |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * IGD Gen8 and newer support up to 8MB for the GTT and use a 64bit PTE |
| * entry, older IGDs use 2MB and 32bit. Each PTE maps a 4k page. Therefore |
| * we either have 2M/4k * 4 = 2k or 8M/4k * 8 = 16k as the maximum iobar index |
| * for programming the GTT. |
| * |
| * See linux:include/drm/i915_drm.h for shift and mask values. |
| */ |
| static int vfio_igd_gtt_max(VFIOPCIDevice *vdev) |
| { |
| uint32_t gmch = vfio_pci_read_config(&vdev->pdev, IGD_GMCH, sizeof(gmch)); |
| int ggms, gen = igd_gen(vdev); |
| |
| gmch = vfio_pci_read_config(&vdev->pdev, IGD_GMCH, sizeof(gmch)); |
| ggms = (gmch >> (gen < 8 ? 8 : 6)) & 0x3; |
| if (gen > 6) { |
| ggms = 1 << ggms; |
| } |
| |
| ggms *= 1024 * 1024; |
| |
| return (ggms / (4 * 1024)) * (gen < 8 ? 4 : 8); |
| } |
| |
| /* |
| * The IGD ROM will make use of stolen memory (GGMS) for support of VESA modes. |
| * Somehow the host stolen memory range is used for this, but how the ROM gets |
| * it is a mystery, perhaps it's hardcoded into the ROM. Thankfully though, it |
| * reprograms the GTT through the IOBAR where we can trap it and transpose the |
| * programming to the VM allocated buffer. That buffer gets reserved by the VM |
| * firmware via the fw_cfg entry added below. Here we're just monitoring the |
| * IOBAR address and data registers to detect a write sequence targeting the |
| * GTTADR. This code is developed by observed behavior and doesn't have a |
| * direct spec reference, unfortunately. |
| */ |
| static uint64_t vfio_igd_quirk_data_read(void *opaque, |
| hwaddr addr, unsigned size) |
| { |
| VFIOIGDQuirk *igd = opaque; |
| VFIOPCIDevice *vdev = igd->vdev; |
| |
| igd->index = ~0; |
| |
| return vfio_region_read(&vdev->bars[4].region, addr + 4, size); |
| } |
| |
| static void vfio_igd_quirk_data_write(void *opaque, hwaddr addr, |
| uint64_t data, unsigned size) |
| { |
| VFIOIGDQuirk *igd = opaque; |
| VFIOPCIDevice *vdev = igd->vdev; |
| uint64_t val = data; |
| int gen = igd_gen(vdev); |
| |
| /* |
| * Programming the GGMS starts at index 0x1 and uses every 4th index (ie. |
| * 0x1, 0x5, 0x9, 0xd,...). For pre-Gen8 each 4-byte write is a whole PTE |
| * entry, with 0th bit enable set. For Gen8 and up, PTEs are 64bit, so |
| * entries 0x5 & 0xd are the high dword, in our case zero. Each PTE points |
| * to a 4k page, which we translate to a page from the VM allocated region, |
| * pointed to by the BDSM register. If this is not set, we fail. |
| * |
| * We trap writes to the full configured GTT size, but we typically only |
| * see the vBIOS writing up to (nearly) the 1MB barrier. In fact it often |
| * seems to miss the last entry for an even 1MB GTT. Doing a gratuitous |
| * write of that last entry does work, but is hopefully unnecessary since |
| * we clear the previous GTT on initialization. |
| */ |
| if ((igd->index % 4 == 1) && igd->index < vfio_igd_gtt_max(vdev)) { |
| if (gen < 8 || (igd->index % 8 == 1)) { |
| uint32_t base; |
| |
| base = pci_get_long(vdev->pdev.config + IGD_BDSM); |
| if (!base) { |
