| /* |
| * QEMU Firmware configuration device emulation |
| * |
| * Copyright (c) 2008 Gleb Natapov |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu-common.h" |
| #include "qemu/datadir.h" |
| #include "sysemu/sysemu.h" |
| #include "sysemu/dma.h" |
| #include "sysemu/reset.h" |
| #include "hw/boards.h" |
| #include "hw/nvram/fw_cfg.h" |
| #include "hw/qdev-properties.h" |
| #include "hw/sysbus.h" |
| #include "migration/qemu-file-types.h" |
| #include "migration/vmstate.h" |
| #include "trace.h" |
| #include "qemu/error-report.h" |
| #include "qemu/option.h" |
| #include "qemu/config-file.h" |
| #include "qemu/cutils.h" |
| #include "qapi/error.h" |
| #include "hw/acpi/aml-build.h" |
| #include "hw/pci/pci_bus.h" |
| |
| #define FW_CFG_FILE_SLOTS_DFLT 0x20 |
| |
| /* FW_CFG_VERSION bits */ |
| #define FW_CFG_VERSION 0x01 |
| #define FW_CFG_VERSION_DMA 0x02 |
| |
| /* FW_CFG_DMA_CONTROL bits */ |
| #define FW_CFG_DMA_CTL_ERROR 0x01 |
| #define FW_CFG_DMA_CTL_READ 0x02 |
| #define FW_CFG_DMA_CTL_SKIP 0x04 |
| #define FW_CFG_DMA_CTL_SELECT 0x08 |
| #define FW_CFG_DMA_CTL_WRITE 0x10 |
| |
| #define FW_CFG_DMA_SIGNATURE 0x51454d5520434647ULL /* "QEMU CFG" */ |
| |
| struct FWCfgEntry { |
| uint32_t len; |
| bool allow_write; |
| uint8_t *data; |
| void *callback_opaque; |
| FWCfgCallback select_cb; |
| FWCfgWriteCallback write_cb; |
| }; |
| |
| /** |
| * key_name: |
| * |
| * @key: The uint16 selector key. |
| * |
| * Returns: The stringified name if the selector refers to a well-known |
| * numerically defined item, or NULL on key lookup failure. |
| */ |
| static const char *key_name(uint16_t key) |
| { |
| static const char *fw_cfg_wellknown_keys[FW_CFG_FILE_FIRST] = { |
| [FW_CFG_SIGNATURE] = "signature", |
| [FW_CFG_ID] = "id", |
| [FW_CFG_UUID] = "uuid", |
| [FW_CFG_RAM_SIZE] = "ram_size", |
| [FW_CFG_NOGRAPHIC] = "nographic", |
| [FW_CFG_NB_CPUS] = "nb_cpus", |
| [FW_CFG_MACHINE_ID] = "machine_id", |
| [FW_CFG_KERNEL_ADDR] = "kernel_addr", |
| [FW_CFG_KERNEL_SIZE] = "kernel_size", |
| [FW_CFG_KERNEL_CMDLINE] = "kernel_cmdline", |
| [FW_CFG_INITRD_ADDR] = "initrd_addr", |
| [FW_CFG_INITRD_SIZE] = "initdr_size", |
| [FW_CFG_BOOT_DEVICE] = "boot_device", |
| [FW_CFG_NUMA] = "numa", |
| [FW_CFG_BOOT_MENU] = "boot_menu", |
| [FW_CFG_MAX_CPUS] = "max_cpus", |
| [FW_CFG_KERNEL_ENTRY] = "kernel_entry", |
| [FW_CFG_KERNEL_DATA] = "kernel_data", |
| [FW_CFG_INITRD_DATA] = "initrd_data", |
| [FW_CFG_CMDLINE_ADDR] = "cmdline_addr", |
| [FW_CFG_CMDLINE_SIZE] = "cmdline_size", |
| [FW_CFG_CMDLINE_DATA] = "cmdline_data", |
| [FW_CFG_SETUP_ADDR] = "setup_addr", |
| [FW_CFG_SETUP_SIZE] = "setup_size", |
| [FW_CFG_SETUP_DATA] = "setup_data", |
| [FW_CFG_FILE_DIR] = "file_dir", |
| }; |
| |
| if (key & FW_CFG_ARCH_LOCAL) { |
| return fw_cfg_arch_key_name(key); |
| } |
| if (key < FW_CFG_FILE_FIRST) { |
| return fw_cfg_wellknown_keys[key]; |
| } |
| |
| return NULL; |
| } |
| |
| static inline const char *trace_key_name(uint16_t key) |
| { |
| const char *name = key_name(key); |
| |
| return name ? name : "unknown"; |
| } |
| |
| #define JPG_FILE 0 |
| #define BMP_FILE 1 |
| |
| static char *read_splashfile(char *filename, gsize *file_sizep, |
| int *file_typep) |
| { |
| GError *err = NULL; |
| gchar *content; |
| int file_type; |
| unsigned int filehead; |
| int bmp_bpp; |
| |
| if (!g_file_get_contents(filename, &content, file_sizep, &err)) { |
| error_report("failed to read splash file '%s': %s", |
| filename, err->message); |
| g_error_free(err); |
| return NULL; |
| } |
| |
| /* check file size */ |
| if (*file_sizep < 30) { |
| goto error; |
| } |
| |
| /* check magic ID */ |
| filehead = lduw_le_p(content); |
| if (filehead == 0xd8ff) { |
| file_type = JPG_FILE; |
| } else if (filehead == 0x4d42) { |
| file_type = BMP_FILE; |
| } else { |
| goto error; |
| } |
| |
| /* check BMP bpp */ |
| if (file_type == BMP_FILE) { |
| bmp_bpp = lduw_le_p(&content[28]); |
| if (bmp_bpp != 24) { |
| goto error; |
| } |
| } |
| |
| /* return values */ |
| *file_typep = file_type; |
| |
| return content; |
| |
| error: |
| error_report("splash file '%s' format not recognized; must be JPEG " |
| "or 24 bit BMP", filename); |
| g_free(content); |
| return NULL; |
| } |
| |
| static void fw_cfg_bootsplash(FWCfgState *s) |
| { |
| const char *boot_splash_filename = NULL; |
| const char *boot_splash_time = NULL; |
| char *filename, *file_data; |
| gsize file_size; |
| int file_type; |
| |
| /* get user configuration */ |
| QemuOptsList *plist = qemu_find_opts("boot-opts"); |
| QemuOpts *opts = QTAILQ_FIRST(&plist->head); |
| boot_splash_filename = qemu_opt_get(opts, "splash"); |
| boot_splash_time = qemu_opt_get(opts, "splash-time"); |
| |
| /* insert splash time if user configurated */ |
| if (boot_splash_time) { |
| int64_t bst_val = qemu_opt_get_number(opts, "splash-time", -1); |
| uint16_t bst_le16; |
| |
| /* validate the input */ |
| if (bst_val < 0 || bst_val > 0xffff) { |
