| /* |
| * S/390 helper routines |
| * |
| * Copyright (c) 2009 Ulrich Hecht |
| * Copyright (c) 2009 Alexander Graf |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include "exec.h" |
| #include "host-utils.h" |
| #include "helpers.h" |
| #include <string.h> |
| #include "kvm.h" |
| #include "qemu-timer.h" |
| |
| /*****************************************************************************/ |
| /* Softmmu support */ |
| #if !defined (CONFIG_USER_ONLY) |
| |
| #define MMUSUFFIX _mmu |
| |
| #define SHIFT 0 |
| #include "softmmu_template.h" |
| |
| #define SHIFT 1 |
| #include "softmmu_template.h" |
| |
| #define SHIFT 2 |
| #include "softmmu_template.h" |
| |
| #define SHIFT 3 |
| #include "softmmu_template.h" |
| |
| /* try to fill the TLB and return an exception if error. If retaddr is |
| NULL, it means that the function was called in C code (i.e. not |
| from generated code or from helper.c) */ |
| /* XXX: fix it to restore all registers */ |
| void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr) |
| { |
| TranslationBlock *tb; |
| CPUState *saved_env; |
| unsigned long pc; |
| int ret; |
| |
| /* XXX: hack to restore env in all cases, even if not called from |
| generated code */ |
| saved_env = env; |
| env = cpu_single_env; |
| ret = cpu_s390x_handle_mmu_fault(env, addr, is_write, mmu_idx, 1); |
| if (unlikely(ret != 0)) { |
| if (likely(retaddr)) { |
| /* now we have a real cpu fault */ |
| pc = (unsigned long)retaddr; |
| tb = tb_find_pc(pc); |
| if (likely(tb)) { |
| /* the PC is inside the translated code. It means that we have |
| a virtual CPU fault */ |
| cpu_restore_state(tb, env, pc); |
| } |
| } |
| cpu_loop_exit(); |
| } |
| env = saved_env; |
| } |
| |
| #endif |
| |
| /* #define DEBUG_HELPER */ |
| #ifdef DEBUG_HELPER |
| #define HELPER_LOG(x...) qemu_log(x) |
| #else |
| #define HELPER_LOG(x...) |
| #endif |
| |
| /* raise an exception */ |
| void HELPER(exception)(uint32_t excp) |
| { |
| HELPER_LOG("%s: exception %d\n", __FUNCTION__, excp); |
| env->exception_index = excp; |
| cpu_loop_exit(); |
| } |
| |
| #ifndef CONFIG_USER_ONLY |
| static void mvc_fast_memset(CPUState *env, uint32_t l, uint64_t dest, |
| uint8_t byte) |
| { |
| target_phys_addr_t dest_phys; |
| target_phys_addr_t len = l; |
| void *dest_p; |
| uint64_t asc = env->psw.mask & PSW_MASK_ASC; |
| int flags; |
| |
| if (mmu_translate(env, dest, 1, asc, &dest_phys, &flags)) { |
| stb(dest, byte); |
| cpu_abort(env, "should never reach here"); |
| } |
| dest_phys |= dest & ~TARGET_PAGE_MASK; |
| |
| dest_p = cpu_physical_memory_map(dest_phys, &len, 1); |
| |
| memset(dest_p, byte, len); |
| |
| cpu_physical_memory_unmap(dest_p, 1, len, len); |
| } |
| |
| static void mvc_fast_memmove(CPUState *env, uint32_t l, uint64_t dest, |
| uint64_t src) |
| { |
| target_phys_addr_t dest_phys; |
| target_phys_addr_t src_phys; |
| target_phys_addr_t len = l; |
| void *dest_p; |
| void *src_p; |
| uint64_t asc = env->psw.mask & PSW_MASK_ASC; |
| int flags; |
| |
| if (mmu_translate(env, dest, 1, asc, &dest_phys, &flags)) { |
| stb(dest, 0); |
| cpu_abort(env, "should never reach here"); |
| } |
| dest_phys |= dest & ~TARGET_PAGE_MASK; |
| |
| if (mmu_translate(env, src, 0, asc, &src_phys, &flags)) { |
| ldub(src); |
| cpu_abort(env, "should never reach here"); |
| } |
| src_phys |= src & ~TARGET_PAGE_MASK; |
| |
| dest_p = cpu_physical_memory_map(dest_phys, &len, 1); |
| src_p = cpu_physical_memory_map(src_phys, &len, 0); |
| |
| memmove(dest_p, src_p, len); |
| |
| cpu_physical_memory_unmap(dest_p, 1, len, len); |
| cpu_physical_memory_unmap(src_p, 0, len, len); |
| } |
| #endif |
| |
| /* and on array */ |
| uint32_t HELPER(nc)(uint32_t l, uint64_t dest, uint64_t src) |
| { |
| int i; |
| unsigned char x; |
| uint32_t cc = 0; |
| |
| HELPER_LOG("%s l %d dest %" PRIx64 " src %" PRIx64 "\n", |
| __FUNCTION__, l, dest, src); |
| for (i = 0; i <= l; i++) { |
| x = ldub(dest + i) & ldub(src + i); |
| if (x) { |
| cc = 1; |
| } |
| stb(dest + i, x); |
| } |
| return cc; |
| } |
| |
| /* xor on array */ |
| uint32_t HELPER(xc)(uint32_t l, uint64_t dest, uint64_t src) |
| { |
| int i; |
| unsigned char x; |
| uint32_t cc = 0; |
| |
| HELPER_LOG("%s l %d dest %" PRIx64 " src %" PRIx64 "\n", |
| __FUNCTION__, l, dest, src); |
| |
| #ifndef CONFIG_USER_ONLY |
| /* xor with itself is the same as memset(0) */ |
| if ((l > 32) && (src == dest) && |
| (src & TARGET_PAGE_MASK) == ((src + l) & TARGET_PAGE_MASK)) { |
| mvc_fast_memset(env, l + 1, dest, 0); |
| return 0; |
| } |
| #else |
| if (src == dest) { |
| memset(g2h(dest), 0, l + 1); |
| return 0; |
| } |
| #endif |
| |
| for (i = 0; i <= l; i++) { |
| x = ldub(dest + i) ^ ldub(src + i); |
| if (x) { |
| cc = 1; |
| } |
| stb(dest + i, x); |
| } |
| return cc; |
| } |
| |
| /* or on array */ |
| uint32_t HELPER(oc)(uint32_t l, uint64_t dest, uint64_t src) |
| { |
| int i; |
| unsigned char x; |
| uint32_t cc = 0; |
| |
| HELPER_LOG("%s l %d dest %" PRIx64 " src %" PRIx64 "\n", |
| __FUNCTION__, l, dest, src); |
| for (i = 0; i <= l; i++) { |
| x = ldub(dest + i) | ldub(src + i); |
| if (x) { |
| cc = 1; |
| } |
| stb(dest + i, x); |
| } |
| return cc; |
| } |
| |
| /* memmove */ |
| void HELPER(mvc)(uint32_t l, uint64_t dest, uint64_t src) |
| { |
| int i = 0; |
| int x = 0; |
| uint32_t l_64 = (l + 1) / 8; |
| |
| HELPER_LOG("%s l %d dest %" PRIx64 " src %" PRIx64 "\n", |
| __FUNCTION__, l, dest, src); |
| |
| #ifndef CONFIG_USER_ONLY |
| if ((l > 32) && |
| (src & TARGET_PAGE_MASK) == ((src + l) & TARGET_PAGE_MASK) && |
| (dest & TARGET_PAGE_MASK) == ((dest + l) & TARGET_PAGE_MASK)) { |
| if (dest == (src + 1)) { |
| mvc_fast_memset(env, l + 1, dest, ldub(src)); |
| return; |
| } else if ((src & TARGET_PAGE_MASK) != (dest & TARGET_PAGE_MASK)) { |
| mvc_fast_memmove(env, l + 1, dest, src); |
| return; |
| } |
| } |
| #else |
| if (dest == (src + 1)) { |
| memset(g2h(dest), ldub(src), l + 1); |
| return; |
| } else { |
| memmove(g2h(dest), g2h(src), l + 1); |
| return; |
| } |
| #endif |
| |
| /* handle the parts that fit into 8-byte loads/stores */ |
| if (dest != (src + 1)) { |
| for (i = 0; i < l_64; i++) { |
| stq(dest + x, ldq(src + x)); |
| x += 8; |
| } |
| } |
| |
| /* slow version crossing pages with byte accesses */ |
| for (i = x; i <= l; i++) { |
| stb(dest + i, ldub(src + i)); |
| } |
| } |
| |
| /* compare unsigned byte arrays */ |
| uint32_t HELPER(clc)(uint32_t l, uint64_t s1, uint64_t s2) |
| { |
| int i; |
| unsigned char x,y; |
| uint32_t cc; |
| HELPER_LOG("%s l %d s1 %" PRIx64 " s2 %" PRIx64 "\n", |
| __FUNCTION__, l, s1, s2); |
| for (i = 0; i <= l; i++) { |
| x = ldub(s1 + i); |
| y = ldub(s2 + i); |
| HELPER_LOG("%02x (%c)/%02x (%c) ", x, x, y, y); |
| if (x < y) { |
| cc = 1; |
| goto done; |
| } else if (x > y) { |
| cc = 2; |
| goto done; |
| } |
| } |
| cc = 0; |
| done: |
| HELPER_LOG("\n"); |
| return cc; |
| } |
| |
| /* compare logical under mask */ |
| uint32_t HELPER(clm)(uint32_t r1, uint32_t mask, uint64_t addr) |
| { |
| uint8_t r,d; |
| uint32_t cc; |
| HELPER_LOG("%s: r1 0x%x mask 0x%x addr 0x%" PRIx64 "\n", __FUNCTION__, r1, |
| mask, addr); |
| cc = 0; |
| while (mask) { |
| if (mask & 8) { |
| d = ldub(addr); |
| r = (r1 & 0xff000000UL) >> 24; |
| HELPER_LOG("mask 0x%x %02x/%02x (0x%" PRIx64 ") ", mask, r, d, |
| addr); |
| if (r < d) { |
| cc = 1; |
| break; |
| } else if (r > d) { |
| cc = 2; |
| break; |
| } |
| addr++; |
| } |
| mask = (mask << 1) & 0xf; |
| r1 <<= 8; |
| } |
| HELPER_LOG("\n"); |
| return cc; |
| } |
| |
| /* store character under mask */ |
| void HELPER(stcm)(uint32_t r1, uint32_t mask, uint64_t addr) |
| { |
| uint8_t r; |
| HELPER_LOG("%s: r1 0x%x mask 0x%x addr 0x%lx\n", __FUNCTION__, r1, mask, |
| addr); |
| while (mask) { |
| if (mask & 8) { |
| r = (r1 & 0xff000000UL) >> 24; |
| stb(addr, r); |
| HELPER_LOG("mask 0x%x %02x (0x%lx) ", mask, r, addr); |
| addr++; |
| } |
| mask = (mask << 1) & 0xf; |
| r1 <<= 8; |
| } |
| HELPER_LOG("\n"); |
| } |
| |
| /* 64/64 -> 128 unsigned multiplication */ |
| void HELPER(mlg)(uint32_t r1, uint64_t v2) |
| { |
| #if HOST_LONG_BITS == 64 && defined(__GNUC__) |
| /* assuming 64-bit hosts have __uint128_t */ |
| __uint128_t res = (__uint128_t)env->regs[r1 + 1]; |
| res *= (__uint128_t)v2; |
| env->regs[r1] = (uint64_t)(res >> 64); |
| env->regs[r1 + 1] = (uint64_t)res; |
| #else |
| mulu64(&env->regs[r1 + 1], &env->regs[r1], env->regs[r1 + 1], v2); |
| #endif |
| } |
| |
| /* 128 -> 64/64 unsigned division */ |
| void HELPER(dlg)(uint32_t r1, uint64_t v2) |
| { |
| uint64_t divisor = v2; |
| |
| if (!env->regs[r1]) { |
| /* 64 -> 64/64 case */ |
| env->regs[r1] = env->regs[r1+1] % divisor; |
| env->regs[r1+1] = env->regs[r1+1] / divisor; |
| return; |
| } else { |
| |
| #if HOST_LONG_BITS == 64 && defined(__GNUC__) |
| /* assuming 64-bit hosts have __uint128_t */ |
| __uint128_t dividend = (((__uint128_t)env->regs[r1]) << 64) | |
| (env->regs[r1+1]); |
| __uint128_t quotient = dividend / divisor; |
| env->regs[r1+1] = quotient; |
| __uint128_t remainder = dividend % divisor; |
| env->regs[r1] = remainder; |
