| /* |
| * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator |
| * |
| * Copyright (c) 2004-2007 Fabrice Bellard |
| * Copyright (c) 2007 Jocelyn Mayer |
| * Copyright (c) 2010 David Gibson, IBM Corporation. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| * |
| */ |
| #include "sysemu/sysemu.h" |
| #include "sysemu/numa.h" |
| #include "hw/hw.h" |
| #include "hw/fw-path-provider.h" |
| #include "elf.h" |
| #include "net/net.h" |
| #include "sysemu/device_tree.h" |
| #include "sysemu/block-backend.h" |
| #include "sysemu/cpus.h" |
| #include "sysemu/kvm.h" |
| #include "sysemu/device_tree.h" |
| #include "kvm_ppc.h" |
| #include "migration/migration.h" |
| #include "mmu-hash64.h" |
| #include "qom/cpu.h" |
| |
| #include "hw/boards.h" |
| #include "hw/ppc/ppc.h" |
| #include "hw/loader.h" |
| |
| #include "hw/ppc/spapr.h" |
| #include "hw/ppc/spapr_vio.h" |
| #include "hw/pci-host/spapr.h" |
| #include "hw/ppc/xics.h" |
| #include "hw/pci/msi.h" |
| |
| #include "hw/pci/pci.h" |
| #include "hw/scsi/scsi.h" |
| #include "hw/virtio/virtio-scsi.h" |
| |
| #include "exec/address-spaces.h" |
| #include "hw/usb.h" |
| #include "qemu/config-file.h" |
| #include "qemu/error-report.h" |
| #include "trace.h" |
| #include "hw/nmi.h" |
| |
| #include "hw/compat.h" |
| #include "qemu-common.h" |
| |
| #include <libfdt.h> |
| |
| /* SLOF memory layout: |
| * |
| * SLOF raw image loaded at 0, copies its romfs right below the flat |
| * device-tree, then position SLOF itself 31M below that |
| * |
| * So we set FW_OVERHEAD to 40MB which should account for all of that |
| * and more |
| * |
| * We load our kernel at 4M, leaving space for SLOF initial image |
| */ |
| #define FDT_MAX_SIZE 0x100000 |
| #define RTAS_MAX_SIZE 0x10000 |
| #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */ |
| #define FW_MAX_SIZE 0x400000 |
| #define FW_FILE_NAME "slof.bin" |
| #define FW_OVERHEAD 0x2800000 |
| #define KERNEL_LOAD_ADDR FW_MAX_SIZE |
| |
| #define MIN_RMA_SLOF 128UL |
| |
| #define TIMEBASE_FREQ 512000000ULL |
| |
| #define PHANDLE_XICP 0x00001111 |
| |
| #define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift)) |
| |
| static XICSState *try_create_xics(const char *type, int nr_servers, |
| int nr_irqs, Error **errp) |
| { |
| Error *err = NULL; |
| DeviceState *dev; |
| |
| dev = qdev_create(NULL, type); |
| qdev_prop_set_uint32(dev, "nr_servers", nr_servers); |
| qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs); |
| object_property_set_bool(OBJECT(dev), true, "realized", &err); |
| if (err) { |
| error_propagate(errp, err); |
| object_unparent(OBJECT(dev)); |
| return NULL; |
| } |
| return XICS_COMMON(dev); |
| } |
| |
| static XICSState *xics_system_init(MachineState *machine, |
| int nr_servers, int nr_irqs) |
| { |
| XICSState *icp = NULL; |
| |
| if (kvm_enabled()) { |
| Error *err = NULL; |
| |
| if (machine_kernel_irqchip_allowed(machine)) { |
| icp = try_create_xics(TYPE_KVM_XICS, nr_servers, nr_irqs, &err); |
| } |
| if (machine_kernel_irqchip_required(machine) && !icp) { |
| error_reportf_err(err, |
| "kernel_irqchip requested but unavailable: "); |
| } else { |
| error_free(err); |
| } |
| } |
| |
| if (!icp) { |
| icp = try_create_xics(TYPE_XICS, nr_servers, nr_irqs, &error_abort); |
| } |
| |
| return icp; |
| } |
| |
| static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu, |
| int smt_threads) |
| { |
| int i, ret = 0; |
| uint32_t servers_prop[smt_threads]; |
| uint32_t gservers_prop[smt_threads * 2]; |
| int index = ppc_get_vcpu_dt_id(cpu); |
| |
| if (cpu->cpu_version) { |
| ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->cpu_version); |
| if (ret < 0) { |
| return ret; |
| } |
| } |
| |
| /* Build interrupt servers and gservers properties */ |
| for (i = 0; i < smt_threads; i++) { |
| servers_prop[i] = cpu_to_be32(index + i); |
| /* Hack, direct the group queues back to cpu 0 */ |
| gservers_prop[i*2] = cpu_to_be32(index + i); |
| gservers_prop[i*2 + 1] = 0; |
| } |
| ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", |
| servers_prop, sizeof(servers_prop)); |
| if (ret < 0) { |
| return ret; |
| } |
| ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s", |
| gservers_prop, sizeof(gservers_prop)); |
| |
| return ret; |
| } |
| |
| static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, CPUState *cs) |
| { |
| int ret = 0; |
| PowerPCCPU *cpu = POWERPC_CPU(cs); |
| int index = ppc_get_vcpu_dt_id(cpu); |
| uint32_t associativity[] = {cpu_to_be32(0x5), |
| cpu_to_be32(0x0), |
| cpu_to_be32(0x0), |
| cpu_to_be32(0x0), |
| cpu_to_be32(cs->numa_node), |
| cpu_to_be32(index)}; |
| |
| /* Advertise NUMA via ibm,associativity */ |
| if (nb_numa_nodes > 1) { |
| ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity, |
| sizeof(associativity)); |
| } |
| |
| return ret; |
| } |
| |
| static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr) |
| { |
| int ret = 0, offset, cpus_offset; |
| CPUState *cs; |
| char cpu_model[32]; |
| int smt = kvmppc_smt_threads(); |
| uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; |
| |
| CPU_FOREACH(cs) { |
| PowerPCCPU *cpu = POWERPC_CPU(cs); |
| DeviceClass *dc = DEVICE_GET_CLASS(cs); |
| int index = ppc_get_vcpu_dt_id(cpu); |
| |
| if ((index % smt) != 0) { |
| continue; |
| } |
| |
| snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index); |
| |
| cpus_offset = fdt_path_offset(fdt, "/cpus"); |
| if (cpus_offset < 0) { |
| cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"), |
| "cpus"); |
| if (cpus_offset < 0) { |
| return cpus_offset; |
| } |
| } |
| offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model); |
| if (offset < 0) { |
| offset = fdt_add_subnode(fdt, cpus_offset, cpu_model); |
| if (offset < 0) { |
| return offset; |
| } |
| } |
| |
| ret = fdt_setprop(fdt, offset, "ibm,pft-size", |
| pft_size_prop, sizeof(pft_size_prop)); |
| if (ret < 0) { |
| return ret; |
| } |
| |
| ret = spapr_fixup_cpu_numa_dt(fdt, offset, cs); |
| if (ret < 0) { |
| return ret; |
| } |
| |
| ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, |
| ppc_get_compat_smt_threads(cpu)); |
| if (ret < 0) { |
| return ret; |
| } |
| } |
| return ret; |
| } |
| |
| |
| static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop, |
| size_t maxsize) |
| { |
| size_t maxcells = maxsize / sizeof(uint32_t); |
| int i, j, count; |
| uint32_t *p = prop; |
| |
| for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) { |
| struct ppc_one_seg_page_size *sps = &env->sps.sps[i]; |
| |
| if (!sps->page_shift) { |
| break; |
| } |
| for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) { |
| if (sps->enc[count].page_shift == 0) { |
| break; |
| } |
| } |
| if ((p - prop) >= (maxcells - 3 - count * 2)) { |
| break; |
| } |
| *(p++) = cpu_to_be32(sps->page_shift); |
| *(p++) = cpu_to_be32(sps->slb_enc); |
| *(p++) = cpu_to_be32(count); |
| for (j = 0; j < count; j++) { |
| *(p++) = cpu_to_be32(sps->enc[j].page_shift); |
| *(p++) = cpu_to_be32(sps->enc[j].pte_enc); |
| } |
| } |
| |
| return (p - prop) * sizeof(uint32_t); |
| } |
| |
| static hwaddr spapr_node0_size(void) |
| { |
| MachineState *machine = MACHINE(qdev_get_machine()); |
| |
| if (nb_numa_nodes) { |
| int i; |
| for (i = 0; i < nb_numa_nodes; ++i) { |
| if (numa_info[i].node_mem) { |
| return MIN(pow2floor(numa_info[i].node_mem), |
| machine->ram_size); |
| } |
| } |
| } |
| return machine->ram_size; |
| } |
| |
| #define _FDT(exp) \ |
| do { \ |
| int ret = (exp); \ |
| if (ret < 0) { \ |
| fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \ |
| #exp, fdt_strerror(ret)); \ |
| exit(1); \ |
| } \ |
| } while (0) |
| |
| static void add_str(GString *s, const gchar *s1) |
| { |
| g_string_append_len(s, s1, strlen(s1) + 1); |
| } |
| |
| static void *spapr_create_fdt_skel(hwaddr initrd_base, |
| hwaddr initrd_size, |
| hwaddr kernel_size, |
| bool little_endian, |
| const char *kernel_cmdline, |
| uint32_t epow_irq) |
| { |
| void *fdt; |
| uint32_t start_prop = cpu_to_be32(initrd_base); |
| uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size); |
| GString *hypertas = g_string_sized_new(256); |
| GString *qemu_hypertas = g_string_sized_new(256); |
| uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)}; |
| uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(max_cpus)}; |
| unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80}; |
| char *buf; |
| |
| add_str(hypertas, "hcall-pft"); |
| add_str(hypertas, "hcall-term"); |
| add_str(hypertas, "hcall-dabr"); |
| add_str(hypertas, "hcall-interrupt"); |
| add_str(hypertas, "hcall-tce"); |
| add_str(hypertas, "hcall-vio"); |
| add_str(hypertas, "hcall-splpar"); |
| add_str(hypertas, "hcall-bulk"); |
| add_str(hypertas, "hcall-set-mode"); |
| add_str(qemu_hypertas, "hcall-memop1"); |
| |
| fdt = g_malloc0(FDT_MAX_SIZE); |
| _FDT((fdt_create(fdt, FDT_MAX_SIZE))); |
| |
| if (kernel_size) { |
| _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size))); |
| } |
| if (initrd_size) { |