| hw_error("vfio-igd: Guest attempted to program IGD GTT before " |
| "BIOS reserved stolen memory. Unsupported BIOS?"); |
| } |
| |
| val = data - igd->bdsm + base; |
| } else { |
| val = 0; /* upper 32bits of pte, we only enable below 4G PTEs */ |
| } |
| |
| trace_vfio_pci_igd_bar4_write(vdev->vbasedev.name, |
| igd->index, data, val); |
| } |
| |
| vfio_region_write(&vdev->bars[4].region, addr + 4, val, size); |
| |
| igd->index = ~0; |
| } |
| |
| static const MemoryRegionOps vfio_igd_data_quirk = { |
| .read = vfio_igd_quirk_data_read, |
| .write = vfio_igd_quirk_data_write, |
| .endianness = DEVICE_LITTLE_ENDIAN, |
| }; |
| |
| static uint64_t vfio_igd_quirk_index_read(void *opaque, |
| hwaddr addr, unsigned size) |
| { |
| VFIOIGDQuirk *igd = opaque; |
| VFIOPCIDevice *vdev = igd->vdev; |
| |
| igd->index = ~0; |
| |
| return vfio_region_read(&vdev->bars[4].region, addr, size); |
| } |
| |
| static void vfio_igd_quirk_index_write(void *opaque, hwaddr addr, |
| uint64_t data, unsigned size) |
| { |
| VFIOIGDQuirk *igd = opaque; |
| VFIOPCIDevice *vdev = igd->vdev; |
| |
| igd->index = data; |
| |
| vfio_region_write(&vdev->bars[4].region, addr, data, size); |
| } |
| |
| static const MemoryRegionOps vfio_igd_index_quirk = { |
| .read = vfio_igd_quirk_index_read, |
| .write = vfio_igd_quirk_index_write, |
| .endianness = DEVICE_LITTLE_ENDIAN, |
| }; |
| |
| static void vfio_probe_igd_bar4_quirk(VFIOPCIDevice *vdev, int nr) |
| { |
| struct vfio_region_info *rom = NULL, *opregion = NULL, |
| *host = NULL, *lpc = NULL; |
| VFIOQuirk *quirk; |
| VFIOIGDQuirk *igd; |
| PCIDevice *lpc_bridge; |
| int i, ret, ggms_mb, gms_mb = 0, gen; |
| uint64_t *bdsm_size; |
| uint32_t gmch; |
| uint16_t cmd_orig, cmd; |
| Error *err = NULL; |
| |
| /* This must be an Intel VGA device. */ |
| if (!vfio_pci_is(vdev, PCI_VENDOR_ID_INTEL, PCI_ANY_ID) || |
| !vfio_is_vga(vdev) || nr != 4) { |
| return; |
| } |
| |
| /* |
| * IGD is not a standard, they like to change their specs often. We |
| * only attempt to support back to SandBridge and we hope that newer |
| * devices maintain compatibility with generation 8. |
| */ |
| gen = igd_gen(vdev); |
| if (gen != 6 && gen != 8) { |
| error_report("IGD device %s is unsupported by IGD quirks, " |
| "try SandyBridge or newer", vdev->vbasedev.name); |
| return; |
| } |
| |
| /* |
| * Regardless of running in UPT or legacy mode, the guest graphics |
| * driver may attempt to use stolen memory, however only legacy mode |
| * has BIOS support for reserving stolen memory in the guest VM. |
| * Emulate the GMCH register in all cases and zero out the stolen |
| * memory size here. Legacy mode may request allocation and re-write |
| * this below. |
| */ |
| gmch = vfio_pci_read_config(&vdev->pdev, IGD_GMCH, 4); |
| gmch &= ~((gen < 8 ? 0x1f : 0xff) << (gen < 8 ? 3 : 8)); |
| |
| /* GMCH is read-only, emulated */ |
| pci_set_long(vdev->pdev.config + IGD_GMCH, gmch); |
| pci_set_long(vdev->pdev.wmask + IGD_GMCH, 0); |
| pci_set_long(vdev->emulated_config_bits + IGD_GMCH, ~0); |
| |
| /* |
| * This must be at address 00:02.0 for us to even onsider enabling |