| #else |
| /* 32-bit hosts would need special wrapper functionality - just abort if |
| we encounter such a case; it's very unlikely anyways. */ |
| cpu_abort(env, "128 -> 64/64 division not implemented\n"); |
| #endif |
| } |
| } |
| |
| static inline uint64_t get_address(int x2, int b2, int d2) |
| { |
| uint64_t r = d2; |
| |
| if (x2) { |
| r += env->regs[x2]; |
| } |
| |
| if (b2) { |
| r += env->regs[b2]; |
| } |
| |
| /* 31-Bit mode */ |
| if (!(env->psw.mask & PSW_MASK_64)) { |
| r &= 0x7fffffff; |
| } |
| |
| return r; |
| } |
| |
| static inline uint64_t get_address_31fix(int reg) |
| { |
| uint64_t r = env->regs[reg]; |
| |
| /* 31-Bit mode */ |
| if (!(env->psw.mask & PSW_MASK_64)) { |
| r &= 0x7fffffff; |
| } |
| |
| return r; |
| } |
| |
| /* search string (c is byte to search, r2 is string, r1 end of string) */ |
| uint32_t HELPER(srst)(uint32_t c, uint32_t r1, uint32_t r2) |
| { |
| uint64_t i; |
| uint32_t cc = 2; |
| uint64_t str = get_address_31fix(r2); |
| uint64_t end = get_address_31fix(r1); |
| |
| HELPER_LOG("%s: c %d *r1 0x%" PRIx64 " *r2 0x%" PRIx64 "\n", __FUNCTION__, |
| c, env->regs[r1], env->regs[r2]); |
| |
| for (i = str; i != end; i++) { |
| if (ldub(i) == c) { |
| env->regs[r1] = i; |
| cc = 1; |
| break; |
| } |
| } |
| |
| return cc; |
| } |
| |
| /* unsigned string compare (c is string terminator) */ |
| uint32_t HELPER(clst)(uint32_t c, uint32_t r1, uint32_t r2) |
| { |
| uint64_t s1 = get_address_31fix(r1); |
| uint64_t s2 = get_address_31fix(r2); |
| uint8_t v1, v2; |
| uint32_t cc; |
| c = c & 0xff; |
| #ifdef CONFIG_USER_ONLY |
| if (!c) { |
| HELPER_LOG("%s: comparing '%s' and '%s'\n", |
| __FUNCTION__, (char*)g2h(s1), (char*)g2h(s2)); |
| } |
| #endif |
| for (;;) { |
| v1 = ldub(s1); |
| v2 = ldub(s2); |
| if ((v1 == c || v2 == c) || (v1 != v2)) { |
| break; |
| } |
| s1++; |
| s2++; |
| } |
| |
| if (v1 == v2) { |
| cc = 0; |
| } else { |
| cc = (v1 < v2) ? 1 : 2; |
| /* FIXME: 31-bit mode! */ |
| env->regs[r1] = s1; |
| env->regs[r2] = s2; |
| } |
| return cc; |
| } |
| |
| /* move page */ |
| void HELPER(mvpg)(uint64_t r0, uint64_t r1, uint64_t r2) |
| { |
| /* XXX missing r0 handling */ |
| #ifdef CONFIG_USER_ONLY |
| int i; |
| |
| for (i = 0; i < TARGET_PAGE_SIZE; i++) { |
| stb(r1 + i, ldub(r2 + i)); |
| } |
| #else |
| mvc_fast_memmove(env, TARGET_PAGE_SIZE, r1, r2); |
| #endif |
| } |
| |
| /* string copy (c is string terminator) */ |
| void HELPER(mvst)(uint32_t c, uint32_t r1, uint32_t r2) |
| { |
| uint64_t dest = get_address_31fix(r1); |
| uint64_t src = get_address_31fix(r2); |
| uint8_t v; |
| c = c & 0xff; |
| #ifdef CONFIG_USER_ONLY |
| if (!c) { |
| HELPER_LOG("%s: copy '%s' to 0x%lx\n", __FUNCTION__, (char*)g2h(src), |
| dest); |
| } |
| #endif |
| for (;;) { |
| v = ldub(src); |
| stb(dest, v); |
| if (v == c) { |
| break; |
| } |
| src++; |
| dest++; |
| } |
| env->regs[r1] = dest; /* FIXME: 31-bit mode! */ |
| } |
| |
| /* compare and swap 64-bit */ |
| uint32_t HELPER(csg)(uint32_t r1, uint64_t a2, uint32_t r3) |
| { |
| /* FIXME: locking? */ |
| uint32_t cc; |
| uint64_t v2 = ldq(a2); |
| if (env->regs[r1] == v2) { |
| cc = 0; |
| stq(a2, env->regs[r3]); |
| } else { |
| cc = 1; |
| env->regs[r1] = v2; |
| } |
| return cc; |
| } |
| |
| /* compare double and swap 64-bit */ |
| uint32_t HELPER(cdsg)(uint32_t r1, uint64_t a2, uint32_t r3) |
| { |
| /* FIXME: locking? */ |
| uint32_t cc; |
| uint64_t v2_hi = ldq(a2); |
| uint64_t v2_lo = ldq(a2 + 8); |
| uint64_t v1_hi = env->regs[r1]; |
| uint64_t v1_lo = env->regs[r1 + 1]; |
| |
| if ((v1_hi == v2_hi) && (v1_lo == v2_lo)) { |
| cc = 0; |
| stq(a2, env->regs[r3]); |
| stq(a2 + 8, env->regs[r3 + 1]); |
| } else { |
| cc = 1; |
| env->regs[r1] = v2_hi; |
| env->regs[r1 + 1] = v2_lo; |
| } |
| |
| return cc; |
| } |
| |
| /* compare and swap 32-bit */ |
| uint32_t HELPER(cs)(uint32_t r1, uint64_t a2, uint32_t r3) |
| { |
| /* FIXME: locking? */ |
| uint32_t cc; |
| HELPER_LOG("%s: r1 %d a2 0x%lx r3 %d\n", __FUNCTION__, r1, a2, r3); |
| uint32_t v2 = ldl(a2); |
| if (((uint32_t)env->regs[r1]) == v2) { |
| cc = 0; |
| stl(a2, (uint32_t)env->regs[r3]); |
| } else { |
| cc = 1; |
| env->regs[r1] = (env->regs[r1] & 0xffffffff00000000ULL) | v2; |
| } |
| return cc; |
| } |
| |
| static uint32_t helper_icm(uint32_t r1, uint64_t address, uint32_t mask) |
| { |
| int pos = 24; /* top of the lower half of r1 */ |
| uint64_t rmask = 0xff000000ULL; |
| uint8_t val = 0; |
| int ccd = 0; |
| uint32_t cc = 0; |
| |
| while (mask) { |
| if (mask & 8) { |
| env->regs[r1] &= ~rmask; |
| val = ldub(address); |
| if ((val & 0x80) && !ccd) { |
| cc = 1; |
| } |
| ccd = 1; |
| if (val && cc == 0) { |
| cc = 2; |
| } |
| env->regs[r1] |= (uint64_t)val << pos; |
| address++; |
| } |
| mask = (mask << 1) & 0xf; |
| pos -= 8; |
| rmask >>= 8; |
| } |
| |
| return cc; |
| } |
| |
| /* execute instruction |
| this instruction executes an insn modified with the contents of r1 |
| it does not change the executed instruction in memory |
| it does not change the program counter |
| in other words: tricky... |
| currently implemented by interpreting the cases it is most commonly used in |
| */ |
| uint32_t HELPER(ex)(uint32_t cc, uint64_t v1, uint64_t addr, uint64_t ret) |
| { |
| uint16_t insn = lduw_code(addr); |
| HELPER_LOG("%s: v1 0x%lx addr 0x%lx insn 0x%x\n", __FUNCTION__, v1, addr, |
| insn); |
| if ((insn & 0xf0ff) == 0xd000) { |
| uint32_t l, insn2, b1, b2, d1, d2; |
| l = v1 & 0xff; |
| insn2 = ldl_code(addr + 2); |
| b1 = (insn2 >> 28) & 0xf; |
| b2 = (insn2 >> 12) & 0xf; |
| d1 = (insn2 >> 16) & 0xfff; |
| d2 = insn2 & 0xfff; |
| switch (insn & 0xf00) { |
| case 0x200: |
| helper_mvc(l, get_address(0, b1, d1), get_address(0, b2, d2)); |
| break; |
| case 0x500: |
| cc = helper_clc(l, get_address(0, b1, d1), get_address(0, b2, d2)); |
| break; |
| case 0x700: |
| cc = helper_xc(l, get_address(0, b1, d1), get_address(0, b2, d2)); |
| break; |
| default: |
| goto abort; |
| break; |
| } |
| } else if ((insn & 0xff00) == 0x0a00) { |
| /* supervisor call */ |
| HELPER_LOG("%s: svc %ld via execute\n", __FUNCTION__, (insn|v1) & 0xff); |
| env->psw.addr = ret - 4; |
| env->int_svc_code = (insn|v1) & 0xff; |
| env->int_svc_ilc = 4; |
| helper_exception(EXCP_SVC); |
| } else if ((insn & 0xff00) == 0xbf00) { |
| uint32_t insn2, r1, r3, b2, d2; |
| insn2 = ldl_code(addr + 2); |
| r1 = (insn2 >> 20) & 0xf; |
| r3 = (insn2 >> 16) & 0xf; |
| b2 = (insn2 >> 12) & 0xf; |
| d2 = insn2 & 0xfff; |
| cc = helper_icm(r1, get_address(0, b2, d2), r3); |
| } else { |
| abort: |
| cpu_abort(env, "EXECUTE on instruction prefix 0x%x not implemented\n", |
| insn); |
| } |
| return cc; |
| } |
| |
| /* absolute value 32-bit */ |
| uint32_t HELPER(abs_i32)(int32_t val) |
| { |
| if (val < 0) { |
| return -val; |
| } else { |
| return val; |
| } |
| } |
| |
| /* negative absolute value 32-bit */ |
| int32_t HELPER(nabs_i32)(int32_t val) |
| { |
| if (val < 0) { |
| return val; |
| } else { |
| return -val; |
| } |
| } |
| |
| /* absolute value 64-bit */ |
| uint64_t HELPER(abs_i64)(int64_t val) |
| { |
| HELPER_LOG("%s: val 0x%" PRIx64 "\n", __FUNCTION__, val); |
| |
| if (val < 0) { |
| return -val; |
| } else { |
| return val; |
| } |
| } |
| |
| /* negative absolute value 64-bit */ |
| int64_t HELPER(nabs_i64)(int64_t val) |
| { |
| if (val < 0) { |
| return val; |
| } else { |
| return -val; |
| } |
| } |
| |
| /* add with carry 32-bit unsigned */ |
| uint32_t HELPER(addc_u32)(uint32_t cc, uint32_t v1, uint32_t v2) |
| { |
| uint32_t res; |
| |
| res = v1 + v2; |
| if (cc & 2) { |
| res++; |
| } |
| |
| return res; |
| } |
| |
| /* store character under mask high operates on the upper half of r1 */ |
| void HELPER(stcmh)(uint32_t r1, uint64_t address, uint32_t mask) |
| { |
| int pos = 56; /* top of the upper half of r1 */ |
| |
| while (mask) { |
| if (mask & 8) { |
| stb(address, (env->regs[r1] >> pos) & 0xff); |
| address++; |
| } |
| mask = (mask << 1) & 0xf; |
| pos -= 8; |
| } |
| } |
| |
| /* insert character under mask high; same as icm, but operates on the |
| upper half of r1 */ |
| uint32_t HELPER(icmh)(uint32_t r1, uint64_t address, uint32_t mask) |
| { |
| int pos = 56; /* top of the upper half of r1 */ |
| uint64_t rmask = 0xff00000000000000ULL; |
| uint8_t val = 0; |
| int ccd = 0; |
| uint32_t cc = 0; |
| |
| while (mask) { |
| if (mask & 8) { |
| env->regs[r1] &= ~rmask; |
| val = ldub(address); |
| if ((val & 0x80) && !ccd) { |
| cc = 1; |
| } |
| ccd = 1; |
| if (val && cc == 0) { |
| cc = 2; |
| } |
| env->regs[r1] |= (uint64_t)val << pos; |
| address++; |
| } |
| mask = (mask << 1) & 0xf; |
| pos -= 8; |
| rmask >>= 8; |
| } |
| |
| return cc; |
| } |
| |
| /* insert psw mask and condition code into r1 */ |
| void HELPER(ipm)(uint32_t cc, uint32_t r1) |
| { |
| uint64_t r = env->regs[r1]; |
| |
| r &= 0xffffffff00ffffffULL; |
| r |= (cc << 28) | ( (env->psw.mask >> 40) & 0xf ); |
| env->regs[r1] = r; |
| HELPER_LOG("%s: cc %d psw.mask 0x%lx r1 0x%lx\n", __FUNCTION__, |
| cc, env->psw.mask, r); |
| } |
| |