| error_report("splash-time is invalid," |
| "it should be a value between 0 and 65535"); |
| exit(1); |
| } |
| /* use little endian format */ |
| bst_le16 = cpu_to_le16(bst_val); |
| fw_cfg_add_file(s, "etc/boot-menu-wait", |
| g_memdup(&bst_le16, sizeof bst_le16), sizeof bst_le16); |
| } |
| |
| /* insert splash file if user configurated */ |
| if (boot_splash_filename) { |
| filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, boot_splash_filename); |
| if (filename == NULL) { |
| error_report("failed to find file '%s'", boot_splash_filename); |
| return; |
| } |
| |
| /* loading file data */ |
| file_data = read_splashfile(filename, &file_size, &file_type); |
| if (file_data == NULL) { |
| g_free(filename); |
| return; |
| } |
| g_free(boot_splash_filedata); |
| boot_splash_filedata = (uint8_t *)file_data; |
| |
| /* insert data */ |
| if (file_type == JPG_FILE) { |
| fw_cfg_add_file(s, "bootsplash.jpg", |
| boot_splash_filedata, file_size); |
| } else { |
| fw_cfg_add_file(s, "bootsplash.bmp", |
| boot_splash_filedata, file_size); |
| } |
| g_free(filename); |
| } |
| } |
| |
| static void fw_cfg_reboot(FWCfgState *s) |
| { |
| const char *reboot_timeout = NULL; |
| uint64_t rt_val = -1; |
| uint32_t rt_le32; |
| |
| /* get user configuration */ |
| QemuOptsList *plist = qemu_find_opts("boot-opts"); |
| QemuOpts *opts = QTAILQ_FIRST(&plist->head); |
| reboot_timeout = qemu_opt_get(opts, "reboot-timeout"); |
| |
| if (reboot_timeout) { |
| rt_val = qemu_opt_get_number(opts, "reboot-timeout", -1); |
| |
| /* validate the input */ |
| if (rt_val > 0xffff && rt_val != (uint64_t)-1) { |
| error_report("reboot timeout is invalid," |
| "it should be a value between -1 and 65535"); |
| exit(1); |
| } |
| } |
| |
| rt_le32 = cpu_to_le32(rt_val); |
| fw_cfg_add_file(s, "etc/boot-fail-wait", g_memdup(&rt_le32, 4), 4); |
| } |
| |
| static void fw_cfg_write(FWCfgState *s, uint8_t value) |
| { |
| /* nothing, write support removed in QEMU v2.4+ */ |
| } |
| |
| static inline uint16_t fw_cfg_file_slots(const FWCfgState *s) |
| { |
| return s->file_slots; |
| } |
| |
| /* Note: this function returns an exclusive limit. */ |
| static inline uint32_t fw_cfg_max_entry(const FWCfgState *s) |
| { |
| return FW_CFG_FILE_FIRST + fw_cfg_file_slots(s); |
| } |
| |
| static int fw_cfg_select(FWCfgState *s, uint16_t key) |
| { |
| int arch, ret; |
| FWCfgEntry *e; |
| |
| s->cur_offset = 0; |
| if ((key & FW_CFG_ENTRY_MASK) >= fw_cfg_max_entry(s)) { |
| s->cur_entry = FW_CFG_INVALID; |
| ret = 0; |
| } else { |
| s->cur_entry = key; |
| ret = 1; |
| /* entry successfully selected, now run callback if present */ |
| arch = !!(key & FW_CFG_ARCH_LOCAL); |
| e = &s->entries[arch][key & FW_CFG_ENTRY_MASK]; |
| if (e->select_cb) { |
| e->select_cb(e->callback_opaque); |
| } |
| } |
| |
| trace_fw_cfg_select(s, key, trace_key_name(key), ret); |
| return ret; |
| } |
| |
| static uint64_t fw_cfg_data_read(void *opaque, hwaddr addr, unsigned size) |
| { |
| FWCfgState *s = opaque; |
| int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL); |
| FWCfgEntry *e = (s->cur_entry == FW_CFG_INVALID) ? NULL : |
| &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK]; |
| uint64_t value = 0; |
| |
| assert(size > 0 && size <= sizeof(value)); |
| if (s->cur_entry != FW_CFG_INVALID && e->data && s->cur_offset < e->len) { |
| /* The least significant 'size' bytes of the return value are |
| * expected to contain a string preserving portion of the item |
| * data, padded with zeros on the right in case we run out early. |
| * In technical terms, we're composing the host-endian representation |
| * of the big endian interpretation of the fw_cfg string. |
| */ |
| do { |
| value = (value << 8) | e->data[s->cur_offset++]; |
| } while (--size && s->cur_offset < e->len); |
| /* If size is still not zero, we *did* run out early, so continue |
| * left-shifting, to add the appropriate number of padding zeros |
| * on the right. |
| */ |
| value <<= 8 * size; |
| } |
| |
| trace_fw_cfg_read(s, value); |
| return value; |
| } |
| |
| static void fw_cfg_data_mem_write(void *opaque, hwaddr addr, |
| uint64_t value, unsigned size) |
| { |
| FWCfgState *s = opaque; |
| unsigned i = size; |
| |
| do { |
| fw_cfg_write(s, value >> (8 * --i)); |
| } while (i); |
| } |
| |
| static void fw_cfg_dma_transfer(FWCfgState *s) |
| { |
| dma_addr_t len; |
| FWCfgDmaAccess dma; |
| int arch; |
| FWCfgEntry *e; |
| int read = 0, write = 0; |
| dma_addr_t dma_addr; |
| |
| /* Reset the address before the next access */ |
| dma_addr = s->dma_addr; |
| s->dma_addr = 0; |
| |
| if (dma_memory_read(s->dma_as, dma_addr, &dma, sizeof(dma))) { |
| stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control), |
| FW_CFG_DMA_CTL_ERROR); |
| return; |
| } |
| |
| dma.address = be64_to_cpu(dma.address); |
| dma.length = be32_to_cpu(dma.length); |
| dma.control = be32_to_cpu(dma.control); |