| _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size))); |
| } |
| _FDT((fdt_finish_reservemap(fdt))); |
| |
| /* Root node */ |
| _FDT((fdt_begin_node(fdt, ""))); |
| _FDT((fdt_property_string(fdt, "device_type", "chrp"))); |
| _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)"))); |
| _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries"))); |
| |
| /* |
| * Add info to guest to indentify which host is it being run on |
| * and what is the uuid of the guest |
| */ |
| if (kvmppc_get_host_model(&buf)) { |
| _FDT((fdt_property_string(fdt, "host-model", buf))); |
| g_free(buf); |
| } |
| if (kvmppc_get_host_serial(&buf)) { |
| _FDT((fdt_property_string(fdt, "host-serial", buf))); |
| g_free(buf); |
| } |
| |
| buf = g_strdup_printf(UUID_FMT, qemu_uuid[0], qemu_uuid[1], |
| qemu_uuid[2], qemu_uuid[3], qemu_uuid[4], |
| qemu_uuid[5], qemu_uuid[6], qemu_uuid[7], |
| qemu_uuid[8], qemu_uuid[9], qemu_uuid[10], |
| qemu_uuid[11], qemu_uuid[12], qemu_uuid[13], |
| qemu_uuid[14], qemu_uuid[15]); |
| |
| _FDT((fdt_property_string(fdt, "vm,uuid", buf))); |
| if (qemu_uuid_set) { |
| _FDT((fdt_property_string(fdt, "system-id", buf))); |
| } |
| g_free(buf); |
| |
| if (qemu_get_vm_name()) { |
| _FDT((fdt_property_string(fdt, "ibm,partition-name", |
| qemu_get_vm_name()))); |
| } |
| |
| _FDT((fdt_property_cell(fdt, "#address-cells", 0x2))); |
| _FDT((fdt_property_cell(fdt, "#size-cells", 0x2))); |
| |
| /* /chosen */ |
| _FDT((fdt_begin_node(fdt, "chosen"))); |
| |
| /* Set Form1_affinity */ |
| _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5)))); |
| |
| _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline))); |
| _FDT((fdt_property(fdt, "linux,initrd-start", |
| &start_prop, sizeof(start_prop)))); |
| _FDT((fdt_property(fdt, "linux,initrd-end", |
| &end_prop, sizeof(end_prop)))); |
| if (kernel_size) { |
| uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR), |
| cpu_to_be64(kernel_size) }; |
| |
| _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop)))); |
| if (little_endian) { |
| _FDT((fdt_property(fdt, "qemu,boot-kernel-le", NULL, 0))); |
| } |
| } |
| if (boot_menu) { |
| _FDT((fdt_property_cell(fdt, "qemu,boot-menu", boot_menu))); |
| } |
| _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width))); |
| _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height))); |
| _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth))); |
| |
| _FDT((fdt_end_node(fdt))); |
| |
| /* RTAS */ |
| _FDT((fdt_begin_node(fdt, "rtas"))); |
| |
| if (!kvm_enabled() || kvmppc_spapr_use_multitce()) { |
| add_str(hypertas, "hcall-multi-tce"); |
| } |
| _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas->str, |
| hypertas->len))); |
| g_string_free(hypertas, TRUE); |
| _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas->str, |
| qemu_hypertas->len))); |
| g_string_free(qemu_hypertas, TRUE); |
| |
| _FDT((fdt_property(fdt, "ibm,associativity-reference-points", |
| refpoints, sizeof(refpoints)))); |
| |
| _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX))); |
| _FDT((fdt_property_cell(fdt, "rtas-event-scan-rate", |
| RTAS_EVENT_SCAN_RATE))); |
| |
| if (msi_supported) { |
| _FDT((fdt_property(fdt, "ibm,change-msix-capable", NULL, 0))); |
| } |
| |
| /* |
| * According to PAPR, rtas ibm,os-term does not guarantee a return |
| * back to the guest cpu. |
| * |
| * While an additional ibm,extended-os-term property indicates that |
| * rtas call return will always occur. Set this property. |
| */ |
| _FDT((fdt_property(fdt, "ibm,extended-os-term", NULL, 0))); |
| |
| _FDT((fdt_end_node(fdt))); |
| |
| /* interrupt controller */ |
| _FDT((fdt_begin_node(fdt, "interrupt-controller"))); |
| |
| _FDT((fdt_property_string(fdt, "device_type", |
| "PowerPC-External-Interrupt-Presentation"))); |
| _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp"))); |
| _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0))); |
| _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges", |
| interrupt_server_ranges_prop, |
| sizeof(interrupt_server_ranges_prop)))); |
| _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2))); |
| _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP))); |
| _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP))); |
| |
| _FDT((fdt_end_node(fdt))); |
| |
| /* vdevice */ |
| _FDT((fdt_begin_node(fdt, "vdevice"))); |
| |
| _FDT((fdt_property_string(fdt, "device_type", "vdevice"))); |
| _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice"))); |
| _FDT((fdt_property_cell(fdt, "#address-cells", 0x1))); |
| _FDT((fdt_property_cell(fdt, "#size-cells", 0x0))); |
| _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2))); |
| _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0))); |
| |
| _FDT((fdt_end_node(fdt))); |
| |
| /* event-sources */ |
| spapr_events_fdt_skel(fdt, epow_irq); |
| |
| /* /hypervisor node */ |
| if (kvm_enabled()) { |
| uint8_t hypercall[16]; |
| |
| /* indicate KVM hypercall interface */ |
| _FDT((fdt_begin_node(fdt, "hypervisor"))); |
| _FDT((fdt_property_string(fdt, "compatible", "linux,kvm"))); |
| if (kvmppc_has_cap_fixup_hcalls()) { |
| /* |
| * Older KVM versions with older guest kernels were broken with the |
| * magic page, don't allow the guest to map it. |
| */ |
| kvmppc_get_hypercall(first_cpu->env_ptr, hypercall, |
| sizeof(hypercall)); |
| _FDT((fdt_property(fdt, "hcall-instructions", hypercall, |
| sizeof(hypercall)))); |
| } |
| _FDT((fdt_end_node(fdt))); |
| } |
| |
| _FDT((fdt_end_node(fdt))); /* close root node */ |
| _FDT((fdt_finish(fdt))); |
| |
| return fdt; |
| } |
| |
| static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start, |
| hwaddr size) |
| { |
| uint32_t associativity[] = { |
| cpu_to_be32(0x4), /* length */ |
| cpu_to_be32(0x0), cpu_to_be32(0x0), |
| cpu_to_be32(0x0), cpu_to_be32(nodeid) |
| }; |
| char mem_name[32]; |
| uint64_t mem_reg_property[2]; |
| int off; |
| |
| mem_reg_property[0] = cpu_to_be64(start); |
| mem_reg_property[1] = cpu_to_be64(size); |
| |
| sprintf(mem_name, "memory@" TARGET_FMT_lx, start); |
| off = fdt_add_subnode(fdt, 0, mem_name); |
| _FDT(off); |
| _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); |
| _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, |
| sizeof(mem_reg_property)))); |
| _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity, |
| sizeof(associativity)))); |
| return off; |
| } |
| |
| static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt) |
| { |
| MachineState *machine = MACHINE(spapr); |
| hwaddr mem_start, node_size; |
| int i, nb_nodes = nb_numa_nodes; |
| NodeInfo *nodes = numa_info; |
| NodeInfo ramnode; |
| |
| /* No NUMA nodes, assume there is just one node with whole RAM */ |
| if (!nb_numa_nodes) { |
| nb_nodes = 1; |
| ramnode.node_mem = machine->ram_size; |
| nodes = &ramnode; |
| } |
| |
| for (i = 0, mem_start = 0; i < nb_nodes; ++i) { |
| if (!nodes[i].node_mem) { |
| continue; |
| } |
| if (mem_start >= machine->ram_size) { |
| node_size = 0; |
| } else { |
| node_size = nodes[i].node_mem; |
| if (node_size > machine->ram_size - mem_start) { |
| node_size = machine->ram_size - mem_start; |
| } |
| } |
| if (!mem_start) { |
| /* ppc_spapr_init() checks for rma_size <= node0_size already */ |
| spapr_populate_memory_node(fdt, i, 0, spapr->rma_size); |
| mem_start += spapr->rma_size; |
| node_size -= spapr->rma_size; |
| } |
| for ( ; node_size; ) { |
| hwaddr sizetmp = pow2floor(node_size); |
| |
| /* mem_start != 0 here */ |
| if (ctzl(mem_start) < ctzl(sizetmp)) { |
| sizetmp = 1ULL << ctzl(mem_start); |
| } |
| |
| spapr_populate_memory_node(fdt, i, mem_start, sizetmp); |
| node_size -= sizetmp; |
| mem_start += sizetmp; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset, |
| sPAPRMachineState *spapr) |
| { |
| PowerPCCPU *cpu = POWERPC_CPU(cs); |
| CPUPPCState *env = &cpu->env; |
| PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); |
| int index = ppc_get_vcpu_dt_id(cpu); |
| uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), |
| 0xffffffff, 0xffffffff}; |
| uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ; |
| uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; |
| uint32_t page_sizes_prop[64]; |
| size_t page_sizes_prop_size; |
| uint32_t vcpus_per_socket = smp_threads * smp_cores; |
| uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; |
| |
| /* Note: we keep CI large pages off for now because a 64K capable guest |
| * provisioned with large pages might otherwise try to map a qemu |
| * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages |
| * even if that qemu runs on a 4k host. |
| * |
| * We can later add this bit back when we are confident this is not |
| * an issue (!HV KVM or 64K host) |
| */ |
| uint8_t pa_features_206[] = { 6, 0, |
| 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 }; |
| uint8_t pa_features_207[] = { 24, 0, |
| 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, |
| 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, |
