blob: 3bd4aac9c9709e7bce8547e70919331919be8f57 [file] [log] [blame]
/*
* RISC-V Vector Extension Helpers for QEMU.
*
* Copyright (c) 2020 T-Head Semiconductor Co., Ltd. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2 or later, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/host-utils.h"
#include "qemu/bitops.h"
#include "cpu.h"
#include "exec/memop.h"
#include "exec/exec-all.h"
#include "exec/helper-proto.h"
#include "fpu/softfloat.h"
#include "tcg/tcg-gvec-desc.h"
#include "internals.h"
#include <math.h>
target_ulong HELPER(vsetvl)(CPURISCVState *env, target_ulong s1,
target_ulong s2)
{
int vlmax, vl;
RISCVCPU *cpu = env_archcpu(env);
uint64_t lmul = FIELD_EX64(s2, VTYPE, VLMUL);
uint16_t sew = 8 << FIELD_EX64(s2, VTYPE, VSEW);
uint8_t ediv = FIELD_EX64(s2, VTYPE, VEDIV);
int xlen = riscv_cpu_xlen(env);
bool vill = (s2 >> (xlen - 1)) & 0x1;
target_ulong reserved = s2 &
MAKE_64BIT_MASK(R_VTYPE_RESERVED_SHIFT,
xlen - 1 - R_VTYPE_RESERVED_SHIFT);
if (lmul & 4) {
/* Fractional LMUL. */
if (lmul == 4 ||
cpu->cfg.elen >> (8 - lmul) < sew) {
vill = true;
}
}
if ((sew > cpu->cfg.elen)
|| vill
|| (ediv != 0)
|| (reserved != 0)) {
/* only set vill bit. */
env->vill = 1;
env->vtype = 0;
env->vl = 0;
env->vstart = 0;
return 0;
}
vlmax = vext_get_vlmax(cpu, s2);
if (s1 <= vlmax) {
vl = s1;
} else {
vl = vlmax;
}
env->vl = vl;
env->vtype = s2;
env->vstart = 0;
env->vill = 0;
return vl;
}
/*
* Note that vector data is stored in host-endian 64-bit chunks,
* so addressing units smaller than that needs a host-endian fixup.
*/
#ifdef HOST_WORDS_BIGENDIAN
#define H1(x) ((x) ^ 7)
#define H1_2(x) ((x) ^ 6)
#define H1_4(x) ((x) ^ 4)
#define H2(x) ((x) ^ 3)
#define H4(x) ((x) ^ 1)
#define H8(x) ((x))
#else
#define H1(x) (x)
#define H1_2(x) (x)
#define H1_4(x) (x)
#define H2(x) (x)
#define H4(x) (x)
#define H8(x) (x)
#endif
static inline uint32_t vext_nf(uint32_t desc)
{
return FIELD_EX32(simd_data(desc), VDATA, NF);
}
static inline uint32_t vext_vm(uint32_t desc)
{
return FIELD_EX32(simd_data(desc), VDATA, VM);
}
/*
* Encode LMUL to lmul as following:
* LMUL vlmul lmul
* 1 000 0
* 2 001 1
* 4 010 2
* 8 011 3
* - 100 -
* 1/8 101 -3
* 1/4 110 -2
* 1/2 111 -1
*/
static inline int32_t vext_lmul(uint32_t desc)
{
return sextract32(FIELD_EX32(simd_data(desc), VDATA, LMUL), 0, 3);
}
/*
* Get the maximum number of elements can be operated.
*
* esz: log2 of element size in bytes.
*/
static inline uint32_t vext_max_elems(uint32_t desc, uint32_t esz)
{
/*
* As simd_desc support at most 2048 bytes, the max vlen is 1024 bits.
* so vlen in bytes (vlenb) is encoded as maxsz.
*/
uint32_t vlenb = simd_maxsz(desc);
/* Return VLMAX */
int scale = vext_lmul(desc) - esz;
return scale < 0 ? vlenb >> -scale : vlenb << scale;
}
static inline target_ulong adjust_addr(CPURISCVState *env, target_ulong addr)
{
return (addr & env->cur_pmmask) | env->cur_pmbase;
}
/*
* This function checks watchpoint before real load operation.
*
* In softmmu mode, the TLB API probe_access is enough for watchpoint check.
* In user mode, there is no watchpoint support now.
*
* It will trigger an exception if there is no mapping in TLB
* and page table walk can't fill the TLB entry. Then the guest
* software can return here after process the exception or never return.
*/
static void probe_pages(CPURISCVState *env, target_ulong addr,
target_ulong len, uintptr_t ra,
MMUAccessType access_type)
{
target_ulong pagelen = -(addr | TARGET_PAGE_MASK);
target_ulong curlen = MIN(pagelen, len);
probe_access(env, adjust_addr(env, addr), curlen, access_type,
cpu_mmu_index(env, false), ra);
if (len > curlen) {
addr += curlen;
curlen = len - curlen;
probe_access(env, adjust_addr(env, addr), curlen, access_type,
cpu_mmu_index(env, false), ra);
}
}
static inline void vext_set_elem_mask(void *v0, int index,
uint8_t value)
{
int idx = index / 64;
int pos = index % 64;
uint64_t old = ((uint64_t *)v0)[idx];
((uint64_t *)v0)[idx] = deposit64(old, pos, 1, value);
}
/*
* Earlier designs (pre-0.9) had a varying number of bits
* per mask value (MLEN). In the 0.9 design, MLEN=1.
* (Section 4.5)
*/
static inline int vext_elem_mask(void *v0, int index)
{
int idx = index / 64;
int pos = index % 64;
return (((uint64_t *)v0)[idx] >> pos) & 1;
}
/* elements operations for load and store */
typedef void vext_ldst_elem_fn(CPURISCVState *env, target_ulong addr,
uint32_t idx, void *vd, uintptr_t retaddr);
#define GEN_VEXT_LD_ELEM(NAME, ETYPE, H, LDSUF) \
static void NAME(CPURISCVState *env, abi_ptr addr, \
uint32_t idx, void *vd, uintptr_t retaddr)\
{ \
ETYPE *cur = ((ETYPE *)vd + H(idx)); \
*cur = cpu_##LDSUF##_data_ra(env, addr, retaddr); \
} \
GEN_VEXT_LD_ELEM(lde_b, int8_t, H1, ldsb)
GEN_VEXT_LD_ELEM(lde_h, int16_t, H2, ldsw)
GEN_VEXT_LD_ELEM(lde_w, int32_t, H4, ldl)
GEN_VEXT_LD_ELEM(lde_d, int64_t, H8, ldq)
#define GEN_VEXT_ST_ELEM(NAME, ETYPE, H, STSUF) \
static void NAME(CPURISCVState *env, abi_ptr addr, \
uint32_t idx, void *vd, uintptr_t retaddr)\
{ \
ETYPE data = *((ETYPE *)vd + H(idx)); \
cpu_##STSUF##_data_ra(env, addr, data, retaddr); \
}
GEN_VEXT_ST_ELEM(ste_b, int8_t, H1, stb)
GEN_VEXT_ST_ELEM(ste_h, int16_t, H2, stw)
GEN_VEXT_ST_ELEM(ste_w, int32_t, H4, stl)
GEN_VEXT_ST_ELEM(ste_d, int64_t, H8, stq)
/*
*** stride: access vector element from strided memory
*/
static void
vext_ldst_stride(void *vd, void *v0, target_ulong base,
target_ulong stride, CPURISCVState *env,
uint32_t desc, uint32_t vm,
vext_ldst_elem_fn *ldst_elem,
uint32_t esz, uintptr_t ra, MMUAccessType access_type)
{
uint32_t i, k;
uint32_t nf = vext_nf(desc);
uint32_t max_elems = vext_max_elems(desc, esz);
for (i = env->vstart; i < env->vl; i++, env->vstart++) {
if (!vm && !vext_elem_mask(v0, i)) {
continue;
}
k = 0;
while (k < nf) {
target_ulong addr = base + stride * i + (k << esz);
ldst_elem(env, adjust_addr(env, addr), i + k * max_elems, vd, ra);
k++;
}
}
env->vstart = 0;
}
#define GEN_VEXT_LD_STRIDE(NAME, ETYPE, LOAD_FN) \
void HELPER(NAME)(void *vd, void * v0, target_ulong base, \
target_ulong stride, CPURISCVState *env, \
uint32_t desc) \
{ \
uint32_t vm = vext_vm(desc); \
vext_ldst_stride(vd, v0, base, stride, env, desc, vm, LOAD_FN, \
ctzl(sizeof(ETYPE)), GETPC(), MMU_DATA_LOAD); \
}
GEN_VEXT_LD_STRIDE(vlse8_v, int8_t, lde_b)
GEN_VEXT_LD_STRIDE(vlse16_v, int16_t, lde_h)
GEN_VEXT_LD_STRIDE(vlse32_v, int32_t, lde_w)
GEN_VEXT_LD_STRIDE(vlse64_v, int64_t, lde_d)
#define GEN_VEXT_ST_STRIDE(NAME, ETYPE, STORE_FN) \
void HELPER(NAME)(void *vd, void *v0, target_ulong base, \
target_ulong stride, CPURISCVState *env, \
uint32_t desc) \
{ \
uint32_t vm = vext_vm(desc); \
vext_ldst_stride(vd, v0, base, stride, env, desc, vm, STORE_FN, \
ctzl(sizeof(ETYPE)), GETPC(), MMU_DATA_STORE); \
}
GEN_VEXT_ST_STRIDE(vsse8_v, int8_t, ste_b)
GEN_VEXT_ST_STRIDE(vsse16_v, int16_t, ste_h)
GEN_VEXT_ST_STRIDE(vsse32_v, int32_t, ste_w)
GEN_VEXT_ST_STRIDE(vsse64_v, int64_t, ste_d)
/*
*** unit-stride: access elements stored contiguously in memory
*/
/* unmasked unit-stride load and store operation*/
static void
vext_ldst_us(void *vd, target_ulong base, CPURISCVState *env, uint32_t desc,
vext_ldst_elem_fn *ldst_elem, uint32_t esz, uint32_t evl,
uintptr_t ra, MMUAccessType access_type)
{
uint32_t i, k;
uint32_t nf = vext_nf(desc);
uint32_t max_elems = vext_max_elems(desc, esz);
/* load bytes from guest memory */
for (i = env->vstart; i < evl; i++, env->vstart++) {
k = 0;
while (k < nf) {
target_ulong addr = base + ((i * nf + k) << esz);
ldst_elem(env, adjust_addr(env, addr), i + k * max_elems, vd, ra);
k++;
}
}
env->vstart = 0;
}
/*
* masked unit-stride load and store operation will be a special case of stride,
* stride = NF * sizeof (MTYPE)
*/
#define GEN_VEXT_LD_US(NAME, ETYPE, LOAD_FN) \
void HELPER(NAME##_mask)(void *vd, void *v0, target_ulong base, \
CPURISCVState *env, uint32_t desc) \
{ \
uint32_t stride = vext_nf(desc) << ctzl(sizeof(ETYPE)); \
vext_ldst_stride(vd, v0, base, stride, env, desc, false, LOAD_FN, \
ctzl(sizeof(ETYPE)), GETPC(), MMU_DATA_LOAD); \
} \
\
void HELPER(NAME)(void *vd, void *v0, target_ulong base, \
CPURISCVState *env, uint32_t desc) \
{ \
vext_ldst_us(vd, base, env, desc, LOAD_FN, \
ctzl(sizeof(ETYPE)), env->vl, GETPC(), MMU_DATA_LOAD); \
}
GEN_VEXT_LD_US(vle8_v, int8_t, lde_b)
GEN_VEXT_LD_US(vle16_v, int16_t, lde_h)
GEN_VEXT_LD_US(vle32_v, int32_t, lde_w)
GEN_VEXT_LD_US(vle64_v, int64_t, lde_d)
#define GEN_VEXT_ST_US(NAME, ETYPE, STORE_FN) \
void HELPER(NAME##_mask)(void *vd, void *v0, target_ulong base, \
CPURISCVState *env, uint32_t desc) \
{ \
uint32_t stride = vext_nf(desc) << ctzl(sizeof(ETYPE)); \
vext_ldst_stride(vd, v0, base, stride, env, desc, false, STORE_FN, \
ctzl(sizeof(ETYPE)), GETPC(), MMU_DATA_STORE); \
} \
\
void HELPER(NAME)(void *vd, void *v0, target_ulong base, \
CPURISCVState *env, uint32_t desc) \
{ \
vext_ldst_us(vd, base, env, desc, STORE_FN, \
ctzl(sizeof(ETYPE)), env->vl, GETPC(), MMU_DATA_STORE); \
}
GEN_VEXT_ST_US(vse8_v, int8_t, ste_b)
GEN_VEXT_ST_US(vse16_v, int16_t, ste_h)
GEN_VEXT_ST_US(vse32_v, int32_t, ste_w)
GEN_VEXT_ST_US(vse64_v, int64_t, ste_d)
/*
*** unit stride mask load and store, EEW = 1
*/
void HELPER(vlm_v)(void *vd, void *v0, target_ulong base,
CPURISCVState *env, uint32_t desc)
{
/* evl = ceil(vl/8) */
uint8_t evl = (env->vl + 7) >> 3;
vext_ldst_us(vd, base, env, desc, lde_b,
0, evl, GETPC(), MMU_DATA_LOAD);
}
void HELPER(vsm_v)(void *vd, void *v0, target_ulong base,
CPURISCVState *env, uint32_t desc)
{
/* evl = ceil(vl/8) */
uint8_t evl = (env->vl + 7) >> 3;
vext_ldst_us(vd, base, env, desc, ste_b,
0, evl, GETPC(), MMU_DATA_STORE);
}
/*
*** index: access vector element from indexed memory
*/
typedef target_ulong vext_get_index_addr(target_ulong base,
uint32_t idx, void *vs2);
#define GEN_VEXT_GET_INDEX_ADDR(NAME, ETYPE, H) \
static target_ulong NAME(target_ulong base, \
uint32_t idx, void *vs2) \
{ \
return (base + *((ETYPE *)vs2 + H(idx))); \
}
GEN_VEXT_GET_INDEX_ADDR(idx_b, uint8_t, H1)
GEN_VEXT_GET_INDEX_ADDR(idx_h, uint16_t, H2)
GEN_VEXT_GET_INDEX_ADDR(idx_w, uint32_t, H4)
GEN_VEXT_GET_INDEX_ADDR(idx_d, uint64_t, H8)
static inline void
vext_ldst_index(void *vd, void *v0, target_ulong base,
void *vs2, CPURISCVState *env, uint32_t desc,
vext_get_index_addr get_index_addr,
vext_ldst_elem_fn *ldst_elem,
uint32_t esz, uintptr_t ra, MMUAccessType access_type)
{
uint32_t i, k;
uint32_t nf = vext_nf(desc);
uint32_t vm = vext_vm(desc);
uint32_t max_elems = vext_max_elems(desc, esz);
/* load bytes from guest memory */
for (i = env->vstart; i < env->vl; i++, env->vstart++) {
if (!vm && !vext_elem_mask(v0, i)) {
continue;
}
k = 0;
while (k < nf) {
abi_ptr addr = get_index_addr(base, i, vs2) + (k << esz);
ldst_elem(env, adjust_addr(env, addr), i + k * max_elems, vd, ra);
k++;
}
}
env->vstart = 0;
}