| |
| if (dma.control & FW_CFG_DMA_CTL_SELECT) { |
| fw_cfg_select(s, dma.control >> 16); |
| } |
| |
| arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL); |
| e = (s->cur_entry == FW_CFG_INVALID) ? NULL : |
| &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK]; |
| |
| if (dma.control & FW_CFG_DMA_CTL_READ) { |
| read = 1; |
| write = 0; |
| } else if (dma.control & FW_CFG_DMA_CTL_WRITE) { |
| read = 0; |
| write = 1; |
| } else if (dma.control & FW_CFG_DMA_CTL_SKIP) { |
| read = 0; |
| write = 0; |
| } else { |
| dma.length = 0; |
| } |
| |
| dma.control = 0; |
| |
| while (dma.length > 0 && !(dma.control & FW_CFG_DMA_CTL_ERROR)) { |
| if (s->cur_entry == FW_CFG_INVALID || !e->data || |
| s->cur_offset >= e->len) { |
| len = dma.length; |
| |
| /* If the access is not a read access, it will be a skip access, |
| * tested before. |
| */ |
| if (read) { |
| if (dma_memory_set(s->dma_as, dma.address, 0, len)) { |
| dma.control |= FW_CFG_DMA_CTL_ERROR; |
| } |
| } |
| if (write) { |
| dma.control |= FW_CFG_DMA_CTL_ERROR; |
| } |
| } else { |
| if (dma.length <= (e->len - s->cur_offset)) { |
| len = dma.length; |
| } else { |
| len = (e->len - s->cur_offset); |
| } |
| |
| /* If the access is not a read access, it will be a skip access, |
| * tested before. |
| */ |
| if (read) { |
| if (dma_memory_write(s->dma_as, dma.address, |
| &e->data[s->cur_offset], len)) { |
| dma.control |= FW_CFG_DMA_CTL_ERROR; |
| } |
| } |
| if (write) { |
| if (!e->allow_write || |
| len != dma.length || |
| dma_memory_read(s->dma_as, dma.address, |
| &e->data[s->cur_offset], len)) { |
| dma.control |= FW_CFG_DMA_CTL_ERROR; |
| } else if (e->write_cb) { |
| e->write_cb(e->callback_opaque, s->cur_offset, len); |
| } |
| } |
| |
| s->cur_offset += len; |
| } |
| |
| dma.address += len; |
| dma.length -= len; |
| |
| } |
| |
| stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control), |
| dma.control); |
| |
| trace_fw_cfg_read(s, 0); |
| } |
| |
| static uint64_t fw_cfg_dma_mem_read(void *opaque, hwaddr addr, |
| unsigned size) |
| { |
| /* Return a signature value (and handle various read sizes) */ |
| return extract64(FW_CFG_DMA_SIGNATURE, (8 - addr - size) * 8, size * 8); |
| } |
| |
| static void fw_cfg_dma_mem_write(void *opaque, hwaddr addr, |
| uint64_t value, unsigned size) |
| { |
| FWCfgState *s = opaque; |
| |
| if (size == 4) { |
| if (addr == 0) { |
| /* FWCfgDmaAccess high address */ |
| s->dma_addr = value << 32; |
| } else if (addr == 4) { |
| /* FWCfgDmaAccess low address */ |
| s->dma_addr |= value; |
| fw_cfg_dma_transfer(s); |
| } |
| } else if (size == 8 && addr == 0) { |
| s->dma_addr = value; |
| fw_cfg_dma_transfer(s); |
| } |
| } |
| |
| static bool fw_cfg_dma_mem_valid(void *opaque, hwaddr addr, |
| unsigned size, bool is_write, |
| MemTxAttrs attrs) |
| { |
| return !is_write || ((size == 4 && (addr == 0 || addr == 4)) || |
| (size == 8 && addr == 0)); |
| } |
| |
| static bool fw_cfg_data_mem_valid(void *opaque, hwaddr addr, |
| unsigned size, bool is_write, |
| MemTxAttrs attrs) |
| { |
| return addr == 0; |
| } |
| |
| static uint64_t fw_cfg_ctl_mem_read(void *opaque, hwaddr addr, unsigned size) |
| { |
| return 0; |
| } |
| |
| static void fw_cfg_ctl_mem_write(void *opaque, hwaddr addr, |
| uint64_t value, unsigned size) |
| { |
| fw_cfg_select(opaque, (uint16_t)value); |
| } |
| |
| static bool fw_cfg_ctl_mem_valid(void *opaque, hwaddr addr, |
| unsigned size, bool is_write, |
| MemTxAttrs attrs) |
| { |
| return is_write && size == 2; |
| } |
| |
| static void fw_cfg_comb_write(void *opaque, hwaddr addr, |
| uint64_t value, unsigned size) |
| { |
| switch (size) { |
| case 1: |
| fw_cfg_write(opaque, (uint8_t)value); |
| break; |
| case 2: |
| fw_cfg_select(opaque, (uint16_t)value); |
| break; |
| } |
| } |
| |
| static bool fw_cfg_comb_valid(void *opaque, hwaddr addr, |
| unsigned size, bool is_write, |
| MemTxAttrs attrs) |
| { |
| return (size == 1) || (is_write && size == 2); |
| } |
| |
| static const MemoryRegionOps fw_cfg_ctl_mem_ops = { |
| .read = fw_cfg_ctl_mem_read, |
| .write = fw_cfg_ctl_mem_write, |
| .endianness = DEVICE_BIG_ENDIAN, |
| .valid.accepts = fw_cfg_ctl_mem_valid, |
| }; |
| |
| static const MemoryRegionOps fw_cfg_data_mem_ops = { |
| .read = fw_cfg_data_read, |
| .write = fw_cfg_data_mem_write, |
| .endianness = DEVICE_BIG_ENDIAN, |
| .valid = { |
| .min_access_size = 1, |
| .max_access_size = 1, |
| .accepts = fw_cfg_data_mem_valid, |
| }, |
| }; |
| |
| static const MemoryRegionOps fw_cfg_comb_mem_ops = { |
| .read = fw_cfg_data_read, |
| .write = fw_cfg_comb_write, |
| .endianness = DEVICE_LITTLE_ENDIAN, |
| .valid.accepts = fw_cfg_comb_valid, |
| }; |
| |
| static const MemoryRegionOps fw_cfg_dma_mem_ops = { |
| .read = fw_cfg_dma_mem_read, |
| .write = fw_cfg_dma_mem_write, |
| .endianness = DEVICE_BIG_ENDIAN, |
| .valid.accepts = fw_cfg_dma_mem_valid, |
| .valid.max_access_size = 8, |
