| /* |
| * QEMU 8253/8254 interval timer emulation |
| * |
| * Copyright (c) 2003-2004 Fabrice Bellard |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| #include "vl.h" |
| |
| //#define DEBUG_PIT |
| |
| #define RW_STATE_LSB 1 |
| #define RW_STATE_MSB 2 |
| #define RW_STATE_WORD0 3 |
| #define RW_STATE_WORD1 4 |
| |
| typedef struct PITChannelState { |
| int count; /* can be 65536 */ |
| uint16_t latched_count; |
| uint8_t count_latched; |
| uint8_t status_latched; |
| uint8_t status; |
| uint8_t read_state; |
| uint8_t write_state; |
| uint8_t write_latch; |
| uint8_t rw_mode; |
| uint8_t mode; |
| uint8_t bcd; /* not supported */ |
| uint8_t gate; /* timer start */ |
| int64_t count_load_time; |
| /* irq handling */ |
| int64_t next_transition_time; |
| QEMUTimer *irq_timer; |
| qemu_irq irq; |
| } PITChannelState; |
| |
| struct PITState { |
| PITChannelState channels[3]; |
| }; |
| |
| static PITState pit_state; |
| |
| static void pit_irq_timer_update(PITChannelState *s, int64_t current_time); |
| |
| static int pit_get_count(PITChannelState *s) |
| { |
| uint64_t d; |
| int counter; |
| |
| d = muldiv64(qemu_get_clock(vm_clock) - s->count_load_time, PIT_FREQ, ticks_per_sec); |
| switch(s->mode) { |
| case 0: |
| case 1: |
| case 4: |
| case 5: |
| counter = (s->count - d) & 0xffff; |
| break; |
| case 3: |
| /* XXX: may be incorrect for odd counts */ |
| counter = s->count - ((2 * d) % s->count); |
| break; |
| default: |
| counter = s->count - (d % s->count); |
| break; |
| } |
| return counter; |
| } |
| |
| /* get pit output bit */ |
| static int pit_get_out1(PITChannelState *s, int64_t current_time) |
| { |
| uint64_t d; |
| int out; |
| |
| d = muldiv64(current_time - s->count_load_time, PIT_FREQ, ticks_per_sec); |
| switch(s->mode) { |
| default: |
| case 0: |
| out = (d >= s->count); |
| break; |
| case 1: |
| out = (d < s->count); |
| break; |
| case 2: |
| if ((d % s->count) == 0 && d != 0) |
| out = 1; |
| else |
| out = 0; |
| break; |
| case 3: |
| out = (d % s->count) < ((s->count + 1) >> 1); |
| break; |
| case 4: |
| case 5: |
| out = (d == s->count); |
| break; |
| } |
| return out; |
| } |
| |
| int pit_get_out(PITState *pit, int channel, int64_t current_time) |
| { |
| PITChannelState *s = &pit->channels[channel]; |
| return pit_get_out1(s, current_time); |
| } |
| |
| /* return -1 if no transition will occur. */ |
| static int64_t pit_get_next_transition_time(PITChannelState *s, |
| int64_t current_time) |
| { |
| uint64_t d, next_time, base; |
| int period2; |
| |
| d = muldiv64(current_time - s->count_load_time, PIT_FREQ, ticks_per_sec); |
| switch(s->mode) { |
| default: |
| case 0: |
| case 1: |
| if (d < s->count) |
| next_time = s->count; |
| else |
| return -1; |
| break; |
| case 2: |
| base = (d / s->count) * s->count; |
| if ((d - base) == 0 && d != 0) |
| next_time = base + s->count; |
| else |
| next_time = base + s->count + 1; |
| break; |
| case 3: |
| base = (d / s->count) * s->count; |
| period2 = ((s->count + 1) >> 1); |
| if ((d - base) < period2) |
| next_time = base + period2; |
| else |
| next_time = base + s->count; |
| break; |
| case 4: |
| case 5: |
| if (d < s->count) |
| next_time = s->count; |
| else if (d == s->count) |
| next_time = s->count + 1; |
| else |
| return -1; |
| break; |
| } |
| /* convert to timer units */ |
| next_time = s->count_load_time + muldiv64(next_time, ticks_per_sec, PIT_FREQ); |
| /* fix potential rounding problems */ |
| /* XXX: better solution: use a clock at PIT_FREQ Hz */ |
| if (next_time <= current_time) |
| next_time = current_time + 1; |
| return next_time; |
| } |
| |
| /* val must be 0 or 1 */ |
| void pit_set_gate(PITState *pit, int channel, int val) |
| { |