| /* load access registers r1 to r3 from memory at a2 */ |
| void HELPER(lam)(uint32_t r1, uint64_t a2, uint32_t r3) |
| { |
| int i; |
| |
| for (i = r1;; i = (i + 1) % 16) { |
| env->aregs[i] = ldl(a2); |
| a2 += 4; |
| |
| if (i == r3) { |
| break; |
| } |
| } |
| } |
| |
| /* store access registers r1 to r3 in memory at a2 */ |
| void HELPER(stam)(uint32_t r1, uint64_t a2, uint32_t r3) |
| { |
| int i; |
| |
| for (i = r1;; i = (i + 1) % 16) { |
| stl(a2, env->aregs[i]); |
| a2 += 4; |
| |
| if (i == r3) { |
| break; |
| } |
| } |
| } |
| |
| /* move long */ |
| uint32_t HELPER(mvcl)(uint32_t r1, uint32_t r2) |
| { |
| uint64_t destlen = env->regs[r1 + 1] & 0xffffff; |
| uint64_t dest = get_address_31fix(r1); |
| uint64_t srclen = env->regs[r2 + 1] & 0xffffff; |
| uint64_t src = get_address_31fix(r2); |
| uint8_t pad = src >> 24; |
| uint8_t v; |
| uint32_t cc; |
| |
| if (destlen == srclen) { |
| cc = 0; |
| } else if (destlen < srclen) { |
| cc = 1; |
| } else { |
| cc = 2; |
| } |
| |
| if (srclen > destlen) { |
| srclen = destlen; |
| } |
| |
| for (; destlen && srclen; src++, dest++, destlen--, srclen--) { |
| v = ldub(src); |
| stb(dest, v); |
| } |
| |
| for (; destlen; dest++, destlen--) { |
| stb(dest, pad); |
| } |
| |
| env->regs[r1 + 1] = destlen; |
| /* can't use srclen here, we trunc'ed it */ |
| env->regs[r2 + 1] -= src - env->regs[r2]; |
| env->regs[r1] = dest; |
| env->regs[r2] = src; |
| |
| return cc; |
| } |
| |
| /* move long extended another memcopy insn with more bells and whistles */ |
| uint32_t HELPER(mvcle)(uint32_t r1, uint64_t a2, uint32_t r3) |
| { |
| uint64_t destlen = env->regs[r1 + 1]; |
| uint64_t dest = env->regs[r1]; |
| uint64_t srclen = env->regs[r3 + 1]; |
| uint64_t src = env->regs[r3]; |
| uint8_t pad = a2 & 0xff; |
| uint8_t v; |
| uint32_t cc; |
| |
| if (!(env->psw.mask & PSW_MASK_64)) { |
| destlen = (uint32_t)destlen; |
| srclen = (uint32_t)srclen; |
| dest &= 0x7fffffff; |
| src &= 0x7fffffff; |
| } |
| |
| if (destlen == srclen) { |
| cc = 0; |
| } else if (destlen < srclen) { |
| cc = 1; |
| } else { |
| cc = 2; |
| } |
| |
| if (srclen > destlen) { |
| srclen = destlen; |
| } |
| |
| for (; destlen && srclen; src++, dest++, destlen--, srclen--) { |
| v = ldub(src); |
| stb(dest, v); |
| } |
| |
| for (; destlen; dest++, destlen--) { |
| stb(dest, pad); |
| } |
| |
| env->regs[r1 + 1] = destlen; |
| /* can't use srclen here, we trunc'ed it */ |
| /* FIXME: 31-bit mode! */ |
| env->regs[r3 + 1] -= src - env->regs[r3]; |
| env->regs[r1] = dest; |
| env->regs[r3] = src; |
| |
| return cc; |
| } |
| |
| /* compare logical long extended memcompare insn with padding */ |
| uint32_t HELPER(clcle)(uint32_t r1, uint64_t a2, uint32_t r3) |
| { |
| uint64_t destlen = env->regs[r1 + 1]; |
| uint64_t dest = get_address_31fix(r1); |
| uint64_t srclen = env->regs[r3 + 1]; |
| uint64_t src = get_address_31fix(r3); |
| uint8_t pad = a2 & 0xff; |
| uint8_t v1 = 0,v2 = 0; |
| uint32_t cc = 0; |
| |
| if (!(destlen || srclen)) { |
| return cc; |
| } |
| |
| if (srclen > destlen) { |
| srclen = destlen; |
| } |
| |
| for (; destlen || srclen; src++, dest++, destlen--, srclen--) { |
| v1 = srclen ? ldub(src) : pad; |
| v2 = destlen ? ldub(dest) : pad; |
| if (v1 != v2) { |
| cc = (v1 < v2) ? 1 : 2; |
| break; |
| } |
| } |
| |
| env->regs[r1 + 1] = destlen; |
| /* can't use srclen here, we trunc'ed it */ |
| env->regs[r3 + 1] -= src - env->regs[r3]; |
| env->regs[r1] = dest; |
| env->regs[r3] = src; |
| |
| return cc; |
| } |
| |
| /* subtract unsigned v2 from v1 with borrow */ |
| uint32_t HELPER(slb)(uint32_t cc, uint32_t r1, uint32_t v2) |
| { |
| uint32_t v1 = env->regs[r1]; |
| uint32_t res = v1 + (~v2) + (cc >> 1); |
| |
| env->regs[r1] = (env->regs[r1] & 0xffffffff00000000ULL) | res; |
| if (cc & 2) { |
| /* borrow */ |
| return v1 ? 1 : 0; |
| } else { |
| return v1 ? 3 : 2; |
| } |
| } |
| |
| /* subtract unsigned v2 from v1 with borrow */ |
| uint32_t HELPER(slbg)(uint32_t cc, uint32_t r1, uint64_t v1, uint64_t v2) |
| { |
| uint64_t res = v1 + (~v2) + (cc >> 1); |
| |
| env->regs[r1] = res; |
| if (cc & 2) { |
| /* borrow */ |
| return v1 ? 1 : 0; |
| } else { |
| return v1 ? 3 : 2; |
| } |
| } |
| |
| static inline int float_comp_to_cc(int float_compare) |
| { |
| switch (float_compare) { |
| case float_relation_equal: |
| return 0; |
| case float_relation_less: |
| return 1; |
| case float_relation_greater: |
| return 2; |
| case float_relation_unordered: |
| return 3; |
| default: |
| cpu_abort(env, "unknown return value for float compare\n"); |
| } |
| } |
| |
| /* condition codes for binary FP ops */ |
| static uint32_t set_cc_f32(float32 v1, float32 v2) |
| { |
| return float_comp_to_cc(float32_compare_quiet(v1, v2, &env->fpu_status)); |
| } |
| |
| static uint32_t set_cc_f64(float64 v1, float64 v2) |
| { |
| return float_comp_to_cc(float64_compare_quiet(v1, v2, &env->fpu_status)); |
| } |
| |
| /* condition codes for unary FP ops */ |
| static uint32_t set_cc_nz_f32(float32 v) |
| { |
| if (float32_is_any_nan(v)) { |
| return 3; |
| } else if (float32_is_zero(v)) { |
| return 0; |
| } else if (float32_is_neg(v)) { |
| return 1; |
| } else { |
| return 2; |
| } |
| } |
| |
| static uint32_t set_cc_nz_f64(float64 v) |
| { |
| if (float64_is_any_nan(v)) { |
| return 3; |
| } else if (float64_is_zero(v)) { |
| return 0; |
| } else if (float64_is_neg(v)) { |
| return 1; |
| } else { |
| return 2; |
| } |
| } |
| |
| static uint32_t set_cc_nz_f128(float128 v) |
| { |
| if (float128_is_any_nan(v)) { |
| return 3; |
| } else if (float128_is_zero(v)) { |
| return 0; |
| } else if (float128_is_neg(v)) { |
| return 1; |
| } else { |
| return 2; |
| } |
| } |
| |
| /* convert 32-bit int to 64-bit float */ |
| void HELPER(cdfbr)(uint32_t f1, int32_t v2) |
| { |
| HELPER_LOG("%s: converting %d to f%d\n", __FUNCTION__, v2, f1); |
| env->fregs[f1].d = int32_to_float64(v2, &env->fpu_status); |
| } |
| |
| /* convert 32-bit int to 128-bit float */ |
| void HELPER(cxfbr)(uint32_t f1, int32_t v2) |
| { |
| CPU_QuadU v1; |
| v1.q = int32_to_float128(v2, &env->fpu_status); |
| env->fregs[f1].ll = v1.ll.upper; |
| env->fregs[f1 + 2].ll = v1.ll.lower; |
| } |
| |
| /* convert 64-bit int to 32-bit float */ |
| void HELPER(cegbr)(uint32_t f1, int64_t v2) |
| { |
| HELPER_LOG("%s: converting %ld to f%d\n", __FUNCTION__, v2, f1); |
| env->fregs[f1].l.upper = int64_to_float32(v2, &env->fpu_status); |
| } |
| |
| /* convert 64-bit int to 64-bit float */ |
| void HELPER(cdgbr)(uint32_t f1, int64_t v2) |
| { |
| HELPER_LOG("%s: converting %ld to f%d\n", __FUNCTION__, v2, f1); |
| env->fregs[f1].d = int64_to_float64(v2, &env->fpu_status); |
| } |
| |
| /* convert 64-bit int to 128-bit float */ |
| void HELPER(cxgbr)(uint32_t f1, int64_t v2) |
| { |
| CPU_QuadU x1; |
| x1.q = int64_to_float128(v2, &env->fpu_status); |
| HELPER_LOG("%s: converted %ld to 0x%lx and 0x%lx\n", __FUNCTION__, v2, |
| x1.ll.upper, x1.ll.lower); |
| env->fregs[f1].ll = x1.ll.upper; |
| env->fregs[f1 + 2].ll = x1.ll.lower; |
| } |
| |
| /* convert 32-bit int to 32-bit float */ |
| void HELPER(cefbr)(uint32_t f1, int32_t v2) |
| { |
| env->fregs[f1].l.upper = int32_to_float32(v2, &env->fpu_status); |
| HELPER_LOG("%s: converting %d to 0x%d in f%d\n", __FUNCTION__, v2, |
| env->fregs[f1].l.upper, f1); |
| } |
| |
| /* 32-bit FP addition RR */ |
| uint32_t HELPER(aebr)(uint32_t f1, uint32_t f2) |
| { |
| env->fregs[f1].l.upper = float32_add(env->fregs[f1].l.upper, |
| env->fregs[f2].l.upper, |
| &env->fpu_status); |
| HELPER_LOG("%s: adding 0x%d resulting in 0x%d in f%d\n", __FUNCTION__, |
| env->fregs[f2].l.upper, env->fregs[f1].l.upper, f1); |
| |
| return set_cc_nz_f32(env->fregs[f1].l.upper); |
| } |
| |
| /* 64-bit FP addition RR */ |
| uint32_t HELPER(adbr)(uint32_t f1, uint32_t f2) |
| { |
| env->fregs[f1].d = float64_add(env->fregs[f1].d, env->fregs[f2].d, |
| &env->fpu_status); |
| HELPER_LOG("%s: adding 0x%ld resulting in 0x%ld in f%d\n", __FUNCTION__, |
| env->fregs[f2].d, env->fregs[f1].d, f1); |
| |
| return set_cc_nz_f64(env->fregs[f1].d); |
| } |
| |
| /* 32-bit FP subtraction RR */ |
| uint32_t HELPER(sebr)(uint32_t f1, uint32_t f2) |
| { |
| env->fregs[f1].l.upper = float32_sub(env->fregs[f1].l.upper, |
| env->fregs[f2].l.upper, |
| &env->fpu_status); |
| HELPER_LOG("%s: adding 0x%d resulting in 0x%d in f%d\n", __FUNCTION__, |
| env->fregs[f2].l.upper, env->fregs[f1].l.upper, f1); |
| |
| return set_cc_nz_f32(env->fregs[f1].l.upper); |
| } |
| |
| /* 64-bit FP subtraction RR */ |
| uint32_t HELPER(sdbr)(uint32_t f1, uint32_t f2) |
| { |
| env->fregs[f1].d = float64_sub(env->fregs[f1].d, env->fregs[f2].d, |
| &env->fpu_status); |
| HELPER_LOG("%s: subtracting 0x%ld resulting in 0x%ld in f%d\n", |
| __FUNCTION__, env->fregs[f2].d, env->fregs[f1].d, f1); |
| |
| return set_cc_nz_f64(env->fregs[f1].d); |
| } |
| |
| /* 32-bit FP division RR */ |
| void HELPER(debr)(uint32_t f1, uint32_t f2) |
| { |
| env->fregs[f1].l.upper = float32_div(env->fregs[f1].l.upper, |
| env->fregs[f2].l.upper, |
| &env->fpu_status); |
| } |
| |
| /* 128-bit FP division RR */ |