| .impl.max_access_size = 8, |
| }; |
| |
| static void fw_cfg_reset(DeviceState *d) |
| { |
| FWCfgState *s = FW_CFG(d); |
| |
| /* we never register a read callback for FW_CFG_SIGNATURE */ |
| fw_cfg_select(s, FW_CFG_SIGNATURE); |
| } |
| |
| /* Save restore 32 bit int as uint16_t |
| This is a Big hack, but it is how the old state did it. |
| Or we broke compatibility in the state, or we can't use struct tm |
| */ |
| |
| static int get_uint32_as_uint16(QEMUFile *f, void *pv, size_t size, |
| const VMStateField *field) |
| { |
| uint32_t *v = pv; |
| *v = qemu_get_be16(f); |
| return 0; |
| } |
| |
| static int put_unused(QEMUFile *f, void *pv, size_t size, |
| const VMStateField *field, JSONWriter *vmdesc) |
| { |
| fprintf(stderr, "uint32_as_uint16 is only used for backward compatibility.\n"); |
| fprintf(stderr, "This functions shouldn't be called.\n"); |
| |
| return 0; |
| } |
| |
| static const VMStateInfo vmstate_hack_uint32_as_uint16 = { |
| .name = "int32_as_uint16", |
| .get = get_uint32_as_uint16, |
| .put = put_unused, |
| }; |
| |
| #define VMSTATE_UINT16_HACK(_f, _s, _t) \ |
| VMSTATE_SINGLE_TEST(_f, _s, _t, 0, vmstate_hack_uint32_as_uint16, uint32_t) |
| |
| |
| static bool is_version_1(void *opaque, int version_id) |
| { |
| return version_id == 1; |
| } |
| |
| bool fw_cfg_dma_enabled(void *opaque) |
| { |
| FWCfgState *s = opaque; |
| |
| return s->dma_enabled; |
| } |
| |
| static bool fw_cfg_acpi_mr_restore(void *opaque) |
| { |
| FWCfgState *s = opaque; |
| bool mr_aligned; |
| |
| mr_aligned = QEMU_IS_ALIGNED(s->table_mr_size, qemu_real_host_page_size) && |
| QEMU_IS_ALIGNED(s->linker_mr_size, qemu_real_host_page_size) && |
| QEMU_IS_ALIGNED(s->rsdp_mr_size, qemu_real_host_page_size); |
| return s->acpi_mr_restore && !mr_aligned; |
| } |
| |
| static void fw_cfg_update_mr(FWCfgState *s, uint16_t key, size_t size) |
| { |
| MemoryRegion *mr; |
| ram_addr_t offset; |
| int arch = !!(key & FW_CFG_ARCH_LOCAL); |
| void *ptr; |
| |
| key &= FW_CFG_ENTRY_MASK; |
| assert(key < fw_cfg_max_entry(s)); |
| |
| ptr = s->entries[arch][key].data; |
| mr = memory_region_from_host(ptr, &offset); |
| |
| memory_region_ram_resize(mr, size, &error_abort); |
| } |
| |
| static int fw_cfg_acpi_mr_restore_post_load(void *opaque, int version_id) |
| { |
| FWCfgState *s = opaque; |
| int i, index; |
| |
| assert(s->files); |
| |
| index = be32_to_cpu(s->files->count); |
| |
| for (i = 0; i < index; i++) { |
| if (!strcmp(s->files->f[i].name, ACPI_BUILD_TABLE_FILE)) { |
| fw_cfg_update_mr(s, FW_CFG_FILE_FIRST + i, s->table_mr_size); |
| } else if (!strcmp(s->files->f[i].name, ACPI_BUILD_LOADER_FILE)) { |
| fw_cfg_update_mr(s, FW_CFG_FILE_FIRST + i, s->linker_mr_size); |
| } else if (!strcmp(s->files->f[i].name, ACPI_BUILD_RSDP_FILE)) { |
| fw_cfg_update_mr(s, FW_CFG_FILE_FIRST + i, s->rsdp_mr_size); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static const VMStateDescription vmstate_fw_cfg_dma = { |
| .name = "fw_cfg/dma", |
| .needed = fw_cfg_dma_enabled, |
| .fields = (VMStateField[]) { |
| VMSTATE_UINT64(dma_addr, FWCfgState), |
| VMSTATE_END_OF_LIST() |
| }, |
| }; |
| |
| static const VMStateDescription vmstate_fw_cfg_acpi_mr = { |
| .name = "fw_cfg/acpi_mr", |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .needed = fw_cfg_acpi_mr_restore, |
| .post_load = fw_cfg_acpi_mr_restore_post_load, |
| .fields = (VMStateField[]) { |
| VMSTATE_UINT64(table_mr_size, FWCfgState), |
| VMSTATE_UINT64(linker_mr_size, FWCfgState), |
| VMSTATE_UINT64(rsdp_mr_size, FWCfgState), |
| VMSTATE_END_OF_LIST() |
| }, |
| }; |
| |
| static const VMStateDescription vmstate_fw_cfg = { |
| .name = "fw_cfg", |
| .version_id = 2, |
| .minimum_version_id = 1, |
| .fields = (VMStateField[]) { |
| VMSTATE_UINT16(cur_entry, FWCfgState), |
| VMSTATE_UINT16_HACK(cur_offset, FWCfgState, is_version_1), |
| VMSTATE_UINT32_V(cur_offset, FWCfgState, 2), |
| VMSTATE_END_OF_LIST() |
| }, |
| .subsections = (const VMStateDescription*[]) { |
| &vmstate_fw_cfg_dma, |
| &vmstate_fw_cfg_acpi_mr, |
| NULL, |
| } |
| }; |
| |
| static void fw_cfg_add_bytes_callback(FWCfgState *s, uint16_t key, |
| FWCfgCallback select_cb, |
| FWCfgWriteCallback write_cb, |
| void *callback_opaque, |
| void *data, size_t len, |
| bool read_only) |
| { |
| int arch = !!(key & FW_CFG_ARCH_LOCAL); |
| |
| key &= FW_CFG_ENTRY_MASK; |
| |
| assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX); |
| assert(s->entries[arch][key].data == NULL); /* avoid key conflict */ |
| |
| s->entries[arch][key].data = data; |
| s->entries[arch][key].len = (uint32_t)len; |
| s->entries[arch][key].select_cb = select_cb; |
| s->entries[arch][key].write_cb = write_cb; |
| s->entries[arch][key].callback_opaque = callback_opaque; |
| s->entries[arch][key].allow_write = !read_only; |
| } |
| |
| static void *fw_cfg_modify_bytes_read(FWCfgState *s, uint16_t key, |
| void *data, size_t len) |
| { |
| void *ptr; |