| PITChannelState *s = &pit->channels[channel]; |
| |
| switch(s->mode) { |
| default: |
| case 0: |
| case 4: |
| /* XXX: just disable/enable counting */ |
| break; |
| case 1: |
| case 5: |
| if (s->gate < val) { |
| /* restart counting on rising edge */ |
| s->count_load_time = qemu_get_clock(vm_clock); |
| pit_irq_timer_update(s, s->count_load_time); |
| } |
| break; |
| case 2: |
| case 3: |
| if (s->gate < val) { |
| /* restart counting on rising edge */ |
| s->count_load_time = qemu_get_clock(vm_clock); |
| pit_irq_timer_update(s, s->count_load_time); |
| } |
| /* XXX: disable/enable counting */ |
| break; |
| } |
| s->gate = val; |
| } |
| |
| int pit_get_gate(PITState *pit, int channel) |
| { |
| PITChannelState *s = &pit->channels[channel]; |
| return s->gate; |
| } |
| |
| int pit_get_initial_count(PITState *pit, int channel) |
| { |
| PITChannelState *s = &pit->channels[channel]; |
| return s->count; |
| } |
| |
| int pit_get_mode(PITState *pit, int channel) |
| { |
| PITChannelState *s = &pit->channels[channel]; |
| return s->mode; |
| } |
| |
| static inline void pit_load_count(PITChannelState *s, int val) |
| { |
| if (val == 0) |
| val = 0x10000; |
| s->count_load_time = qemu_get_clock(vm_clock); |
| s->count = val; |
| pit_irq_timer_update(s, s->count_load_time); |
| } |
| |
| /* if already latched, do not latch again */ |
| static void pit_latch_count(PITChannelState *s) |
| { |
| if (!s->count_latched) { |
| s->latched_count = pit_get_count(s); |
| s->count_latched = s->rw_mode; |
| } |
| } |
| |
| static void pit_ioport_write(void *opaque, uint32_t addr, uint32_t val) |
| { |
| PITState *pit = opaque; |
| int channel, access; |
| PITChannelState *s; |
| |
| addr &= 3; |
| if (addr == 3) { |
| channel = val >> 6; |
| if (channel == 3) { |
| /* read back command */ |
| for(channel = 0; channel < 3; channel++) { |
| s = &pit->channels[channel]; |
| if (val & (2 << channel)) { |
| if (!(val & 0x20)) { |
| pit_latch_count(s); |
| } |
| if (!(val & 0x10) && !s->status_latched) { |
| /* status latch */ |
| /* XXX: add BCD and null count */ |
| s->status = (pit_get_out1(s, qemu_get_clock(vm_clock)) << 7) | |
| (s->rw_mode << 4) | |
| (s->mode << 1) | |
| s->bcd; |
| s->status_latched = 1; |
| } |
| } |
| } |
| } else { |
| s = &pit->channels[channel]; |
| access = (val >> 4) & 3; |
| if (access == 0) { |
| pit_latch_count(s); |
| } else { |
| s->rw_mode = access; |
| s->read_state = access; |
| s->write_state = access; |
| |
| s->mode = (val >> 1) & 7; |
| s->bcd = val & 1; |
| /* XXX: update irq timer ? */ |
| } |
| } |
| } else { |
| s = &pit->channels[addr]; |
| switch(s->write_state) { |
| default: |
| case RW_STATE_LSB: |
| pit_load_count(s, val); |
| break; |
| case RW_STATE_MSB: |
| pit_load_count(s, val << 8); |
| break; |
| case RW_STATE_WORD0: |
| s->write_latch = val; |
| s->write_state = RW_STATE_WORD1; |
| break; |
| case RW_STATE_WORD1: |
| pit_load_count(s, s->write_latch | (val << 8)); |
| s->write_state = RW_STATE_WORD0; |
| break; |
| } |
| } |
| } |
| |
| static uint32_t pit_ioport_read(void *opaque, uint32_t addr) |
| { |
| PITState *pit = opaque; |
| int ret, count; |
| PITChannelState *s; |
| |
| addr &= 3; |
| s = &pit->channels[addr]; |
| if (s->status_latched) { |
| s->status_latched = 0; |
| ret = s->status; |
| } else if (s->count_latched) { |
| switch(s->count_latched) { |
| default: |
| case RW_STATE_LSB: |
| ret = s->latched_count & 0xff; |
| s->count_latched = 0; |
| break; |
| case RW_STATE_MSB: |
| ret = s->latched_count >> 8; |
| s->count_latched = 0; |
| break; |
| case RW_STATE_WORD0: |
| ret = s->latched_count & 0xff; |
| s->count_latched = RW_STATE_MSB; |
| break; |
| } |
| } else { |
| switch(s->read_state) { |