#define GEN_VEXT_LD_INDEX(NAME, ETYPE, INDEX_FN, LOAD_FN) \
void HELPER(NAME)(void *vd, void *v0, target_ulong base, \
void *vs2, CPURISCVState *env, uint32_t desc) \
{ \
vext_ldst_index(vd, v0, base, vs2, env, desc, INDEX_FN, \
LOAD_FN, ctzl(sizeof(ETYPE)), GETPC(), MMU_DATA_LOAD); \
}
GEN_VEXT_LD_INDEX(vlxei8_8_v, int8_t, idx_b, lde_b)
GEN_VEXT_LD_INDEX(vlxei8_16_v, int16_t, idx_b, lde_h)
GEN_VEXT_LD_INDEX(vlxei8_32_v, int32_t, idx_b, lde_w)
GEN_VEXT_LD_INDEX(vlxei8_64_v, int64_t, idx_b, lde_d)
GEN_VEXT_LD_INDEX(vlxei16_8_v, int8_t, idx_h, lde_b)
GEN_VEXT_LD_INDEX(vlxei16_16_v, int16_t, idx_h, lde_h)
GEN_VEXT_LD_INDEX(vlxei16_32_v, int32_t, idx_h, lde_w)
GEN_VEXT_LD_INDEX(vlxei16_64_v, int64_t, idx_h, lde_d)
GEN_VEXT_LD_INDEX(vlxei32_8_v, int8_t, idx_w, lde_b)
GEN_VEXT_LD_INDEX(vlxei32_16_v, int16_t, idx_w, lde_h)
GEN_VEXT_LD_INDEX(vlxei32_32_v, int32_t, idx_w, lde_w)
GEN_VEXT_LD_INDEX(vlxei32_64_v, int64_t, idx_w, lde_d)
GEN_VEXT_LD_INDEX(vlxei64_8_v, int8_t, idx_d, lde_b)
GEN_VEXT_LD_INDEX(vlxei64_16_v, int16_t, idx_d, lde_h)
GEN_VEXT_LD_INDEX(vlxei64_32_v, int32_t, idx_d, lde_w)
GEN_VEXT_LD_INDEX(vlxei64_64_v, int64_t, idx_d, lde_d)
#define GEN_VEXT_ST_INDEX(NAME, ETYPE, INDEX_FN, STORE_FN) \
void HELPER(NAME)(void *vd, void *v0, target_ulong base, \
void *vs2, CPURISCVState *env, uint32_t desc) \
{ \
vext_ldst_index(vd, v0, base, vs2, env, desc, INDEX_FN, \
STORE_FN, ctzl(sizeof(ETYPE)), \
GETPC(), MMU_DATA_STORE); \
}
GEN_VEXT_ST_INDEX(vsxei8_8_v, int8_t, idx_b, ste_b)
GEN_VEXT_ST_INDEX(vsxei8_16_v, int16_t, idx_b, ste_h)
GEN_VEXT_ST_INDEX(vsxei8_32_v, int32_t, idx_b, ste_w)
GEN_VEXT_ST_INDEX(vsxei8_64_v, int64_t, idx_b, ste_d)
GEN_VEXT_ST_INDEX(vsxei16_8_v, int8_t, idx_h, ste_b)
GEN_VEXT_ST_INDEX(vsxei16_16_v, int16_t, idx_h, ste_h)
GEN_VEXT_ST_INDEX(vsxei16_32_v, int32_t, idx_h, ste_w)
GEN_VEXT_ST_INDEX(vsxei16_64_v, int64_t, idx_h, ste_d)
GEN_VEXT_ST_INDEX(vsxei32_8_v, int8_t, idx_w, ste_b)
GEN_VEXT_ST_INDEX(vsxei32_16_v, int16_t, idx_w, ste_h)
GEN_VEXT_ST_INDEX(vsxei32_32_v, int32_t, idx_w, ste_w)
GEN_VEXT_ST_INDEX(vsxei32_64_v, int64_t, idx_w, ste_d)
GEN_VEXT_ST_INDEX(vsxei64_8_v, int8_t, idx_d, ste_b)
GEN_VEXT_ST_INDEX(vsxei64_16_v, int16_t, idx_d, ste_h)
GEN_VEXT_ST_INDEX(vsxei64_32_v, int32_t, idx_d, ste_w)
GEN_VEXT_ST_INDEX(vsxei64_64_v, int64_t, idx_d, ste_d)
/*
*** unit-stride fault-only-fisrt load instructions
*/
static inline void
vext_ldff(void *vd, void *v0, target_ulong base,
CPURISCVState *env, uint32_t desc,
vext_ldst_elem_fn *ldst_elem,
uint32_t esz, uintptr_t ra)
{
void *host;
uint32_t i, k, vl = 0;
uint32_t nf = vext_nf(desc);
uint32_t vm = vext_vm(desc);
uint32_t max_elems = vext_max_elems(desc, esz);
target_ulong addr, offset, remain;
/* probe every access*/
for (i = env->vstart; i < env->vl; i++) {
if (!vm && !vext_elem_mask(v0, i)) {
continue;
}
addr = adjust_addr(env, base + i * (nf << esz));
if (i == 0) {
probe_pages(env, addr, nf << esz, ra, MMU_DATA_LOAD);
} else {
/* if it triggers an exception, no need to check watchpoint */
remain = nf << esz;
while (remain > 0) {
offset = -(addr | TARGET_PAGE_MASK);
host = tlb_vaddr_to_host(env, addr, MMU_DATA_LOAD,
cpu_mmu_index(env, false));
if (host) {
#ifdef CONFIG_USER_ONLY
if (page_check_range(addr, offset, PAGE_READ) < 0) {
vl = i;
goto ProbeSuccess;
}
#else
probe_pages(env, addr, offset, ra, MMU_DATA_LOAD);
#endif
} else {
vl = i;
goto ProbeSuccess;
}
if (remain <= offset) {
break;
}
remain -= offset;
addr = adjust_addr(env, addr + offset);
}
}
}
ProbeSuccess:
/* load bytes from guest memory */
if (vl != 0) {
env->vl = vl;
}
for (i = env->vstart; i < env->vl; i++) {
k = 0;
if (!vm && !vext_elem_mask(v0, i)) {
continue;
}
while (k < nf) {
target_ulong addr = base + ((i * nf + k) << esz);
ldst_elem(env, adjust_addr(env, addr), i + k * max_elems, vd, ra);
k++;
}
}
env->vstart = 0;
}
#define GEN_VEXT_LDFF(NAME, ETYPE, LOAD_FN) \
void HELPER(NAME)(void *vd, void *v0, target_ulong base, \
CPURISCVState *env, uint32_t desc) \
{ \
vext_ldff(vd, v0, base, env, desc, LOAD_FN, \
ctzl(sizeof(ETYPE)), GETPC()); \
}
GEN_VEXT_LDFF(vle8ff_v, int8_t, lde_b)
GEN_VEXT_LDFF(vle16ff_v, int16_t, lde_h)
GEN_VEXT_LDFF(vle32ff_v, int32_t, lde_w)
GEN_VEXT_LDFF(vle64ff_v, int64_t, lde_d)
#define DO_SWAP(N, M) (M)
#define DO_AND(N, M) (N & M)
#define DO_XOR(N, M) (N ^ M)
#define DO_OR(N, M) (N | M)
#define DO_ADD(N, M) (N + M)
/* Signed min/max */
#define DO_MAX(N, M) ((N) >= (M) ? (N) : (M))
#define DO_MIN(N, M) ((N) >= (M) ? (M) : (N))
/* Unsigned min/max */
#define DO_MAXU(N, M) DO_MAX((UMTYPE)N, (UMTYPE)M)
#define DO_MINU(N, M) DO_MIN((UMTYPE)N, (UMTYPE)M)
/*
*** load and store whole register instructions
*/
static void
vext_ldst_whole(void *vd, target_ulong base, CPURISCVState *env, uint32_t desc,
vext_ldst_elem_fn *ldst_elem, uint32_t esz, uintptr_t ra,
MMUAccessType access_type)
{
uint32_t i, k, off, pos;
uint32_t nf = vext_nf(desc);
uint32_t vlenb = env_archcpu(env)->cfg.vlen >> 3;
uint32_t max_elems = vlenb >> esz;
k = env->vstart / max_elems;
off = env->vstart % max_elems;
if (off) {
/* load/store rest of elements of current segment pointed by vstart */
for (pos = off; pos < max_elems; pos++, env->vstart++) {
target_ulong addr = base + ((pos + k * max_elems) << esz);
ldst_elem(env, adjust_addr(env, addr), pos + k * max_elems, vd, ra);
}
k++;
}
/* load/store elements for rest of segments */
for (; k < nf; k++) {
for (i = 0; i < max_elems; i++, env->vstart++) {
target_ulong addr = base + ((i + k * max_elems) << esz);
ldst_elem(env, adjust_addr(env, addr), i + k * max_elems, vd, ra);
}
}
env->vstart = 0;
}
#define GEN_VEXT_LD_WHOLE(NAME, ETYPE, LOAD_FN) \
void HELPER(NAME)(void *vd, target_ulong base, \
CPURISCVState *env, uint32_t desc) \
{ \
vext_ldst_whole(vd, base, env, desc, LOAD_FN, \
ctzl(sizeof(ETYPE)), GETPC(), \
MMU_DATA_LOAD); \
}
GEN_VEXT_LD_WHOLE(vl1re8_v, int8_t, lde_b)
GEN_VEXT_LD_WHOLE(vl1re16_v, int16_t, lde_h)
GEN_VEXT_LD_WHOLE(vl1re32_v, int32_t, lde_w)
GEN_VEXT_LD_WHOLE(vl1re64_v, int64_t, lde_d)
GEN_VEXT_LD_WHOLE(vl2re8_v, int8_t, lde_b)
GEN_VEXT_LD_WHOLE(vl2re16_v, int16_t, lde_h)
GEN_VEXT_LD_WHOLE(vl2re32_v, int32_t, lde_w)
GEN_VEXT_LD_WHOLE(vl2re64_v, int64_t, lde_d)
GEN_VEXT_LD_WHOLE(vl4re8_v, int8_t, lde_b)
GEN_VEXT_LD_WHOLE(vl4re16_v, int16_t, lde_h)
GEN_VEXT_LD_WHOLE(vl4re32_v, int32_t, lde_w)
GEN_VEXT_LD_WHOLE(vl4re64_v, int64_t, lde_d)
GEN_VEXT_LD_WHOLE(vl8re8_v, int8_t, lde_b)
GEN_VEXT_LD_WHOLE(vl8re16_v, int16_t, lde_h)
GEN_VEXT_LD_WHOLE(vl8re32_v, int32_t, lde_w)
GEN_VEXT_LD_WHOLE(vl8re64_v, int64_t, lde_d)
#define GEN_VEXT_ST_WHOLE(NAME, ETYPE, STORE_FN) \
void HELPER(NAME)(void *vd, target_ulong base, \
CPURISCVState *env, uint32_t desc) \
{ \
vext_ldst_whole(vd, base, env, desc, STORE_FN, \
ctzl(sizeof(ETYPE)), GETPC(), \
MMU_DATA_STORE); \
}
GEN_VEXT_ST_WHOLE(vs1r_v, int8_t, ste_b)
GEN_VEXT_ST_WHOLE(vs2r_v, int8_t, ste_b)
GEN_VEXT_ST_WHOLE(vs4r_v, int8_t, ste_b)
GEN_VEXT_ST_WHOLE(vs8r_v, int8_t, ste_b)
/*
*** Vector Integer Arithmetic Instructions
*/
/* expand macro args before macro */
#define RVVCALL(macro, ...) macro(__VA_ARGS__)
/* (TD, T1, T2, TX1, TX2) */
#define OP_SSS_B int8_t, int8_t, int8_t, int8_t, int8_t
#define OP_SSS_H int16_t, int16_t, int16_t, int16_t, int16_t
#define OP_SSS_W int32_t, int32_t, int32_t, int32_t, int32_t
#define OP_SSS_D int64_t, int64_t, int64_t, int64_t, int64_t
#define OP_UUU_B uint8_t, uint8_t, uint8_t, uint8_t, uint8_t
#define OP_UUU_H uint16_t, uint16_t, uint16_t, uint16_t, uint16_t
#define OP_UUU_W uint32_t, uint32_t, uint32_t, uint32_t, uint32_t
#define OP_UUU_D uint64_t, uint64_t, uint64_t, uint64_t, uint64_t
#define OP_SUS_B int8_t, uint8_t, int8_t, uint8_t, int8_t
#define OP_SUS_H int16_t, uint16_t, int16_t, uint16_t, int16_t
#define OP_SUS_W int32_t, uint32_t, int32_t, uint32_t, int32_t
#define OP_SUS_D int64_t, uint64_t, int64_t, uint64_t, int64_t
#define WOP_UUU_B uint16_t, uint8_t, uint8_t, uint16_t, uint16_t
#define WOP_UUU_H uint32_t, uint16_t, uint16_t, uint32_t, uint32_t
#define WOP_UUU_W uint64_t, uint32_t, uint32_t, uint64_t, uint64_t
#define WOP_SSS_B int16_t, int8_t, int8_t, int16_t, int16_t
#define WOP_SSS_H int32_t, int16_t, int16_t, int32_t, int32_t
#define WOP_SSS_W int64_t, int32_t, int32_t, int64_t, int64_t
#define WOP_SUS_B int16_t, uint8_t, int8_t, uint16_t, int16_t
#define WOP_SUS_H int32_t, uint16_t, int16_t, uint32_t, int32_t
#define WOP_SUS_W int64_t, uint32_t, int32_t, uint64_t, int64_t
#define WOP_SSU_B int16_t, int8_t, uint8_t, int16_t, uint16_t
#define WOP_SSU_H int32_t, int16_t, uint16_t, int32_t, uint32_t
#define WOP_SSU_W int64_t, int32_t, uint32_t, int64_t, uint64_t
#define NOP_SSS_B int8_t, int8_t, int16_t, int8_t, int16_t
#define NOP_SSS_H int16_t, int16_t, int32_t, int16_t, int32_t
#define NOP_SSS_W int32_t, int32_t, int64_t, int32_t, int64_t
#define NOP_UUU_B uint8_t, uint8_t, uint16_t, uint8_t, uint16_t
#define NOP_UUU_H uint16_t, uint16_t, uint32_t, uint16_t, uint32_t
#define NOP_UUU_W uint32_t, uint32_t, uint64_t, uint32_t, uint64_t
/* operation of two vector elements */
typedef void opivv2_fn(void *vd, void *vs1, void *vs2, int i);
#define OPIVV2(NAME, TD, T1, T2, TX1, TX2, HD, HS1, HS2, OP) \
static void do_##NAME(void *vd, void *vs1, void *vs2, int i) \
{ \
TX1 s1 = *((T1 *)vs1 + HS1(i)); \
TX2 s2 = *((T2 *)vs2 + HS2(i)); \
*((TD *)vd + HD(i)) = OP(s2, s1); \
}
#define DO_SUB(N, M) (N - M)
#define DO_RSUB(N, M) (M - N)
RVVCALL(OPIVV2, vadd_vv_b, OP_SSS_B, H1, H1, H1, DO_ADD)
RVVCALL(OPIVV2, vadd_vv_h, OP_SSS_H, H2, H2, H2, DO_ADD)
RVVCALL(OPIVV2, vadd_vv_w, OP_SSS_W, H4, H4, H4, DO_ADD)
RVVCALL(OPIVV2, vadd_vv_d, OP_SSS_D, H8, H8, H8, DO_ADD)
RVVCALL(OPIVV2, vsub_vv_b, OP_SSS_B, H1, H1, H1, DO_SUB)
RVVCALL(OPIVV2, vsub_vv_h, OP_SSS_H, H2, H2, H2, DO_SUB)
RVVCALL(OPIVV2, vsub_vv_w, OP_SSS_W, H4, H4, H4, DO_SUB)
RVVCALL(OPIVV2, vsub_vv_d, OP_SSS_D, H8, H8, H8, DO_SUB)
static void do_vext_vv(void *vd, void *v0, void *vs1, void *vs2,
CPURISCVState *env, uint32_t desc,
uint32_t esz, uint32_t dsz,
opivv2_fn *fn)
{
uint32_t vm = vext_vm(desc);
uint32_t vl = env->vl;
uint32_t i;
for (i = env->vstart; i < vl; i++) {
if (!vm && !vext_elem_mask(v0, i)) {
continue;
}
fn(vd, vs1, vs2, i);
}
env->vstart = 0;
}
/* generate the helpers for OPIVV */
#define GEN_VEXT_VV(NAME, ESZ, DSZ) \
void HELPER(NAME)(void *vd, void *v0, void *vs1, \
void *vs2, CPURISCVState *env, \
uint32_t desc) \
{ \
do_vext_vv(vd, v0, vs1, vs2, env, desc, ESZ, DSZ, \
do_##NAME); \
}
GEN_VEXT_VV(vadd_vv_b, 1, 1)
GEN_VEXT_VV(vadd_vv_h, 2, 2)
GEN_VEXT_VV(vadd_vv_w, 4, 4)
GEN_VEXT_VV(vadd_vv_d, 8, 8)
GEN_VEXT_VV(vsub_vv_b, 1, 1)
GEN_VEXT_VV(vsub_vv_h, 2, 2)
GEN_VEXT_VV(vsub_vv_w, 4, 4)
GEN_VEXT_VV(vsub_vv_d, 8, 8)
typedef void opivx2_fn(void *vd, target_long s1, void *vs2, int i);
/*
* (T1)s1 gives the real operator type.