| int arch = !!(key & FW_CFG_ARCH_LOCAL); |
| |
| key &= FW_CFG_ENTRY_MASK; |
| |
| assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX); |
| |
| /* return the old data to the function caller, avoid memory leak */ |
| ptr = s->entries[arch][key].data; |
| s->entries[arch][key].data = data; |
| s->entries[arch][key].len = len; |
| s->entries[arch][key].callback_opaque = NULL; |
| s->entries[arch][key].allow_write = false; |
| |
| return ptr; |
| } |
| |
| void fw_cfg_add_bytes(FWCfgState *s, uint16_t key, void *data, size_t len) |
| { |
| trace_fw_cfg_add_bytes(key, trace_key_name(key), len); |
| fw_cfg_add_bytes_callback(s, key, NULL, NULL, NULL, data, len, true); |
| } |
| |
| void fw_cfg_add_string(FWCfgState *s, uint16_t key, const char *value) |
| { |
| size_t sz = strlen(value) + 1; |
| |
| trace_fw_cfg_add_string(key, trace_key_name(key), value); |
| fw_cfg_add_bytes(s, key, g_memdup(value, sz), sz); |
| } |
| |
| void fw_cfg_modify_string(FWCfgState *s, uint16_t key, const char *value) |
| { |
| size_t sz = strlen(value) + 1; |
| char *old; |
| |
| old = fw_cfg_modify_bytes_read(s, key, g_memdup(value, sz), sz); |
| g_free(old); |
| } |
| |
| void fw_cfg_add_i16(FWCfgState *s, uint16_t key, uint16_t value) |
| { |
| uint16_t *copy; |
| |
| copy = g_malloc(sizeof(value)); |
| *copy = cpu_to_le16(value); |
| trace_fw_cfg_add_i16(key, trace_key_name(key), value); |
| fw_cfg_add_bytes(s, key, copy, sizeof(value)); |
| } |
| |
| void fw_cfg_modify_i16(FWCfgState *s, uint16_t key, uint16_t value) |
| { |
| uint16_t *copy, *old; |
| |
| copy = g_malloc(sizeof(value)); |
| *copy = cpu_to_le16(value); |
| old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value)); |
| g_free(old); |
| } |
| |
| void fw_cfg_add_i32(FWCfgState *s, uint16_t key, uint32_t value) |
| { |
| uint32_t *copy; |
| |
| copy = g_malloc(sizeof(value)); |
| *copy = cpu_to_le32(value); |
| trace_fw_cfg_add_i32(key, trace_key_name(key), value); |
| fw_cfg_add_bytes(s, key, copy, sizeof(value)); |
| } |
| |
| void fw_cfg_modify_i32(FWCfgState *s, uint16_t key, uint32_t value) |
| { |
| uint32_t *copy, *old; |
| |
| copy = g_malloc(sizeof(value)); |
| *copy = cpu_to_le32(value); |
| old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value)); |
| g_free(old); |
| } |
| |
| void fw_cfg_add_i64(FWCfgState *s, uint16_t key, uint64_t value) |
| { |
| uint64_t *copy; |
| |
| copy = g_malloc(sizeof(value)); |
| *copy = cpu_to_le64(value); |
| trace_fw_cfg_add_i64(key, trace_key_name(key), value); |
| fw_cfg_add_bytes(s, key, copy, sizeof(value)); |
| } |
| |
| void fw_cfg_modify_i64(FWCfgState *s, uint16_t key, uint64_t value) |
| { |
| uint64_t *copy, *old; |
| |
| copy = g_malloc(sizeof(value)); |
| *copy = cpu_to_le64(value); |
| old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value)); |
| g_free(old); |
| } |
| |
| void fw_cfg_set_order_override(FWCfgState *s, int order) |
| { |
| assert(s->fw_cfg_order_override == 0); |
| s->fw_cfg_order_override = order; |
| } |
| |
| void fw_cfg_reset_order_override(FWCfgState *s) |
| { |
| assert(s->fw_cfg_order_override != 0); |
| s->fw_cfg_order_override = 0; |
| } |
| |
| /* |
| * This is the legacy order list. For legacy systems, files are in |
| * the fw_cfg in the order defined below, by the "order" value. Note |
| * that some entries (VGA ROMs, NIC option ROMS, etc.) go into a |
| * specific area, but there may be more than one and they occur in the |
| * order that the user specifies them on the command line. Those are |
| * handled in a special manner, using the order override above. |
| * |
| * For non-legacy, the files are sorted by filename to avoid this kind |
| * of complexity in the future. |
| * |
| * This is only for x86, other arches don't implement versioning so |
| * they won't set legacy mode. |
| */ |
| static struct { |
| const char *name; |
| int order; |
| } fw_cfg_order[] = { |
| { "etc/boot-menu-wait", 10 }, |
| { "bootsplash.jpg", 11 }, |
| { "bootsplash.bmp", 12 }, |
| { "etc/boot-fail-wait", 15 }, |
| { "etc/smbios/smbios-tables", 20 }, |
| { "etc/smbios/smbios-anchor", 30 }, |
| { "etc/e820", 40 }, |
| { "etc/reserved-memory-end", 50 }, |
| { "genroms/kvmvapic.bin", 55 }, |
| { "genroms/linuxboot.bin", 60 }, |
| { }, /* VGA ROMs from pc_vga_init come here, 70. */ |
| { }, /* NIC option ROMs from pc_nic_init come here, 80. */ |
| { "etc/system-states", 90 }, |
| { }, /* User ROMs come here, 100. */ |
| { }, /* Device FW comes here, 110. */ |
| { "etc/extra-pci-roots", 120 }, |
| { "etc/acpi/tables", 130 }, |
| { "etc/table-loader", 140 }, |
| { "etc/tpm/log", 150 }, |
| { "etc/acpi/rsdp", 160 }, |
| { "bootorder", 170 }, |
| |
| #define FW_CFG_ORDER_OVERRIDE_LAST 200 |
| }; |
| |
| /* |
| * Any sub-page size update to these table MRs will be lost during migration, |
| * as we use aligned size in ram_load_precopy() -> qemu_ram_resize() path. |
| * In order to avoid the inconsistency in sizes save them seperately and |