| * legacy mode. The vBIOS has dependencies on the PCI bus address. |
| */ |
| if (&vdev->pdev != pci_find_device(pci_device_root_bus(&vdev->pdev), |
| 0, PCI_DEVFN(0x2, 0))) { |
| return; |
| } |
| |
| /* |
| * We need to create an LPC/ISA bridge at PCI bus address 00:1f.0 that we |
| * can stuff host values into, so if there's already one there and it's not |
| * one we can hack on, legacy mode is no-go. Sorry Q35. |
| */ |
| lpc_bridge = pci_find_device(pci_device_root_bus(&vdev->pdev), |
| 0, PCI_DEVFN(0x1f, 0)); |
| if (lpc_bridge && !object_dynamic_cast(OBJECT(lpc_bridge), |
| "vfio-pci-igd-lpc-bridge")) { |
| error_report("IGD device %s cannot support legacy mode due to existing " |
| "devices at address 1f.0", vdev->vbasedev.name); |
| return; |
| } |
| |
| /* |
| * Most of what we're doing here is to enable the ROM to run, so if |
| * there's no ROM, there's no point in setting up this quirk. |
| * NB. We only seem to get BIOS ROMs, so a UEFI VM would need CSM support. |
| */ |
| ret = vfio_get_region_info(&vdev->vbasedev, |
| VFIO_PCI_ROM_REGION_INDEX, &rom); |
| if ((ret || !rom->size) && !vdev->pdev.romfile) { |
| error_report("IGD device %s has no ROM, legacy mode disabled", |
| vdev->vbasedev.name); |
| goto out; |
| } |
| |
| /* |
| * Ignore the hotplug corner case, mark the ROM failed, we can't |
| * create the devices we need for legacy mode in the hotplug scenario. |
| */ |
| if (vdev->pdev.qdev.hotplugged) { |
| error_report("IGD device %s hotplugged, ROM disabled, " |
| "legacy mode disabled", vdev->vbasedev.name); |
| vdev->rom_read_failed = true; |
| goto out; |
| } |
| |
| /* |
| * Check whether we have all the vfio device specific regions to |
| * support legacy mode (added in Linux v4.6). If not, bail. |
| */ |
| ret = vfio_get_dev_region_info(&vdev->vbasedev, |
| VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL, |
| VFIO_REGION_SUBTYPE_INTEL_IGD_OPREGION, &opregion); |
| if (ret) { |
| error_report("IGD device %s does not support OpRegion access," |
| "legacy mode disabled", vdev->vbasedev.name); |
| goto out; |
| } |
| |
| ret = vfio_get_dev_region_info(&vdev->vbasedev, |
| VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL, |
| VFIO_REGION_SUBTYPE_INTEL_IGD_HOST_CFG, &host); |
| if (ret) { |
| error_report("IGD device %s does not support host bridge access," |
| "legacy mode disabled", vdev->vbasedev.name); |
| goto out; |
| } |
| |
| ret = vfio_get_dev_region_info(&vdev->vbasedev, |
| VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL, |
| VFIO_REGION_SUBTYPE_INTEL_IGD_LPC_CFG, &lpc); |
| if (ret) { |
| error_report("IGD device %s does not support LPC bridge access," |
| "legacy mode disabled", vdev->vbasedev.name); |
| goto out; |
| } |
| |
| /* |
| * If IGD VGA Disable is clear (expected) and VGA is not already enabled, |
| * try to enable it. Probably shouldn't be using legacy mode without VGA, |
| * but also no point in us enabling VGA if disabled in hardware. |
| */ |
| if (!(gmch & 0x2) && !vdev->vga && vfio_populate_vga(vdev, &err)) { |
| error_reportf_err(err, ERR_PREFIX, vdev->vbasedev.name); |