* (TX1)(T1)s1 expands the operator type of widen or narrow operations.
*/
#define OPIVX2(NAME, TD, T1, T2, TX1, TX2, HD, HS2, OP) \
static void do_##NAME(void *vd, target_long s1, void *vs2, int i) \
{ \
TX2 s2 = *((T2 *)vs2 + HS2(i)); \
*((TD *)vd + HD(i)) = OP(s2, (TX1)(T1)s1); \
}
RVVCALL(OPIVX2, vadd_vx_b, OP_SSS_B, H1, H1, DO_ADD)
RVVCALL(OPIVX2, vadd_vx_h, OP_SSS_H, H2, H2, DO_ADD)
RVVCALL(OPIVX2, vadd_vx_w, OP_SSS_W, H4, H4, DO_ADD)
RVVCALL(OPIVX2, vadd_vx_d, OP_SSS_D, H8, H8, DO_ADD)
RVVCALL(OPIVX2, vsub_vx_b, OP_SSS_B, H1, H1, DO_SUB)
RVVCALL(OPIVX2, vsub_vx_h, OP_SSS_H, H2, H2, DO_SUB)
RVVCALL(OPIVX2, vsub_vx_w, OP_SSS_W, H4, H4, DO_SUB)
RVVCALL(OPIVX2, vsub_vx_d, OP_SSS_D, H8, H8, DO_SUB)
RVVCALL(OPIVX2, vrsub_vx_b, OP_SSS_B, H1, H1, DO_RSUB)
RVVCALL(OPIVX2, vrsub_vx_h, OP_SSS_H, H2, H2, DO_RSUB)
RVVCALL(OPIVX2, vrsub_vx_w, OP_SSS_W, H4, H4, DO_RSUB)
RVVCALL(OPIVX2, vrsub_vx_d, OP_SSS_D, H8, H8, DO_RSUB)
static void do_vext_vx(void *vd, void *v0, target_long s1, void *vs2,
CPURISCVState *env, uint32_t desc,
uint32_t esz, uint32_t dsz,
opivx2_fn fn)
{
uint32_t vm = vext_vm(desc);
uint32_t vl = env->vl;
uint32_t i;
for (i = env->vstart; i < vl; i++) {
if (!vm && !vext_elem_mask(v0, i)) {
continue;
}
fn(vd, s1, vs2, i);
}
env->vstart = 0;
}
/* generate the helpers for OPIVX */
#define GEN_VEXT_VX(NAME, ESZ, DSZ) \
void HELPER(NAME)(void *vd, void *v0, target_ulong s1, \
void *vs2, CPURISCVState *env, \
uint32_t desc) \
{ \
do_vext_vx(vd, v0, s1, vs2, env, desc, ESZ, DSZ, \
do_##NAME); \
}
GEN_VEXT_VX(vadd_vx_b, 1, 1)
GEN_VEXT_VX(vadd_vx_h, 2, 2)
GEN_VEXT_VX(vadd_vx_w, 4, 4)
GEN_VEXT_VX(vadd_vx_d, 8, 8)
GEN_VEXT_VX(vsub_vx_b, 1, 1)
GEN_VEXT_VX(vsub_vx_h, 2, 2)
GEN_VEXT_VX(vsub_vx_w, 4, 4)
GEN_VEXT_VX(vsub_vx_d, 8, 8)
GEN_VEXT_VX(vrsub_vx_b, 1, 1)
GEN_VEXT_VX(vrsub_vx_h, 2, 2)
GEN_VEXT_VX(vrsub_vx_w, 4, 4)
GEN_VEXT_VX(vrsub_vx_d, 8, 8)
void HELPER(vec_rsubs8)(void *d, void *a, uint64_t b, uint32_t desc)
{
intptr_t oprsz = simd_oprsz(desc);
intptr_t i;
for (i = 0; i < oprsz; i += sizeof(uint8_t)) {
*(uint8_t *)(d + i) = (uint8_t)b - *(uint8_t *)(a + i);
}
}
void HELPER(vec_rsubs16)(void *d, void *a, uint64_t b, uint32_t desc)
{
intptr_t oprsz = simd_oprsz(desc);
intptr_t i;
for (i = 0; i < oprsz; i += sizeof(uint16_t)) {
*(uint16_t *)(d + i) = (uint16_t)b - *(uint16_t *)(a + i);
}
}
void HELPER(vec_rsubs32)(void *d, void *a, uint64_t b, uint32_t desc)
{
intptr_t oprsz = simd_oprsz(desc);
intptr_t i;
for (i = 0; i < oprsz; i += sizeof(uint32_t)) {
*(uint32_t *)(d + i) = (uint32_t)b - *(uint32_t *)(a + i);
}
}
void HELPER(vec_rsubs64)(void *d, void *a, uint64_t b, uint32_t desc)
{
intptr_t oprsz = simd_oprsz(desc);
intptr_t i;
for (i = 0; i < oprsz; i += sizeof(uint64_t)) {
*(uint64_t *)(d + i) = b - *(uint64_t *)(a + i);
}
}
/* Vector Widening Integer Add/Subtract */
#define WOP_UUU_B uint16_t, uint8_t, uint8_t, uint16_t, uint16_t
#define WOP_UUU_H uint32_t, uint16_t, uint16_t, uint32_t, uint32_t
#define WOP_UUU_W uint64_t, uint32_t, uint32_t, uint64_t, uint64_t
#define WOP_SSS_B int16_t, int8_t, int8_t, int16_t, int16_t
#define WOP_SSS_H int32_t, int16_t, int16_t, int32_t, int32_t
#define WOP_SSS_W int64_t, int32_t, int32_t, int64_t, int64_t
#define WOP_WUUU_B uint16_t, uint8_t, uint16_t, uint16_t, uint16_t
#define WOP_WUUU_H uint32_t, uint16_t, uint32_t, uint32_t, uint32_t
#define WOP_WUUU_W uint64_t, uint32_t, uint64_t, uint64_t, uint64_t
#define WOP_WSSS_B int16_t, int8_t, int16_t, int16_t, int16_t
#define WOP_WSSS_H int32_t, int16_t, int32_t, int32_t, int32_t
#define WOP_WSSS_W int64_t, int32_t, int64_t, int64_t, int64_t
RVVCALL(OPIVV2, vwaddu_vv_b, WOP_UUU_B, H2, H1, H1, DO_ADD)
RVVCALL(OPIVV2, vwaddu_vv_h, WOP_UUU_H, H4, H2, H2, DO_ADD)
RVVCALL(OPIVV2, vwaddu_vv_w, WOP_UUU_W, H8, H4, H4, DO_ADD)
RVVCALL(OPIVV2, vwsubu_vv_b, WOP_UUU_B, H2, H1, H1, DO_SUB)
RVVCALL(OPIVV2, vwsubu_vv_h, WOP_UUU_H, H4, H2, H2, DO_SUB)
RVVCALL(OPIVV2, vwsubu_vv_w, WOP_UUU_W, H8, H4, H4, DO_SUB)
RVVCALL(OPIVV2, vwadd_vv_b, WOP_SSS_B, H2, H1, H1, DO_ADD)
RVVCALL(OPIVV2, vwadd_vv_h, WOP_SSS_H, H4, H2, H2, DO_ADD)
RVVCALL(OPIVV2, vwadd_vv_w, WOP_SSS_W, H8, H4, H4, DO_ADD)
RVVCALL(OPIVV2, vwsub_vv_b, WOP_SSS_B, H2, H1, H1, DO_SUB)
RVVCALL(OPIVV2, vwsub_vv_h, WOP_SSS_H, H4, H2, H2, DO_SUB)
RVVCALL(OPIVV2, vwsub_vv_w, WOP_SSS_W, H8, H4, H4, DO_SUB)
RVVCALL(OPIVV2, vwaddu_wv_b, WOP_WUUU_B, H2, H1, H1, DO_ADD)
RVVCALL(OPIVV2, vwaddu_wv_h, WOP_WUUU_H, H4, H2, H2, DO_ADD)
RVVCALL(OPIVV2, vwaddu_wv_w, WOP_WUUU_W, H8, H4, H4, DO_ADD)
RVVCALL(OPIVV2, vwsubu_wv_b, WOP_WUUU_B, H2, H1, H1, DO_SUB)
RVVCALL(OPIVV2, vwsubu_wv_h, WOP_WUUU_H, H4, H2, H2, DO_SUB)
RVVCALL(OPIVV2, vwsubu_wv_w, WOP_WUUU_W, H8, H4, H4, DO_SUB)
RVVCALL(OPIVV2, vwadd_wv_b, WOP_WSSS_B, H2, H1, H1, DO_ADD)
RVVCALL(OPIVV2, vwadd_wv_h, WOP_WSSS_H, H4, H2, H2, DO_ADD)
RVVCALL(OPIVV2, vwadd_wv_w, WOP_WSSS_W, H8, H4, H4, DO_ADD)
RVVCALL(OPIVV2, vwsub_wv_b, WOP_WSSS_B, H2, H1, H1, DO_SUB)
RVVCALL(OPIVV2, vwsub_wv_h, WOP_WSSS_H, H4, H2, H2, DO_SUB)
RVVCALL(OPIVV2, vwsub_wv_w, WOP_WSSS_W, H8, H4, H4, DO_SUB)
GEN_VEXT_VV(vwaddu_vv_b, 1, 2)
GEN_VEXT_VV(vwaddu_vv_h, 2, 4)
GEN_VEXT_VV(vwaddu_vv_w, 4, 8)
GEN_VEXT_VV(vwsubu_vv_b, 1, 2)
GEN_VEXT_VV(vwsubu_vv_h, 2, 4)
GEN_VEXT_VV(vwsubu_vv_w, 4, 8)
GEN_VEXT_VV(vwadd_vv_b, 1, 2)
GEN_VEXT_VV(vwadd_vv_h, 2, 4)
GEN_VEXT_VV(vwadd_vv_w, 4, 8)
GEN_VEXT_VV(vwsub_vv_b, 1, 2)
GEN_VEXT_VV(vwsub_vv_h, 2, 4)
GEN_VEXT_VV(vwsub_vv_w, 4, 8)
GEN_VEXT_VV(vwaddu_wv_b, 1, 2)
GEN_VEXT_VV(vwaddu_wv_h, 2, 4)
GEN_VEXT_VV(vwaddu_wv_w, 4, 8)
GEN_VEXT_VV(vwsubu_wv_b, 1, 2)
GEN_VEXT_VV(vwsubu_wv_h, 2, 4)
GEN_VEXT_VV(vwsubu_wv_w, 4, 8)
GEN_VEXT_VV(vwadd_wv_b, 1, 2)
GEN_VEXT_VV(vwadd_wv_h, 2, 4)
GEN_VEXT_VV(vwadd_wv_w, 4, 8)
GEN_VEXT_VV(vwsub_wv_b, 1, 2)
GEN_VEXT_VV(vwsub_wv_h, 2, 4)
GEN_VEXT_VV(vwsub_wv_w, 4, 8)
RVVCALL(OPIVX2, vwaddu_vx_b, WOP_UUU_B, H2, H1, DO_ADD)
RVVCALL(OPIVX2, vwaddu_vx_h, WOP_UUU_H, H4, H2, DO_ADD)
RVVCALL(OPIVX2, vwaddu_vx_w, WOP_UUU_W, H8, H4, DO_ADD)
RVVCALL(OPIVX2, vwsubu_vx_b, WOP_UUU_B, H2, H1, DO_SUB)
RVVCALL(OPIVX2, vwsubu_vx_h, WOP_UUU_H, H4, H2, DO_SUB)
RVVCALL(OPIVX2, vwsubu_vx_w, WOP_UUU_W, H8, H4, DO_SUB)
RVVCALL(OPIVX2, vwadd_vx_b, WOP_SSS_B, H2, H1, DO_ADD)
RVVCALL(OPIVX2, vwadd_vx_h, WOP_SSS_H, H4, H2, DO_ADD)
RVVCALL(OPIVX2, vwadd_vx_w, WOP_SSS_W, H8, H4, DO_ADD)
RVVCALL(OPIVX2, vwsub_vx_b, WOP_SSS_B, H2, H1, DO_SUB)
RVVCALL(OPIVX2, vwsub_vx_h, WOP_SSS_H, H4, H2, DO_SUB)
RVVCALL(OPIVX2, vwsub_vx_w, WOP_SSS_W, H8, H4, DO_SUB)
RVVCALL(OPIVX2, vwaddu_wx_b, WOP_WUUU_B, H2, H1, DO_ADD)
RVVCALL(OPIVX2, vwaddu_wx_h, WOP_WUUU_H, H4, H2, DO_ADD)
RVVCALL(OPIVX2, vwaddu_wx_w, WOP_WUUU_W, H8, H4, DO_ADD)
RVVCALL(OPIVX2, vwsubu_wx_b, WOP_WUUU_B, H2, H1, DO_SUB)
RVVCALL(OPIVX2, vwsubu_wx_h, WOP_WUUU_H, H4, H2, DO_SUB)
RVVCALL(OPIVX2, vwsubu_wx_w, WOP_WUUU_W, H8, H4, DO_SUB)
RVVCALL(OPIVX2, vwadd_wx_b, WOP_WSSS_B, H2, H1, DO_ADD)
RVVCALL(OPIVX2, vwadd_wx_h, WOP_WSSS_H, H4, H2, DO_ADD)
RVVCALL(OPIVX2, vwadd_wx_w, WOP_WSSS_W, H8, H4, DO_ADD)
RVVCALL(OPIVX2, vwsub_wx_b, WOP_WSSS_B, H2, H1, DO_SUB)
RVVCALL(OPIVX2, vwsub_wx_h, WOP_WSSS_H, H4, H2, DO_SUB)
RVVCALL(OPIVX2, vwsub_wx_w, WOP_WSSS_W, H8, H4, DO_SUB)
GEN_VEXT_VX(vwaddu_vx_b, 1, 2)
GEN_VEXT_VX(vwaddu_vx_h, 2, 4)
GEN_VEXT_VX(vwaddu_vx_w, 4, 8)
GEN_VEXT_VX(vwsubu_vx_b, 1, 2)
GEN_VEXT_VX(vwsubu_vx_h, 2, 4)
GEN_VEXT_VX(vwsubu_vx_w, 4, 8)
GEN_VEXT_VX(vwadd_vx_b, 1, 2)