| * migrate over in vmstate post_load(). |
| */ |
| static void fw_cfg_acpi_mr_save(FWCfgState *s, const char *filename, size_t len) |
| { |
| if (!strcmp(filename, ACPI_BUILD_TABLE_FILE)) { |
| s->table_mr_size = len; |
| } else if (!strcmp(filename, ACPI_BUILD_LOADER_FILE)) { |
| s->linker_mr_size = len; |
| } else if (!strcmp(filename, ACPI_BUILD_RSDP_FILE)) { |
| s->rsdp_mr_size = len; |
| } |
| } |
| |
| static int get_fw_cfg_order(FWCfgState *s, const char *name) |
| { |
| int i; |
| |
| if (s->fw_cfg_order_override > 0) { |
| return s->fw_cfg_order_override; |
| } |
| |
| for (i = 0; i < ARRAY_SIZE(fw_cfg_order); i++) { |
| if (fw_cfg_order[i].name == NULL) { |
| continue; |
| } |
| |
| if (strcmp(name, fw_cfg_order[i].name) == 0) { |
| return fw_cfg_order[i].order; |
| } |
| } |
| |
| /* Stick unknown stuff at the end. */ |
| warn_report("Unknown firmware file in legacy mode: %s", name); |
| return FW_CFG_ORDER_OVERRIDE_LAST; |
| } |
| |
| void fw_cfg_add_file_callback(FWCfgState *s, const char *filename, |
| FWCfgCallback select_cb, |
| FWCfgWriteCallback write_cb, |
| void *callback_opaque, |
| void *data, size_t len, bool read_only) |
| { |
| int i, index, count; |
| size_t dsize; |
| MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); |
| int order = 0; |
| |
| if (!s->files) { |
| dsize = sizeof(uint32_t) + sizeof(FWCfgFile) * fw_cfg_file_slots(s); |
| s->files = g_malloc0(dsize); |
| fw_cfg_add_bytes(s, FW_CFG_FILE_DIR, s->files, dsize); |
| } |
| |
| count = be32_to_cpu(s->files->count); |
| assert(count < fw_cfg_file_slots(s)); |
| |
| /* Find the insertion point. */ |
| if (mc->legacy_fw_cfg_order) { |
| /* |
| * Sort by order. For files with the same order, we keep them |
| * in the sequence in which they were added. |
| */ |
| order = get_fw_cfg_order(s, filename); |
| for (index = count; |
| index > 0 && order < s->entry_order[index - 1]; |
| index--); |
| } else { |
| /* Sort by file name. */ |
| for (index = count; |
| index > 0 && strcmp(filename, s->files->f[index - 1].name) < 0; |
| index--); |
| } |
| |
| /* |
| * Move all the entries from the index point and after down one |
| * to create a slot for the new entry. Because calculations are |
| * being done with the index, make it so that "i" is the current |
| * index and "i - 1" is the one being copied from, thus the |
| * unusual start and end in the for statement. |
| */ |
| for (i = count; i > index; i--) { |
| s->files->f[i] = s->files->f[i - 1]; |
| s->files->f[i].select = cpu_to_be16(FW_CFG_FILE_FIRST + i); |
| s->entries[0][FW_CFG_FILE_FIRST + i] = |
| s->entries[0][FW_CFG_FILE_FIRST + i - 1]; |
| s->entry_order[i] = s->entry_order[i - 1]; |
| } |
| |
| memset(&s->files->f[index], 0, sizeof(FWCfgFile)); |
| memset(&s->entries[0][FW_CFG_FILE_FIRST + index], 0, sizeof(FWCfgEntry)); |
| |
| pstrcpy(s->files->f[index].name, sizeof(s->files->f[index].name), filename); |
| for (i = 0; i <= count; i++) { |
| if (i != index && |
| strcmp(s->files->f[index].name, s->files->f[i].name) == 0) { |
| error_report("duplicate fw_cfg file name: %s", |
| s->files->f[index].name); |
| exit(1); |
| } |
| } |
| |
| fw_cfg_add_bytes_callback(s, FW_CFG_FILE_FIRST + index, |
| select_cb, write_cb, |
| callback_opaque, data, len, |
| read_only); |
| |
| s->files->f[index].size = cpu_to_be32(len); |
| s->files->f[index].select = cpu_to_be16(FW_CFG_FILE_FIRST + index); |
| s->entry_order[index] = order; |
| trace_fw_cfg_add_file(s, index, s->files->f[index].name, len); |
| |
| s->files->count = cpu_to_be32(count+1); |
| fw_cfg_acpi_mr_save(s, filename, len); |
| } |
| |
| void fw_cfg_add_file(FWCfgState *s, const char *filename, |
| void *data, size_t len) |
| { |
| fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true); |
| } |
| |
| void *fw_cfg_modify_file(FWCfgState *s, const char *filename, |
| void *data, size_t len) |
| { |
| int i, index; |
| void *ptr = NULL; |
| |
| assert(s->files); |
| |
| index = be32_to_cpu(s->files->count); |
| |
| for (i = 0; i < index; i++) { |
| if (strcmp(filename, s->files->f[i].name) == 0) { |
| ptr = fw_cfg_modify_bytes_read(s, FW_CFG_FILE_FIRST + i, |
| data, len); |
| s->files->f[i].size = cpu_to_be32(len); |
| fw_cfg_acpi_mr_save(s, filename, len); |
| return ptr; |
| } |
| } |
| |
| assert(index < fw_cfg_file_slots(s)); |
| |
| /* add new one */ |
| fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true); |
| return NULL; |
| } |
| |
| bool fw_cfg_add_from_generator(FWCfgState *s, const char *filename, |
| const char *gen_id, Error **errp) |
| { |
| FWCfgDataGeneratorClass *klass; |
| GByteArray *array; |
| Object *obj; |
| gsize size; |
| |
| obj = object_resolve_path_component(object_get_objects_root(), gen_id); |
| if (!obj) { |
| error_setg(errp, "Cannot find object ID '%s'", gen_id); |
| return false; |
| } |
| if (!object_dynamic_cast(obj, TYPE_FW_CFG_DATA_GENERATOR_INTERFACE)) { |