| error_report("IGD device %s failed to enable VGA access, " |
| "legacy mode disabled", vdev->vbasedev.name); |
| goto out; |
| } |
| |
| /* Create our LPC/ISA bridge */ |
| ret = vfio_pci_igd_lpc_init(vdev, lpc); |
| if (ret) { |
| error_report("IGD device %s failed to create LPC bridge, " |
| "legacy mode disabled", vdev->vbasedev.name); |
| goto out; |
| } |
| |
| /* Stuff some host values into the VM PCI host bridge */ |
| ret = vfio_pci_igd_host_init(vdev, host); |
| if (ret) { |
| error_report("IGD device %s failed to modify host bridge, " |
| "legacy mode disabled", vdev->vbasedev.name); |
| goto out; |
| } |
| |
| /* Setup OpRegion access */ |
| ret = vfio_pci_igd_opregion_init(vdev, opregion, &err); |
| if (ret) { |
| error_append_hint(&err, "IGD legacy mode disabled\n"); |
| error_reportf_err(err, ERR_PREFIX, vdev->vbasedev.name); |
| goto out; |
| } |
| |
| /* Setup our quirk to munge GTT addresses to the VM allocated buffer */ |
| quirk = g_malloc0(sizeof(*quirk)); |
| quirk->mem = g_new0(MemoryRegion, 2); |
| quirk->nr_mem = 2; |
| igd = quirk->data = g_malloc0(sizeof(*igd)); |
| igd->vdev = vdev; |
| igd->index = ~0; |
| igd->bdsm = vfio_pci_read_config(&vdev->pdev, IGD_BDSM, 4); |
| igd->bdsm &= ~((1 << 20) - 1); /* 1MB aligned */ |
| |
| memory_region_init_io(&quirk->mem[0], OBJECT(vdev), &vfio_igd_index_quirk, |
| igd, "vfio-igd-index-quirk", 4); |
| memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, |
| 0, &quirk->mem[0], 1); |
| |
| memory_region_init_io(&quirk->mem[1], OBJECT(vdev), &vfio_igd_data_quirk, |
| igd, "vfio-igd-data-quirk", 4); |
| memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, |
| 4, &quirk->mem[1], 1); |
| |
| QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); |
| |
| /* Determine the size of stolen memory needed for GTT */ |
| ggms_mb = (gmch >> (gen < 8 ? 8 : 6)) & 0x3; |
| if (gen > 6) { |
| ggms_mb = 1 << ggms_mb; |
| } |
| |
| /* |
| * Assume we have no GMS memory, but allow it to be overrided by device |
| * option (experimental). The spec doesn't actually allow zero GMS when |
| * when IVD (IGD VGA Disable) is clear, but the claim is that it's unused, |
| * so let's not waste VM memory for it. |
| */ |
| if (vdev->igd_gms) { |
| if (vdev->igd_gms <= 0x10) { |
| gms_mb = vdev->igd_gms * 32; |
| gmch |= vdev->igd_gms << (gen < 8 ? 3 : 8); |
| pci_set_long(vdev->pdev.config + IGD_GMCH, gmch); |
| } else { |
| error_report("Unsupported IGD GMS value 0x%x", vdev->igd_gms); |
| vdev->igd_gms = 0; |
| } |
| } |
| |
| /* |
| * Request reserved memory for stolen memory via fw_cfg. VM firmware |
| * must allocate a 1MB aligned reserved memory region below 4GB with |
| * the requested size (in bytes) for use by the Intel PCI class VGA |
| * device at VM address 00:02.0. The base address of this reserved |
| * memory region must be written to the device BDSM regsiter at PCI |
| * config offset 0x5C. |
| */ |
| bdsm_size = g_malloc(sizeof(*bdsm_size)); |
| *bdsm_size = cpu_to_le64((ggms_mb + gms_mb) * 1024 * 1024); |
| fw_cfg_add_file(fw_cfg_find(), "etc/igd-bdsm-size", |
| bdsm_size, sizeof(*bdsm_size)); |
| |