GEN_VEXT_VX(vwadd_vx_h, 2, 4)
GEN_VEXT_VX(vwadd_vx_w, 4, 8)
GEN_VEXT_VX(vwsub_vx_b, 1, 2)
GEN_VEXT_VX(vwsub_vx_h, 2, 4)
GEN_VEXT_VX(vwsub_vx_w, 4, 8)
GEN_VEXT_VX(vwaddu_wx_b, 1, 2)
GEN_VEXT_VX(vwaddu_wx_h, 2, 4)
GEN_VEXT_VX(vwaddu_wx_w, 4, 8)
GEN_VEXT_VX(vwsubu_wx_b, 1, 2)
GEN_VEXT_VX(vwsubu_wx_h, 2, 4)
GEN_VEXT_VX(vwsubu_wx_w, 4, 8)
GEN_VEXT_VX(vwadd_wx_b, 1, 2)
GEN_VEXT_VX(vwadd_wx_h, 2, 4)
GEN_VEXT_VX(vwadd_wx_w, 4, 8)
GEN_VEXT_VX(vwsub_wx_b, 1, 2)
GEN_VEXT_VX(vwsub_wx_h, 2, 4)
GEN_VEXT_VX(vwsub_wx_w, 4, 8)
/* Vector Integer Add-with-Carry / Subtract-with-Borrow Instructions */
#define DO_VADC(N, M, C) (N + M + C)
#define DO_VSBC(N, M, C) (N - M - C)
#define GEN_VEXT_VADC_VVM(NAME, ETYPE, H, DO_OP) \
void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2, \
CPURISCVState *env, uint32_t desc) \
{ \
uint32_t vl = env->vl; \
uint32_t i; \
\
for (i = env->vstart; i < vl; i++) { \
ETYPE s1 = *((ETYPE *)vs1 + H(i)); \
ETYPE s2 = *((ETYPE *)vs2 + H(i)); \
ETYPE carry = vext_elem_mask(v0, i); \
\
*((ETYPE *)vd + H(i)) = DO_OP(s2, s1, carry); \
} \
env->vstart = 0; \
}
GEN_VEXT_VADC_VVM(vadc_vvm_b, uint8_t, H1, DO_VADC)
GEN_VEXT_VADC_VVM(vadc_vvm_h, uint16_t, H2, DO_VADC)
GEN_VEXT_VADC_VVM(vadc_vvm_w, uint32_t, H4, DO_VADC)
GEN_VEXT_VADC_VVM(vadc_vvm_d, uint64_t, H8, DO_VADC)
GEN_VEXT_VADC_VVM(vsbc_vvm_b, uint8_t, H1, DO_VSBC)
GEN_VEXT_VADC_VVM(vsbc_vvm_h, uint16_t, H2, DO_VSBC)
GEN_VEXT_VADC_VVM(vsbc_vvm_w, uint32_t, H4, DO_VSBC)
GEN_VEXT_VADC_VVM(vsbc_vvm_d, uint64_t, H8, DO_VSBC)
#define GEN_VEXT_VADC_VXM(NAME, ETYPE, H, DO_OP) \
void HELPER(NAME)(void *vd, void *v0, target_ulong s1, void *vs2, \
CPURISCVState *env, uint32_t desc) \
{ \
uint32_t vl = env->vl; \
uint32_t i; \
\
for (i = env->vstart; i < vl; i++) { \
ETYPE s2 = *((ETYPE *)vs2 + H(i)); \
ETYPE carry = vext_elem_mask(v0, i); \
\
*((ETYPE *)vd + H(i)) = DO_OP(s2, (ETYPE)(target_long)s1, carry);\
} \
env->vstart = 0; \
}
GEN_VEXT_VADC_VXM(vadc_vxm_b, uint8_t, H1, DO_VADC)
GEN_VEXT_VADC_VXM(vadc_vxm_h, uint16_t, H2, DO_VADC)
GEN_VEXT_VADC_VXM(vadc_vxm_w, uint32_t, H4, DO_VADC)
GEN_VEXT_VADC_VXM(vadc_vxm_d, uint64_t, H8, DO_VADC)
GEN_VEXT_VADC_VXM(vsbc_vxm_b, uint8_t, H1, DO_VSBC)
GEN_VEXT_VADC_VXM(vsbc_vxm_h, uint16_t, H2, DO_VSBC)
GEN_VEXT_VADC_VXM(vsbc_vxm_w, uint32_t, H4, DO_VSBC)
GEN_VEXT_VADC_VXM(vsbc_vxm_d, uint64_t, H8, DO_VSBC)
#define DO_MADC(N, M, C) (C ? (__typeof(N))(N + M + 1) <= N : \
(__typeof(N))(N + M) < N)
#define DO_MSBC(N, M, C) (C ? N <= M : N < M)
#define GEN_VEXT_VMADC_VVM(NAME, ETYPE, H, DO_OP) \
void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2, \
CPURISCVState *env, uint32_t desc) \
{ \
uint32_t vl = env->vl; \
uint32_t vm = vext_vm(desc); \
uint32_t i; \
\
for (i = env->vstart; i < vl; i++) { \
ETYPE s1 = *((ETYPE *)vs1 + H(i)); \
ETYPE s2 = *((ETYPE *)vs2 + H(i)); \
ETYPE carry = !vm && vext_elem_mask(v0, i); \
vext_set_elem_mask(vd, i, DO_OP(s2, s1, carry)); \
} \
env->vstart = 0; \
}
GEN_VEXT_VMADC_VVM(vmadc_vvm_b, uint8_t, H1, DO_MADC)
GEN_VEXT_VMADC_VVM(vmadc_vvm_h, uint16_t, H2, DO_MADC)
GEN_VEXT_VMADC_VVM(vmadc_vvm_w, uint32_t, H4, DO_MADC)
GEN_VEXT_VMADC_VVM(vmadc_vvm_d, uint64_t, H8, DO_MADC)
GEN_VEXT_VMADC_VVM(vmsbc_vvm_b, uint8_t, H1, DO_MSBC)
GEN_VEXT_VMADC_VVM(vmsbc_vvm_h, uint16_t, H2, DO_MSBC)
GEN_VEXT_VMADC_VVM(vmsbc_vvm_w, uint32_t, H4, DO_MSBC)
GEN_VEXT_VMADC_VVM(vmsbc_vvm_d, uint64_t, H8, DO_MSBC)
#define GEN_VEXT_VMADC_VXM(NAME, ETYPE, H, DO_OP) \
void HELPER(NAME)(void *vd, void *v0, target_ulong s1, \
void *vs2, CPURISCVState *env, uint32_t desc) \
{ \
uint32_t vl = env->vl; \
uint32_t vm = vext_vm(desc); \
uint32_t i; \
\
for (i = env->vstart; i < vl; i++) { \
ETYPE s2 = *((ETYPE *)vs2 + H(i)); \
ETYPE carry = !vm && vext_elem_mask(v0, i); \
vext_set_elem_mask(vd, i, \
DO_OP(s2, (ETYPE)(target_long)s1, carry)); \
} \
env->vstart = 0; \
}
GEN_VEXT_VMADC_VXM(vmadc_vxm_b, uint8_t, H1, DO_MADC)
GEN_VEXT_VMADC_VXM(vmadc_vxm_h, uint16_t, H2, DO_MADC)
GEN_VEXT_VMADC_VXM(vmadc_vxm_w, uint32_t, H4, DO_MADC)
GEN_VEXT_VMADC_VXM(vmadc_vxm_d, uint64_t, H8, DO_MADC)
GEN_VEXT_VMADC_VXM(vmsbc_vxm_b, uint8_t, H1, DO_MSBC)
GEN_VEXT_VMADC_VXM(vmsbc_vxm_h, uint16_t, H2, DO_MSBC)
GEN_VEXT_VMADC_VXM(vmsbc_vxm_w, uint32_t, H4, DO_MSBC)
GEN_VEXT_VMADC_VXM(vmsbc_vxm_d, uint64_t, H8, DO_MSBC)
/* Vector Bitwise Logical Instructions */
RVVCALL(OPIVV2, vand_vv_b, OP_SSS_B, H1, H1, H1, DO_AND)
RVVCALL(OPIVV2, vand_vv_h, OP_SSS_H, H2, H2, H2, DO_AND)
RVVCALL(OPIVV2, vand_vv_w, OP_SSS_W, H4, H4, H4, DO_AND)
RVVCALL(OPIVV2, vand_vv_d, OP_SSS_D, H8, H8, H8, DO_AND)
RVVCALL(OPIVV2, vor_vv_b, OP_SSS_B, H1, H1, H1, DO_OR)
RVVCALL(OPIVV2, vor_vv_h, OP_SSS_H, H2, H2, H2, DO_OR)
RVVCALL(OPIVV2, vor_vv_w, OP_SSS_W, H4, H4, H4, DO_OR)
RVVCALL(OPIVV2, vor_vv_d, OP_SSS_D, H8, H8, H8, DO_OR)
RVVCALL(OPIVV2, vxor_vv_b, OP_SSS_B, H1, H1, H1, DO_XOR)
RVVCALL(OPIVV2, vxor_vv_h, OP_SSS_H, H2, H2, H2, DO_XOR)
RVVCALL(OPIVV2, vxor_vv_w, OP_SSS_W, H4, H4, H4, DO_XOR)
RVVCALL(OPIVV2, vxor_vv_d, OP_SSS_D, H8, H8, H8, DO_XOR)
GEN_VEXT_VV(vand_vv_b, 1, 1)
GEN_VEXT_VV(vand_vv_h, 2, 2)
GEN_VEXT_VV(vand_vv_w, 4, 4)
GEN_VEXT_VV(vand_vv_d, 8, 8)
GEN_VEXT_VV(vor_vv_b, 1, 1)
GEN_VEXT_VV(vor_vv_h, 2, 2)
GEN_VEXT_VV(vor_vv_w, 4, 4)
GEN_VEXT_VV(vor_vv_d, 8, 8)
GEN_VEXT_VV(vxor_vv_b, 1, 1)
GEN_VEXT_VV(vxor_vv_h, 2, 2)
GEN_VEXT_VV(vxor_vv_w, 4, 4)
GEN_VEXT_VV(vxor_vv_d, 8, 8)
RVVCALL(OPIVX2, vand_vx_b, OP_SSS_B, H1, H1, DO_AND)
RVVCALL(OPIVX2, vand_vx_h, OP_SSS_H, H2, H2, DO_AND)
RVVCALL(OPIVX2, vand_vx_w, OP_SSS_W, H4, H4, DO_AND)
RVVCALL(OPIVX2, vand_vx_d, OP_SSS_D, H8, H8, DO_AND)
RVVCALL(OPIVX2, vor_vx_b, OP_SSS_B, H1, H1, DO_OR)
RVVCALL(OPIVX2, vor_vx_h, OP_SSS_H, H2, H2, DO_OR)
RVVCALL(OPIVX2, vor_vx_w, OP_SSS_W, H4, H4, DO_OR)
RVVCALL(OPIVX2, vor_vx_d, OP_SSS_D, H8, H8, DO_OR)
RVVCALL(OPIVX2, vxor_vx_b, OP_SSS_B, H1, H1, DO_XOR)
RVVCALL(OPIVX2, vxor_vx_h, OP_SSS_H, H2, H2, DO_XOR)
RVVCALL(OPIVX2, vxor_vx_w, OP_SSS_W, H4, H4, DO_XOR)
RVVCALL(OPIVX2, vxor_vx_d, OP_SSS_D, H8, H8, DO_XOR)
GEN_VEXT_VX(vand_vx_b, 1, 1)
GEN_VEXT_VX(vand_vx_h, 2, 2)
GEN_VEXT_VX(vand_vx_w, 4, 4)
GEN_VEXT_VX(vand_vx_d, 8, 8)
GEN_VEXT_VX(vor_vx_b, 1, 1)
GEN_VEXT_VX(vor_vx_h, 2, 2)
GEN_VEXT_VX(vor_vx_w, 4, 4)
GEN_VEXT_VX(vor_vx_d, 8, 8)
GEN_VEXT_VX(vxor_vx_b, 1, 1)
GEN_VEXT_VX(vxor_vx_h, 2, 2)
GEN_VEXT_VX(vxor_vx_w, 4, 4)
GEN_VEXT_VX(vxor_vx_d, 8, 8)
/* Vector Single-Width Bit Shift Instructions */
#define DO_SLL(N, M) (N << (M))
#define DO_SRL(N, M) (N >> (M))
/* generate the helpers for shift instructions with two vector operators */
#define GEN_VEXT_SHIFT_VV(NAME, TS1, TS2, HS1, HS2, OP, MASK) \
void HELPER(NAME)(void *vd, void *v0, void *vs1, \
void *vs2, CPURISCVState *env, uint32_t desc) \
{ \
uint32_t vm = vext_vm(desc); \
uint32_t vl = env->vl; \
uint32_t i; \
\
for (i = env->vstart; i < vl; i++) { \
if (!vm && !vext_elem_mask(v0, i)) { \
continue; \
} \
TS1 s1 = *((TS1 *)vs1 + HS1(i)); \
TS2 s2 = *((TS2 *)vs2 + HS2(i)); \
*((TS1 *)vd + HS1(i)) = OP(s2, s1 & MASK); \
} \
env->vstart = 0; \
}
GEN_VEXT_SHIFT_VV(vsll_vv_b, uint8_t, uint8_t, H1, H1, DO_SLL, 0x7)
GEN_VEXT_SHIFT_VV(vsll_vv_h, uint16_t, uint16_t, H2, H2, DO_SLL, 0xf)
GEN_VEXT_SHIFT_VV(vsll_vv_w, uint32_t, uint32_t, H4, H4, DO_SLL, 0x1f)
GEN_VEXT_SHIFT_VV(vsll_vv_d, uint64_t, uint64_t, H8, H8, DO_SLL, 0x3f)
GEN_VEXT_SHIFT_VV(vsrl_vv_b, uint8_t, uint8_t, H1, H1, DO_SRL, 0x7)