| error_setg(errp, "Object ID '%s' is not a '%s' subclass", |
| gen_id, TYPE_FW_CFG_DATA_GENERATOR_INTERFACE); |
| return false; |
| } |
| klass = FW_CFG_DATA_GENERATOR_GET_CLASS(obj); |
| array = klass->get_data(obj, errp); |
| if (!array) { |
| return false; |
| } |
| size = array->len; |
| fw_cfg_add_file(s, filename, g_byte_array_free(array, FALSE), size); |
| |
| return true; |
| } |
| |
| void fw_cfg_add_extra_pci_roots(PCIBus *bus, FWCfgState *s) |
| { |
| int extra_hosts = 0; |
| |
| if (!bus) { |
| return; |
| } |
| |
| QLIST_FOREACH(bus, &bus->child, sibling) { |
| /* look for expander root buses */ |
| if (pci_bus_is_root(bus)) { |
| extra_hosts++; |
| } |
| } |
| |
| if (extra_hosts && s) { |
| uint64_t *val = g_malloc(sizeof(*val)); |
| *val = cpu_to_le64(extra_hosts); |
| fw_cfg_add_file(s, "etc/extra-pci-roots", val, sizeof(*val)); |
| } |
| } |
| |
| static void fw_cfg_machine_reset(void *opaque) |
| { |
| MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); |
| FWCfgState *s = opaque; |
| void *ptr; |
| size_t len; |
| char *buf; |
| |
| buf = get_boot_devices_list(&len); |
| ptr = fw_cfg_modify_file(s, "bootorder", (uint8_t *)buf, len); |
| g_free(ptr); |
| |
| if (!mc->legacy_fw_cfg_order) { |
| buf = get_boot_devices_lchs_list(&len); |
| ptr = fw_cfg_modify_file(s, "bios-geometry", (uint8_t *)buf, len); |
| g_free(ptr); |
| } |
| } |
| |
| static void fw_cfg_machine_ready(struct Notifier *n, void *data) |
| { |
| FWCfgState *s = container_of(n, FWCfgState, machine_ready); |
| qemu_register_reset(fw_cfg_machine_reset, s); |
| } |
| |
| static Property fw_cfg_properties[] = { |
| DEFINE_PROP_BOOL("acpi-mr-restore", FWCfgState, acpi_mr_restore, true), |
| DEFINE_PROP_END_OF_LIST(), |
| }; |
| |
| static void fw_cfg_common_realize(DeviceState *dev, Error **errp) |
| { |
| FWCfgState *s = FW_CFG(dev); |
| MachineState *machine = MACHINE(qdev_get_machine()); |
| uint32_t version = FW_CFG_VERSION; |
| |
| if (!fw_cfg_find()) { |
| error_setg(errp, "at most one %s device is permitted", TYPE_FW_CFG); |
| return; |
| } |
| |
| fw_cfg_add_bytes(s, FW_CFG_SIGNATURE, (char *)"QEMU", 4); |
| fw_cfg_add_bytes(s, FW_CFG_UUID, &qemu_uuid, 16); |
| fw_cfg_add_i16(s, FW_CFG_NOGRAPHIC, (uint16_t)!machine->enable_graphics); |
| fw_cfg_add_i16(s, FW_CFG_BOOT_MENU, (uint16_t)boot_menu); |
| fw_cfg_bootsplash(s); |
| fw_cfg_reboot(s); |
| |
| if (s->dma_enabled) { |
| version |= FW_CFG_VERSION_DMA; |
| } |
| |
| fw_cfg_add_i32(s, FW_CFG_ID, version); |
| |
| s->machine_ready.notify = fw_cfg_machine_ready; |
| qemu_add_machine_init_done_notifier(&s->machine_ready); |
| } |
| |
| FWCfgState *fw_cfg_init_io_dma(uint32_t iobase, uint32_t dma_iobase, |
| AddressSpace *dma_as) |
| { |
| DeviceState *dev; |
| SysBusDevice *sbd; |
| FWCfgIoState *ios; |
| FWCfgState *s; |
| bool dma_requested = dma_iobase && dma_as; |
| |
| dev = qdev_new(TYPE_FW_CFG_IO); |
| if (!dma_requested) { |
| qdev_prop_set_bit(dev, "dma_enabled", false); |
| } |
| |
| object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG, |
| OBJECT(dev)); |
| |
| sbd = SYS_BUS_DEVICE(dev); |
| sysbus_realize_and_unref(sbd, &error_fatal); |
| ios = FW_CFG_IO(dev); |
| sysbus_add_io(sbd, iobase, &ios->comb_iomem); |
| |
| s = FW_CFG(dev); |
| |
| if (s->dma_enabled) { |
| /* 64 bits for the address field */ |
| s->dma_as = dma_as; |
| s->dma_addr = 0; |
| sysbus_add_io(sbd, dma_iobase, &s->dma_iomem); |
| } |
| |
| return s; |
| } |
| |
| FWCfgState *fw_cfg_init_io(uint32_t iobase) |
| { |
| return fw_cfg_init_io_dma(iobase, 0, NULL); |
| } |
| |
| FWCfgState *fw_cfg_init_mem_wide(hwaddr ctl_addr, |
| hwaddr data_addr, uint32_t data_width, |
| hwaddr dma_addr, AddressSpace *dma_as) |
| { |
| DeviceState *dev; |
| SysBusDevice *sbd; |
| FWCfgState *s; |
| bool dma_requested = dma_addr && dma_as; |
| |
| dev = qdev_new(TYPE_FW_CFG_MEM); |
| qdev_prop_set_uint32(dev, "data_width", data_width); |
| if (!dma_requested) { |
| qdev_prop_set_bit(dev, "dma_enabled", false); |
| } |
| |
| object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG, |
| OBJECT(dev)); |
| |
| sbd = SYS_BUS_DEVICE(dev); |
| sysbus_realize_and_unref(sbd, &error_fatal); |
| sysbus_mmio_map(sbd, 0, ctl_addr); |
| sysbus_mmio_map(sbd, 1, data_addr); |
| |
| s = FW_CFG(dev); |
| |
| if (s->dma_enabled) { |
| s->dma_as = dma_as; |
| s->dma_addr = 0; |
| sysbus_mmio_map(sbd, 2, dma_addr); |
| } |
| |
| return s; |
| } |
| |
| FWCfgState *fw_cfg_init_mem(hwaddr ctl_addr, hwaddr data_addr) |
| { |
| return fw_cfg_init_mem_wide(ctl_addr, data_addr, |
| fw_cfg_data_mem_ops.valid.max_access_size, |
| 0, NULL); |
| } |
| |
| |
| FWCfgState *fw_cfg_find(void) |
| { |
| /* Returns NULL unless there is exactly one fw_cfg device */ |
| return FW_CFG(object_resolve_path_type("", TYPE_FW_CFG, NULL)); |
| } |
| |
| |
| static void fw_cfg_class_init(ObjectClass *klass, void *data) |
| { |
| DeviceClass *dc = DEVICE_CLASS(klass); |
| |