| 0x80, 0x00, 0x80, 0x00, 0x80, 0x00 }; |
| uint8_t *pa_features; |
| size_t pa_size; |
| |
| _FDT((fdt_setprop_cell(fdt, offset, "reg", index))); |
| _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); |
| |
| _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); |
| _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", |
| env->dcache_line_size))); |
| _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", |
| env->dcache_line_size))); |
| _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", |
| env->icache_line_size))); |
| _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", |
| env->icache_line_size))); |
| |
| if (pcc->l1_dcache_size) { |
| _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", |
| pcc->l1_dcache_size))); |
| } else { |
| fprintf(stderr, "Warning: Unknown L1 dcache size for cpu\n"); |
| } |
| if (pcc->l1_icache_size) { |
| _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", |
| pcc->l1_icache_size))); |
| } else { |
| fprintf(stderr, "Warning: Unknown L1 icache size for cpu\n"); |
| } |
| |
| _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); |
| _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); |
| _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr))); |
| _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr))); |
| _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); |
| _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); |
| |
| if (env->spr_cb[SPR_PURR].oea_read) { |
| _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0))); |
| } |
| |
| if (env->mmu_model & POWERPC_MMU_1TSEG) { |
| _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", |
| segs, sizeof(segs)))); |
| } |
| |
| /* Advertise VMX/VSX (vector extensions) if available |
| * 0 / no property == no vector extensions |
| * 1 == VMX / Altivec available |
| * 2 == VSX available */ |
| if (env->insns_flags & PPC_ALTIVEC) { |
| uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1; |
| |
| _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx))); |
| } |
| |
| /* Advertise DFP (Decimal Floating Point) if available |
| * 0 / no property == no DFP |
| * 1 == DFP available */ |
| if (env->insns_flags2 & PPC2_DFP) { |
| _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); |
| } |
| |
| page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop, |
| sizeof(page_sizes_prop)); |
| if (page_sizes_prop_size) { |
| _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", |
| page_sizes_prop, page_sizes_prop_size))); |
| } |
| |
| /* Do the ibm,pa-features property, adjust it for ci-large-pages */ |
| if (env->mmu_model == POWERPC_MMU_2_06) { |
| pa_features = pa_features_206; |
| pa_size = sizeof(pa_features_206); |
| } else /* env->mmu_model == POWERPC_MMU_2_07 */ { |
| pa_features = pa_features_207; |
| pa_size = sizeof(pa_features_207); |
| } |
| if (env->ci_large_pages) { |
| pa_features[3] |= 0x20; |
| } |
| _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size))); |
| |
| _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", |
| cs->cpu_index / vcpus_per_socket))); |
| |
| _FDT((fdt_setprop(fdt, offset, "ibm,pft-size", |
| pft_size_prop, sizeof(pft_size_prop)))); |
| |
| _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cs)); |
| |
| _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, |
| ppc_get_compat_smt_threads(cpu))); |
| } |
| |
| static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr) |
| { |
| CPUState *cs; |
| int cpus_offset; |
| char *nodename; |
| int smt = kvmppc_smt_threads(); |
| |
| cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); |
| _FDT(cpus_offset); |
| _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); |
| _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); |
| |
| /* |
| * We walk the CPUs in reverse order to ensure that CPU DT nodes |
| * created by fdt_add_subnode() end up in the right order in FDT |
| * for the guest kernel the enumerate the CPUs correctly. |
| */ |
| CPU_FOREACH_REVERSE(cs) { |
| PowerPCCPU *cpu = POWERPC_CPU(cs); |
| int index = ppc_get_vcpu_dt_id(cpu); |
| DeviceClass *dc = DEVICE_GET_CLASS(cs); |
| int offset; |
| |
| if ((index % smt) != 0) { |
| continue; |
| } |
| |
| nodename = g_strdup_printf("%s@%x", dc->fw_name, index); |
| offset = fdt_add_subnode(fdt, cpus_offset, nodename); |
| g_free(nodename); |
| _FDT(offset); |
| spapr_populate_cpu_dt(cs, fdt, offset, spapr); |
| } |
| |
| } |
| |
| /* |
| * Adds ibm,dynamic-reconfiguration-memory node. |
| * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation |
| * of this device tree node. |
| */ |
| static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt) |
| { |
| MachineState *machine = MACHINE(spapr); |
| int ret, i, offset; |
| uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; |
| uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)}; |
| uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size; |
| uint32_t *int_buf, *cur_index, buf_len; |
| int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1; |
| |
| /* |
| * Allocate enough buffer size to fit in ibm,dynamic-memory |
| * or ibm,associativity-lookup-arrays |
| */ |
| buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2) |
| * sizeof(uint32_t); |
| cur_index = int_buf = g_malloc0(buf_len); |
| |
| offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory"); |
| |
| ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size, |
| sizeof(prop_lmb_size)); |
| if (ret < 0) { |
| goto out; |
| } |
| |
| ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff); |
| if (ret < 0) { |
| goto out; |
| } |
| |
| ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0); |
| if (ret < 0) { |
| goto out; |
| } |
| |
| /* ibm,dynamic-memory */ |
| int_buf[0] = cpu_to_be32(nr_lmbs); |
| cur_index++; |
| for (i = 0; i < nr_lmbs; i++) { |
| sPAPRDRConnector *drc; |
| sPAPRDRConnectorClass *drck; |
| uint64_t addr = i * lmb_size + spapr->hotplug_memory.base;; |
| uint32_t *dynamic_memory = cur_index; |
| |
| drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB, |
| addr/lmb_size); |
| g_assert(drc); |
| drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); |
| |
| dynamic_memory[0] = cpu_to_be32(addr >> 32); |
| dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); |
| dynamic_memory[2] = cpu_to_be32(drck->get_index(drc)); |
| dynamic_memory[3] = cpu_to_be32(0); /* reserved */ |
| dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL)); |
| if (addr < machine->ram_size || |
| memory_region_present(get_system_memory(), addr)) { |
| dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED); |
| } else { |
| dynamic_memory[5] = cpu_to_be32(0); |
| } |
| |
| cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE; |
| } |
| ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len); |
| if (ret < 0) { |
| goto out; |
| } |
| |
| /* ibm,associativity-lookup-arrays */ |
| cur_index = int_buf; |
| int_buf[0] = cpu_to_be32(nr_nodes); |
| int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */ |
| cur_index += 2; |
| for (i = 0; i < nr_nodes; i++) { |
| uint32_t associativity[] = { |
| cpu_to_be32(0x0), |
| cpu_to_be32(0x0), |
| cpu_to_be32(0x0), |
| cpu_to_be32(i) |
| }; |
| memcpy(cur_index, associativity, sizeof(associativity)); |
| cur_index += 4; |
| } |
| ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf, |
| (cur_index - int_buf) * sizeof(uint32_t)); |
| out: |
| g_free(int_buf); |
| return ret; |
| } |
| |
| int spapr_h_cas_compose_response(sPAPRMachineState *spapr, |
| target_ulong addr, target_ulong size, |
| bool cpu_update, bool memory_update) |
| { |
| void *fdt, *fdt_skel; |
| sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 }; |
| sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine()); |
| |
| size -= sizeof(hdr); |
| |
| /* Create sceleton */ |
| fdt_skel = g_malloc0(size); |
| _FDT((fdt_create(fdt_skel, size))); |
| _FDT((fdt_begin_node(fdt_skel, ""))); |
| _FDT((fdt_end_node(fdt_skel))); |
| _FDT((fdt_finish(fdt_skel))); |
| fdt = g_malloc0(size); |
| _FDT((fdt_open_into(fdt_skel, fdt, size))); |
| g_free(fdt_skel); |
| |
| /* Fixup cpu nodes */ |
| if (cpu_update) { |
| _FDT((spapr_fixup_cpu_dt(fdt, spapr))); |
| } |
| |
| /* Generate memory nodes or ibm,dynamic-reconfiguration-memory node */ |
| if (memory_update && smc->dr_lmb_enabled) { |
| _FDT((spapr_populate_drconf_memory(spapr, fdt))); |
| } |
| |
| /* Pack resulting tree */ |
| _FDT((fdt_pack(fdt))); |
| |
| if (fdt_totalsize(fdt) + sizeof(hdr) > size) { |
| trace_spapr_cas_failed(size); |
| return -1; |
| } |
| |
| cpu_physical_memory_write(addr, &hdr, sizeof(hdr)); |
| cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt)); |
| trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr)); |
| g_free(fdt); |
| |
| return 0; |
| } |
| |
| static void spapr_finalize_fdt(sPAPRMachineState *spapr, |
| hwaddr fdt_addr, |
| hwaddr rtas_addr, |
| hwaddr rtas_size) |
| { |
| MachineState *machine = MACHINE(qdev_get_machine()); |
| sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); |
| const char *boot_device = machine->boot_order; |
| int ret, i; |
| size_t cb = 0; |
| char *bootlist; |
| void *fdt; |
| sPAPRPHBState *phb; |
| |
| fdt = g_malloc(FDT_MAX_SIZE); |
| |
| /* open out the base tree into a temp buffer for the final tweaks */ |
| _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE))); |
| |
| ret = spapr_populate_memory(spapr, fdt); |
| if (ret < 0) { |
| fprintf(stderr, "couldn't setup memory nodes in fdt\n"); |
| exit(1); |
| } |
| |
| ret = spapr_populate_vdevice(spapr->vio_bus, fdt); |
| if (ret < 0) { |
| fprintf(stderr, "couldn't setup vio devices in fdt\n"); |
| exit(1); |
| } |
| |
| if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) { |
| ret = spapr_rng_populate_dt(fdt); |
| if (ret < 0) { |
| fprintf(stderr, "could not set up rng device in the fdt\n"); |
| exit(1); |
| } |
| } |
| |
| QLIST_FOREACH(phb, &spapr->phbs, list) { |
| ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt); |
| } |
| |
| if (ret < 0) { |
| fprintf(stderr, "couldn't setup PCI devices in fdt\n"); |
| exit(1); |
| } |
| |
| /* RTAS */ |
| ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size); |
| if (ret < 0) { |
| fprintf(stderr, "Couldn't set up RTAS device tree properties\n"); |
| } |
| |
| /* cpus */ |
| spapr_populate_cpus_dt_node(fdt, spapr); |
| |
| bootlist = get_boot_devices_list(&cb, true); |
| if (cb && bootlist) { |
| int offset = fdt_path_offset(fdt, "/chosen"); |
| if (offset < 0) { |
| exit(1); |
| } |
| for (i = 0; i < cb; i++) { |
| if (bootlist[i] == '\n') { |
| bootlist[i] = ' '; |
| } |
| |
| } |
| ret = fdt_setprop_string(fdt, offset, "qemu,boot-list", bootlist); |
| } |
| |
| if (boot_device && strlen(boot_device)) { |
| int offset = fdt_path_offset(fdt, "/chosen"); |
| |
| if (offset < 0) { |
| exit(1); |
| } |
| fdt_setprop_string(fdt, offset, "qemu,boot-device", boot_device); |
| } |
| |
| if (!spapr->has_graphics) { |
| spapr_populate_chosen_stdout(fdt, spapr->vio_bus); |
| } |
| |
| if (smc->dr_lmb_enabled) { |
| _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB)); |
| } |
| |
| _FDT((fdt_pack(fdt))); |
| |
| if (fdt_totalsize(fdt) > FDT_MAX_SIZE) { |
| error_report("FDT too big ! 0x%x bytes (max is 0x%x)", |
| fdt_totalsize(fdt), FDT_MAX_SIZE); |
| exit(1); |
| } |
| |
| qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt)); |
| cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); |
| |
| g_free(bootlist); |
| g_free(fdt); |
| } |
| |
| static uint64_t translate_kernel_address(void *opaque, uint64_t addr) |
| { |
| return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR; |
| } |
| |
| static void emulate_spapr_hypercall(PowerPCCPU *cpu) |
| { |
| CPUPPCState *env = &cpu->env; |
| |
| if (msr_pr) { |
| hcall_dprintf("Hypercall made with MSR[PR]=1\n"); |
| env->gpr[3] = H_PRIVILEGE; |
| } else { |
| env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]); |
| } |
| } |
| |
| #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2)) |
| #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID) |
| #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY) |
| #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY)) |
| #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY)) |
| |
| static void spapr_alloc_htab(sPAPRMachineState *spapr) |
| { |
| long shift; |
| int index; |
| |
| /* allocate hash page table. For now we always make this 16mb, |
| * later we should probably make it scale to the size of guest |
| * RAM */ |
| |
| shift = kvmppc_reset_htab(spapr->htab_shift); |
| if (shift < 0) { |
| /* |
| * For HV KVM, host kernel will return -ENOMEM when requested |
| * HTAB size can't be allocated. |
| */ |
| error_setg(&error_abort, "Failed to allocate HTAB of requested size, try with smaller maxmem"); |
| } else if (shift > 0) { |
| /* |
| * Kernel handles htab, we don't need to allocate one |
| * |
| * Older kernels can fall back to lower HTAB shift values, |
| * but we don't allow booting of such guests. |
| */ |
| if (shift != spapr->htab_shift) { |
| error_setg(&error_abort, "Failed to allocate HTAB of requested size, try with smaller maxmem"); |
| } |
| |
| spapr->htab_shift = shift; |
| kvmppc_kern_htab = true; |
| } else { |
| /* Allocate htab */ |
| spapr->htab = qemu_memalign(HTAB_SIZE(spapr), HTAB_SIZE(spapr)); |
| |
| /* And clear it */ |
| memset(spapr->htab, 0, HTAB_SIZE(spapr)); |
| |
| for (index = 0; index < HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; index++) { |
| DIRTY_HPTE(HPTE(spapr->htab, index)); |
| } |
| } |
| } |
| |
| /* |
| * Clear HTAB entries during reset. |
| * |
| * If host kernel has allocated HTAB, KVM_PPC_ALLOCATE_HTAB ioctl is |
| * used to clear HTAB. Otherwise QEMU-allocated HTAB is cleared manually. |
| */ |
| static void spapr_reset_htab(sPAPRMachineState *spapr) |
| { |
| long shift; |
| int index; |
| |
| shift = kvmppc_reset_htab(spapr->htab_shift); |
| if (shift < 0) { |
| error_setg(&error_abort, "Failed to reset HTAB"); |
| } else if (shift > 0) { |
| if (shift != spapr->htab_shift) { |
| error_setg(&error_abort, "Requested HTAB allocation failed during reset"); |
| } |
| |
| /* Tell readers to update their file descriptor */ |
| if (spapr->htab_fd >= 0) { |
| spapr->htab_fd_stale = true; |
| } |
| } else { |
| memset(spapr->htab, 0, HTAB_SIZE(spapr)); |
| |
| for (index = 0; index < HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; index++) { |
| DIRTY_HPTE(HPTE(spapr->htab, index)); |
| } |
| } |
| |
| /* Update the RMA size if necessary */ |
| if (spapr->vrma_adjust) { |
| spapr->rma_size = kvmppc_rma_size(spapr_node0_size(), |
| spapr->htab_shift); |
| } |
| } |
| |
| static int find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque) |
| { |
| bool matched = false; |
| |
| if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { |
| matched = true; |
| } |
| |
| if (!matched) { |
| error_report("Device %s is not supported by this machine yet.", |
| qdev_fw_name(DEVICE(sbdev))); |
| exit(1); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * A guest reset will cause spapr->htab_fd to become stale if being used. |
| * Reopen the file descriptor to make sure the whole HTAB is properly read. |
| */ |
| static int spapr_check_htab_fd(sPAPRMachineState *spapr) |
| { |
| int rc = 0; |
| |
| if (spapr->htab_fd_stale) { |
| close(spapr->htab_fd); |
| spapr->htab_fd = kvmppc_get_htab_fd(false); |
| if (spapr->htab_fd < 0) { |
| error_report("Unable to open fd for reading hash table from KVM: " |
| "%s", strerror(errno)); |
| rc = -1; |
| } |
| spapr->htab_fd_stale = false; |
| } |
| |
| return rc; |
| } |
| |
| static void ppc_spapr_reset(void) |
| { |
| sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); |
| PowerPCCPU *first_ppc_cpu; |
| uint32_t rtas_limit; |
| |
| /* Check for unknown sysbus devices */ |
| foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL); |
| |
| /* Reset the hash table & recalc the RMA */ |
| spapr_reset_htab(spapr); |
| |
| qemu_devices_reset(); |
| |
| /* |
| * We place the device tree and RTAS just below either the top of the RMA, |
| * or just below 2GB, whichever is lowere, so that it can be |
| * processed with 32-bit real mode code if necessary |
| */ |
| rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR); |
| spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE; |
| spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE; |
| |
| /* Load the fdt */ |
| spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr, |
| spapr->rtas_size); |
| |
| /* Copy RTAS over */ |
| cpu_physical_memory_write(spapr->rtas_addr, spapr->rtas_blob, |
| spapr->rtas_size); |
| |
| /* Set up the entry state */ |
| first_ppc_cpu = POWERPC_CPU(first_cpu); |
| first_ppc_cpu->env.gpr[3] = spapr->fdt_addr; |
| first_ppc_cpu->env.gpr[5] = 0; |
| first_cpu->halted = 0; |
| first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT; |
| |
| } |
| |
| static void spapr_cpu_reset(void *opaque) |
| { |
| sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); |
| PowerPCCPU *cpu = opaque; |
| CPUState *cs = CPU(cpu); |
| CPUPPCState *env = &cpu->env; |
| |
| cpu_reset(cs); |
| |
| /* All CPUs start halted. CPU0 is unhalted from the machine level |
| * reset code and the rest are explicitly started up by the guest |
| * using an RTAS call */ |
| cs->halted = 1; |
| |
| env->spr[SPR_HIOR] = 0; |
| |
| env->external_htab = (uint8_t *)spapr->htab; |
| if (kvm_enabled() && !env->external_htab) { |
| /* |
| * HV KVM, set external_htab to 1 so our ppc_hash64_load_hpte* |
| * functions do the right thing. |
| */ |
| env->external_htab = (void *)1; |
| } |
| env->htab_base = -1; |
| /* |
| * htab_mask is the mask used to normalize hash value to PTEG index. |
| * htab_shift is log2 of hash table size. |
| * We have 8 hpte per group, and each hpte is 16 bytes. |
| * ie have 128 bytes per hpte entry. |
| */ |
| env->htab_mask = (1ULL << (spapr->htab_shift - 7)) - 1; |
| env->spr[SPR_SDR1] = (target_ulong)(uintptr_t)spapr->htab | |