GEN_VEXT_SHIFT_VV(vsrl_vv_h, uint16_t, uint16_t, H2, H2, DO_SRL, 0xf)
GEN_VEXT_SHIFT_VV(vsrl_vv_w, uint32_t, uint32_t, H4, H4, DO_SRL, 0x1f)
GEN_VEXT_SHIFT_VV(vsrl_vv_d, uint64_t, uint64_t, H8, H8, DO_SRL, 0x3f)
GEN_VEXT_SHIFT_VV(vsra_vv_b, uint8_t, int8_t, H1, H1, DO_SRL, 0x7)
GEN_VEXT_SHIFT_VV(vsra_vv_h, uint16_t, int16_t, H2, H2, DO_SRL, 0xf)
GEN_VEXT_SHIFT_VV(vsra_vv_w, uint32_t, int32_t, H4, H4, DO_SRL, 0x1f)
GEN_VEXT_SHIFT_VV(vsra_vv_d, uint64_t, int64_t, H8, H8, DO_SRL, 0x3f)
/* generate the helpers for shift instructions with one vector and one scalar */
#define GEN_VEXT_SHIFT_VX(NAME, TD, TS2, HD, HS2, OP, MASK) \
void HELPER(NAME)(void *vd, void *v0, target_ulong s1, \
void *vs2, CPURISCVState *env, uint32_t desc) \
{ \
uint32_t vm = vext_vm(desc); \
uint32_t vl = env->vl; \
uint32_t i; \
\
for (i = env->vstart; i < vl; i++) { \
if (!vm && !vext_elem_mask(v0, i)) { \
continue; \
} \
TS2 s2 = *((TS2 *)vs2 + HS2(i)); \
*((TD *)vd + HD(i)) = OP(s2, s1 & MASK); \
} \
env->vstart = 0; \
}
GEN_VEXT_SHIFT_VX(vsll_vx_b, uint8_t, int8_t, H1, H1, DO_SLL, 0x7)
GEN_VEXT_SHIFT_VX(vsll_vx_h, uint16_t, int16_t, H2, H2, DO_SLL, 0xf)
GEN_VEXT_SHIFT_VX(vsll_vx_w, uint32_t, int32_t, H4, H4, DO_SLL, 0x1f)
GEN_VEXT_SHIFT_VX(vsll_vx_d, uint64_t, int64_t, H8, H8, DO_SLL, 0x3f)
GEN_VEXT_SHIFT_VX(vsrl_vx_b, uint8_t, uint8_t, H1, H1, DO_SRL, 0x7)
GEN_VEXT_SHIFT_VX(vsrl_vx_h, uint16_t, uint16_t, H2, H2, DO_SRL, 0xf)
GEN_VEXT_SHIFT_VX(vsrl_vx_w, uint32_t, uint32_t, H4, H4, DO_SRL, 0x1f)
GEN_VEXT_SHIFT_VX(vsrl_vx_d, uint64_t, uint64_t, H8, H8, DO_SRL, 0x3f)
GEN_VEXT_SHIFT_VX(vsra_vx_b, int8_t, int8_t, H1, H1, DO_SRL, 0x7)
GEN_VEXT_SHIFT_VX(vsra_vx_h, int16_t, int16_t, H2, H2, DO_SRL, 0xf)
GEN_VEXT_SHIFT_VX(vsra_vx_w, int32_t, int32_t, H4, H4, DO_SRL, 0x1f)
GEN_VEXT_SHIFT_VX(vsra_vx_d, int64_t, int64_t, H8, H8, DO_SRL, 0x3f)
/* Vector Narrowing Integer Right Shift Instructions */
GEN_VEXT_SHIFT_VV(vnsrl_wv_b, uint8_t, uint16_t, H1, H2, DO_SRL, 0xf)
GEN_VEXT_SHIFT_VV(vnsrl_wv_h, uint16_t, uint32_t, H2, H4, DO_SRL, 0x1f)
GEN_VEXT_SHIFT_VV(vnsrl_wv_w, uint32_t, uint64_t, H4, H8, DO_SRL, 0x3f)
GEN_VEXT_SHIFT_VV(vnsra_wv_b, uint8_t, int16_t, H1, H2, DO_SRL, 0xf)
GEN_VEXT_SHIFT_VV(vnsra_wv_h, uint16_t, int32_t, H2, H4, DO_SRL, 0x1f)
GEN_VEXT_SHIFT_VV(vnsra_wv_w, uint32_t, int64_t, H4, H8, DO_SRL, 0x3f)
GEN_VEXT_SHIFT_VX(vnsrl_wx_b, uint8_t, uint16_t, H1, H2, DO_SRL, 0xf)
GEN_VEXT_SHIFT_VX(vnsrl_wx_h, uint16_t, uint32_t, H2, H4, DO_SRL, 0x1f)
GEN_VEXT_SHIFT_VX(vnsrl_wx_w, uint32_t, uint64_t, H4, H8, DO_SRL, 0x3f)
GEN_VEXT_SHIFT_VX(vnsra_wx_b, int8_t, int16_t, H1, H2, DO_SRL, 0xf)
GEN_VEXT_SHIFT_VX(vnsra_wx_h, int16_t, int32_t, H2, H4, DO_SRL, 0x1f)
GEN_VEXT_SHIFT_VX(vnsra_wx_w, int32_t, int64_t, H4, H8, DO_SRL, 0x3f)
/* Vector Integer Comparison Instructions */
#define DO_MSEQ(N, M) (N == M)
#define DO_MSNE(N, M) (N != M)
#define DO_MSLT(N, M) (N < M)
#define DO_MSLE(N, M) (N <= M)
#define DO_MSGT(N, M) (N > M)
#define GEN_VEXT_CMP_VV(NAME, ETYPE, H, DO_OP) \
void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2, \
CPURISCVState *env, uint32_t desc) \
{ \
uint32_t vm = vext_vm(desc); \
uint32_t vl = env->vl; \
uint32_t i; \
\
for (i = env->vstart; i < vl; i++) { \
ETYPE s1 = *((ETYPE *)vs1 + H(i)); \
ETYPE s2 = *((ETYPE *)vs2 + H(i)); \
if (!vm && !vext_elem_mask(v0, i)) { \
continue; \
} \
vext_set_elem_mask(vd, i, DO_OP(s2, s1)); \
} \
env->vstart = 0; \
}
GEN_VEXT_CMP_VV(vmseq_vv_b, uint8_t, H1, DO_MSEQ)
GEN_VEXT_CMP_VV(vmseq_vv_h, uint16_t, H2, DO_MSEQ)
GEN_VEXT_CMP_VV(vmseq_vv_w, uint32_t, H4, DO_MSEQ)
GEN_VEXT_CMP_VV(vmseq_vv_d, uint64_t, H8, DO_MSEQ)
GEN_VEXT_CMP_VV(vmsne_vv_b, uint8_t, H1, DO_MSNE)
GEN_VEXT_CMP_VV(vmsne_vv_h, uint16_t, H2, DO_MSNE)
GEN_VEXT_CMP_VV(vmsne_vv_w, uint32_t, H4, DO_MSNE)
GEN_VEXT_CMP_VV(vmsne_vv_d, uint64_t, H8, DO_MSNE)
GEN_VEXT_CMP_VV(vmsltu_vv_b, uint8_t, H1, DO_MSLT)
GEN_VEXT_CMP_VV(vmsltu_vv_h, uint16_t, H2, DO_MSLT)
GEN_VEXT_CMP_VV(vmsltu_vv_w, uint32_t, H4, DO_MSLT)
GEN_VEXT_CMP_VV(vmsltu_vv_d, uint64_t, H8, DO_MSLT)
GEN_VEXT_CMP_VV(vmslt_vv_b, int8_t, H1, DO_MSLT)
GEN_VEXT_CMP_VV(vmslt_vv_h, int16_t, H2, DO_MSLT)
GEN_VEXT_CMP_VV(vmslt_vv_w, int32_t, H4, DO_MSLT)
GEN_VEXT_CMP_VV(vmslt_vv_d, int64_t, H8, DO_MSLT)
GEN_VEXT_CMP_VV(vmsleu_vv_b, uint8_t, H1, DO_MSLE)
GEN_VEXT_CMP_VV(vmsleu_vv_h, uint16_t, H2, DO_MSLE)
GEN_VEXT_CMP_VV(vmsleu_vv_w, uint32_t, H4, DO_MSLE)
GEN_VEXT_CMP_VV(vmsleu_vv_d, uint64_t, H8, DO_MSLE)
GEN_VEXT_CMP_VV(vmsle_vv_b, int8_t, H1, DO_MSLE)
GEN_VEXT_CMP_VV(vmsle_vv_h, int16_t, H2, DO_MSLE)
GEN_VEXT_CMP_VV(vmsle_vv_w, int32_t, H4, DO_MSLE)
GEN_VEXT_CMP_VV(vmsle_vv_d, int64_t, H8, DO_MSLE)
#define GEN_VEXT_CMP_VX(NAME, ETYPE, H, DO_OP) \
void HELPER(NAME)(void *vd, void *v0, target_ulong s1, void *vs2, \
CPURISCVState *env, uint32_t desc) \
{ \
uint32_t vm = vext_vm(desc); \
uint32_t vl = env->vl; \
uint32_t i; \
\
for (i = env->vstart; i < vl; i++) { \
ETYPE s2 = *((ETYPE *)vs2 + H(i)); \
if (!vm && !vext_elem_mask(v0, i)) { \
continue; \
} \
vext_set_elem_mask(vd, i, \
DO_OP(s2, (ETYPE)(target_long)s1)); \
} \
env->vstart = 0; \
}
GEN_VEXT_CMP_VX(vmseq_vx_b, uint8_t, H1, DO_MSEQ)
GEN_VEXT_CMP_VX(vmseq_vx_h, uint16_t, H2, DO_MSEQ)
GEN_VEXT_CMP_VX(vmseq_vx_w, uint32_t, H4, DO_MSEQ)
GEN_VEXT_CMP_VX(vmseq_vx_d, uint64_t, H8, DO_MSEQ)
GEN_VEXT_CMP_VX(vmsne_vx_b, uint8_t, H1, DO_MSNE)
GEN_VEXT_CMP_VX(vmsne_vx_h, uint16_t, H2, DO_MSNE)
GEN_VEXT_CMP_VX(vmsne_vx_w, uint32_t, H4, DO_MSNE)
GEN_VEXT_CMP_VX(vmsne_vx_d, uint64_t, H8, DO_MSNE)
GEN_VEXT_CMP_VX(vmsltu_vx_b, uint8_t, H1, DO_MSLT)
GEN_VEXT_CMP_VX(vmsltu_vx_h, uint16_t, H2, DO_MSLT)
GEN_VEXT_CMP_VX(vmsltu_vx_w, uint32_t, H4, DO_MSLT)
GEN_VEXT_CMP_VX(vmsltu_vx_d, uint64_t, H8, DO_MSLT)
GEN_VEXT_CMP_VX(vmslt_vx_b, int8_t, H1, DO_MSLT)
GEN_VEXT_CMP_VX(vmslt_vx_h, int16_t, H2, DO_MSLT)
GEN_VEXT_CMP_VX(vmslt_vx_w, int32_t, H4, DO_MSLT)
GEN_VEXT_CMP_VX(vmslt_vx_d, int64_t, H8, DO_MSLT)
GEN_VEXT_CMP_VX(vmsleu_vx_b, uint8_t, H1, DO_MSLE)
GEN_VEXT_CMP_VX(vmsleu_vx_h, uint16_t, H2, DO_MSLE)
GEN_VEXT_CMP_VX(vmsleu_vx_w, uint32_t, H4, DO_MSLE)
GEN_VEXT_CMP_VX(vmsleu_vx_d, uint64_t, H8, DO_MSLE)
GEN_VEXT_CMP_VX(vmsle_vx_b, int8_t, H1, DO_MSLE)
GEN_VEXT_CMP_VX(vmsle_vx_h, int16_t, H2, DO_MSLE)
GEN_VEXT_CMP_VX(vmsle_vx_w, int32_t, H4, DO_MSLE)
GEN_VEXT_CMP_VX(vmsle_vx_d, int64_t, H8, DO_MSLE)
GEN_VEXT_CMP_VX(vmsgtu_vx_b, uint8_t, H1, DO_MSGT)
GEN_VEXT_CMP_VX(vmsgtu_vx_h, uint16_t, H2, DO_MSGT)
GEN_VEXT_CMP_VX(vmsgtu_vx_w, uint32_t, H4, DO_MSGT)
GEN_VEXT_CMP_VX(vmsgtu_vx_d, uint64_t, H8, DO_MSGT)
GEN_VEXT_CMP_VX(vmsgt_vx_b, int8_t, H1, DO_MSGT)
GEN_VEXT_CMP_VX(vmsgt_vx_h, int16_t, H2, DO_MSGT)
GEN_VEXT_CMP_VX(vmsgt_vx_w, int32_t, H4, DO_MSGT)
GEN_VEXT_CMP_VX(vmsgt_vx_d, int64_t, H8, DO_MSGT)
/* Vector Integer Min/Max Instructions */
RVVCALL(OPIVV2, vminu_vv_b, OP_UUU_B, H1, H1, H1, DO_MIN)
RVVCALL(OPIVV2, vminu_vv_h, OP_UUU_H, H2, H2, H2, DO_MIN)
RVVCALL(OPIVV2, vminu_vv_w, OP_UUU_W, H4, H4, H4, DO_MIN)
RVVCALL(OPIVV2, vminu_vv_d, OP_UUU_D, H8, H8, H8, DO_MIN)
RVVCALL(OPIVV2, vmin_vv_b, OP_SSS_B, H1, H1, H1, DO_MIN)
RVVCALL(OPIVV2, vmin_vv_h, OP_SSS_H, H2, H2, H2, DO_MIN)
RVVCALL(OPIVV2, vmin_vv_w, OP_SSS_W, H4, H4, H4, DO_MIN)
RVVCALL(OPIVV2, vmin_vv_d, OP_SSS_D, H8, H8, H8, DO_MIN)
RVVCALL(OPIVV2, vmaxu_vv_b, OP_UUU_B, H1, H1, H1, DO_MAX)
RVVCALL(OPIVV2, vmaxu_vv_h, OP_UUU_H, H2, H2, H2, DO_MAX)