| void HELPER(dxbr)(uint32_t f1, uint32_t f2) |
| { |
| CPU_QuadU v1; |
| v1.ll.upper = env->fregs[f1].ll; |
| v1.ll.lower = env->fregs[f1 + 2].ll; |
| CPU_QuadU v2; |
| v2.ll.upper = env->fregs[f2].ll; |
| v2.ll.lower = env->fregs[f2 + 2].ll; |
| CPU_QuadU res; |
| res.q = float128_div(v1.q, v2.q, &env->fpu_status); |
| env->fregs[f1].ll = res.ll.upper; |
| env->fregs[f1 + 2].ll = res.ll.lower; |
| } |
| |
| /* 64-bit FP multiplication RR */ |
| void HELPER(mdbr)(uint32_t f1, uint32_t f2) |
| { |
| env->fregs[f1].d = float64_mul(env->fregs[f1].d, env->fregs[f2].d, |
| &env->fpu_status); |
| } |
| |
| /* 128-bit FP multiplication RR */ |
| void HELPER(mxbr)(uint32_t f1, uint32_t f2) |
| { |
| CPU_QuadU v1; |
| v1.ll.upper = env->fregs[f1].ll; |
| v1.ll.lower = env->fregs[f1 + 2].ll; |
| CPU_QuadU v2; |
| v2.ll.upper = env->fregs[f2].ll; |
| v2.ll.lower = env->fregs[f2 + 2].ll; |
| CPU_QuadU res; |
| res.q = float128_mul(v1.q, v2.q, &env->fpu_status); |
| env->fregs[f1].ll = res.ll.upper; |
| env->fregs[f1 + 2].ll = res.ll.lower; |
| } |
| |
| /* convert 32-bit float to 64-bit float */ |
| void HELPER(ldebr)(uint32_t r1, uint32_t r2) |
| { |
| env->fregs[r1].d = float32_to_float64(env->fregs[r2].l.upper, |
| &env->fpu_status); |
| } |
| |
| /* convert 128-bit float to 64-bit float */ |
| void HELPER(ldxbr)(uint32_t f1, uint32_t f2) |
| { |
| CPU_QuadU x2; |
| x2.ll.upper = env->fregs[f2].ll; |
| x2.ll.lower = env->fregs[f2 + 2].ll; |
| env->fregs[f1].d = float128_to_float64(x2.q, &env->fpu_status); |
| HELPER_LOG("%s: to 0x%ld\n", __FUNCTION__, env->fregs[f1].d); |
| } |
| |
| /* convert 64-bit float to 128-bit float */ |
| void HELPER(lxdbr)(uint32_t f1, uint32_t f2) |
| { |
| CPU_QuadU res; |
| res.q = float64_to_float128(env->fregs[f2].d, &env->fpu_status); |
| env->fregs[f1].ll = res.ll.upper; |
| env->fregs[f1 + 2].ll = res.ll.lower; |
| } |
| |
| /* convert 64-bit float to 32-bit float */ |
| void HELPER(ledbr)(uint32_t f1, uint32_t f2) |
| { |
| float64 d2 = env->fregs[f2].d; |
| env->fregs[f1].l.upper = float64_to_float32(d2, &env->fpu_status); |
| } |
| |
| /* convert 128-bit float to 32-bit float */ |
| void HELPER(lexbr)(uint32_t f1, uint32_t f2) |
| { |
| CPU_QuadU x2; |
| x2.ll.upper = env->fregs[f2].ll; |
| x2.ll.lower = env->fregs[f2 + 2].ll; |
| env->fregs[f1].l.upper = float128_to_float32(x2.q, &env->fpu_status); |
| HELPER_LOG("%s: to 0x%d\n", __FUNCTION__, env->fregs[f1].l.upper); |
| } |
| |
| /* absolute value of 32-bit float */ |
| uint32_t HELPER(lpebr)(uint32_t f1, uint32_t f2) |
| { |
| float32 v1; |
| float32 v2 = env->fregs[f2].d; |
| v1 = float32_abs(v2); |
| env->fregs[f1].d = v1; |
| return set_cc_nz_f32(v1); |
| } |
| |
| /* absolute value of 64-bit float */ |
| uint32_t HELPER(lpdbr)(uint32_t f1, uint32_t f2) |
| { |
| float64 v1; |
| float64 v2 = env->fregs[f2].d; |
| v1 = float64_abs(v2); |
| env->fregs[f1].d = v1; |
| return set_cc_nz_f64(v1); |
| } |
| |
| /* absolute value of 128-bit float */ |
| uint32_t HELPER(lpxbr)(uint32_t f1, uint32_t f2) |
| { |
| CPU_QuadU v1; |
| CPU_QuadU v2; |
| v2.ll.upper = env->fregs[f2].ll; |
| v2.ll.lower = env->fregs[f2 + 2].ll; |
| v1.q = float128_abs(v2.q); |
| env->fregs[f1].ll = v1.ll.upper; |
| env->fregs[f1 + 2].ll = v1.ll.lower; |
| return set_cc_nz_f128(v1.q); |
| } |
| |
| /* load and test 64-bit float */ |
| uint32_t HELPER(ltdbr)(uint32_t f1, uint32_t f2) |
| { |
| env->fregs[f1].d = env->fregs[f2].d; |
| return set_cc_nz_f64(env->fregs[f1].d); |
| } |
| |
| /* load and test 32-bit float */ |
| uint32_t HELPER(ltebr)(uint32_t f1, uint32_t f2) |
| { |
| env->fregs[f1].l.upper = env->fregs[f2].l.upper; |
| return set_cc_nz_f32(env->fregs[f1].l.upper); |
| } |
| |
| /* load and test 128-bit float */ |
| uint32_t HELPER(ltxbr)(uint32_t f1, uint32_t f2) |
| { |
| CPU_QuadU x; |
| x.ll.upper = env->fregs[f2].ll; |
| x.ll.lower = env->fregs[f2 + 2].ll; |
| env->fregs[f1].ll = x.ll.upper; |
| env->fregs[f1 + 2].ll = x.ll.lower; |
| return set_cc_nz_f128(x.q); |
| } |
| |
| /* load complement of 32-bit float */ |
| uint32_t HELPER(lcebr)(uint32_t f1, uint32_t f2) |
| { |
| env->fregs[f1].l.upper = float32_chs(env->fregs[f2].l.upper); |
| |
| return set_cc_nz_f32(env->fregs[f1].l.upper); |
| } |
| |
| /* load complement of 64-bit float */ |
| uint32_t HELPER(lcdbr)(uint32_t f1, uint32_t f2) |
| { |
| env->fregs[f1].d = float64_chs(env->fregs[f2].d); |
| |
| return set_cc_nz_f64(env->fregs[f1].d); |
| } |
| |
| /* load complement of 128-bit float */ |
| uint32_t HELPER(lcxbr)(uint32_t f1, uint32_t f2) |
| { |
| CPU_QuadU x1, x2; |
| x2.ll.upper = env->fregs[f2].ll; |
| x2.ll.lower = env->fregs[f2 + 2].ll; |
| x1.q = float128_chs(x2.q); |
| env->fregs[f1].ll = x1.ll.upper; |
| env->fregs[f1 + 2].ll = x1.ll.lower; |
| return set_cc_nz_f128(x1.q); |
| } |
| |
| /* 32-bit FP addition RM */ |
| void HELPER(aeb)(uint32_t f1, uint32_t val) |
| { |
| float32 v1 = env->fregs[f1].l.upper; |
| CPU_FloatU v2; |
| v2.l = val; |
| HELPER_LOG("%s: adding 0x%d from f%d and 0x%d\n", __FUNCTION__, |
| v1, f1, v2.f); |
| env->fregs[f1].l.upper = float32_add(v1, v2.f, &env->fpu_status); |
| } |
| |
| /* 32-bit FP division RM */ |
| void HELPER(deb)(uint32_t f1, uint32_t val) |
| { |
| float32 v1 = env->fregs[f1].l.upper; |
| CPU_FloatU v2; |
| v2.l = val; |
| HELPER_LOG("%s: dividing 0x%d from f%d by 0x%d\n", __FUNCTION__, |
| v1, f1, v2.f); |
| env->fregs[f1].l.upper = float32_div(v1, v2.f, &env->fpu_status); |
| } |
| |
| /* 32-bit FP multiplication RM */ |
| void HELPER(meeb)(uint32_t f1, uint32_t val) |
| { |
| float32 v1 = env->fregs[f1].l.upper; |
| CPU_FloatU v2; |
| v2.l = val; |
| HELPER_LOG("%s: multiplying 0x%d from f%d and 0x%d\n", __FUNCTION__, |
| v1, f1, v2.f); |
| env->fregs[f1].l.upper = float32_mul(v1, v2.f, &env->fpu_status); |
| } |
| |
| /* 32-bit FP compare RR */ |
| uint32_t HELPER(cebr)(uint32_t f1, uint32_t f2) |
| { |
| float32 v1 = env->fregs[f1].l.upper; |
| float32 v2 = env->fregs[f2].l.upper;; |
| HELPER_LOG("%s: comparing 0x%d from f%d and 0x%d\n", __FUNCTION__, |
| v1, f1, v2); |
| return set_cc_f32(v1, v2); |
| } |
| |
| /* 64-bit FP compare RR */ |
| uint32_t HELPER(cdbr)(uint32_t f1, uint32_t f2) |
| { |
| float64 v1 = env->fregs[f1].d; |
| float64 v2 = env->fregs[f2].d;; |
| HELPER_LOG("%s: comparing 0x%ld from f%d and 0x%ld\n", __FUNCTION__, |
| v1, f1, v2); |
| return set_cc_f64(v1, v2); |
| } |
| |
| /* 128-bit FP compare RR */ |
| uint32_t HELPER(cxbr)(uint32_t f1, uint32_t f2) |
| { |
| CPU_QuadU v1; |
| v1.ll.upper = env->fregs[f1].ll; |
| v1.ll.lower = env->fregs[f1 + 2].ll; |
| CPU_QuadU v2; |
| v2.ll.upper = env->fregs[f2].ll; |
| v2.ll.lower = env->fregs[f2 + 2].ll; |
| |
| return float_comp_to_cc(float128_compare_quiet(v1.q, v2.q, |
| &env->fpu_status)); |
| } |
| |
| /* 64-bit FP compare RM */ |
| uint32_t HELPER(cdb)(uint32_t f1, uint64_t a2) |
| { |
| float64 v1 = env->fregs[f1].d; |
| CPU_DoubleU v2; |
| v2.ll = ldq(a2); |
| HELPER_LOG("%s: comparing 0x%ld from f%d and 0x%lx\n", __FUNCTION__, v1, |
| f1, v2.d); |
| return set_cc_f64(v1, v2.d); |
| } |
| |
| /* 64-bit FP addition RM */ |
| uint32_t HELPER(adb)(uint32_t f1, uint64_t a2) |
| { |
| float64 v1 = env->fregs[f1].d; |
| CPU_DoubleU v2; |
| v2.ll = ldq(a2); |
| HELPER_LOG("%s: adding 0x%lx from f%d and 0x%lx\n", __FUNCTION__, |
| v1, f1, v2.d); |
| env->fregs[f1].d = v1 = float64_add(v1, v2.d, &env->fpu_status); |
| return set_cc_nz_f64(v1); |
| } |
| |
| /* 32-bit FP subtraction RM */ |
| void HELPER(seb)(uint32_t f1, uint32_t val) |
| { |
| float32 v1 = env->fregs[f1].l.upper; |
| CPU_FloatU v2; |
| v2.l = val; |
| env->fregs[f1].l.upper = float32_sub(v1, v2.f, &env->fpu_status); |
| } |
| |
| /* 64-bit FP subtraction RM */ |
| uint32_t HELPER(sdb)(uint32_t f1, uint64_t a2) |
| { |
| float64 v1 = env->fregs[f1].d; |
| CPU_DoubleU v2; |
| v2.ll = ldq(a2); |
| env->fregs[f1].d = v1 = float64_sub(v1, v2.d, &env->fpu_status); |
| return set_cc_nz_f64(v1); |
| } |
| |
| /* 64-bit FP multiplication RM */ |
| void HELPER(mdb)(uint32_t f1, uint64_t a2) |
| { |
| float64 v1 = env->fregs[f1].d; |
| CPU_DoubleU v2; |
| v2.ll = ldq(a2); |
| HELPER_LOG("%s: multiplying 0x%lx from f%d and 0x%ld\n", __FUNCTION__, |
| v1, f1, v2.d); |
| env->fregs[f1].d = float64_mul(v1, v2.d, &env->fpu_status); |
| } |
| |
| /* 64-bit FP division RM */ |
| void HELPER(ddb)(uint32_t f1, uint64_t a2) |
| { |
| float64 v1 = env->fregs[f1].d; |
| CPU_DoubleU v2; |
| v2.ll = ldq(a2); |
| HELPER_LOG("%s: dividing 0x%lx from f%d by 0x%ld\n", __FUNCTION__, |
| v1, f1, v2.d); |
| env->fregs[f1].d = float64_div(v1, v2.d, &env->fpu_status); |
| } |
| |
| static void set_round_mode(int m3) |
| { |
| switch (m3) { |
| case 0: |
| /* current mode */ |
| break; |
| case 1: |
| /* biased round no nearest */ |
| case 4: |
| /* round to nearest */ |
| set_float_rounding_mode(float_round_nearest_even, &env->fpu_status); |
| break; |
| case 5: |
| /* round to zero */ |
| set_float_rounding_mode(float_round_to_zero, &env->fpu_status); |
| break; |
| case 6: |
| /* round to +inf */ |