| /* BDSM is read-write, emulated. The BIOS needs to be able to write it */ |
| pci_set_long(vdev->pdev.config + IGD_BDSM, 0); |
| pci_set_long(vdev->pdev.wmask + IGD_BDSM, ~0); |
| pci_set_long(vdev->emulated_config_bits + IGD_BDSM, ~0); |
| |
| /* |
| * This IOBAR gives us access to GTTADR, which allows us to write to |
| * the GTT itself. So let's go ahead and write zero to all the GTT |
| * entries to avoid spurious DMA faults. Be sure I/O access is enabled |
| * before talking to the device. |
| */ |
| if (pread(vdev->vbasedev.fd, &cmd_orig, sizeof(cmd_orig), |
| vdev->config_offset + PCI_COMMAND) != sizeof(cmd_orig)) { |
| error_report("IGD device %s - failed to read PCI command register", |
| vdev->vbasedev.name); |
| } |
| |
| cmd = cmd_orig | PCI_COMMAND_IO; |
| |
| if (pwrite(vdev->vbasedev.fd, &cmd, sizeof(cmd), |
| vdev->config_offset + PCI_COMMAND) != sizeof(cmd)) { |
| error_report("IGD device %s - failed to write PCI command register", |
| vdev->vbasedev.name); |
| } |
| |
| for (i = 1; i < vfio_igd_gtt_max(vdev); i += 4) { |
| vfio_region_write(&vdev->bars[4].region, 0, i, 4); |
| vfio_region_write(&vdev->bars[4].region, 4, 0, 4); |
| } |
| |
| if (pwrite(vdev->vbasedev.fd, &cmd_orig, sizeof(cmd_orig), |
| vdev->config_offset + PCI_COMMAND) != sizeof(cmd_orig)) { |
| error_report("IGD device %s - failed to restore PCI command register", |
| vdev->vbasedev.name); |
| } |
| |
| trace_vfio_pci_igd_bdsm_enabled(vdev->vbasedev.name, ggms_mb + gms_mb); |
| |
| out: |
| g_free(rom); |
| g_free(opregion); |
| g_free(host); |
| g_free(lpc); |
| } |
| |
| /* |
| * Common quirk probe entry points. |
| */ |
| void vfio_vga_quirk_setup(VFIOPCIDevice *vdev) |
| { |
| vfio_vga_probe_ati_3c3_quirk(vdev); |
| vfio_vga_probe_nvidia_3d0_quirk(vdev); |
| } |
| |
| void vfio_vga_quirk_exit(VFIOPCIDevice *vdev) |
| { |
| VFIOQuirk *quirk; |
| int i, j; |
| |
| for (i = 0; i < ARRAY_SIZE(vdev->vga->region); i++) { |
| QLIST_FOREACH(quirk, &vdev->vga->region[i].quirks, next) { |
| for (j = 0; j < quirk->nr_mem; j++) { |
| memory_region_del_subregion(&vdev->vga->region[i].mem, |
| &quirk->mem[j]); |
| } |
| } |
| } |
| } |
| |
| void vfio_vga_quirk_finalize(VFIOPCIDevice *vdev) |
| { |
| int i, j; |
| |
| for (i = 0; i < ARRAY_SIZE(vdev->vga->region); i++) { |
| while (!QLIST_EMPTY(&vdev->vga->region[i].quirks)) { |
| VFIOQuirk *quirk = QLIST_FIRST(&vdev->vga->region[i].quirks); |
| QLIST_REMOVE(quirk, next); |
| for (j = 0; j < quirk->nr_mem; j++) { |
| object_unparent(OBJECT(&quirk->mem[j])); |
| } |
| g_free(quirk->mem); |
| g_free(quirk->data); |
| g_free(quirk); |
| } |
| } |
| } |
| |
| void vfio_bar_quirk_setup(VFIOPCIDevice *vdev, int nr) |
| { |
| vfio_probe_ati_bar4_quirk(vdev, nr); |
| vfio_probe_ati_bar2_quirk(vdev, nr); |
| vfio_probe_nvidia_bar5_quirk(vdev, nr); |
| vfio_probe_nvidia_bar0_quirk(vdev, nr); |
| vfio_probe_rtl8168_bar2_quirk(vdev, nr); |
| vfio_probe_igd_bar4_quirk(vdev, nr); |
| } |
| |
| void vfio_bar_quirk_exit(VFIOPCIDevice *vdev, int nr) |
| { |
| VFIOBAR *bar = &vdev->bars[nr]; |
| VFIOQuirk *quirk; |
| int i; |
| |
| QLIST_FOREACH(quirk, &bar->quirks, next) { |