RVVCALL(OPIVV2, vmaxu_vv_w, OP_UUU_W, H4, H4, H4, DO_MAX)
RVVCALL(OPIVV2, vmaxu_vv_d, OP_UUU_D, H8, H8, H8, DO_MAX)
RVVCALL(OPIVV2, vmax_vv_b, OP_SSS_B, H1, H1, H1, DO_MAX)
RVVCALL(OPIVV2, vmax_vv_h, OP_SSS_H, H2, H2, H2, DO_MAX)
RVVCALL(OPIVV2, vmax_vv_w, OP_SSS_W, H4, H4, H4, DO_MAX)
RVVCALL(OPIVV2, vmax_vv_d, OP_SSS_D, H8, H8, H8, DO_MAX)
GEN_VEXT_VV(vminu_vv_b, 1, 1)
GEN_VEXT_VV(vminu_vv_h, 2, 2)
GEN_VEXT_VV(vminu_vv_w, 4, 4)
GEN_VEXT_VV(vminu_vv_d, 8, 8)
GEN_VEXT_VV(vmin_vv_b, 1, 1)
GEN_VEXT_VV(vmin_vv_h, 2, 2)
GEN_VEXT_VV(vmin_vv_w, 4, 4)
GEN_VEXT_VV(vmin_vv_d, 8, 8)
GEN_VEXT_VV(vmaxu_vv_b, 1, 1)
GEN_VEXT_VV(vmaxu_vv_h, 2, 2)
GEN_VEXT_VV(vmaxu_vv_w, 4, 4)
GEN_VEXT_VV(vmaxu_vv_d, 8, 8)
GEN_VEXT_VV(vmax_vv_b, 1, 1)
GEN_VEXT_VV(vmax_vv_h, 2, 2)
GEN_VEXT_VV(vmax_vv_w, 4, 4)
GEN_VEXT_VV(vmax_vv_d, 8, 8)
RVVCALL(OPIVX2, vminu_vx_b, OP_UUU_B, H1, H1, DO_MIN)
RVVCALL(OPIVX2, vminu_vx_h, OP_UUU_H, H2, H2, DO_MIN)
RVVCALL(OPIVX2, vminu_vx_w, OP_UUU_W, H4, H4, DO_MIN)
RVVCALL(OPIVX2, vminu_vx_d, OP_UUU_D, H8, H8, DO_MIN)
RVVCALL(OPIVX2, vmin_vx_b, OP_SSS_B, H1, H1, DO_MIN)
RVVCALL(OPIVX2, vmin_vx_h, OP_SSS_H, H2, H2, DO_MIN)
RVVCALL(OPIVX2, vmin_vx_w, OP_SSS_W, H4, H4, DO_MIN)
RVVCALL(OPIVX2, vmin_vx_d, OP_SSS_D, H8, H8, DO_MIN)
RVVCALL(OPIVX2, vmaxu_vx_b, OP_UUU_B, H1, H1, DO_MAX)
RVVCALL(OPIVX2, vmaxu_vx_h, OP_UUU_H, H2, H2, DO_MAX)
RVVCALL(OPIVX2, vmaxu_vx_w, OP_UUU_W, H4, H4, DO_MAX)
RVVCALL(OPIVX2, vmaxu_vx_d, OP_UUU_D, H8, H8, DO_MAX)
RVVCALL(OPIVX2, vmax_vx_b, OP_SSS_B, H1, H1, DO_MAX)
RVVCALL(OPIVX2, vmax_vx_h, OP_SSS_H, H2, H2, DO_MAX)
RVVCALL(OPIVX2, vmax_vx_w, OP_SSS_W, H4, H4, DO_MAX)
RVVCALL(OPIVX2, vmax_vx_d, OP_SSS_D, H8, H8, DO_MAX)
GEN_VEXT_VX(vminu_vx_b, 1, 1)
GEN_VEXT_VX(vminu_vx_h, 2, 2)
GEN_VEXT_VX(vminu_vx_w, 4, 4)
GEN_VEXT_VX(vminu_vx_d, 8, 8)
GEN_VEXT_VX(vmin_vx_b, 1, 1)
GEN_VEXT_VX(vmin_vx_h, 2, 2)
GEN_VEXT_VX(vmin_vx_w, 4, 4)
GEN_VEXT_VX(vmin_vx_d, 8, 8)
GEN_VEXT_VX(vmaxu_vx_b, 1, 1)
GEN_VEXT_VX(vmaxu_vx_h, 2, 2)
GEN_VEXT_VX(vmaxu_vx_w, 4, 4)
GEN_VEXT_VX(vmaxu_vx_d, 8, 8)
GEN_VEXT_VX(vmax_vx_b, 1, 1)
GEN_VEXT_VX(vmax_vx_h, 2, 2)
GEN_VEXT_VX(vmax_vx_w, 4, 4)
GEN_VEXT_VX(vmax_vx_d, 8, 8)
/* Vector Single-Width Integer Multiply Instructions */
#define DO_MUL(N, M) (N * M)
RVVCALL(OPIVV2, vmul_vv_b, OP_SSS_B, H1, H1, H1, DO_MUL)
RVVCALL(OPIVV2, vmul_vv_h, OP_SSS_H, H2, H2, H2, DO_MUL)
RVVCALL(OPIVV2, vmul_vv_w, OP_SSS_W, H4, H4, H4, DO_MUL)
RVVCALL(OPIVV2, vmul_vv_d, OP_SSS_D, H8, H8, H8, DO_MUL)
GEN_VEXT_VV(vmul_vv_b, 1, 1)
GEN_VEXT_VV(vmul_vv_h, 2, 2)
GEN_VEXT_VV(vmul_vv_w, 4, 4)
GEN_VEXT_VV(vmul_vv_d, 8, 8)
static int8_t do_mulh_b(int8_t s2, int8_t s1)
{
return (int16_t)s2 * (int16_t)s1 >> 8;
}
static int16_t do_mulh_h(int16_t s2, int16_t s1)
{
return (int32_t)s2 * (int32_t)s1 >> 16;
}
static int32_t do_mulh_w(int32_t s2, int32_t s1)
{
return (int64_t)s2 * (int64_t)s1 >> 32;
}
static int64_t do_mulh_d(int64_t s2, int64_t s1)
{
uint64_t hi_64, lo_64;
muls64(&lo_64, &hi_64, s1, s2);
return hi_64;
}
static uint8_t do_mulhu_b(uint8_t s2, uint8_t s1)
{
return (uint16_t)s2 * (uint16_t)s1 >> 8;
}
static uint16_t do_mulhu_h(uint16_t s2, uint16_t s1)
{
return (uint32_t)s2 * (uint32_t)s1 >> 16;
}
static uint32_t do_mulhu_w(uint32_t s2, uint32_t s1)
{
return (uint64_t)s2 * (uint64_t)s1 >> 32;
}
static uint64_t do_mulhu_d(uint64_t s2, uint64_t s1)
{
uint64_t hi_64, lo_64;
mulu64(&lo_64, &hi_64, s2, s1);
return hi_64;
}
static int8_t do_mulhsu_b(int8_t s2, uint8_t s1)
{
return (int16_t)s2 * (uint16_t)s1 >> 8;
}
static int16_t do_mulhsu_h(int16_t s2, uint16_t s1)
{
return (int32_t)s2 * (uint32_t)s1 >> 16;
}
static int32_t do_mulhsu_w(int32_t s2, uint32_t s1)
{
return (int64_t)s2 * (uint64_t)s1 >> 32;
}
/*
* Let A = signed operand,
* B = unsigned operand
* P = mulu64(A, B), unsigned product
*
* LET X = 2 ** 64 - A, 2's complement of A
* SP = signed product
* THEN
* IF A < 0
* SP = -X * B
* = -(2 ** 64 - A) * B
* = A * B - 2 ** 64 * B
* = P - 2 ** 64 * B
* ELSE
* SP = P
* THEN
* HI_P -= (A < 0 ? B : 0)
*/
static int64_t do_mulhsu_d(int64_t s2, uint64_t s1)
{
uint64_t hi_64, lo_64;
mulu64(&lo_64, &hi_64, s2, s1);
hi_64 -= s2 < 0 ? s1 : 0;
return hi_64;
}
RVVCALL(OPIVV2, vmulh_vv_b, OP_SSS_B, H1, H1, H1, do_mulh_b)
RVVCALL(OPIVV2, vmulh_vv_h, OP_SSS_H, H2, H2, H2, do_mulh_h)
RVVCALL(OPIVV2, vmulh_vv_w, OP_SSS_W, H4, H4, H4, do_mulh_w)
RVVCALL(OPIVV2, vmulh_vv_d, OP_SSS_D, H8, H8, H8, do_mulh_d)
RVVCALL(OPIVV2, vmulhu_vv_b, OP_UUU_B, H1, H1, H1, do_mulhu_b)
RVVCALL(OPIVV2, vmulhu_vv_h, OP_UUU_H, H2, H2, H2, do_mulhu_h)
RVVCALL(OPIVV2, vmulhu_vv_w, OP_UUU_W, H4, H4, H4, do_mulhu_w)
RVVCALL(OPIVV2, vmulhu_vv_d, OP_UUU_D, H8, H8, H8, do_mulhu_d)
RVVCALL(OPIVV2, vmulhsu_vv_b, OP_SUS_B, H1, H1, H1, do_mulhsu_b)
RVVCALL(OPIVV2, vmulhsu_vv_h, OP_SUS_H, H2, H2, H2, do_mulhsu_h)
RVVCALL(OPIVV2, vmulhsu_vv_w, OP_SUS_W, H4, H4, H4, do_mulhsu_w)
RVVCALL(OPIVV2, vmulhsu_vv_d, OP_SUS_D, H8, H8, H8, do_mulhsu_d)
GEN_VEXT_VV(vmulh_vv_b, 1, 1)
GEN_VEXT_VV(vmulh_vv_h, 2, 2)
GEN_VEXT_VV(vmulh_vv_w, 4, 4)
GEN_VEXT_VV(vmulh_vv_d, 8, 8)
GEN_VEXT_VV(vmulhu_vv_b, 1, 1)
GEN_VEXT_VV(vmulhu_vv_h, 2, 2)
GEN_VEXT_VV(vmulhu_vv_w, 4, 4)
GEN_VEXT_VV(vmulhu_vv_d, 8, 8)
GEN_VEXT_VV(vmulhsu_vv_b, 1, 1)
GEN_VEXT_VV(vmulhsu_vv_h, 2, 2)
GEN_VEXT_VV(vmulhsu_vv_w, 4, 4)
GEN_VEXT_VV(vmulhsu_vv_d, 8, 8)
RVVCALL(OPIVX2, vmul_vx_b, OP_SSS_B, H1, H1, DO_MUL)
RVVCALL(OPIVX2, vmul_vx_h, OP_SSS_H, H2, H2, DO_MUL)
RVVCALL(OPIVX2, vmul_vx_w, OP_SSS_W, H4, H4, DO_MUL)
RVVCALL(OPIVX2, vmul_vx_d, OP_SSS_D, H8, H8, DO_MUL)
RVVCALL(OPIVX2, vmulh_vx_b, OP_SSS_B, H1, H1, do_mulh_b)
RVVCALL(OPIVX2, vmulh_vx_h, OP_SSS_H, H2, H2, do_mulh_h)
RVVCALL(OPIVX2, vmulh_vx_w, OP_SSS_W, H4, H4, do_mulh_w)
RVVCALL(OPIVX2, vmulh_vx_d, OP_SSS_D, H8, H8, do_mulh_d)
RVVCALL(OPIVX2, vmulhu_vx_b, OP_UUU_B, H1, H1, do_mulhu_b)
RVVCALL(OPIVX2, vmulhu_vx_h, OP_UUU_H, H2, H2, do_mulhu_h)
RVVCALL(OPIVX2, vmulhu_vx_w, OP_UUU_W, H4, H4, do_mulhu_w)
RVVCALL(OPIVX2, vmulhu_vx_d, OP_UUU_D, H8, H8, do_mulhu_d)
RVVCALL(OPIVX2, vmulhsu_vx_b, OP_SUS_B, H1, H1, do_mulhsu_b)
RVVCALL(OPIVX2, vmulhsu_vx_h, OP_SUS_H, H2, H2, do_mulhsu_h)
RVVCALL(OPIVX2, vmulhsu_vx_w, OP_SUS_W, H4, H4, do_mulhsu_w)
RVVCALL(OPIVX2, vmulhsu_vx_d, OP_SUS_D, H8, H8, do_mulhsu_d)
GEN_VEXT_VX(vmul_vx_b, 1, 1)
GEN_VEXT_VX(vmul_vx_h, 2, 2)
GEN_VEXT_VX(vmul_vx_w, 4, 4)
GEN_VEXT_VX(vmul_vx_d, 8, 8)
GEN_VEXT_VX(vmulh_vx_b, 1, 1)
GEN_VEXT_VX(vmulh_vx_h, 2, 2)
GEN_VEXT_VX(vmulh_vx_w, 4, 4)
GEN_VEXT_VX(vmulh_vx_d, 8, 8)
GEN_VEXT_VX(vmulhu_vx_b, 1, 1)
GEN_VEXT_VX(vmulhu_vx_h, 2, 2)
GEN_VEXT_VX(vmulhu_vx_w, 4, 4)
GEN_VEXT_VX(vmulhu_vx_d, 8, 8)
GEN_VEXT_VX(vmulhsu_vx_b, 1, 1)
GEN_VEXT_VX(vmulhsu_vx_h, 2, 2)
GEN_VEXT_VX(vmulhsu_vx_w, 4, 4)
GEN_VEXT_VX(vmulhsu_vx_d, 8, 8)
/* Vector Integer Divide Instructions */
#define DO_DIVU(N, M) (unlikely(M == 0) ? (__typeof(N))(-1) : N / M)
#define DO_REMU(N, M) (unlikely(M == 0) ? N : N % M)
#define DO_DIV(N, M) (unlikely(M == 0) ? (__typeof(N))(-1) :\
unlikely((N == -N) && (M == (__typeof(N))(-1))) ? N : N / M)
#define DO_REM(N, M) (unlikely(M == 0) ? N :\
unlikely((N == -N) && (M == (__typeof(N))(-1))) ? 0 : N % M)
RVVCALL(OPIVV2, vdivu_vv_b, OP_UUU_B, H1, H1, H1, DO_DIVU)
RVVCALL(OPIVV2, vdivu_vv_h, OP_UUU_H, H2, H2, H2, DO_DIVU)
RVVCALL(OPIVV2, vdivu_vv_w, OP_UUU_W, H4, H4, H4, DO_DIVU)
RVVCALL(OPIVV2, vdivu_vv_d, OP_UUU_D, H8, H8, H8, DO_DIVU)