| (spapr->htab_shift - 18); |
| } |
| |
| static void spapr_create_nvram(sPAPRMachineState *spapr) |
| { |
| DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram"); |
| DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0); |
| |
| if (dinfo) { |
| qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo), |
| &error_fatal); |
| } |
| |
| qdev_init_nofail(dev); |
| |
| spapr->nvram = (struct sPAPRNVRAM *)dev; |
| } |
| |
| static void spapr_rtc_create(sPAPRMachineState *spapr) |
| { |
| DeviceState *dev = qdev_create(NULL, TYPE_SPAPR_RTC); |
| |
| qdev_init_nofail(dev); |
| spapr->rtc = dev; |
| |
| object_property_add_alias(qdev_get_machine(), "rtc-time", |
| OBJECT(spapr->rtc), "date", NULL); |
| } |
| |
| /* Returns whether we want to use VGA or not */ |
| static int spapr_vga_init(PCIBus *pci_bus) |
| { |
| switch (vga_interface_type) { |
| case VGA_NONE: |
| return false; |
| case VGA_DEVICE: |
| return true; |
| case VGA_STD: |
| case VGA_VIRTIO: |
| return pci_vga_init(pci_bus) != NULL; |
| default: |
| fprintf(stderr, "This vga model is not supported," |
| "currently it only supports -vga std\n"); |
| exit(0); |
| } |
| } |
| |
| static int spapr_post_load(void *opaque, int version_id) |
| { |
| sPAPRMachineState *spapr = (sPAPRMachineState *)opaque; |
| int err = 0; |
| |
| /* In earlier versions, there was no separate qdev for the PAPR |
| * RTC, so the RTC offset was stored directly in sPAPREnvironment. |
| * So when migrating from those versions, poke the incoming offset |
| * value into the RTC device */ |
| if (version_id < 3) { |
| err = spapr_rtc_import_offset(spapr->rtc, spapr->rtc_offset); |
| } |
| |
| return err; |
| } |
| |
| static bool version_before_3(void *opaque, int version_id) |
| { |
| return version_id < 3; |
| } |
| |
| static const VMStateDescription vmstate_spapr = { |
| .name = "spapr", |
| .version_id = 3, |
| .minimum_version_id = 1, |
| .post_load = spapr_post_load, |
| .fields = (VMStateField[]) { |
| /* used to be @next_irq */ |
| VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4), |
| |
| /* RTC offset */ |
| VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3), |
| |
| VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2), |
| VMSTATE_END_OF_LIST() |
| }, |
| }; |
| |
| static int htab_save_setup(QEMUFile *f, void *opaque) |
| { |
| sPAPRMachineState *spapr = opaque; |
| |
| /* "Iteration" header */ |
| qemu_put_be32(f, spapr->htab_shift); |
| |
| if (spapr->htab) { |
| spapr->htab_save_index = 0; |
| spapr->htab_first_pass = true; |
| } else { |
| assert(kvm_enabled()); |
| |
| spapr->htab_fd = kvmppc_get_htab_fd(false); |
| spapr->htab_fd_stale = false; |
| if (spapr->htab_fd < 0) { |
| fprintf(stderr, "Unable to open fd for reading hash table from KVM: %s\n", |
| strerror(errno)); |
| return -1; |
| } |
| } |
| |
| |
| return 0; |
| } |
| |
| static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr, |
| int64_t max_ns) |
| { |
| int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; |
| int index = spapr->htab_save_index; |
| int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); |
| |
| assert(spapr->htab_first_pass); |
| |
| do { |
| int chunkstart; |
| |
| /* Consume invalid HPTEs */ |
| while ((index < htabslots) |
| && !HPTE_VALID(HPTE(spapr->htab, index))) { |
| index++; |
| CLEAN_HPTE(HPTE(spapr->htab, index)); |
| } |
| |
| /* Consume valid HPTEs */ |
| chunkstart = index; |
| while ((index < htabslots) && (index - chunkstart < USHRT_MAX) |
| && HPTE_VALID(HPTE(spapr->htab, index))) { |
| index++; |
| CLEAN_HPTE(HPTE(spapr->htab, index)); |
| } |
| |
| if (index > chunkstart) { |
| int n_valid = index - chunkstart; |
| |
| qemu_put_be32(f, chunkstart); |
| qemu_put_be16(f, n_valid); |
| qemu_put_be16(f, 0); |
| qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), |
| HASH_PTE_SIZE_64 * n_valid); |
| |
| if ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { |
| break; |
| } |
| } |
| } while ((index < htabslots) && !qemu_file_rate_limit(f)); |
| |
| if (index >= htabslots) { |
| assert(index == htabslots); |
| index = 0; |
| spapr->htab_first_pass = false; |
| } |
| spapr->htab_save_index = index; |
| } |
| |
| static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr, |
| int64_t max_ns) |
| { |
| bool final = max_ns < 0; |
| int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; |
| int examined = 0, sent = 0; |
| int index = spapr->htab_save_index; |
| int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); |
| |
| assert(!spapr->htab_first_pass); |
| |
| do { |
| int chunkstart, invalidstart; |
| |
| /* Consume non-dirty HPTEs */ |
| while ((index < htabslots) |
| && !HPTE_DIRTY(HPTE(spapr->htab, index))) { |
| index++; |
| examined++; |
| } |
| |
| chunkstart = index; |
| /* Consume valid dirty HPTEs */ |
| while ((index < htabslots) && (index - chunkstart < USHRT_MAX) |
| && HPTE_DIRTY(HPTE(spapr->htab, index)) |
| && HPTE_VALID(HPTE(spapr->htab, index))) { |
| CLEAN_HPTE(HPTE(spapr->htab, index)); |
| index++; |
| examined++; |
| } |
| |
| invalidstart = index; |
| /* Consume invalid dirty HPTEs */ |
| while ((index < htabslots) && (index - invalidstart < USHRT_MAX) |
| && HPTE_DIRTY(HPTE(spapr->htab, index)) |
| && !HPTE_VALID(HPTE(spapr->htab, index))) { |
| CLEAN_HPTE(HPTE(spapr->htab, index)); |
| index++; |
| examined++; |
| } |
| |
| if (index > chunkstart) { |
| int n_valid = invalidstart - chunkstart; |
| int n_invalid = index - invalidstart; |
| |
| qemu_put_be32(f, chunkstart); |
| qemu_put_be16(f, n_valid); |
| qemu_put_be16(f, n_invalid); |
| qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), |
| HASH_PTE_SIZE_64 * n_valid); |
| sent += index - chunkstart; |
| |
| if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { |
| break; |
| } |
| } |
| |
| if (examined >= htabslots) { |
| break; |
| } |
| |
| if (index >= htabslots) { |
| assert(index == htabslots); |
| index = 0; |
| } |
| } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final)); |
| |
| if (index >= htabslots) { |
| assert(index == htabslots); |
| index = 0; |
| } |
| |
| spapr->htab_save_index = index; |
| |
| return (examined >= htabslots) && (sent == 0) ? 1 : 0; |
| } |
| |
| #define MAX_ITERATION_NS 5000000 /* 5 ms */ |
| #define MAX_KVM_BUF_SIZE 2048 |
| |
| static int htab_save_iterate(QEMUFile *f, void *opaque) |
| { |
| sPAPRMachineState *spapr = opaque; |
| int rc = 0; |
| |
| /* Iteration header */ |
| qemu_put_be32(f, 0); |
| |
| if (!spapr->htab) { |
| assert(kvm_enabled()); |
| |
| rc = spapr_check_htab_fd(spapr); |
| if (rc < 0) { |
| return rc; |
| } |
| |
| rc = kvmppc_save_htab(f, spapr->htab_fd, |
| MAX_KVM_BUF_SIZE, MAX_ITERATION_NS); |
| if (rc < 0) { |
| return rc; |
| } |
| } else if (spapr->htab_first_pass) { |
| htab_save_first_pass(f, spapr, MAX_ITERATION_NS); |
| } else { |
| rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS); |
| } |
| |
| /* End marker */ |
| qemu_put_be32(f, 0); |
| qemu_put_be16(f, 0); |
| qemu_put_be16(f, 0); |
| |
| return rc; |
| } |
| |
| static int htab_save_complete(QEMUFile *f, void *opaque) |
| { |
| sPAPRMachineState *spapr = opaque; |
| |
| /* Iteration header */ |
| qemu_put_be32(f, 0); |
| |
| if (!spapr->htab) { |
| int rc; |
| |
| assert(kvm_enabled()); |
| |
| rc = spapr_check_htab_fd(spapr); |
| if (rc < 0) { |
| return rc; |
| } |
| |
| rc = kvmppc_save_htab(f, spapr->htab_fd, MAX_KVM_BUF_SIZE, -1); |
| if (rc < 0) { |
| return rc; |
| } |
| close(spapr->htab_fd); |
| spapr->htab_fd = -1; |
| } else { |
| htab_save_later_pass(f, spapr, -1); |
| } |
| |
| /* End marker */ |
| qemu_put_be32(f, 0); |
| qemu_put_be16(f, 0); |
| qemu_put_be16(f, 0); |
| |
| return 0; |
| } |
| |
| static int htab_load(QEMUFile *f, void *opaque, int version_id) |
| { |
| sPAPRMachineState *spapr = opaque; |
| uint32_t section_hdr; |
| int fd = -1; |
| |
| if (version_id < 1 || version_id > 1) { |
| fprintf(stderr, "htab_load() bad version\n"); |
| return -EINVAL; |
| } |
| |
| section_hdr = qemu_get_be32(f); |
| |
| if (section_hdr) { |
| /* First section, just the hash shift */ |
| if (spapr->htab_shift != section_hdr) { |
| error_report("htab_shift mismatch: source %d target %d", |
| section_hdr, spapr->htab_shift); |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| if (!spapr->htab) { |
| assert(kvm_enabled()); |
| |
| fd = kvmppc_get_htab_fd(true); |
| if (fd < 0) { |
| fprintf(stderr, "Unable to open fd to restore KVM hash table: %s\n", |
| strerror(errno)); |
| } |
| } |
| |
| while (true) { |
| uint32_t index; |
| uint16_t n_valid, n_invalid; |
| |
| index = qemu_get_be32(f); |
| n_valid = qemu_get_be16(f); |
| n_invalid = qemu_get_be16(f); |
| |
| if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) { |
| /* End of Stream */ |
| break; |
| } |
| |
| if ((index + n_valid + n_invalid) > |
| (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) { |
| /* Bad index in stream */ |
| fprintf(stderr, "htab_load() bad index %d (%hd+%hd entries) " |