| set_float_rounding_mode(float_round_up, &env->fpu_status); |
| break; |
| case 7: |
| /* round to -inf */ |
| set_float_rounding_mode(float_round_down, &env->fpu_status); |
| break; |
| } |
| } |
| |
| /* convert 32-bit float to 64-bit int */ |
| uint32_t HELPER(cgebr)(uint32_t r1, uint32_t f2, uint32_t m3) |
| { |
| float32 v2 = env->fregs[f2].l.upper; |
| set_round_mode(m3); |
| env->regs[r1] = float32_to_int64(v2, &env->fpu_status); |
| return set_cc_nz_f32(v2); |
| } |
| |
| /* convert 64-bit float to 64-bit int */ |
| uint32_t HELPER(cgdbr)(uint32_t r1, uint32_t f2, uint32_t m3) |
| { |
| float64 v2 = env->fregs[f2].d; |
| set_round_mode(m3); |
| env->regs[r1] = float64_to_int64(v2, &env->fpu_status); |
| return set_cc_nz_f64(v2); |
| } |
| |
| /* convert 128-bit float to 64-bit int */ |
| uint32_t HELPER(cgxbr)(uint32_t r1, uint32_t f2, uint32_t m3) |
| { |
| CPU_QuadU v2; |
| v2.ll.upper = env->fregs[f2].ll; |
| v2.ll.lower = env->fregs[f2 + 2].ll; |
| set_round_mode(m3); |
| env->regs[r1] = float128_to_int64(v2.q, &env->fpu_status); |
| if (float128_is_any_nan(v2.q)) { |
| return 3; |
| } else if (float128_is_zero(v2.q)) { |
| return 0; |
| } else if (float128_is_neg(v2.q)) { |
| return 1; |
| } else { |
| return 2; |
| } |
| } |
| |
| /* convert 32-bit float to 32-bit int */ |
| uint32_t HELPER(cfebr)(uint32_t r1, uint32_t f2, uint32_t m3) |
| { |
| float32 v2 = env->fregs[f2].l.upper; |
| set_round_mode(m3); |
| env->regs[r1] = (env->regs[r1] & 0xffffffff00000000ULL) | |
| float32_to_int32(v2, &env->fpu_status); |
| return set_cc_nz_f32(v2); |
| } |
| |
| /* convert 64-bit float to 32-bit int */ |
| uint32_t HELPER(cfdbr)(uint32_t r1, uint32_t f2, uint32_t m3) |
| { |
| float64 v2 = env->fregs[f2].d; |
| set_round_mode(m3); |
| env->regs[r1] = (env->regs[r1] & 0xffffffff00000000ULL) | |
| float64_to_int32(v2, &env->fpu_status); |
| return set_cc_nz_f64(v2); |
| } |
| |
| /* convert 128-bit float to 32-bit int */ |
| uint32_t HELPER(cfxbr)(uint32_t r1, uint32_t f2, uint32_t m3) |
| { |
| CPU_QuadU v2; |
| v2.ll.upper = env->fregs[f2].ll; |
| v2.ll.lower = env->fregs[f2 + 2].ll; |
| env->regs[r1] = (env->regs[r1] & 0xffffffff00000000ULL) | |
| float128_to_int32(v2.q, &env->fpu_status); |
| return set_cc_nz_f128(v2.q); |
| } |
| |
| /* load 32-bit FP zero */ |
| void HELPER(lzer)(uint32_t f1) |
| { |
| env->fregs[f1].l.upper = float32_zero; |
| } |
| |
| /* load 64-bit FP zero */ |
| void HELPER(lzdr)(uint32_t f1) |
| { |
| env->fregs[f1].d = float64_zero; |
| } |
| |
| /* load 128-bit FP zero */ |
| void HELPER(lzxr)(uint32_t f1) |
| { |
| CPU_QuadU x; |
| x.q = float64_to_float128(float64_zero, &env->fpu_status); |
| env->fregs[f1].ll = x.ll.upper; |
| env->fregs[f1 + 1].ll = x.ll.lower; |
| } |
| |
| /* 128-bit FP subtraction RR */ |
| uint32_t HELPER(sxbr)(uint32_t f1, uint32_t f2) |
| { |
| CPU_QuadU v1; |
| v1.ll.upper = env->fregs[f1].ll; |
| v1.ll.lower = env->fregs[f1 + 2].ll; |
| CPU_QuadU v2; |
| v2.ll.upper = env->fregs[f2].ll; |
| v2.ll.lower = env->fregs[f2 + 2].ll; |
| CPU_QuadU res; |
| res.q = float128_sub(v1.q, v2.q, &env->fpu_status); |
| env->fregs[f1].ll = res.ll.upper; |
| env->fregs[f1 + 2].ll = res.ll.lower; |
| return set_cc_nz_f128(res.q); |
| } |
| |
| /* 128-bit FP addition RR */ |
| uint32_t HELPER(axbr)(uint32_t f1, uint32_t f2) |
| { |
| CPU_QuadU v1; |
| v1.ll.upper = env->fregs[f1].ll; |
| v1.ll.lower = env->fregs[f1 + 2].ll; |
| CPU_QuadU v2; |
| v2.ll.upper = env->fregs[f2].ll; |
| v2.ll.lower = env->fregs[f2 + 2].ll; |
| CPU_QuadU res; |
| res.q = float128_add(v1.q, v2.q, &env->fpu_status); |
| env->fregs[f1].ll = res.ll.upper; |
| env->fregs[f1 + 2].ll = res.ll.lower; |
| return set_cc_nz_f128(res.q); |
| } |
| |
| /* 32-bit FP multiplication RR */ |
| void HELPER(meebr)(uint32_t f1, uint32_t f2) |
| { |
| env->fregs[f1].l.upper = float32_mul(env->fregs[f1].l.upper, |
| env->fregs[f2].l.upper, |
| &env->fpu_status); |
| } |
| |
| /* 64-bit FP division RR */ |
| void HELPER(ddbr)(uint32_t f1, uint32_t f2) |
| { |
| env->fregs[f1].d = float64_div(env->fregs[f1].d, env->fregs[f2].d, |
| &env->fpu_status); |
| } |
| |
| /* 64-bit FP multiply and add RM */ |
| void HELPER(madb)(uint32_t f1, uint64_t a2, uint32_t f3) |
| { |
| HELPER_LOG("%s: f1 %d a2 0x%lx f3 %d\n", __FUNCTION__, f1, a2, f3); |
| CPU_DoubleU v2; |
| v2.ll = ldq(a2); |
| env->fregs[f1].d = float64_add(env->fregs[f1].d, |
| float64_mul(v2.d, env->fregs[f3].d, |
| &env->fpu_status), |
| &env->fpu_status); |
| } |
| |
| /* 64-bit FP multiply and add RR */ |
| void HELPER(madbr)(uint32_t f1, uint32_t f3, uint32_t f2) |
| { |
| HELPER_LOG("%s: f1 %d f2 %d f3 %d\n", __FUNCTION__, f1, f2, f3); |
| env->fregs[f1].d = float64_add(float64_mul(env->fregs[f2].d, |
| env->fregs[f3].d, |
| &env->fpu_status), |
| env->fregs[f1].d, &env->fpu_status); |
| } |
| |
| /* 64-bit FP multiply and subtract RR */ |
| void HELPER(msdbr)(uint32_t f1, uint32_t f3, uint32_t f2) |
| { |
| HELPER_LOG("%s: f1 %d f2 %d f3 %d\n", __FUNCTION__, f1, f2, f3); |
| env->fregs[f1].d = float64_sub(float64_mul(env->fregs[f2].d, |
| env->fregs[f3].d, |
| &env->fpu_status), |
| env->fregs[f1].d, &env->fpu_status); |
| } |
| |
| /* 32-bit FP multiply and add RR */ |
| void HELPER(maebr)(uint32_t f1, uint32_t f3, uint32_t f2) |
| { |
| env->fregs[f1].l.upper = float32_add(env->fregs[f1].l.upper, |
| float32_mul(env->fregs[f2].l.upper, |
| env->fregs[f3].l.upper, |
| &env->fpu_status), |
| &env->fpu_status); |
| } |
| |
| /* convert 64-bit float to 128-bit float */ |
| void HELPER(lxdb)(uint32_t f1, uint64_t a2) |
| { |
| CPU_DoubleU v2; |
| v2.ll = ldq(a2); |
| CPU_QuadU v1; |
| v1.q = float64_to_float128(v2.d, &env->fpu_status); |
| env->fregs[f1].ll = v1.ll.upper; |
| env->fregs[f1 + 2].ll = v1.ll.lower; |
| } |
| |
| /* test data class 32-bit */ |
| uint32_t HELPER(tceb)(uint32_t f1, uint64_t m2) |
| { |
| float32 v1 = env->fregs[f1].l.upper; |
| int neg = float32_is_neg(v1); |
| uint32_t cc = 0; |
| |
| HELPER_LOG("%s: v1 0x%lx m2 0x%lx neg %d\n", __FUNCTION__, (long)v1, m2, neg); |
| if ((float32_is_zero(v1) && (m2 & (1 << (11-neg)))) || |
| (float32_is_infinity(v1) && (m2 & (1 << (5-neg)))) || |
| (float32_is_any_nan(v1) && (m2 & (1 << (3-neg)))) || |
| (float32_is_signaling_nan(v1) && (m2 & (1 << (1-neg))))) { |
| cc = 1; |
| } else if (m2 & (1 << (9-neg))) { |
| /* assume normalized number */ |
| cc = 1; |
| } |
| |
| /* FIXME: denormalized? */ |
| return cc; |
| } |
| |
| /* test data class 64-bit */ |
| uint32_t HELPER(tcdb)(uint32_t f1, uint64_t m2) |
| { |
| float64 v1 = env->fregs[f1].d; |
| int neg = float64_is_neg(v1); |
| uint32_t cc = 0; |
| |
| HELPER_LOG("%s: v1 0x%lx m2 0x%lx neg %d\n", __FUNCTION__, v1, m2, neg); |
| if ((float64_is_zero(v1) && (m2 & (1 << (11-neg)))) || |
| (float64_is_infinity(v1) && (m2 & (1 << (5-neg)))) || |
| (float64_is_any_nan(v1) && (m2 & (1 << (3-neg)))) || |
| (float64_is_signaling_nan(v1) && (m2 & (1 << (1-neg))))) { |
| cc = 1; |
| } else if (m2 & (1 << (9-neg))) { |
| /* assume normalized number */ |
| cc = 1; |
| } |
| /* FIXME: denormalized? */ |
| return cc; |
| } |
| |
| /* test data class 128-bit */ |
| uint32_t HELPER(tcxb)(uint32_t f1, uint64_t m2) |
| { |
| CPU_QuadU v1; |
| uint32_t cc = 0; |
| v1.ll.upper = env->fregs[f1].ll; |
| v1.ll.lower = env->fregs[f1 + 2].ll; |
| |
| int neg = float128_is_neg(v1.q); |
| if ((float128_is_zero(v1.q) && (m2 & (1 << (11-neg)))) || |
| (float128_is_infinity(v1.q) && (m2 & (1 << (5-neg)))) || |
| (float128_is_any_nan(v1.q) && (m2 & (1 << (3-neg)))) || |
| (float128_is_signaling_nan(v1.q) && (m2 & (1 << (1-neg))))) { |
| cc = 1; |
| } else if (m2 & (1 << (9-neg))) { |
| /* assume normalized number */ |
| cc = 1; |
| } |
| /* FIXME: denormalized? */ |
| return cc; |
| } |
| |
| /* find leftmost one */ |
| uint32_t HELPER(flogr)(uint32_t r1, uint64_t v2) |
| { |
| uint64_t res = 0; |
| uint64_t ov2 = v2; |
| |
| while (!(v2 & 0x8000000000000000ULL) && v2) { |
| v2 <<= 1; |
| res++; |
| } |
| |
| if (!v2) { |
| env->regs[r1] = 64; |
| env->regs[r1 + 1] = 0; |
| return 0; |
| } else { |
| env->regs[r1] = res; |
| env->regs[r1 + 1] = ov2 & ~(0x8000000000000000ULL >> res); |
| return 2; |
| } |
| } |
| |
| /* square root 64-bit RR */ |
| void HELPER(sqdbr)(uint32_t f1, uint32_t f2) |
| { |
| env->fregs[f1].d = float64_sqrt(env->fregs[f2].d, &env->fpu_status); |
| } |
| |
| static inline uint64_t cksm_overflow(uint64_t cksm) |
| { |
| if (cksm > 0xffffffffULL) { |
| cksm &= 0xffffffffULL; |
| cksm++; |
| } |
| return cksm; |
| } |
| |
| /* checksum */ |
| void HELPER(cksm)(uint32_t r1, uint32_t r2) |
| { |
| uint64_t src = get_address_31fix(r2); |
| uint64_t src_len = env->regs[(r2 + 1) & 15]; |
| uint64_t cksm = 0; |
| |
| while (src_len >= 4) { |
| cksm += ldl(src); |
| cksm = cksm_overflow(cksm); |
| |
| /* move to next word */ |
| src_len -= 4; |
| src += 4; |
| } |
| |
| switch (src_len) { |
| case 0: |
| break; |
| case 1: |
| cksm += ldub(src); |
| cksm = cksm_overflow(cksm); |
| break; |
| case 2: |
| cksm += lduw(src); |
| cksm = cksm_overflow(cksm); |
| break; |
| case 3: |