RVVCALL(OPIVV2, vdiv_vv_b, OP_SSS_B, H1, H1, H1, DO_DIV)
RVVCALL(OPIVV2, vdiv_vv_h, OP_SSS_H, H2, H2, H2, DO_DIV)
RVVCALL(OPIVV2, vdiv_vv_w, OP_SSS_W, H4, H4, H4, DO_DIV)
RVVCALL(OPIVV2, vdiv_vv_d, OP_SSS_D, H8, H8, H8, DO_DIV)
RVVCALL(OPIVV2, vremu_vv_b, OP_UUU_B, H1, H1, H1, DO_REMU)
RVVCALL(OPIVV2, vremu_vv_h, OP_UUU_H, H2, H2, H2, DO_REMU)
RVVCALL(OPIVV2, vremu_vv_w, OP_UUU_W, H4, H4, H4, DO_REMU)
RVVCALL(OPIVV2, vremu_vv_d, OP_UUU_D, H8, H8, H8, DO_REMU)
RVVCALL(OPIVV2, vrem_vv_b, OP_SSS_B, H1, H1, H1, DO_REM)
RVVCALL(OPIVV2, vrem_vv_h, OP_SSS_H, H2, H2, H2, DO_REM)
RVVCALL(OPIVV2, vrem_vv_w, OP_SSS_W, H4, H4, H4, DO_REM)
RVVCALL(OPIVV2, vrem_vv_d, OP_SSS_D, H8, H8, H8, DO_REM)
GEN_VEXT_VV(vdivu_vv_b, 1, 1)
GEN_VEXT_VV(vdivu_vv_h, 2, 2)
GEN_VEXT_VV(vdivu_vv_w, 4, 4)
GEN_VEXT_VV(vdivu_vv_d, 8, 8)
GEN_VEXT_VV(vdiv_vv_b, 1, 1)
GEN_VEXT_VV(vdiv_vv_h, 2, 2)
GEN_VEXT_VV(vdiv_vv_w, 4, 4)
GEN_VEXT_VV(vdiv_vv_d, 8, 8)
GEN_VEXT_VV(vremu_vv_b, 1, 1)
GEN_VEXT_VV(vremu_vv_h, 2, 2)
GEN_VEXT_VV(vremu_vv_w, 4, 4)
GEN_VEXT_VV(vremu_vv_d, 8, 8)
GEN_VEXT_VV(vrem_vv_b, 1, 1)
GEN_VEXT_VV(vrem_vv_h, 2, 2)
GEN_VEXT_VV(vrem_vv_w, 4, 4)
GEN_VEXT_VV(vrem_vv_d, 8, 8)
RVVCALL(OPIVX2, vdivu_vx_b, OP_UUU_B, H1, H1, DO_DIVU)
RVVCALL(OPIVX2, vdivu_vx_h, OP_UUU_H, H2, H2, DO_DIVU)
RVVCALL(OPIVX2, vdivu_vx_w, OP_UUU_W, H4, H4, DO_DIVU)
RVVCALL(OPIVX2, vdivu_vx_d, OP_UUU_D, H8, H8, DO_DIVU)
RVVCALL(OPIVX2, vdiv_vx_b, OP_SSS_B, H1, H1, DO_DIV)
RVVCALL(OPIVX2, vdiv_vx_h, OP_SSS_H, H2, H2, DO_DIV)
RVVCALL(OPIVX2, vdiv_vx_w, OP_SSS_W, H4, H4, DO_DIV)
RVVCALL(OPIVX2, vdiv_vx_d, OP_SSS_D, H8, H8, DO_DIV)
RVVCALL(OPIVX2, vremu_vx_b, OP_UUU_B, H1, H1, DO_REMU)
RVVCALL(OPIVX2, vremu_vx_h, OP_UUU_H, H2, H2, DO_REMU)
RVVCALL(OPIVX2, vremu_vx_w, OP_UUU_W, H4, H4, DO_REMU)
RVVCALL(OPIVX2, vremu_vx_d, OP_UUU_D, H8, H8, DO_REMU)
RVVCALL(OPIVX2, vrem_vx_b, OP_SSS_B, H1, H1, DO_REM)
RVVCALL(OPIVX2, vrem_vx_h, OP_SSS_H, H2, H2, DO_REM)
RVVCALL(OPIVX2, vrem_vx_w, OP_SSS_W, H4, H4, DO_REM)
RVVCALL(OPIVX2, vrem_vx_d, OP_SSS_D, H8, H8, DO_REM)
GEN_VEXT_VX(vdivu_vx_b, 1, 1)
GEN_VEXT_VX(vdivu_vx_h, 2, 2)
GEN_VEXT_VX(vdivu_vx_w, 4, 4)
GEN_VEXT_VX(vdivu_vx_d, 8, 8)
GEN_VEXT_VX(vdiv_vx_b, 1, 1)
GEN_VEXT_VX(vdiv_vx_h, 2, 2)
GEN_VEXT_VX(vdiv_vx_w, 4, 4)
GEN_VEXT_VX(vdiv_vx_d, 8, 8)
GEN_VEXT_VX(vremu_vx_b, 1, 1)
GEN_VEXT_VX(vremu_vx_h, 2, 2)
GEN_VEXT_VX(vremu_vx_w, 4, 4)
GEN_VEXT_VX(vremu_vx_d, 8, 8)
GEN_VEXT_VX(vrem_vx_b, 1, 1)
GEN_VEXT_VX(vrem_vx_h, 2, 2)
GEN_VEXT_VX(vrem_vx_w, 4, 4)
GEN_VEXT_VX(vrem_vx_d, 8, 8)
/* Vector Widening Integer Multiply Instructions */
RVVCALL(OPIVV2, vwmul_vv_b, WOP_SSS_B, H2, H1, H1, DO_MUL)
RVVCALL(OPIVV2, vwmul_vv_h, WOP_SSS_H, H4, H2, H2, DO_MUL)
RVVCALL(OPIVV2, vwmul_vv_w, WOP_SSS_W, H8, H4, H4, DO_MUL)
RVVCALL(OPIVV2, vwmulu_vv_b, WOP_UUU_B, H2, H1, H1, DO_MUL)
RVVCALL(OPIVV2, vwmulu_vv_h, WOP_UUU_H, H4, H2, H2, DO_MUL)
RVVCALL(OPIVV2, vwmulu_vv_w, WOP_UUU_W, H8, H4, H4, DO_MUL)
RVVCALL(OPIVV2, vwmulsu_vv_b, WOP_SUS_B, H2, H1, H1, DO_MUL)
RVVCALL(OPIVV2, vwmulsu_vv_h, WOP_SUS_H, H4, H2, H2, DO_MUL)
RVVCALL(OPIVV2, vwmulsu_vv_w, WOP_SUS_W, H8, H4, H4, DO_MUL)
GEN_VEXT_VV(vwmul_vv_b, 1, 2)
GEN_VEXT_VV(vwmul_vv_h, 2, 4)
GEN_VEXT_VV(vwmul_vv_w, 4, 8)
GEN_VEXT_VV(vwmulu_vv_b, 1, 2)
GEN_VEXT_VV(vwmulu_vv_h, 2, 4)
GEN_VEXT_VV(vwmulu_vv_w, 4, 8)
GEN_VEXT_VV(vwmulsu_vv_b, 1, 2)
GEN_VEXT_VV(vwmulsu_vv_h, 2, 4)
GEN_VEXT_VV(vwmulsu_vv_w, 4, 8)
RVVCALL(OPIVX2, vwmul_vx_b, WOP_SSS_B, H2, H1, DO_MUL)
RVVCALL(OPIVX2, vwmul_vx_h, WOP_SSS_H, H4, H2, DO_MUL)
RVVCALL(OPIVX2, vwmul_vx_w, WOP_SSS_W, H8, H4, DO_MUL)
RVVCALL(OPIVX2, vwmulu_vx_b, WOP_UUU_B, H2, H1, DO_MUL)
RVVCALL(OPIVX2, vwmulu_vx_h, WOP_UUU_H, H4, H2, DO_MUL)
RVVCALL(OPIVX2, vwmulu_vx_w, WOP_UUU_W, H8, H4, DO_MUL)
RVVCALL(OPIVX2, vwmulsu_vx_b, WOP_SUS_B, H2, H1, DO_MUL)
RVVCALL(OPIVX2, vwmulsu_vx_h, WOP_SUS_H, H4, H2, DO_MUL)
RVVCALL(OPIVX2, vwmulsu_vx_w, WOP_SUS_W, H8, H4, DO_MUL)
GEN_VEXT_VX(vwmul_vx_b, 1, 2)
GEN_VEXT_VX(vwmul_vx_h, 2, 4)
GEN_VEXT_VX(vwmul_vx_w, 4, 8)
GEN_VEXT_VX(vwmulu_vx_b, 1, 2)
GEN_VEXT_VX(vwmulu_vx_h, 2, 4)
GEN_VEXT_VX(vwmulu_vx_w, 4, 8)
GEN_VEXT_VX(vwmulsu_vx_b, 1, 2)
GEN_VEXT_VX(vwmulsu_vx_h, 2, 4)
GEN_VEXT_VX(vwmulsu_vx_w, 4, 8)
/* Vector Single-Width Integer Multiply-Add Instructions */
#define OPIVV3(NAME, TD, T1, T2, TX1, TX2, HD, HS1, HS2, OP) \
static void do_##NAME(void *vd, void *vs1, void *vs2, int i) \
{ \
TX1 s1 = *((T1 *)vs1 + HS1(i)); \
TX2 s2 = *((T2 *)vs2 + HS2(i)); \
TD d = *((TD *)vd + HD(i)); \
*((TD *)vd + HD(i)) = OP(s2, s1, d); \
}
#define DO_MACC(N, M, D) (M * N + D)
#define DO_NMSAC(N, M, D) (-(M * N) + D)
#define DO_MADD(N, M, D) (M * D + N)
#define DO_NMSUB(N, M, D) (-(M * D) + N)
RVVCALL(OPIVV3, vmacc_vv_b, OP_SSS_B, H1, H1, H1, DO_MACC)
RVVCALL(OPIVV3, vmacc_vv_h, OP_SSS_H, H2, H2, H2, DO_MACC)
RVVCALL(OPIVV3, vmacc_vv_w, OP_SSS_W, H4, H4, H4, DO_MACC)
RVVCALL(OPIVV3, vmacc_vv_d, OP_SSS_D, H8, H8, H8, DO_MACC)
RVVCALL(OPIVV3, vnmsac_vv_b, OP_SSS_B, H1, H1, H1, DO_NMSAC)
RVVCALL(OPIVV3, vnmsac_vv_h, OP_SSS_H, H2, H2, H2, DO_NMSAC)
RVVCALL(OPIVV3, vnmsac_vv_w, OP_SSS_W, H4, H4, H4, DO_NMSAC)
RVVCALL(OPIVV3, vnmsac_vv_d, OP_SSS_D, H8, H8, H8, DO_NMSAC)
RVVCALL(OPIVV3, vmadd_vv_b, OP_SSS_B, H1, H1, H1, DO_MADD)
RVVCALL(OPIVV3, vmadd_vv_h, OP_SSS_H, H2, H2, H2, DO_MADD)
RVVCALL(OPIVV3, vmadd_vv_w, OP_SSS_W, H4, H4, H4, DO_MADD)
RVVCALL(OPIVV3, vmadd_vv_d, OP_SSS_D, H8, H8, H8, DO_MADD)
RVVCALL(OPIVV3, vnmsub_vv_b, OP_SSS_B, H1, H1, H1, DO_NMSUB)
RVVCALL(OPIVV3, vnmsub_vv_h, OP_SSS_H, H2, H2, H2, DO_NMSUB)
RVVCALL(OPIVV3, vnmsub_vv_w, OP_SSS_W, H4, H4, H4, DO_NMSUB)
RVVCALL(OPIVV3, vnmsub_vv_d, OP_SSS_D, H8, H8, H8, DO_NMSUB)
GEN_VEXT_VV(vmacc_vv_b, 1, 1)
GEN_VEXT_VV(vmacc_vv_h, 2, 2)
GEN_VEXT_VV(vmacc_vv_w, 4, 4)
GEN_VEXT_VV(vmacc_vv_d, 8, 8)
GEN_VEXT_VV(vnmsac_vv_b, 1, 1)
GEN_VEXT_VV(vnmsac_vv_h, 2, 2)
GEN_VEXT_VV(vnmsac_vv_w, 4, 4)
GEN_VEXT_VV(vnmsac_vv_d, 8, 8)
GEN_VEXT_VV(vmadd_vv_b, 1, 1)
GEN_VEXT_VV(vmadd_vv_h, 2, 2)
GEN_VEXT_VV(vmadd_vv_w, 4, 4)
GEN_VEXT_VV(vmadd_vv_d, 8, 8)
GEN_VEXT_VV(vnmsub_vv_b, 1, 1)
GEN_VEXT_VV(vnmsub_vv_h, 2, 2)
GEN_VEXT_VV(vnmsub_vv_w, 4, 4)
GEN_VEXT_VV(vnmsub_vv_d, 8, 8)
#define OPIVX3(NAME, TD, T1, T2, TX1, TX2, HD, HS2, OP) \
static void do_##NAME(void *vd, target_long s1, void *vs2, int i) \
{ \
TX2 s2 = *((T2 *)vs2 + HS2(i)); \
TD d = *((TD *)vd + HD(i)); \
*((TD *)vd + HD(i)) = OP(s2, (TX1)(T1)s1, d); \
}
RVVCALL(OPIVX3, vmacc_vx_b, OP_SSS_B, H1, H1, DO_MACC)
RVVCALL(OPIVX3, vmacc_vx_h, OP_SSS_H, H2, H2, DO_MACC)
RVVCALL(OPIVX3, vmacc_vx_w, OP_SSS_W, H4, H4, DO_MACC)
RVVCALL(OPIVX3, vmacc_vx_d, OP_SSS_D, H8, H8, DO_MACC)
RVVCALL(OPIVX3, vnmsac_vx_b, OP_SSS_B, H1, H1, DO_NMSAC)
RVVCALL(OPIVX3, vnmsac_vx_h, OP_SSS_H, H2, H2, DO_NMSAC)
RVVCALL(OPIVX3, vnmsac_vx_w, OP_SSS_W, H4, H4, DO_NMSAC)
RVVCALL(OPIVX3, vnmsac_vx_d, OP_SSS_D, H8, H8, DO_NMSAC)
RVVCALL(OPIVX3, vmadd_vx_b, OP_SSS_B, H1, H1, DO_MADD)
RVVCALL(OPIVX3, vmadd_vx_h, OP_SSS_H, H2, H2, DO_MADD)
RVVCALL(OPIVX3, vmadd_vx_w, OP_SSS_W, H4, H4, DO_MADD)
RVVCALL(OPIVX3, vmadd_vx_d, OP_SSS_D, H8, H8, DO_MADD)
RVVCALL(OPIVX3, vnmsub_vx_b, OP_SSS_B, H1, H1, DO_NMSUB)
RVVCALL(OPIVX3, vnmsub_vx_h, OP_SSS_H, H2, H2, DO_NMSUB)
RVVCALL(OPIVX3, vnmsub_vx_w, OP_SSS_W, H4, H4, DO_NMSUB)
RVVCALL(OPIVX3, vnmsub_vx_d, OP_SSS_D, H8, H8, DO_NMSUB)
GEN_VEXT_VX(vmacc_vx_b, 1, 1)
GEN_VEXT_VX(vmacc_vx_h, 2, 2)
GEN_VEXT_VX(vmacc_vx_w, 4, 4)