| "in htab stream (htab_shift=%d)\n", index, n_valid, n_invalid, |
| spapr->htab_shift); |
| return -EINVAL; |
| } |
| |
| if (spapr->htab) { |
| if (n_valid) { |
| qemu_get_buffer(f, HPTE(spapr->htab, index), |
| HASH_PTE_SIZE_64 * n_valid); |
| } |
| if (n_invalid) { |
| memset(HPTE(spapr->htab, index + n_valid), 0, |
| HASH_PTE_SIZE_64 * n_invalid); |
| } |
| } else { |
| int rc; |
| |
| assert(fd >= 0); |
| |
| rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid); |
| if (rc < 0) { |
| return rc; |
| } |
| } |
| } |
| |
| if (!spapr->htab) { |
| assert(fd >= 0); |
| close(fd); |
| } |
| |
| return 0; |
| } |
| |
| static SaveVMHandlers savevm_htab_handlers = { |
| .save_live_setup = htab_save_setup, |
| .save_live_iterate = htab_save_iterate, |
| .save_live_complete_precopy = htab_save_complete, |
| .load_state = htab_load, |
| }; |
| |
| static void spapr_boot_set(void *opaque, const char *boot_device, |
| Error **errp) |
| { |
| MachineState *machine = MACHINE(qdev_get_machine()); |
| machine->boot_order = g_strdup(boot_device); |
| } |
| |
| static void spapr_cpu_init(sPAPRMachineState *spapr, PowerPCCPU *cpu) |
| { |
| CPUPPCState *env = &cpu->env; |
| |
| /* Set time-base frequency to 512 MHz */ |
| cpu_ppc_tb_init(env, TIMEBASE_FREQ); |
| |
| /* PAPR always has exception vectors in RAM not ROM. To ensure this, |
| * MSR[IP] should never be set. |
| */ |
| env->msr_mask &= ~(1 << 6); |
| |
| /* Tell KVM that we're in PAPR mode */ |
| if (kvm_enabled()) { |
| kvmppc_set_papr(cpu); |
| } |
| |
| if (cpu->max_compat) { |
| if (ppc_set_compat(cpu, cpu->max_compat) < 0) { |
| exit(1); |
| } |
| } |
| |
| xics_cpu_setup(spapr->icp, cpu); |
| |
| qemu_register_reset(spapr_cpu_reset, cpu); |
| } |
| |
| /* |
| * Reset routine for LMB DR devices. |
| * |
| * Unlike PCI DR devices, LMB DR devices explicitly register this reset |
| * routine. Reset for PCI DR devices will be handled by PHB reset routine |
| * when it walks all its children devices. LMB devices reset occurs |
| * as part of spapr_ppc_reset(). |
| */ |
| static void spapr_drc_reset(void *opaque) |
| { |
| sPAPRDRConnector *drc = opaque; |
| DeviceState *d = DEVICE(drc); |
| |
| if (d) { |
| device_reset(d); |
| } |
| } |
| |
| static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr) |
| { |
| MachineState *machine = MACHINE(spapr); |
| uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; |
| uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size; |
| int i; |
| |
| for (i = 0; i < nr_lmbs; i++) { |
| sPAPRDRConnector *drc; |
| uint64_t addr; |
| |
| addr = i * lmb_size + spapr->hotplug_memory.base; |
| drc = spapr_dr_connector_new(OBJECT(spapr), SPAPR_DR_CONNECTOR_TYPE_LMB, |
| addr/lmb_size); |
| qemu_register_reset(spapr_drc_reset, drc); |
| } |
| } |
| |
| /* |
| * If RAM size, maxmem size and individual node mem sizes aren't aligned |
| * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest |
| * since we can't support such unaligned sizes with DRCONF_MEMORY. |
| */ |
| static void spapr_validate_node_memory(MachineState *machine) |
| { |
| int i; |
| |
| if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE || |
| machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) { |
| error_report("Can't support memory configuration where RAM size " |
| "0x" RAM_ADDR_FMT " or maxmem size " |
| "0x" RAM_ADDR_FMT " isn't aligned to %llu MB", |
| machine->ram_size, machine->maxram_size, |
| SPAPR_MEMORY_BLOCK_SIZE/M_BYTE); |
| exit(EXIT_FAILURE); |
| } |
| |
| for (i = 0; i < nb_numa_nodes; i++) { |
| if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) { |
| error_report("Can't support memory configuration where memory size" |
| " %" PRIx64 " of node %d isn't aligned to %llu MB", |
| numa_info[i].node_mem, i, |
| SPAPR_MEMORY_BLOCK_SIZE/M_BYTE); |
| exit(EXIT_FAILURE); |
| } |
| } |
| } |
| |
| /* pSeries LPAR / sPAPR hardware init */ |
| static void ppc_spapr_init(MachineState *machine) |
| { |
| sPAPRMachineState *spapr = SPAPR_MACHINE(machine); |
| sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); |
| const char *kernel_filename = machine->kernel_filename; |
| const char *kernel_cmdline = machine->kernel_cmdline; |
| const char *initrd_filename = machine->initrd_filename; |
| PowerPCCPU *cpu; |
| PCIHostState *phb; |
| int i; |
| MemoryRegion *sysmem = get_system_memory(); |
| MemoryRegion *ram = g_new(MemoryRegion, 1); |
| MemoryRegion *rma_region; |
| void *rma = NULL; |
| hwaddr rma_alloc_size; |
| hwaddr node0_size = spapr_node0_size(); |
| uint32_t initrd_base = 0; |
| long kernel_size = 0, initrd_size = 0; |
| long load_limit, fw_size; |
| bool kernel_le = false; |
| char *filename; |
| |
| msi_supported = true; |
| |
| QLIST_INIT(&spapr->phbs); |
| |
| cpu_ppc_hypercall = emulate_spapr_hypercall; |
| |
| /* Allocate RMA if necessary */ |
| rma_alloc_size = kvmppc_alloc_rma(&rma); |
| |
| if (rma_alloc_size == -1) { |
| error_report("Unable to create RMA"); |
| exit(1); |
| } |
| |
| if (rma_alloc_size && (rma_alloc_size < node0_size)) { |
| spapr->rma_size = rma_alloc_size; |
| } else { |
| spapr->rma_size = node0_size; |
| |
| /* With KVM, we don't actually know whether KVM supports an |
| * unbounded RMA (PR KVM) or is limited by the hash table size |
| * (HV KVM using VRMA), so we always assume the latter |
| * |
| * In that case, we also limit the initial allocations for RTAS |
| * etc... to 256M since we have no way to know what the VRMA size |
| * is going to be as it depends on the size of the hash table |
| * isn't determined yet. |
| */ |
| if (kvm_enabled()) { |
| spapr->vrma_adjust = 1; |
| spapr->rma_size = MIN(spapr->rma_size, 0x10000000); |
| } |
| } |
| |
| if (spapr->rma_size > node0_size) { |
| fprintf(stderr, "Error: Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")\n", |
| spapr->rma_size); |
| exit(1); |
| } |
| |
| /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */ |
| load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD; |
| |
| /* We aim for a hash table of size 1/128 the size of RAM. The |
| * normal rule of thumb is 1/64 the size of RAM, but that's much |
| * more than needed for the Linux guests we support. */ |
| spapr->htab_shift = 18; /* Minimum architected size */ |
| while (spapr->htab_shift <= 46) { |
| if ((1ULL << (spapr->htab_shift + 7)) >= machine->maxram_size) { |
| break; |
| } |
| spapr->htab_shift++; |
| } |
| spapr_alloc_htab(spapr); |
| |
| /* Set up Interrupt Controller before we create the VCPUs */ |
| spapr->icp = xics_system_init(machine, |
| DIV_ROUND_UP(max_cpus * kvmppc_smt_threads(), |
| smp_threads), |
| XICS_IRQS); |
| |
| if (smc->dr_lmb_enabled) { |
| spapr_validate_node_memory(machine); |
| } |
| |
| /* init CPUs */ |
| if (machine->cpu_model == NULL) { |
| machine->cpu_model = kvm_enabled() ? "host" : "POWER7"; |
| } |
| for (i = 0; i < smp_cpus; i++) { |
| cpu = cpu_ppc_init(machine->cpu_model); |
| if (cpu == NULL) { |
| fprintf(stderr, "Unable to find PowerPC CPU definition\n"); |
| exit(1); |
| } |
| spapr_cpu_init(spapr, cpu); |
| } |
| |
| if (kvm_enabled()) { |
| /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */ |
| kvmppc_enable_logical_ci_hcalls(); |
| kvmppc_enable_set_mode_hcall(); |
| } |
| |
| /* allocate RAM */ |
| memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram", |
| machine->ram_size); |
| memory_region_add_subregion(sysmem, 0, ram); |
| |
| if (rma_alloc_size && rma) { |
| rma_region = g_new(MemoryRegion, 1); |
| memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma", |
| rma_alloc_size, rma); |
| vmstate_register_ram_global(rma_region); |
| memory_region_add_subregion(sysmem, 0, rma_region); |
| } |
| |
| /* initialize hotplug memory address space */ |
| if (machine->ram_size < machine->maxram_size) { |
| ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size; |
| |
| if (machine->ram_slots > SPAPR_MAX_RAM_SLOTS) { |
| error_report("Specified number of memory slots %" PRIu64 |
| " exceeds max supported %d", |
| machine->ram_slots, SPAPR_MAX_RAM_SLOTS); |
| exit(EXIT_FAILURE); |
| } |
| |
| spapr->hotplug_memory.base = ROUND_UP(machine->ram_size, |
| SPAPR_HOTPLUG_MEM_ALIGN); |
| memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr), |
| "hotplug-memory", hotplug_mem_size); |
| memory_region_add_subregion(sysmem, spapr->hotplug_memory.base, |
| &spapr->hotplug_memory.mr); |
| } |
| |
| if (smc->dr_lmb_enabled) { |
| spapr_create_lmb_dr_connectors(spapr); |
| } |
| |
| filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin"); |
| if (!filename) { |
| error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin"); |
| exit(1); |
| } |
| spapr->rtas_size = get_image_size(filename); |
| spapr->rtas_blob = g_malloc(spapr->rtas_size); |
| if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) { |
| error_report("Could not load LPAR rtas '%s'", filename); |
| exit(1); |
| } |
| if (spapr->rtas_size > RTAS_MAX_SIZE) { |
| error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)", |