| for (i = 0; i < quirk->nr_mem; i++) { |
| memory_region_del_subregion(bar->region.mem, &quirk->mem[i]); |
| } |
| } |
| } |
| |
| void vfio_bar_quirk_finalize(VFIOPCIDevice *vdev, int nr) |
| { |
| VFIOBAR *bar = &vdev->bars[nr]; |
| int i; |
| |
| while (!QLIST_EMPTY(&bar->quirks)) { |
| VFIOQuirk *quirk = QLIST_FIRST(&bar->quirks); |
| QLIST_REMOVE(quirk, next); |
| for (i = 0; i < quirk->nr_mem; i++) { |
| object_unparent(OBJECT(&quirk->mem[i])); |
| } |
| g_free(quirk->mem); |
| g_free(quirk->data); |
| g_free(quirk); |
| } |
| } |
| |
| /* |
| * Reset quirks |
| */ |
| |
| /* |
| * AMD Radeon PCI config reset, based on Linux: |
| * drivers/gpu/drm/radeon/ci_smc.c:ci_is_smc_running() |
| * drivers/gpu/drm/radeon/radeon_device.c:radeon_pci_config_reset |
| * drivers/gpu/drm/radeon/ci_smc.c:ci_reset_smc() |
| * drivers/gpu/drm/radeon/ci_smc.c:ci_stop_smc_clock() |
| * IDs: include/drm/drm_pciids.h |
| * Registers: http://cgit.freedesktop.org/~agd5f/linux/commit/?id=4e2aa447f6f0 |
| * |
| * Bonaire and Hawaii GPUs do not respond to a bus reset. This is a bug in the |
| * hardware that should be fixed on future ASICs. The symptom of this is that |
| * once the accerlated driver loads, Windows guests will bsod on subsequent |
| * attmpts to load the driver, such as after VM reset or shutdown/restart. To |
| * work around this, we do an AMD specific PCI config reset, followed by an SMC |
| * reset. The PCI config reset only works if SMC firmware is running, so we |
| * have a dependency on the state of the device as to whether this reset will |
| * be effective. There are still cases where we won't be able to kick the |
| * device into working, but this greatly improves the usability overall. The |
| * config reset magic is relatively common on AMD GPUs, but the setup and SMC |
| * poking is largely ASIC specific. |
| */ |
| static bool vfio_radeon_smc_is_running(VFIOPCIDevice *vdev) |
| { |
| uint32_t clk, pc_c; |
| |
| /* |
| * Registers 200h and 204h are index and data registers for accessing |
| * indirect configuration registers within the device. |
| */ |
| vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000004, 4); |
| clk = vfio_region_read(&vdev->bars[5].region, 0x204, 4); |
| vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000370, 4); |
| pc_c = vfio_region_read(&vdev->bars[5].region, 0x204, 4); |
| |
| return (!(clk & 1) && (0x20100 <= pc_c)); |
| } |
| |
| /* |
| * The scope of a config reset is controlled by a mode bit in the misc register |
| * and a fuse, exposed as a bit in another register. The fuse is the default |
| * (0 = GFX, 1 = whole GPU), the misc bit is a toggle, with the forumula |
| * scope = !(misc ^ fuse), where the resulting scope is defined the same as |
| * the fuse. A truth table therefore tells us that if misc == fuse, we need |
| * to flip the value of the bit in the misc register. |
| */ |
| static void vfio_radeon_set_gfx_only_reset(VFIOPCIDevice *vdev) |
| { |
| uint32_t misc, fuse; |
| bool a, b; |
| |
| vfio_region_write(&vdev->bars[5].region, 0x200, 0xc00c0000, 4); |
| fuse = vfio_region_read(&vdev->bars[5].region, 0x204, 4); |