| /* XXX check if this really is correct */ |
| cksm += lduw(src) << 8; |
| cksm += ldub(src + 2); |
| cksm = cksm_overflow(cksm); |
| break; |
| } |
| |
| /* indicate we've processed everything */ |
| env->regs[(r2 + 1) & 15] = 0; |
| |
| /* store result */ |
| env->regs[r1] = (env->regs[r1] & 0xffffffff00000000ULL) | (uint32_t)cksm; |
| } |
| |
| static inline uint32_t cc_calc_ltgt_32(CPUState *env, int32_t src, |
| int32_t dst) |
| { |
| if (src == dst) { |
| return 0; |
| } else if (src < dst) { |
| return 1; |
| } else { |
| return 2; |
| } |
| } |
| |
| static inline uint32_t cc_calc_ltgt0_32(CPUState *env, int32_t dst) |
| { |
| return cc_calc_ltgt_32(env, dst, 0); |
| } |
| |
| static inline uint32_t cc_calc_ltgt_64(CPUState *env, int64_t src, |
| int64_t dst) |
| { |
| if (src == dst) { |
| return 0; |
| } else if (src < dst) { |
| return 1; |
| } else { |
| return 2; |
| } |
| } |
| |
| static inline uint32_t cc_calc_ltgt0_64(CPUState *env, int64_t dst) |
| { |
| return cc_calc_ltgt_64(env, dst, 0); |
| } |
| |
| static inline uint32_t cc_calc_ltugtu_32(CPUState *env, uint32_t src, |
| uint32_t dst) |
| { |
| if (src == dst) { |
| return 0; |
| } else if (src < dst) { |
| return 1; |
| } else { |
| return 2; |
| } |
| } |
| |
| static inline uint32_t cc_calc_ltugtu_64(CPUState *env, uint64_t src, |
| uint64_t dst) |
| { |
| if (src == dst) { |
| return 0; |
| } else if (src < dst) { |
| return 1; |
| } else { |
| return 2; |
| } |
| } |
| |
| static inline uint32_t cc_calc_tm_32(CPUState *env, uint32_t val, uint32_t mask) |
| { |
| HELPER_LOG("%s: val 0x%x mask 0x%x\n", __FUNCTION__, val, mask); |
| uint16_t r = val & mask; |
| if (r == 0 || mask == 0) { |
| return 0; |
| } else if (r == mask) { |
| return 3; |
| } else { |
| return 1; |
| } |
| } |
| |
| /* set condition code for test under mask */ |
| static inline uint32_t cc_calc_tm_64(CPUState *env, uint64_t val, uint32_t mask) |
| { |
| uint16_t r = val & mask; |
| HELPER_LOG("%s: val 0x%lx mask 0x%x r 0x%x\n", __FUNCTION__, val, mask, r); |
| if (r == 0 || mask == 0) { |
| return 0; |
| } else if (r == mask) { |
| return 3; |
| } else { |
| while (!(mask & 0x8000)) { |
| mask <<= 1; |
| val <<= 1; |
| } |
| if (val & 0x8000) { |
| return 2; |
| } else { |
| return 1; |
| } |
| } |
| } |
| |
| static inline uint32_t cc_calc_nz(CPUState *env, uint64_t dst) |
| { |
| return !!dst; |
| } |
| |
| static inline uint32_t cc_calc_add_64(CPUState *env, int64_t a1, int64_t a2, |
| int64_t ar) |
| { |
| if ((a1 > 0 && a2 > 0 && ar < 0) || (a1 < 0 && a2 < 0 && ar > 0)) { |
| return 3; /* overflow */ |
| } else { |
| if (ar < 0) { |
| return 1; |
| } else if (ar > 0) { |
| return 2; |
| } else { |
| return 0; |
| } |
| } |
| } |
| |
| static inline uint32_t cc_calc_addu_64(CPUState *env, uint64_t a1, uint64_t a2, |
| uint64_t ar) |
| { |
| if (ar == 0) { |
| if (a1) { |
| return 2; |
| } else { |
| return 0; |
| } |
| } else { |
| if (ar < a1 || ar < a2) { |
| return 3; |
| } else { |
| return 1; |
| } |
| } |
| } |
| |
| static inline uint32_t cc_calc_sub_64(CPUState *env, int64_t a1, int64_t a2, |
| int64_t ar) |
| { |
| if ((a1 > 0 && a2 < 0 && ar < 0) || (a1 < 0 && a2 > 0 && ar > 0)) { |
| return 3; /* overflow */ |
| } else { |
| if (ar < 0) { |
| return 1; |
| } else if (ar > 0) { |
| return 2; |
| } else { |
| return 0; |
| } |
| } |
| } |
| |
| static inline uint32_t cc_calc_subu_64(CPUState *env, uint64_t a1, uint64_t a2, |
| uint64_t ar) |
| { |
| if (ar == 0) { |
| return 2; |
| } else { |
| if (a2 > a1) { |
| return 1; |
| } else { |
| return 3; |
| } |
| } |
| } |
| |
| static inline uint32_t cc_calc_abs_64(CPUState *env, int64_t dst) |
| { |
| if ((uint64_t)dst == 0x8000000000000000ULL) { |
| return 3; |
| } else if (dst) { |
| return 1; |
| } else { |
| return 0; |
| } |
| } |
| |
| static inline uint32_t cc_calc_nabs_64(CPUState *env, int64_t dst) |
| { |
| return !!dst; |
| } |
| |
| static inline uint32_t cc_calc_comp_64(CPUState *env, int64_t dst) |
| { |
| if ((uint64_t)dst == 0x8000000000000000ULL) { |
| return 3; |
| } else if (dst < 0) { |
| return 1; |
| } else if (dst > 0) { |
| return 2; |
| } else { |
| return 0; |
| } |
| } |
| |
| |
| static inline uint32_t cc_calc_add_32(CPUState *env, int32_t a1, int32_t a2, |
| int32_t ar) |
| { |
| if ((a1 > 0 && a2 > 0 && ar < 0) || (a1 < 0 && a2 < 0 && ar > 0)) { |
| return 3; /* overflow */ |
| } else { |
| if (ar < 0) { |
| return 1; |
| } else if (ar > 0) { |
| return 2; |
| } else { |
| return 0; |
| } |
| } |
| } |
| |
| static inline uint32_t cc_calc_addu_32(CPUState *env, uint32_t a1, uint32_t a2, |
| uint32_t ar) |
| { |
| if (ar == 0) { |
| if (a1) { |
| return 2; |
| } else { |
| return 0; |
| } |
| } else { |
| if (ar < a1 || ar < a2) { |
| return 3; |
| } else { |
| return 1; |
| } |
| } |
| } |
| |
| static inline uint32_t cc_calc_sub_32(CPUState *env, int32_t a1, int32_t a2, |
| int32_t ar) |
| { |
| if ((a1 > 0 && a2 < 0 && ar < 0) || (a1 < 0 && a2 > 0 && ar > 0)) { |
| return 3; /* overflow */ |
| } else { |
| if (ar < 0) { |
| return 1; |
| } else if (ar > 0) { |
| return 2; |
| } else { |
| return 0; |
| } |
| } |
| } |
| |
| static inline uint32_t cc_calc_subu_32(CPUState *env, uint32_t a1, uint32_t a2, |
| uint32_t ar) |
| { |
| if (ar == 0) { |
| return 2; |
| } else { |
| if (a2 > a1) { |
| return 1; |
| } else { |
| return 3; |
| } |
| } |
| } |
| |
| static inline uint32_t cc_calc_abs_32(CPUState *env, int32_t dst) |
| { |
| if ((uint32_t)dst == 0x80000000UL) { |
| return 3; |
| } else if (dst) { |
| return 1; |
| } else { |
| return 0; |
| } |
| } |
| |
| static inline uint32_t cc_calc_nabs_32(CPUState *env, int32_t dst) |
| { |
| return !!dst; |
| } |
| |
| static inline uint32_t cc_calc_comp_32(CPUState *env, int32_t dst) |
| { |
| if ((uint32_t)dst == 0x80000000UL) { |
| return 3; |
| } else if (dst < 0) { |
| return 1; |
| } else if (dst > 0) { |
| return 2; |
| } else { |
| return 0; |
| } |
| } |
| |
| /* calculate condition code for insert character under mask insn */ |
| static inline uint32_t cc_calc_icm_32(CPUState *env, uint32_t mask, uint32_t val) |
| { |
| HELPER_LOG("%s: mask 0x%x val %d\n", __FUNCTION__, mask, val); |
| uint32_t cc; |
| |
| if (mask == 0xf) { |
| if (!val) { |
| return 0; |
| } else if (val & 0x80000000) { |
| return 1; |
| } else { |
| return 2; |
| } |
| } |
| |
| if (!val || !mask) { |
| cc = 0; |
| } else { |
| while (mask != 1) { |
| mask >>= 1; |
| val >>= 8; |
| } |
| if (val & 0x80) { |
| cc = 1; |
| } else { |
| cc = 2; |
| } |
| } |
| return cc; |
| } |
| |
| static inline uint32_t cc_calc_slag(CPUState *env, uint64_t src, uint64_t shift) |
| { |
| uint64_t mask = ((1ULL << shift) - 1ULL) << (64 - shift); |
| uint64_t match, r; |
| |
| /* check if the sign bit stays the same */ |
| if (src & (1ULL << 63)) { |
| match = mask; |
| } else { |
| match = 0; |
| } |
| |
| if ((src & mask) != match) { |
| /* overflow */ |
| return 3; |
| } |
| |
| r = ((src << shift) & ((1ULL << 63) - 1)) | (src & (1ULL << 63)); |
| |
| if ((int64_t)r == 0) { |
| return 0; |
| } else if ((int64_t)r < 0) { |
| return 1; |
| } |
| |
| return 2; |
| } |
| |
| |
| static inline uint32_t do_calc_cc(CPUState *env, uint32_t cc_op, uint64_t src, |
| uint64_t dst, uint64_t vr) |
| { |
| uint32_t r = 0; |
| |
| switch (cc_op) { |
| case CC_OP_CONST0: |
| case CC_OP_CONST1: |
| case CC_OP_CONST2: |
| case CC_OP_CONST3: |
| /* cc_op value _is_ cc */ |
| r = cc_op; |
| break; |
| case CC_OP_LTGT0_32: |
| r = cc_calc_ltgt0_32(env, dst); |
| break; |
| case CC_OP_LTGT0_64: |
| r = cc_calc_ltgt0_64(env, dst); |
| break; |
| case CC_OP_LTGT_32: |
| r = cc_calc_ltgt_32(env, src, dst); |
| break; |
| case CC_OP_LTGT_64: |
| r = cc_calc_ltgt_64(env, src, dst); |
| break; |
| case CC_OP_LTUGTU_32: |
| r = cc_calc_ltugtu_32(env, src, dst); |
| break; |
| case CC_OP_LTUGTU_64: |
| r = cc_calc_ltugtu_64(env, src, dst); |
| break; |
| case CC_OP_TM_32: |
| r = cc_calc_tm_32(env, src, dst); |
| break; |
| case CC_OP_TM_64: |
| r = cc_calc_tm_64(env, src, dst); |
| break; |
| case CC_OP_NZ: |
| r = cc_calc_nz(env, dst); |
| break; |
| case CC_OP_ADD_64: |
| r = cc_calc_add_64(env, src, dst, vr); |
| break; |
| case CC_OP_ADDU_64: |
| r = cc_calc_addu_64(env, src, dst, vr); |
| break; |
| case CC_OP_SUB_64: |
| r = cc_calc_sub_64(env, src, dst, vr); |
| break; |
| case CC_OP_SUBU_64: |
| r = cc_calc_subu_64(env, src, dst, vr); |
| break; |
| case CC_OP_ABS_64: |
| r = cc_calc_abs_64(env, dst); |
| break; |
| case CC_OP_NABS_64: |
| r = cc_calc_nabs_64(env, dst); |
| break; |
| case CC_OP_COMP_64: |
| r = cc_calc_comp_64(env, dst); |
| break; |
| |
| case CC_OP_ADD_32: |
| r = cc_calc_add_32(env, src, dst, vr); |
| break; |
| case CC_OP_ADDU_32: |
| r = cc_calc_addu_32(env, src, dst, vr); |
| break; |
| case CC_OP_SUB_32: |
| r = cc_calc_sub_32(env, src, dst, vr); |
| break; |
| case CC_OP_SUBU_32: |
| r = cc_calc_subu_32(env, src, dst, vr); |
| break; |
| case CC_OP_ABS_32: |
| r = cc_calc_abs_64(env, dst); |
| break; |
| case CC_OP_NABS_32: |
| r = cc_calc_nabs_64(env, dst); |
| break; |