| (size_t)spapr->rtas_size, RTAS_MAX_SIZE); |
| exit(1); |
| } |
| g_free(filename); |
| |
| /* Set up EPOW events infrastructure */ |
| spapr_events_init(spapr); |
| |
| /* Set up the RTC RTAS interfaces */ |
| spapr_rtc_create(spapr); |
| |
| /* Set up VIO bus */ |
| spapr->vio_bus = spapr_vio_bus_init(); |
| |
| for (i = 0; i < MAX_SERIAL_PORTS; i++) { |
| if (serial_hds[i]) { |
| spapr_vty_create(spapr->vio_bus, serial_hds[i]); |
| } |
| } |
| |
| /* We always have at least the nvram device on VIO */ |
| spapr_create_nvram(spapr); |
| |
| /* Set up PCI */ |
| spapr_pci_rtas_init(); |
| |
| phb = spapr_create_phb(spapr, 0); |
| |
| for (i = 0; i < nb_nics; i++) { |
| NICInfo *nd = &nd_table[i]; |
| |
| if (!nd->model) { |
| nd->model = g_strdup("ibmveth"); |
| } |
| |
| if (strcmp(nd->model, "ibmveth") == 0) { |
| spapr_vlan_create(spapr->vio_bus, nd); |
| } else { |
| pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL); |
| } |
| } |
| |
| for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { |
| spapr_vscsi_create(spapr->vio_bus); |
| } |
| |
| /* Graphics */ |
| if (spapr_vga_init(phb->bus)) { |
| spapr->has_graphics = true; |
| machine->usb |= defaults_enabled() && !machine->usb_disabled; |
| } |
| |
| if (machine->usb) { |
| if (smc->use_ohci_by_default) { |
| pci_create_simple(phb->bus, -1, "pci-ohci"); |
| } else { |
| pci_create_simple(phb->bus, -1, "nec-usb-xhci"); |
| } |
| |
| if (spapr->has_graphics) { |
| USBBus *usb_bus = usb_bus_find(-1); |
| |
| usb_create_simple(usb_bus, "usb-kbd"); |
| usb_create_simple(usb_bus, "usb-mouse"); |
| } |
| } |
| |
| if (spapr->rma_size < (MIN_RMA_SLOF << 20)) { |
| fprintf(stderr, "qemu: pSeries SLOF firmware requires >= " |
| "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF); |
| exit(1); |
| } |
| |
| if (kernel_filename) { |
| uint64_t lowaddr = 0; |
| |
| kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL, |
| NULL, &lowaddr, NULL, 1, PPC_ELF_MACHINE, 0); |
| if (kernel_size == ELF_LOAD_WRONG_ENDIAN) { |
| kernel_size = load_elf(kernel_filename, |
| translate_kernel_address, NULL, |
| NULL, &lowaddr, NULL, 0, PPC_ELF_MACHINE, 0); |
| kernel_le = kernel_size > 0; |
| } |
| if (kernel_size < 0) { |
| fprintf(stderr, "qemu: error loading %s: %s\n", |
| kernel_filename, load_elf_strerror(kernel_size)); |
| exit(1); |
| } |
| |
| /* load initrd */ |
| if (initrd_filename) { |
| /* Try to locate the initrd in the gap between the kernel |
| * and the firmware. Add a bit of space just in case |
| */ |
| initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff; |
| initrd_size = load_image_targphys(initrd_filename, initrd_base, |
| load_limit - initrd_base); |
| if (initrd_size < 0) { |
| fprintf(stderr, "qemu: could not load initial ram disk '%s'\n", |
| initrd_filename); |
| exit(1); |
| } |
| } else { |
| initrd_base = 0; |
| initrd_size = 0; |
| } |
| } |
| |
| if (bios_name == NULL) { |
| bios_name = FW_FILE_NAME; |
| } |
| filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); |
| if (!filename) { |
| error_report("Could not find LPAR firmware '%s'", bios_name); |
| exit(1); |
| } |
| fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); |
| if (fw_size <= 0) { |
| error_report("Could not load LPAR firmware '%s'", filename); |
| exit(1); |
| } |
| g_free(filename); |
| |
| /* FIXME: Should register things through the MachineState's qdev |
| * interface, this is a legacy from the sPAPREnvironment structure |
| * which predated MachineState but had a similar function */ |
| vmstate_register(NULL, 0, &vmstate_spapr, spapr); |
| register_savevm_live(NULL, "spapr/htab", -1, 1, |
| &savevm_htab_handlers, spapr); |
| |
| /* Prepare the device tree */ |
| spapr->fdt_skel = spapr_create_fdt_skel(initrd_base, initrd_size, |
| kernel_size, kernel_le, |
| kernel_cmdline, |
| spapr->check_exception_irq); |
| assert(spapr->fdt_skel != NULL); |
| |
| /* used by RTAS */ |
| QTAILQ_INIT(&spapr->ccs_list); |
| qemu_register_reset(spapr_ccs_reset_hook, spapr); |
| |
| qemu_register_boot_set(spapr_boot_set, spapr); |
| } |
| |
| static int spapr_kvm_type(const char *vm_type) |
| { |
| if (!vm_type) { |
| return 0; |
| } |
| |
| if (!strcmp(vm_type, "HV")) { |
| return 1; |
| } |
| |
| if (!strcmp(vm_type, "PR")) { |
| return 2; |
| } |
| |
| error_report("Unknown kvm-type specified '%s'", vm_type); |
| exit(1); |
| } |
| |
| /* |
| * Implementation of an interface to adjust firmware path |
| * for the bootindex property handling. |
| */ |
| static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus, |
| DeviceState *dev) |
| { |
| #define CAST(type, obj, name) \ |
| ((type *)object_dynamic_cast(OBJECT(obj), (name))) |
| SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE); |
| sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE); |
| |
| if (d) { |
| void *spapr = CAST(void, bus->parent, "spapr-vscsi"); |
| VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI); |
| USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE); |
| |
| if (spapr) { |
| /* |
| * Replace "channel@0/disk@0,0" with "disk@8000000000000000": |
| * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun |
| * in the top 16 bits of the 64-bit LUN |
| */ |
| unsigned id = 0x8000 | (d->id << 8) | d->lun; |
| return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), |
| (uint64_t)id << 48); |
| } else if (virtio) { |
| /* |
| * We use SRP luns of the form 01000000 | (target << 8) | lun |
| * in the top 32 bits of the 64-bit LUN |
| * Note: the quote above is from SLOF and it is wrong, |
| * the actual binding is: |
| * swap 0100 or 10 << or 20 << ( target lun-id -- srplun ) |
| */ |
| unsigned id = 0x1000000 | (d->id << 16) | d->lun; |
| return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), |
| (uint64_t)id << 32); |
| } else if (usb) { |
| /* |
| * We use SRP luns of the form 01000000 | (usb-port << 16) | lun |
| * in the top 32 bits of the 64-bit LUN |
| */ |
| unsigned usb_port = atoi(usb->port->path); |
| unsigned id = 0x1000000 | (usb_port << 16) | d->lun; |
| return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), |
| (uint64_t)id << 32); |
| } |
| } |
| |
| if (phb) { |
| /* Replace "pci" with "pci@800000020000000" */ |
| return g_strdup_printf("pci@%"PRIX64, phb->buid); |
| } |
| |
| return NULL; |
| } |
| |
| static char *spapr_get_kvm_type(Object *obj, Error **errp) |
| { |
| sPAPRMachineState *spapr = SPAPR_MACHINE(obj); |
| |
| return g_strdup(spapr->kvm_type); |
| } |
| |
| static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp) |
| { |
| sPAPRMachineState *spapr = SPAPR_MACHINE(obj); |
| |
| g_free(spapr->kvm_type); |
| spapr->kvm_type = g_strdup(value); |
| } |
| |
| static void spapr_machine_initfn(Object *obj) |
| { |
| object_property_add_str(obj, "kvm-type", |
| spapr_get_kvm_type, spapr_set_kvm_type, NULL); |
| object_property_set_description(obj, "kvm-type", |
| "Specifies the KVM virtualization mode (HV, PR)", |
| NULL); |
| } |
| |
| static void spapr_machine_finalizefn(Object *obj) |
| { |
| sPAPRMachineState *spapr = SPAPR_MACHINE(obj); |
| |
| g_free(spapr->kvm_type); |
| } |
| |
| static void ppc_cpu_do_nmi_on_cpu(void *arg) |
| { |
| CPUState *cs = arg; |
| |
| cpu_synchronize_state(cs); |
| ppc_cpu_do_system_reset(cs); |
| } |
| |
| static void spapr_nmi(NMIState *n, int cpu_index, Error **errp) |
| { |
| CPUState *cs; |
| |
| CPU_FOREACH(cs) { |
| async_run_on_cpu(cs, ppc_cpu_do_nmi_on_cpu, cs); |
| } |
| } |
| |
| static void spapr_add_lmbs(DeviceState *dev, uint64_t addr, uint64_t size, |
| uint32_t node, Error **errp) |
| { |
| sPAPRDRConnector *drc; |
| sPAPRDRConnectorClass *drck; |
| uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE; |
| int i, fdt_offset, fdt_size; |
| void *fdt; |
| |
| /* |
| * Check for DRC connectors and send hotplug notification to the |
| * guest only in case of hotplugged memory. This allows cold plugged |
| * memory to be specified at boot time. |
| */ |
| if (!dev->hotplugged) { |
| return; |
| } |
| |
| for (i = 0; i < nr_lmbs; i++) { |
| drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB, |
| addr/SPAPR_MEMORY_BLOCK_SIZE); |
| g_assert(drc); |
| |
| fdt = create_device_tree(&fdt_size); |
| fdt_offset = spapr_populate_memory_node(fdt, node, addr, |
| SPAPR_MEMORY_BLOCK_SIZE); |
| |
| drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); |
| drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, errp); |
| addr += SPAPR_MEMORY_BLOCK_SIZE; |
| } |
| spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, nr_lmbs); |
| } |
| |
| static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev, |
| uint32_t node, Error **errp) |
| { |
| Error *local_err = NULL; |
| sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev); |
| PCDIMMDevice *dimm = PC_DIMM(dev); |
| PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); |
| MemoryRegion *mr = ddc->get_memory_region(dimm); |
| uint64_t align = memory_region_get_alignment(mr); |