| dc->reset = fw_cfg_reset; |
| dc->vmsd = &vmstate_fw_cfg; |
| |
| device_class_set_props(dc, fw_cfg_properties); |
| } |
| |
| static const TypeInfo fw_cfg_info = { |
| .name = TYPE_FW_CFG, |
| .parent = TYPE_SYS_BUS_DEVICE, |
| .abstract = true, |
| .instance_size = sizeof(FWCfgState), |
| .class_init = fw_cfg_class_init, |
| }; |
| |
| static void fw_cfg_file_slots_allocate(FWCfgState *s, Error **errp) |
| { |
| uint16_t file_slots_max; |
| |
| if (fw_cfg_file_slots(s) < FW_CFG_FILE_SLOTS_MIN) { |
| error_setg(errp, "\"file_slots\" must be at least 0x%x", |
| FW_CFG_FILE_SLOTS_MIN); |
| return; |
| } |
| |
| /* (UINT16_MAX & FW_CFG_ENTRY_MASK) is the highest inclusive selector value |
| * that we permit. The actual (exclusive) value coming from the |
| * configuration is (FW_CFG_FILE_FIRST + fw_cfg_file_slots(s)). */ |
| file_slots_max = (UINT16_MAX & FW_CFG_ENTRY_MASK) - FW_CFG_FILE_FIRST + 1; |
| if (fw_cfg_file_slots(s) > file_slots_max) { |
| error_setg(errp, "\"file_slots\" must not exceed 0x%" PRIx16, |
| file_slots_max); |
| return; |
| } |
| |
| s->entries[0] = g_new0(FWCfgEntry, fw_cfg_max_entry(s)); |
| s->entries[1] = g_new0(FWCfgEntry, fw_cfg_max_entry(s)); |
| s->entry_order = g_new0(int, fw_cfg_max_entry(s)); |
| } |
| |
| static Property fw_cfg_io_properties[] = { |
| DEFINE_PROP_BOOL("dma_enabled", FWCfgIoState, parent_obj.dma_enabled, |
| true), |
| DEFINE_PROP_UINT16("x-file-slots", FWCfgIoState, parent_obj.file_slots, |
| FW_CFG_FILE_SLOTS_DFLT), |
| DEFINE_PROP_END_OF_LIST(), |
| }; |
| |
| static void fw_cfg_io_realize(DeviceState *dev, Error **errp) |
| { |
| ERRP_GUARD(); |
| FWCfgIoState *s = FW_CFG_IO(dev); |
| |
| fw_cfg_file_slots_allocate(FW_CFG(s), errp); |
| if (*errp) { |
| return; |
| } |
| |
| /* when using port i/o, the 8-bit data register ALWAYS overlaps |
| * with half of the 16-bit control register. Hence, the total size |
| * of the i/o region used is FW_CFG_CTL_SIZE */ |
| memory_region_init_io(&s->comb_iomem, OBJECT(s), &fw_cfg_comb_mem_ops, |
| FW_CFG(s), "fwcfg", FW_CFG_CTL_SIZE); |
| |
| if (FW_CFG(s)->dma_enabled) { |
| memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s), |
| &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma", |
| sizeof(dma_addr_t)); |
| } |
| |
| fw_cfg_common_realize(dev, errp); |
| } |
| |
| static void fw_cfg_io_class_init(ObjectClass *klass, void *data) |
| { |
| DeviceClass *dc = DEVICE_CLASS(klass); |
| |
| dc->realize = fw_cfg_io_realize; |
| device_class_set_props(dc, fw_cfg_io_properties); |
| } |
| |
| static const TypeInfo fw_cfg_io_info = { |
| .name = TYPE_FW_CFG_IO, |
| .parent = TYPE_FW_CFG, |
| .instance_size = sizeof(FWCfgIoState), |
| .class_init = fw_cfg_io_class_init, |
| }; |
| |
| |
| static Property fw_cfg_mem_properties[] = { |
| DEFINE_PROP_UINT32("data_width", FWCfgMemState, data_width, -1), |
| DEFINE_PROP_BOOL("dma_enabled", FWCfgMemState, parent_obj.dma_enabled, |
| true), |
| DEFINE_PROP_UINT16("x-file-slots", FWCfgMemState, parent_obj.file_slots, |
| FW_CFG_FILE_SLOTS_DFLT), |
| DEFINE_PROP_END_OF_LIST(), |
| }; |
| |
| static void fw_cfg_mem_realize(DeviceState *dev, Error **errp) |
| { |
| ERRP_GUARD(); |
| FWCfgMemState *s = FW_CFG_MEM(dev); |
| SysBusDevice *sbd = SYS_BUS_DEVICE(dev); |
| const MemoryRegionOps *data_ops = &fw_cfg_data_mem_ops; |
| |
| fw_cfg_file_slots_allocate(FW_CFG(s), errp); |
| if (*errp) { |
| return; |
| } |
| |
| memory_region_init_io(&s->ctl_iomem, OBJECT(s), &fw_cfg_ctl_mem_ops, |
| FW_CFG(s), "fwcfg.ctl", FW_CFG_CTL_SIZE); |
| sysbus_init_mmio(sbd, &s->ctl_iomem); |
| |
| if (s->data_width > data_ops->valid.max_access_size) { |
| s->wide_data_ops = *data_ops; |
| |
| s->wide_data_ops.valid.max_access_size = s->data_width; |
| s->wide_data_ops.impl.max_access_size = s->data_width; |
| data_ops = &s->wide_data_ops; |
| } |
| memory_region_init_io(&s->data_iomem, OBJECT(s), data_ops, FW_CFG(s), |
| "fwcfg.data", data_ops->valid.max_access_size); |
| sysbus_init_mmio(sbd, &s->data_iomem); |
| |
| if (FW_CFG(s)->dma_enabled) { |
| memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s), |
| &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma", |
| sizeof(dma_addr_t)); |
| sysbus_init_mmio(sbd, &FW_CFG(s)->dma_iomem); |
| } |
| |
| fw_cfg_common_realize(dev, errp); |
| } |
| |
| static void fw_cfg_mem_class_init(ObjectClass *klass, void *data) |
| { |
| DeviceClass *dc = DEVICE_CLASS(klass); |
| |
| dc->realize = fw_cfg_mem_realize; |
| device_class_set_props(dc, fw_cfg_mem_properties); |
| } |
| |
| static const TypeInfo fw_cfg_mem_info = { |
| .name = TYPE_FW_CFG_MEM, |
| .parent = TYPE_FW_CFG, |
| .instance_size = sizeof(FWCfgMemState), |
| .class_init = fw_cfg_mem_class_init, |
| }; |
| |
| static void fw_cfg_register_types(void) |
| { |
| type_register_static(&fw_cfg_info); |
| type_register_static(&fw_cfg_io_info); |
| type_register_static(&fw_cfg_mem_info); |
| } |
| |
| type_init(fw_cfg_register_types) |