| case CC_OP_COMP_32: |
| r = cc_calc_comp_32(env, dst); |
| break; |
| |
| case CC_OP_ICM: |
| r = cc_calc_icm_32(env, src, dst); |
| break; |
| case CC_OP_SLAG: |
| r = cc_calc_slag(env, src, dst); |
| break; |
| |
| case CC_OP_LTGT_F32: |
| r = set_cc_f32(src, dst); |
| break; |
| case CC_OP_LTGT_F64: |
| r = set_cc_f64(src, dst); |
| break; |
| case CC_OP_NZ_F32: |
| r = set_cc_nz_f32(dst); |
| break; |
| case CC_OP_NZ_F64: |
| r = set_cc_nz_f64(dst); |
| break; |
| |
| default: |
| cpu_abort(env, "Unknown CC operation: %s\n", cc_name(cc_op)); |
| } |
| |
| HELPER_LOG("%s: %15s 0x%016lx 0x%016lx 0x%016lx = %d\n", __FUNCTION__, |
| cc_name(cc_op), src, dst, vr, r); |
| return r; |
| } |
| |
| uint32_t calc_cc(CPUState *env, uint32_t cc_op, uint64_t src, uint64_t dst, |
| uint64_t vr) |
| { |
| return do_calc_cc(env, cc_op, src, dst, vr); |
| } |
| |
| uint32_t HELPER(calc_cc)(uint32_t cc_op, uint64_t src, uint64_t dst, |
| uint64_t vr) |
| { |
| return do_calc_cc(env, cc_op, src, dst, vr); |
| } |
| |
| uint64_t HELPER(cvd)(int32_t bin) |
| { |
| /* positive 0 */ |
| uint64_t dec = 0x0c; |
| int shift = 4; |
| |
| if (bin < 0) { |
| bin = -bin; |
| dec = 0x0d; |
| } |
| |
| for (shift = 4; (shift < 64) && bin; shift += 4) { |
| int current_number = bin % 10; |
| |
| dec |= (current_number) << shift; |
| bin /= 10; |
| } |
| |
| return dec; |
| } |
| |
| void HELPER(unpk)(uint32_t len, uint64_t dest, uint64_t src) |
| { |
| int len_dest = len >> 4; |
| int len_src = len & 0xf; |
| uint8_t b; |
| int second_nibble = 0; |
| |
| dest += len_dest; |
| src += len_src; |
| |
| /* last byte is special, it only flips the nibbles */ |
| b = ldub(src); |
| stb(dest, (b << 4) | (b >> 4)); |
| src--; |
| len_src--; |
| |
| /* now pad every nibble with 0xf0 */ |
| |
| while (len_dest > 0) { |
| uint8_t cur_byte = 0; |
| |
| if (len_src > 0) { |
| cur_byte = ldub(src); |
| } |
| |
| len_dest--; |
| dest--; |
| |
| /* only advance one nibble at a time */ |
| if (second_nibble) { |
| cur_byte >>= 4; |
| len_src--; |
| src--; |
| } |
| second_nibble = !second_nibble; |
| |
| /* digit */ |
| cur_byte = (cur_byte & 0xf); |
| /* zone bits */ |
| cur_byte |= 0xf0; |
| |
| stb(dest, cur_byte); |
| } |
| } |
| |
| void HELPER(tr)(uint32_t len, uint64_t array, uint64_t trans) |
| { |
| int i; |
| |
| for (i = 0; i <= len; i++) { |
| uint8_t byte = ldub(array + i); |
| uint8_t new_byte = ldub(trans + byte); |
| stb(array + i, new_byte); |
| } |
| } |
| |
| #ifndef CONFIG_USER_ONLY |
| |
| void HELPER(load_psw)(uint64_t mask, uint64_t addr) |
| { |
| load_psw(env, mask, addr); |
| cpu_loop_exit(); |
| } |
| |
| static void program_interrupt(CPUState *env, uint32_t code, int ilc) |
| { |
| qemu_log("program interrupt at %#" PRIx64 "\n", env->psw.addr); |
| |
| if (kvm_enabled()) { |
| kvm_s390_interrupt(env, KVM_S390_PROGRAM_INT, code); |
| } else { |
| env->int_pgm_code = code; |
| env->int_pgm_ilc = ilc; |
| env->exception_index = EXCP_PGM; |
| cpu_loop_exit(); |
| } |
| } |
| |
| static void ext_interrupt(CPUState *env, int type, uint32_t param, |
| uint64_t param64) |
| { |
| cpu_inject_ext(env, type, param, param64); |
| } |
| |
| int sclp_service_call(CPUState *env, uint32_t sccb, uint64_t code) |
| { |
| int r = 0; |
| int shift = 0; |
| |
| #ifdef DEBUG_HELPER |
| printf("sclp(0x%x, 0x%" PRIx64 ")\n", sccb, code); |
| #endif |
| |
| if (sccb & ~0x7ffffff8ul) { |
| fprintf(stderr, "KVM: invalid sccb address 0x%x\n", sccb); |
| r = -1; |
| goto out; |
| } |
| |
| switch(code) { |
| case SCLP_CMDW_READ_SCP_INFO: |
| case SCLP_CMDW_READ_SCP_INFO_FORCED: |
| while ((ram_size >> (20 + shift)) > 65535) { |
| shift++; |
| } |
| stw_phys(sccb + SCP_MEM_CODE, ram_size >> (20 + shift)); |
| stb_phys(sccb + SCP_INCREMENT, 1 << shift); |
| stw_phys(sccb + SCP_RESPONSE_CODE, 0x10); |
| |
| if (kvm_enabled()) { |
| #ifdef CONFIG_KVM |
| kvm_s390_interrupt_internal(env, KVM_S390_INT_SERVICE, |
| sccb & ~3, 0, 1); |
| #endif |
| } else { |
| env->psw.addr += 4; |
| ext_interrupt(env, EXT_SERVICE, sccb & ~3, 0); |
| } |
| break; |
| default: |
| #ifdef DEBUG_HELPER |
| printf("KVM: invalid sclp call 0x%x / 0x%" PRIx64 "x\n", sccb, code); |
| #endif |
| r = -1; |
| break; |
| } |
| |
| out: |
| return r; |
| } |
| |
| /* SCLP service call */ |
| uint32_t HELPER(servc)(uint32_t r1, uint64_t r2) |
| { |
| if (sclp_service_call(env, r1, r2)) { |
| return 3; |
| } |
| |
| return 0; |
| } |
| |
| /* DIAG */ |
| uint64_t HELPER(diag)(uint32_t num, uint64_t mem, uint64_t code) |
| { |
| uint64_t r; |
| |
| switch (num) { |
| case 0x500: |
| /* KVM hypercall */ |
| r = s390_virtio_hypercall(env, mem, code); |
| break; |
| case 0x44: |
| /* yield */ |
| r = 0; |
| break; |
| case 0x308: |
| /* ipl */ |
| r = 0; |
| break; |
| default: |
| r = -1; |
| break; |
| } |
| |
| if (r) { |
| program_interrupt(env, PGM_OPERATION, ILC_LATER_INC); |
| } |
| |
| return r; |
| } |
| |
| /* Store CPU ID */ |
| void HELPER(stidp)(uint64_t a1) |
| { |
| stq(a1, env->cpu_num); |
| } |
| |
| /* Set Prefix */ |
| void HELPER(spx)(uint64_t a1) |
| { |
| uint32_t prefix; |
| |
| prefix = ldl(a1); |
| env->psa = prefix & 0xfffff000; |
| qemu_log("prefix: %#x\n", prefix); |
| tlb_flush_page(env, 0); |
| tlb_flush_page(env, TARGET_PAGE_SIZE); |
| } |
| |
| /* Set Clock */ |
| uint32_t HELPER(sck)(uint64_t a1) |
| { |
| /* XXX not implemented - is it necessary? */ |
| |
| return 0; |
| } |
| |
| static inline uint64_t clock_value(CPUState *env) |
| { |
| uint64_t time; |
| |
| time = env->tod_offset + |
| time2tod(qemu_get_clock_ns(vm_clock) - env->tod_basetime); |
| |
| return time; |
| } |
| |
| /* Store Clock */ |
| uint32_t HELPER(stck)(uint64_t a1) |
| { |
| stq(a1, clock_value(env)); |
| |
| return 0; |
| } |
| |
| /* Store Clock Extended */ |
| uint32_t HELPER(stcke)(uint64_t a1) |
| { |
| stb(a1, 0); |
| /* basically the same value as stck */ |
| stq(a1 + 1, clock_value(env) | env->cpu_num); |
| /* more fine grained than stck */ |
| stq(a1 + 9, 0); |
| /* XXX programmable fields */ |
| stw(a1 + 17, 0); |
| |
| |
| return 0; |
| } |
| |
| /* Set Clock Comparator */ |
| void HELPER(sckc)(uint64_t a1) |
| { |
| uint64_t time = ldq(a1); |
| |
| if (time == -1ULL) { |
| return; |
| } |
| |
| /* difference between now and then */ |
| time -= clock_value(env); |
| /* nanoseconds */ |
| time = (time * 125) >> 9; |
| |
| qemu_mod_timer(env->tod_timer, qemu_get_clock_ns(vm_clock) + time); |
| } |
| |
| /* Store Clock Comparator */ |
| void HELPER(stckc)(uint64_t a1) |
| { |
| /* XXX implement */ |
| stq(a1, 0); |
| } |
| |
| /* Set CPU Timer */ |
| void HELPER(spt)(uint64_t a1) |
| { |
| uint64_t time = ldq(a1); |
| |
| if (time == -1ULL) { |
| return; |
| } |
| |
| /* nanoseconds */ |
| time = (time * 125) >> 9; |
| |
| qemu_mod_timer(env->cpu_timer, qemu_get_clock_ns(vm_clock) + time); |
| } |
| |
| /* Store CPU Timer */ |
| void HELPER(stpt)(uint64_t a1) |
| { |
| /* XXX implement */ |
| stq(a1, 0); |
| } |
| |
| /* Store System Information */ |
| uint32_t HELPER(stsi)(uint64_t a0, uint32_t r0, uint32_t r1) |
| { |
| int cc = 0; |
| int sel1, sel2; |
| |
| if ((r0 & STSI_LEVEL_MASK) <= STSI_LEVEL_3 && |
| ((r0 & STSI_R0_RESERVED_MASK) || (r1 & STSI_R1_RESERVED_MASK))) { |
| /* valid function code, invalid reserved bits */ |
| program_interrupt(env, PGM_SPECIFICATION, 2); |
| } |
| |
| sel1 = r0 & STSI_R0_SEL1_MASK; |
| sel2 = r1 & STSI_R1_SEL2_MASK; |
| |
| /* XXX: spec exception if sysib is not 4k-aligned */ |
| |
| switch (r0 & STSI_LEVEL_MASK) { |
| case STSI_LEVEL_1: |
| if ((sel1 == 1) && (sel2 == 1)) { |
| /* Basic Machine Configuration */ |
| struct sysib_111 sysib; |
| |
| memset(&sysib, 0, sizeof(sysib)); |
| ebcdic_put(sysib.manuf, "QEMU ", 16); |
| /* same as machine type number in STORE CPU ID */ |
| ebcdic_put(sysib.type, "QEMU", 4); |
| /* same as model number in STORE CPU ID */ |
| ebcdic_put(sysib.model, "QEMU ", 16); |
| ebcdic_put(sysib.sequence, "QEMU ", 16); |
| ebcdic_put(sysib.plant, "QEMU", 4); |
| cpu_physical_memory_rw(a0, (uint8_t*)&sysib, sizeof(sysib), 1); |
| } else if ((sel1 == 2) && (sel2 == 1)) { |
| /* Basic Machine CPU */ |
| struct sysib_121 sysib; |
| |
| memset(&sysib, 0, sizeof(sysib)); |
| /* XXX make different for different CPUs? */ |
| ebcdic_put(sysib.sequence, "QEMUQEMUQEMUQEMU", 16); |
| ebcdic_put(sysib.plant, "QEMU", 4); |
| stw_p(&sysib.cpu_addr, env->cpu_num); |
| cpu_physical_memory_rw(a0, (uint8_t*)&sysib, sizeof(sysib), 1); |
| } else if ((sel1 == 2) && (sel2 == 2)) { |
| /* Basic Machine CPUs */ |
| struct sysib_122 sysib; |
| |
| memset(&sysib, 0, sizeof(sysib)); |
| stl_p(&sysib.capability, 0x443afc29); |
| /* XXX change when SMP comes */ |
| stw_p(&sysib.total_cpus, 1); |
| stw_p(&sysib.active_cpus, 1); |
| stw_p(&sysib.standby_cpus, 0); |
| stw_p(&sysib.reserved_cpus, 0); |
| cpu_physical_memory_rw(a0, (uint8_t*)&sysib, sizeof(sysib), 1); |
| } else { |
| cc = 3; |
| } |
| break; |
| case STSI_LEVEL_2: |
| { |
| if ((sel1 == 2) && (sel2 == 1)) { |
| /* LPAR CPU */ |
| struct sysib_221 sysib; |
| |
| memset(&sysib, 0, sizeof(sysib)); |