| uint64_t size = memory_region_size(mr); |
| uint64_t addr; |
| |
| if (size % SPAPR_MEMORY_BLOCK_SIZE) { |
| error_setg(&local_err, "Hotplugged memory size must be a multiple of " |
| "%lld MB", SPAPR_MEMORY_BLOCK_SIZE/M_BYTE); |
| goto out; |
| } |
| |
| pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err); |
| if (local_err) { |
| goto out; |
| } |
| |
| addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err); |
| if (local_err) { |
| pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr); |
| goto out; |
| } |
| |
| spapr_add_lmbs(dev, addr, size, node, &error_abort); |
| |
| out: |
| error_propagate(errp, local_err); |
| } |
| |
| static void spapr_machine_device_plug(HotplugHandler *hotplug_dev, |
| DeviceState *dev, Error **errp) |
| { |
| sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine()); |
| |
| if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { |
| int node; |
| |
| if (!smc->dr_lmb_enabled) { |
| error_setg(errp, "Memory hotplug not supported for this machine"); |
| return; |
| } |
| node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP, errp); |
| if (*errp) { |
| return; |
| } |
| |
| /* |
| * Currently PowerPC kernel doesn't allow hot-adding memory to |
| * memory-less node, but instead will silently add the memory |
| * to the first node that has some memory. This causes two |
| * unexpected behaviours for the user. |
| * |
| * - Memory gets hotplugged to a different node than what the user |
| * specified. |
| * - Since pc-dimm subsystem in QEMU still thinks that memory belongs |
| * to memory-less node, a reboot will set things accordingly |
| * and the previously hotplugged memory now ends in the right node. |
| * This appears as if some memory moved from one node to another. |
| * |
| * So until kernel starts supporting memory hotplug to memory-less |
| * nodes, just prevent such attempts upfront in QEMU. |
| */ |
| if (nb_numa_nodes && !numa_info[node].node_mem) { |
| error_setg(errp, "Can't hotplug memory to memory-less node %d", |
| node); |
| return; |
| } |
| |
| spapr_memory_plug(hotplug_dev, dev, node, errp); |
| } |
| } |
| |
| static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev, |
| DeviceState *dev, Error **errp) |
| { |
| if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { |
| error_setg(errp, "Memory hot unplug not supported by sPAPR"); |
| } |
| } |
| |
| static HotplugHandler *spapr_get_hotpug_handler(MachineState *machine, |
| DeviceState *dev) |
| { |
| if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { |
| return HOTPLUG_HANDLER(machine); |
| } |
| return NULL; |
| } |
| |
| static unsigned spapr_cpu_index_to_socket_id(unsigned cpu_index) |
| { |
| /* Allocate to NUMA nodes on a "socket" basis (not that concept of |
| * socket means much for the paravirtualized PAPR platform) */ |
| return cpu_index / smp_threads / smp_cores; |
| } |
| |
| static void spapr_machine_class_init(ObjectClass *oc, void *data) |
| { |
| MachineClass *mc = MACHINE_CLASS(oc); |
| sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc); |
| FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc); |
| NMIClass *nc = NMI_CLASS(oc); |
| HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); |
| |
| mc->desc = "pSeries Logical Partition (PAPR compliant)"; |
| |
| /* |
| * We set up the default / latest behaviour here. The class_init |
| * functions for the specific versioned machine types can override |
| * these details for backwards compatibility |
| */ |
| mc->init = ppc_spapr_init; |
| mc->reset = ppc_spapr_reset; |
| mc->block_default_type = IF_SCSI; |
| mc->max_cpus = MAX_CPUMASK_BITS; |
| mc->no_parallel = 1; |
| mc->default_boot_order = ""; |
| mc->default_ram_size = 512 * M_BYTE; |
| mc->kvm_type = spapr_kvm_type; |
| mc->has_dynamic_sysbus = true; |
| mc->pci_allow_0_address = true; |
| mc->get_hotplug_handler = spapr_get_hotpug_handler; |
| hc->plug = spapr_machine_device_plug; |
| hc->unplug = spapr_machine_device_unplug; |
| mc->cpu_index_to_socket_id = spapr_cpu_index_to_socket_id; |
| |
| smc->dr_lmb_enabled = true; |
| fwc->get_dev_path = spapr_get_fw_dev_path; |
| nc->nmi_monitor_handler = spapr_nmi; |
| } |
| |
| static const TypeInfo spapr_machine_info = { |
| .name = TYPE_SPAPR_MACHINE, |
| .parent = TYPE_MACHINE, |
| .abstract = true, |
| .instance_size = sizeof(sPAPRMachineState), |
| .instance_init = spapr_machine_initfn, |
| .instance_finalize = spapr_machine_finalizefn, |
| .class_size = sizeof(sPAPRMachineClass), |
| .class_init = spapr_machine_class_init, |
| .interfaces = (InterfaceInfo[]) { |
| { TYPE_FW_PATH_PROVIDER }, |
| { TYPE_NMI }, |
| { TYPE_HOTPLUG_HANDLER }, |
| { } |
| }, |
| }; |
| |
| #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \ |
| static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \ |
| void *data) \ |
| { \ |
| MachineClass *mc = MACHINE_CLASS(oc); \ |
| spapr_machine_##suffix##_class_options(mc); \ |
| if (latest) { \ |
| mc->alias = "pseries"; \ |
| mc->is_default = 1; \ |
| } \ |
| } \ |
| static void spapr_machine_##suffix##_instance_init(Object *obj) \ |
| { \ |
| MachineState *machine = MACHINE(obj); \ |
| spapr_machine_##suffix##_instance_options(machine); \ |
| } \ |
| static const TypeInfo spapr_machine_##suffix##_info = { \ |
| .name = MACHINE_TYPE_NAME("pseries-" verstr), \ |
| .parent = TYPE_SPAPR_MACHINE, \ |
| .class_init = spapr_machine_##suffix##_class_init, \ |
| .instance_init = spapr_machine_##suffix##_instance_init, \ |
| }; \ |
| static void spapr_machine_register_##suffix(void) \ |
| { \ |
| type_register(&spapr_machine_##suffix##_info); \ |
| } \ |
| machine_init(spapr_machine_register_##suffix) |
| |
| /* |
| * pseries-2.6 |
| */ |
| static void spapr_machine_2_6_instance_options(MachineState *machine) |
| { |
| } |
| |
| static void spapr_machine_2_6_class_options(MachineClass *mc) |
| { |
| /* Defaults for the latest behaviour inherited from the base class */ |
| } |
| |
| DEFINE_SPAPR_MACHINE(2_6, "2.6", true); |
| |
| /* |
| * pseries-2.5 |
| */ |
| #define SPAPR_COMPAT_2_5 \ |
| HW_COMPAT_2_5 |
| |
| static void spapr_machine_2_5_instance_options(MachineState *machine) |
| { |
| } |
| |
| static void spapr_machine_2_5_class_options(MachineClass *mc) |
| { |
| sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); |
| |
| spapr_machine_2_6_class_options(mc); |
| smc->use_ohci_by_default = true; |
| SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5); |
| } |
| |
| DEFINE_SPAPR_MACHINE(2_5, "2.5", false); |
| |
| /* |
| * pseries-2.4 |
| */ |
| #define SPAPR_COMPAT_2_4 \ |
| HW_COMPAT_2_4 |
| |
| static void spapr_machine_2_4_instance_options(MachineState *machine) |
| { |
| spapr_machine_2_5_instance_options(machine); |
| } |
| |
| static void spapr_machine_2_4_class_options(MachineClass *mc) |
| { |
| sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); |
| |
| spapr_machine_2_5_class_options(mc); |
| smc->dr_lmb_enabled = false; |
| SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4); |
| } |
| |
| DEFINE_SPAPR_MACHINE(2_4, "2.4", false); |
| |
| /* |
| * pseries-2.3 |
| */ |
| #define SPAPR_COMPAT_2_3 \ |
| SPAPR_COMPAT_2_4 \ |
| HW_COMPAT_2_3 \ |
| {\ |
| .driver = "spapr-pci-host-bridge",\ |
| .property = "dynamic-reconfiguration",\ |
| .value = "off",\ |
| }, |
| |
| static void spapr_machine_2_3_instance_options(MachineState *machine) |
| { |
| spapr_machine_2_4_instance_options(machine); |
| savevm_skip_section_footers(); |
| global_state_set_optional(); |
| } |
| |
| static void spapr_machine_2_3_class_options(MachineClass *mc) |
| { |
| spapr_machine_2_4_class_options(mc); |
| SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3); |
| } |
| DEFINE_SPAPR_MACHINE(2_3, "2.3", false); |
| |
| /* |
| * pseries-2.2 |
| */ |
| |
| #define SPAPR_COMPAT_2_2 \ |
| SPAPR_COMPAT_2_3 \ |
| HW_COMPAT_2_2 \ |
| {\ |
| .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\ |
| .property = "mem_win_size",\ |
| .value = "0x20000000",\ |
| }, |
| |
| static void spapr_machine_2_2_instance_options(MachineState *machine) |
| { |
| spapr_machine_2_3_instance_options(machine); |
| } |
| |
| static void spapr_machine_2_2_class_options(MachineClass *mc) |
| { |
| spapr_machine_2_3_class_options(mc); |
| SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2); |
| } |
| DEFINE_SPAPR_MACHINE(2_2, "2.2", false); |
| |
| /* |
| * pseries-2.1 |
| */ |
| #define SPAPR_COMPAT_2_1 \ |
| SPAPR_COMPAT_2_2 \ |
| HW_COMPAT_2_1 |
| |
| static void spapr_machine_2_1_instance_options(MachineState *machine) |
| { |
| spapr_machine_2_2_instance_options(machine); |
| } |
| |
| static void spapr_machine_2_1_class_options(MachineClass *mc) |
| { |
| spapr_machine_2_2_class_options(mc); |
| SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1); |
| } |
| DEFINE_SPAPR_MACHINE(2_1, "2.1", false); |
| |
| static void spapr_machine_register_types(void) |
| { |
| type_register_static(&spapr_machine_info); |
| } |
| |
| type_init(spapr_machine_register_types) |