| default: |
| case RW_STATE_LSB: |
| count = pit_get_count(s); |
| ret = count & 0xff; |
| break; |
| case RW_STATE_MSB: |
| count = pit_get_count(s); |
| ret = (count >> 8) & 0xff; |
| break; |
| case RW_STATE_WORD0: |
| count = pit_get_count(s); |
| ret = count & 0xff; |
| s->read_state = RW_STATE_WORD1; |
| break; |
| case RW_STATE_WORD1: |
| count = pit_get_count(s); |
| ret = (count >> 8) & 0xff; |
| s->read_state = RW_STATE_WORD0; |
| break; |
| } |
| } |
| return ret; |
| } |
| |
| static void pit_irq_timer_update(PITChannelState *s, int64_t current_time) |
| { |
| int64_t expire_time; |
| int irq_level; |
| |
| if (!s->irq_timer) |
| return; |
| expire_time = pit_get_next_transition_time(s, current_time); |
| irq_level = pit_get_out1(s, current_time); |
| qemu_set_irq(s->irq, irq_level); |
| #ifdef DEBUG_PIT |
| printf("irq_level=%d next_delay=%f\n", |
| irq_level, |
| (double)(expire_time - current_time) / ticks_per_sec); |
| #endif |
| s->next_transition_time = expire_time; |
| if (expire_time != -1) |
| qemu_mod_timer(s->irq_timer, expire_time); |
| else |
| qemu_del_timer(s->irq_timer); |
| } |
| |
| static void pit_irq_timer(void *opaque) |
| { |
| PITChannelState *s = opaque; |
| |
| pit_irq_timer_update(s, s->next_transition_time); |
| } |
| |
| static void pit_save(QEMUFile *f, void *opaque) |
| { |
| PITState *pit = opaque; |
| PITChannelState *s; |
| int i; |
| |
| for(i = 0; i < 3; i++) { |
| s = &pit->channels[i]; |
| qemu_put_be32s(f, &s->count); |
| qemu_put_be16s(f, &s->latched_count); |
| qemu_put_8s(f, &s->count_latched); |
| qemu_put_8s(f, &s->status_latched); |
| qemu_put_8s(f, &s->status); |
| qemu_put_8s(f, &s->read_state); |
| qemu_put_8s(f, &s->write_state); |
| qemu_put_8s(f, &s->write_latch); |
| qemu_put_8s(f, &s->rw_mode); |
| qemu_put_8s(f, &s->mode); |
| qemu_put_8s(f, &s->bcd); |
| qemu_put_8s(f, &s->gate); |
| qemu_put_be64s(f, &s->count_load_time); |
| if (s->irq_timer) { |
| qemu_put_be64s(f, &s->next_transition_time); |
| qemu_put_timer(f, s->irq_timer); |
| } |
| } |
| } |
| |
| static int pit_load(QEMUFile *f, void *opaque, int version_id) |
| { |
| PITState *pit = opaque; |
| PITChannelState *s; |
| int i; |
| |
| if (version_id != 1) |
| return -EINVAL; |
| |
| for(i = 0; i < 3; i++) { |
| s = &pit->channels[i]; |
| qemu_get_be32s(f, &s->count); |
| qemu_get_be16s(f, &s->latched_count); |
| qemu_get_8s(f, &s->count_latched); |
| qemu_get_8s(f, &s->status_latched); |
| qemu_get_8s(f, &s->status); |
| qemu_get_8s(f, &s->read_state); |
| qemu_get_8s(f, &s->write_state); |
| qemu_get_8s(f, &s->write_latch); |
| qemu_get_8s(f, &s->rw_mode); |
| qemu_get_8s(f, &s->mode); |
| qemu_get_8s(f, &s->bcd); |
| qemu_get_8s(f, &s->gate); |
| qemu_get_be64s(f, &s->count_load_time); |
| if (s->irq_timer) { |
| qemu_get_be64s(f, &s->next_transition_time); |
| qemu_get_timer(f, s->irq_timer); |
| } |
| } |
| return 0; |
| } |
| |
| static void pit_reset(void *opaque) |
| { |
| PITState *pit = opaque; |
| PITChannelState *s; |
| int i; |
| |
| for(i = 0;i < 3; i++) { |
| s = &pit->channels[i]; |
| s->mode = 3; |
| s->gate = (i != 2); |
| pit_load_count(s, 0); |
| } |
| } |
| |
| PITState *pit_init(int base, qemu_irq irq) |
| { |
| PITState *pit = &pit_state; |
| PITChannelState *s; |
| |
| s = &pit->channels[0]; |
| /* the timer 0 is connected to an IRQ */ |
| s->irq_timer = qemu_new_timer(vm_clock, pit_irq_timer, s); |
| s->irq = irq; |
| |
| register_savevm("i8254", base, 1, pit_save, pit_load, pit); |
| |
| qemu_register_reset(pit_reset, pit); |
| register_ioport_write(base, 4, 1, pit_ioport_write, pit); |
| register_ioport_read(base, 3, 1, pit_ioport_read, pit); |
| |
| pit_reset(pit); |
| |
| return pit; |
| } |