| b = fuse & 64; |
| |
| vfio_region_write(&vdev->bars[5].region, 0x200, 0xc0000010, 4); |
| misc = vfio_region_read(&vdev->bars[5].region, 0x204, 4); |
| a = misc & 2; |
| |
| if (a == b) { |
| vfio_region_write(&vdev->bars[5].region, 0x204, misc ^ 2, 4); |
| vfio_region_read(&vdev->bars[5].region, 0x204, 4); /* flush */ |
| } |
| } |
| |
| static int vfio_radeon_reset(VFIOPCIDevice *vdev) |
| { |
| PCIDevice *pdev = &vdev->pdev; |
| int i, ret = 0; |
| uint32_t data; |
| |
| /* Defer to a kernel implemented reset */ |
| if (vdev->vbasedev.reset_works) { |
| trace_vfio_quirk_ati_bonaire_reset_skipped(vdev->vbasedev.name); |
| return -ENODEV; |
| } |
| |
| /* Enable only memory BAR access */ |
| vfio_pci_write_config(pdev, PCI_COMMAND, PCI_COMMAND_MEMORY, 2); |
| |
| /* Reset only works if SMC firmware is loaded and running */ |
| if (!vfio_radeon_smc_is_running(vdev)) { |
| ret = -EINVAL; |
| trace_vfio_quirk_ati_bonaire_reset_no_smc(vdev->vbasedev.name); |
| goto out; |
| } |
| |
| /* Make sure only the GFX function is reset */ |
| vfio_radeon_set_gfx_only_reset(vdev); |
| |
| /* AMD PCI config reset */ |
| vfio_pci_write_config(pdev, 0x7c, 0x39d5e86b, 4); |
| usleep(100); |
| |
| /* Read back the memory size to make sure we're out of reset */ |
| for (i = 0; i < 100000; i++) { |
| if (vfio_region_read(&vdev->bars[5].region, 0x5428, 4) != 0xffffffff) { |
| goto reset_smc; |
| } |
| usleep(1); |
| } |
| |
| trace_vfio_quirk_ati_bonaire_reset_timeout(vdev->vbasedev.name); |
| |
| reset_smc: |
| /* Reset SMC */ |
| vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000000, 4); |
| data = vfio_region_read(&vdev->bars[5].region, 0x204, 4); |
| data |= 1; |
| vfio_region_write(&vdev->bars[5].region, 0x204, data, 4); |
| |
| /* Disable SMC clock */ |
| vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000004, 4); |
| data = vfio_region_read(&vdev->bars[5].region, 0x204, 4); |
| data |= 1; |
| vfio_region_write(&vdev->bars[5].region, 0x204, data, 4); |
| |
| trace_vfio_quirk_ati_bonaire_reset_done(vdev->vbasedev.name); |
| |
| out: |
| /* Restore PCI command register */ |
| vfio_pci_write_config(pdev, PCI_COMMAND, 0, 2); |
| |
| return ret; |
| } |
| |
| void vfio_setup_resetfn_quirk(VFIOPCIDevice *vdev) |
| { |
| switch (vdev->vendor_id) { |
| case 0x1002: |
| switch (vdev->device_id) { |
| /* Bonaire */ |
| case 0x6649: /* Bonaire [FirePro W5100] */ |
| case 0x6650: |
| case 0x6651: |
| case 0x6658: /* Bonaire XTX [Radeon R7 260X] */ |
| case 0x665c: /* Bonaire XT [Radeon HD 7790/8770 / R9 260 OEM] */ |
| case 0x665d: /* Bonaire [Radeon R7 200 Series] */ |
| /* Hawaii */ |
| case 0x67A0: /* Hawaii XT GL [FirePro W9100] */ |
| case 0x67A1: /* Hawaii PRO GL [FirePro W8100] */ |
| case 0x67A2: |
| case 0x67A8: |
| case 0x67A9: |
| case 0x67AA: |
| case 0x67B0: /* Hawaii XT [Radeon R9 290X] */ |
| case 0x67B1: /* Hawaii PRO [Radeon R9 290] */ |
| case 0x67B8: |
| case 0x67B9: |
| case 0x67BA: |
| case 0x67BE: |
| vdev->resetfn = vfio_radeon_reset; |
| trace_vfio_quirk_ati_bonaire_reset(vdev->vbasedev.name); |
| break; |
| } |
| break; |
| } |
| } |