| /* XXX make different for different CPUs? */ |
| ebcdic_put(sysib.sequence, "QEMUQEMUQEMUQEMU", 16); |
| ebcdic_put(sysib.plant, "QEMU", 4); |
| stw_p(&sysib.cpu_addr, env->cpu_num); |
| stw_p(&sysib.cpu_id, 0); |
| cpu_physical_memory_rw(a0, (uint8_t*)&sysib, sizeof(sysib), 1); |
| } else if ((sel1 == 2) && (sel2 == 2)) { |
| /* LPAR CPUs */ |
| struct sysib_222 sysib; |
| |
| memset(&sysib, 0, sizeof(sysib)); |
| stw_p(&sysib.lpar_num, 0); |
| sysib.lcpuc = 0; |
| /* XXX change when SMP comes */ |
| stw_p(&sysib.total_cpus, 1); |
| stw_p(&sysib.conf_cpus, 1); |
| stw_p(&sysib.standby_cpus, 0); |
| stw_p(&sysib.reserved_cpus, 0); |
| ebcdic_put(sysib.name, "QEMU ", 8); |
| stl_p(&sysib.caf, 1000); |
| stw_p(&sysib.dedicated_cpus, 0); |
| stw_p(&sysib.shared_cpus, 0); |
| cpu_physical_memory_rw(a0, (uint8_t*)&sysib, sizeof(sysib), 1); |
| } else { |
| cc = 3; |
| } |
| break; |
| } |
| case STSI_LEVEL_3: |
| { |
| if ((sel1 == 2) && (sel2 == 2)) { |
| /* VM CPUs */ |
| struct sysib_322 sysib; |
| |
| memset(&sysib, 0, sizeof(sysib)); |
| sysib.count = 1; |
| /* XXX change when SMP comes */ |
| stw_p(&sysib.vm[0].total_cpus, 1); |
| stw_p(&sysib.vm[0].conf_cpus, 1); |
| stw_p(&sysib.vm[0].standby_cpus, 0); |
| stw_p(&sysib.vm[0].reserved_cpus, 0); |
| ebcdic_put(sysib.vm[0].name, "KVMguest", 8); |
| stl_p(&sysib.vm[0].caf, 1000); |
| ebcdic_put(sysib.vm[0].cpi, "KVM/Linux ", 16); |
| cpu_physical_memory_rw(a0, (uint8_t*)&sysib, sizeof(sysib), 1); |
| } else { |
| cc = 3; |
| } |
| break; |
| } |
| case STSI_LEVEL_CURRENT: |
| env->regs[0] = STSI_LEVEL_3; |
| break; |
| default: |
| cc = 3; |
| break; |
| } |
| |
| return cc; |
| } |
| |
| void HELPER(lctlg)(uint32_t r1, uint64_t a2, uint32_t r3) |
| { |
| int i; |
| uint64_t src = a2; |
| |
| for (i = r1;; i = (i + 1) % 16) { |
| env->cregs[i] = ldq(src); |
| HELPER_LOG("load ctl %d from 0x%" PRIx64 " == 0x%" PRIx64 "\n", |
| i, src, env->cregs[i]); |
| src += sizeof(uint64_t); |
| |
| if (i == r3) { |
| break; |
| } |
| } |
| |
| tlb_flush(env, 1); |
| } |
| |
| void HELPER(lctl)(uint32_t r1, uint64_t a2, uint32_t r3) |
| { |
| int i; |
| uint64_t src = a2; |
| |
| for (i = r1;; i = (i + 1) % 16) { |
| env->cregs[i] = (env->cregs[i] & 0xFFFFFFFF00000000ULL) | ldl(src); |
| src += sizeof(uint32_t); |
| |
| if (i == r3) { |
| break; |
| } |
| } |
| |
| tlb_flush(env, 1); |
| } |
| |
| void HELPER(stctg)(uint32_t r1, uint64_t a2, uint32_t r3) |
| { |
| int i; |
| uint64_t dest = a2; |
| |
| for (i = r1;; i = (i + 1) % 16) { |
| stq(dest, env->cregs[i]); |
| dest += sizeof(uint64_t); |
| |
| if (i == r3) { |
| break; |
| } |
| } |
| } |
| |
| void HELPER(stctl)(uint32_t r1, uint64_t a2, uint32_t r3) |
| { |
| int i; |
| uint64_t dest = a2; |
| |
| for (i = r1;; i = (i + 1) % 16) { |
| stl(dest, env->cregs[i]); |
| dest += sizeof(uint32_t); |
| |
| if (i == r3) { |
| break; |
| } |
| } |
| } |
| |
| uint32_t HELPER(tprot)(uint64_t a1, uint64_t a2) |
| { |
| /* XXX implement */ |
| |
| return 0; |
| } |
| |
| /* insert storage key extended */ |
| uint64_t HELPER(iske)(uint64_t r2) |
| { |
| uint64_t addr = get_address(0, 0, r2); |
| |
| if (addr > ram_size) { |
| return 0; |
| } |
| |
| /* XXX maybe use qemu's internal keys? */ |
| return env->storage_keys[addr / TARGET_PAGE_SIZE]; |
| } |
| |
| /* set storage key extended */ |
| void HELPER(sske)(uint32_t r1, uint64_t r2) |
| { |
| uint64_t addr = get_address(0, 0, r2); |
| |
| if (addr > ram_size) { |
| return; |
| } |
| |
| env->storage_keys[addr / TARGET_PAGE_SIZE] = r1; |
| } |
| |
| /* reset reference bit extended */ |
| uint32_t HELPER(rrbe)(uint32_t r1, uint64_t r2) |
| { |
| if (r2 > ram_size) { |
| return 0; |
| } |
| |
| /* XXX implement */ |
| #if 0 |
| env->storage_keys[r2 / TARGET_PAGE_SIZE] &= ~SK_REFERENCED; |
| #endif |
| |
| /* |
| * cc |
| * |
| * 0 Reference bit zero; change bit zero |
| * 1 Reference bit zero; change bit one |
| * 2 Reference bit one; change bit zero |
| * 3 Reference bit one; change bit one |
| */ |
| return 0; |
| } |
| |
| /* compare and swap and purge */ |
| uint32_t HELPER(csp)(uint32_t r1, uint32_t r2) |
| { |
| uint32_t cc; |
| uint32_t o1 = env->regs[r1]; |
| uint64_t a2 = get_address_31fix(r2) & ~3ULL; |
| uint32_t o2 = ldl(a2); |
| |
| if (o1 == o2) { |
| stl(a2, env->regs[(r1 + 1) & 15]); |
| if (env->regs[r2] & 0x3) { |
| /* flush TLB / ALB */ |
| tlb_flush(env, 1); |
| } |
| cc = 0; |
| } else { |
| env->regs[r1] = (env->regs[r1] & 0xffffffff00000000ULL) | o2; |
| cc = 1; |
| } |
| |
| return cc; |
| } |
| |
| static uint32_t mvc_asc(int64_t l, uint64_t a1, uint64_t mode1, uint64_t a2, |
| uint64_t mode2) |
| { |
| target_ulong src, dest; |
| int flags, cc = 0, i; |
| |
| if (!l) { |
| return 0; |
| } else if (l > 256) { |
| /* max 256 */ |
| l = 256; |
| cc = 3; |
| } |
| |
| if (mmu_translate(env, a1 & TARGET_PAGE_MASK, 1, mode1, &dest, &flags)) { |
| cpu_loop_exit(); |
| } |
| dest |= a1 & ~TARGET_PAGE_MASK; |
| |
| if (mmu_translate(env, a2 & TARGET_PAGE_MASK, 0, mode2, &src, &flags)) { |
| cpu_loop_exit(); |
| } |
| src |= a2 & ~TARGET_PAGE_MASK; |
| |
| /* XXX replace w/ memcpy */ |
| for (i = 0; i < l; i++) { |
| /* XXX be more clever */ |
| if ((((dest + i) & TARGET_PAGE_MASK) != (dest & TARGET_PAGE_MASK)) || |
| (((src + i) & TARGET_PAGE_MASK) != (src & TARGET_PAGE_MASK))) { |
| mvc_asc(l - i, a1 + i, mode1, a2 + i, mode2); |
| break; |
| } |
| stb_phys(dest + i, ldub_phys(src + i)); |
| } |
| |
| return cc; |
| } |
| |
| uint32_t HELPER(mvcs)(uint64_t l, uint64_t a1, uint64_t a2) |
| { |
| HELPER_LOG("%s: %16" PRIx64 " %16" PRIx64 " %16" PRIx64 "\n", |
| __FUNCTION__, l, a1, a2); |
| |
| return mvc_asc(l, a1, PSW_ASC_SECONDARY, a2, PSW_ASC_PRIMARY); |
| } |
| |
| uint32_t HELPER(mvcp)(uint64_t l, uint64_t a1, uint64_t a2) |
| { |
| HELPER_LOG("%s: %16" PRIx64 " %16" PRIx64 " %16" PRIx64 "\n", |
| __FUNCTION__, l, a1, a2); |
| |
| return mvc_asc(l, a1, PSW_ASC_PRIMARY, a2, PSW_ASC_SECONDARY); |
| } |
| |
| uint32_t HELPER(sigp)(uint64_t order_code, uint32_t r1, uint64_t cpu_addr) |
| { |
| int cc = 0; |
| |
| HELPER_LOG("%s: %016" PRIx64 " %08x %016" PRIx64 "\n", |
| __FUNCTION__, order_code, r1, cpu_addr); |
| |
| /* Remember: Use "R1 or R1+1, whichever is the odd-numbered register" |
| as parameter (input). Status (output) is always R1. */ |
| |
| switch (order_code) { |
| case SIGP_SET_ARCH: |
| /* switch arch */ |
| break; |
| case SIGP_SENSE: |
| /* enumerate CPU status */ |
| if (cpu_addr) { |
| /* XXX implement when SMP comes */ |
| return 3; |
| } |
| env->regs[r1] &= 0xffffffff00000000ULL; |
| cc = 1; |
| break; |
| default: |
| /* unknown sigp */ |
| fprintf(stderr, "XXX unknown sigp: 0x%" PRIx64 "\n", order_code); |
| cc = 3; |
| } |
| |
| return cc; |
| } |
| |
| void HELPER(sacf)(uint64_t a1) |
| { |
| HELPER_LOG("%s: %16" PRIx64 "\n", __FUNCTION__, a1); |
| |
| switch (a1 & 0xf00) { |
| case 0x000: |
| env->psw.mask &= ~PSW_MASK_ASC; |
| env->psw.mask |= PSW_ASC_PRIMARY; |
| break; |
| case 0x100: |
| env->psw.mask &= ~PSW_MASK_ASC; |
| env->psw.mask |= PSW_ASC_SECONDARY; |
| break; |
| case 0x300: |
| env->psw.mask &= ~PSW_MASK_ASC; |
| env->psw.mask |= PSW_ASC_HOME; |
| break; |
| default: |
| qemu_log("unknown sacf mode: %" PRIx64 "\n", a1); |
| program_interrupt(env, PGM_SPECIFICATION, 2); |
| break; |
| } |
| } |
| |
| /* invalidate pte */ |
| void HELPER(ipte)(uint64_t pte_addr, uint64_t vaddr) |
| { |
| uint64_t page = vaddr & TARGET_PAGE_MASK; |
| uint64_t pte = 0; |
| |
| /* XXX broadcast to other CPUs */ |
| |
| /* XXX Linux is nice enough to give us the exact pte address. |
| According to spec we'd have to find it out ourselves */ |
| /* XXX Linux is fine with overwriting the pte, the spec requires |
| us to only set the invalid bit */ |
| stq_phys(pte_addr, pte | _PAGE_INVALID); |
| |
| /* XXX we exploit the fact that Linux passes the exact virtual |
| address here - it's not obliged to! */ |
| tlb_flush_page(env, page); |
| } |
| |
| /* flush local tlb */ |
| void HELPER(ptlb)(void) |
| { |
| tlb_flush(env, 1); |
| } |
| |
| /* store using real address */ |
| void HELPER(stura)(uint64_t addr, uint32_t v1) |
| { |
| stw_phys(get_address(0, 0, addr), v1); |
| } |
| |
| /* load real address */ |
| uint32_t HELPER(lra)(uint64_t addr, uint32_t r1) |
| { |
| uint32_t cc = 0; |
| int old_exc = env->exception_index; |
| uint64_t asc = env->psw.mask & PSW_MASK_ASC; |
| uint64_t ret; |
| int flags; |
| |
| /* XXX incomplete - has more corner cases */ |
| if (!(env->psw.mask & PSW_MASK_64) && (addr >> 32)) { |
| program_interrupt(env, PGM_SPECIAL_OP, 2); |
| } |
| |
| env->exception_index = old_exc; |
| if (mmu_translate(env, addr, 0, asc, &ret, &flags)) { |
| cc = 3; |
| } |
| if (env->exception_index == EXCP_PGM) { |
| ret = env->int_pgm_code | 0x80000000; |
| } else { |
| ret |= addr & ~TARGET_PAGE_MASK; |
| } |
| env->exception_index = old_exc; |
| |
| if (!(env->psw.mask & PSW_MASK_64)) { |
| env->regs[r1] = (env->regs[r1] & 0xffffffff00000000ULL) | (ret & 0xffffffffULL); |
| } else { |
| env->regs[r1] = ret; |
| } |
| |
| return cc; |
| } |
| |
| #endif |