GEN_VEXT_VX(vmacc_vx_d, 8, 8)
GEN_VEXT_VX(vnmsac_vx_b, 1, 1)
GEN_VEXT_VX(vnmsac_vx_h, 2, 2)
GEN_VEXT_VX(vnmsac_vx_w, 4, 4)
GEN_VEXT_VX(vnmsac_vx_d, 8, 8)
GEN_VEXT_VX(vmadd_vx_b, 1, 1)
GEN_VEXT_VX(vmadd_vx_h, 2, 2)
GEN_VEXT_VX(vmadd_vx_w, 4, 4)
GEN_VEXT_VX(vmadd_vx_d, 8, 8)
GEN_VEXT_VX(vnmsub_vx_b, 1, 1)
GEN_VEXT_VX(vnmsub_vx_h, 2, 2)
GEN_VEXT_VX(vnmsub_vx_w, 4, 4)
GEN_VEXT_VX(vnmsub_vx_d, 8, 8)
/* Vector Widening Integer Multiply-Add Instructions */
RVVCALL(OPIVV3, vwmaccu_vv_b, WOP_UUU_B, H2, H1, H1, DO_MACC)
RVVCALL(OPIVV3, vwmaccu_vv_h, WOP_UUU_H, H4, H2, H2, DO_MACC)
RVVCALL(OPIVV3, vwmaccu_vv_w, WOP_UUU_W, H8, H4, H4, DO_MACC)
RVVCALL(OPIVV3, vwmacc_vv_b, WOP_SSS_B, H2, H1, H1, DO_MACC)
RVVCALL(OPIVV3, vwmacc_vv_h, WOP_SSS_H, H4, H2, H2, DO_MACC)
RVVCALL(OPIVV3, vwmacc_vv_w, WOP_SSS_W, H8, H4, H4, DO_MACC)
RVVCALL(OPIVV3, vwmaccsu_vv_b, WOP_SSU_B, H2, H1, H1, DO_MACC)
RVVCALL(OPIVV3, vwmaccsu_vv_h, WOP_SSU_H, H4, H2, H2, DO_MACC)
RVVCALL(OPIVV3, vwmaccsu_vv_w, WOP_SSU_W, H8, H4, H4, DO_MACC)
GEN_VEXT_VV(vwmaccu_vv_b, 1, 2)
GEN_VEXT_VV(vwmaccu_vv_h, 2, 4)
GEN_VEXT_VV(vwmaccu_vv_w, 4, 8)
GEN_VEXT_VV(vwmacc_vv_b, 1, 2)
GEN_VEXT_VV(vwmacc_vv_h, 2, 4)
GEN_VEXT_VV(vwmacc_vv_w, 4, 8)
GEN_VEXT_VV(vwmaccsu_vv_b, 1, 2)
GEN_VEXT_VV(vwmaccsu_vv_h, 2, 4)
GEN_VEXT_VV(vwmaccsu_vv_w, 4, 8)
RVVCALL(OPIVX3, vwmaccu_vx_b, WOP_UUU_B, H2, H1, DO_MACC)
RVVCALL(OPIVX3, vwmaccu_vx_h, WOP_UUU_H, H4, H2, DO_MACC)
RVVCALL(OPIVX3, vwmaccu_vx_w, WOP_UUU_W, H8, H4, DO_MACC)
RVVCALL(OPIVX3, vwmacc_vx_b, WOP_SSS_B, H2, H1, DO_MACC)
RVVCALL(OPIVX3, vwmacc_vx_h, WOP_SSS_H, H4, H2, DO_MACC)
RVVCALL(OPIVX3, vwmacc_vx_w, WOP_SSS_W, H8, H4, DO_MACC)
RVVCALL(OPIVX3, vwmaccsu_vx_b, WOP_SSU_B, H2, H1, DO_MACC)
RVVCALL(OPIVX3, vwmaccsu_vx_h, WOP_SSU_H, H4, H2, DO_MACC)
RVVCALL(OPIVX3, vwmaccsu_vx_w, WOP_SSU_W, H8, H4, DO_MACC)
RVVCALL(OPIVX3, vwmaccus_vx_b, WOP_SUS_B, H2, H1, DO_MACC)
RVVCALL(OPIVX3, vwmaccus_vx_h, WOP_SUS_H, H4, H2, DO_MACC)
RVVCALL(OPIVX3, vwmaccus_vx_w, WOP_SUS_W, H8, H4, DO_MACC)
GEN_VEXT_VX(vwmaccu_vx_b, 1, 2)
GEN_VEXT_VX(vwmaccu_vx_h, 2, 4)
GEN_VEXT_VX(vwmaccu_vx_w, 4, 8)
GEN_VEXT_VX(vwmacc_vx_b, 1, 2)
GEN_VEXT_VX(vwmacc_vx_h, 2, 4)
GEN_VEXT_VX(vwmacc_vx_w, 4, 8)
GEN_VEXT_VX(vwmaccsu_vx_b, 1, 2)
GEN_VEXT_VX(vwmaccsu_vx_h, 2, 4)
GEN_VEXT_VX(vwmaccsu_vx_w, 4, 8)
GEN_VEXT_VX(vwmaccus_vx_b, 1, 2)
GEN_VEXT_VX(vwmaccus_vx_h, 2, 4)
GEN_VEXT_VX(vwmaccus_vx_w, 4, 8)
/* Vector Integer Merge and Move Instructions */
#define GEN_VEXT_VMV_VV(NAME, ETYPE, H) \
void HELPER(NAME)(void *vd, void *vs1, CPURISCVState *env, \
uint32_t desc) \
{ \
uint32_t vl = env->vl; \
uint32_t i; \
\
for (i = env->vstart; i < vl; i++) { \
ETYPE s1 = *((ETYPE *)vs1 + H(i)); \
*((ETYPE *)vd + H(i)) = s1; \
} \
env->vstart = 0; \
}
GEN_VEXT_VMV_VV(vmv_v_v_b, int8_t, H1)
GEN_VEXT_VMV_VV(vmv_v_v_h, int16_t, H2)
GEN_VEXT_VMV_VV(vmv_v_v_w, int32_t, H4)
GEN_VEXT_VMV_VV(vmv_v_v_d, int64_t, H8)
#define GEN_VEXT_VMV_VX(NAME, ETYPE, H) \
void HELPER(NAME)(void *vd, uint64_t s1, CPURISCVState *env, \
uint32_t desc) \
{ \
uint32_t vl = env->vl; \
uint32_t i; \
\
for (i = env->vstart; i < vl; i++) { \
*((ETYPE *)vd + H(i)) = (ETYPE)s1; \
} \
env->vstart = 0; \
}
GEN_VEXT_VMV_VX(vmv_v_x_b, int8_t, H1)
GEN_VEXT_VMV_VX(vmv_v_x_h, int16_t, H2)
GEN_VEXT_VMV_VX(vmv_v_x_w, int32_t, H4)
GEN_VEXT_VMV_VX(vmv_v_x_d, int64_t, H8)
#define GEN_VEXT_VMERGE_VV(NAME, ETYPE, H) \
void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2, \
CPURISCVState *env, uint32_t desc) \
{ \
uint32_t vl = env->vl; \
uint32_t i; \
\
for (i = env->vstart; i < vl; i++) { \
ETYPE *vt = (!vext_elem_mask(v0, i) ? vs2 : vs1); \
*((ETYPE *)vd + H(i)) = *(vt + H(i)); \
} \
env->vstart = 0; \
}
GEN_VEXT_VMERGE_VV(vmerge_vvm_b, int8_t, H1)
GEN_VEXT_VMERGE_VV(vmerge_vvm_h, int16_t, H2)
GEN_VEXT_VMERGE_VV(vmerge_vvm_w, int32_t, H4)
GEN_VEXT_VMERGE_VV(vmerge_vvm_d, int64_t, H8)
#define GEN_VEXT_VMERGE_VX(NAME, ETYPE, H) \
void HELPER(NAME)(void *vd, void *v0, target_ulong s1, \
void *vs2, CPURISCVState *env, uint32_t desc) \
{ \
uint32_t vl = env->vl; \
uint32_t i; \
\
for (i = env->vstart; i < vl; i++) { \
ETYPE s2 = *((ETYPE *)vs2 + H(i)); \
ETYPE d = (!vext_elem_mask(v0, i) ? s2 : \
(ETYPE)(target_long)s1); \
*((ETYPE *)vd + H(i)) = d; \
} \
env->vstart = 0; \
}
GEN_VEXT_VMERGE_VX(vmerge_vxm_b, int8_t, H1)
GEN_VEXT_VMERGE_VX(vmerge_vxm_h, int16_t, H2)
GEN_VEXT_VMERGE_VX(vmerge_vxm_w, int32_t, H4)
GEN_VEXT_VMERGE_VX(vmerge_vxm_d, int64_t, H8)
/*
*** Vector Fixed-Point Arithmetic Instructions
*/
/* Vector Single-Width Saturating Add and Subtract */
/*
* As fixed point instructions probably have round mode and saturation,
* define common macros for fixed point here.
*/
typedef void opivv2_rm_fn(void *vd, void *vs1, void *vs2, int i,
CPURISCVState *env, int vxrm);
#define OPIVV2_RM(NAME, TD, T1, T2, TX1, TX2, HD, HS1, HS2, OP) \
static inline void \
do_##NAME(void *vd, void *vs1, void *vs2, int i, \
CPURISCVState *env, int vxrm) \
{ \
TX1 s1 = *((T1 *)vs1 + HS1(i)); \
TX2 s2 = *((T2 *)vs2 + HS2(i)); \
*((TD *)vd + HD(i)) = OP(env, vxrm, s2, s1); \
}
static inline void
vext_vv_rm_1(void *vd, void *v0, void *vs1, void *vs2,
CPURISCVState *env,
uint32_t vl, uint32_t vm, int vxrm,
opivv2_rm_fn *fn)
{
for (uint32_t i = env->vstart; i < vl; i++) {
if (!vm && !vext_elem_mask(v0, i)) {
continue;
}
fn(vd, vs1, vs2, i, env, vxrm);
}
env->vstart = 0;
}
static inline void
vext_vv_rm_2(void *vd, void *v0, void *vs1, void *vs2,
CPURISCVState *env,
uint32_t desc, uint32_t esz, uint32_t dsz,
opivv2_rm_fn *fn)
{
uint32_t vm = vext_vm(desc);
uint32_t vl = env->vl;
switch (env->vxrm) {
case 0: /* rnu */
vext_vv_rm_1(vd, v0, vs1, vs2,
env, vl, vm, 0, fn);
break;
case 1: /* rne */
vext_vv_rm_1(vd, v0, vs1, vs2,
env, vl, vm, 1, fn);
break;
case 2: /* rdn */
vext_vv_rm_1(vd, v0, vs1, vs2,
env, vl, vm, 2, fn);
break;
default: /* rod */
vext_vv_rm_1(vd, v0, vs1, vs2,
env, vl, vm, 3, fn);
break;
}
}
/* generate helpers for fixed point instructions with OPIVV format */
#define GEN_VEXT_VV_RM(NAME, ESZ, DSZ) \
void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2, \
CPURISCVState *env, uint32_t desc) \
{ \
vext_vv_rm_2(vd, v0, vs1, vs2, env, desc, ESZ, DSZ, \
do_##NAME); \
}
static inline uint8_t saddu8(CPURISCVState *env, int vxrm, uint8_t a, uint8_t b)
{
uint8_t res = a + b;
if (res < a) {
res = UINT8_MAX;
env->vxsat = 0x1;
}
return res;
}
static inline uint16_t saddu16(CPURISCVState *env, int vxrm, uint16_t a,
uint16_t b)
{
uint16_t res = a + b;
if (res < a) {
res = UINT16_MAX;
env->vxsat = 0x1;
}
return res;
}
static inline uint32_t saddu32(CPURISCVState *env, int vxrm, uint32_t a,
uint32_t b)
{
uint32_t res = a + b;
if (res < a) {
res = UINT32_MAX;
env->vxsat = 0x1;
}
return res;
}
static inline uint64_t saddu64(CPURISCVState *env, int vxrm, uint64_t a,
uint64_t b)
{
uint64_t res = a + b;
if (res < a) {
res = UINT64_MAX;
env->vxsat = 0x1;
}
return res;
}
RVVCALL(OPIVV2_RM, vsaddu_vv_b, OP_UUU_B, H1, H1, H1, saddu8)
RVVCALL(OPIVV2_RM, vsaddu_vv_h, OP_UUU_H, H2, H2, H2, saddu16)
RVVCALL(OPIVV2_RM, vsaddu_vv_w, OP_UUU_W, H4, H4, H4, saddu32)
RVVCALL(OPIVV2_RM, vsaddu_vv_d, OP_UUU_D, H8, H8, H8, saddu64)
GEN_VEXT_VV_RM(vsaddu_vv_b, 1, 1)
GEN_VEXT_VV_RM(vsaddu_vv_h, 2, 2)
GEN_VEXT_VV_RM(vsaddu_vv_w, 4, 4)
GEN_VEXT_VV_RM(vsaddu_vv_d, 8, 8)
typedef void opivx2_rm_fn(void *vd, target_long s1, void *vs2, int i,
CPURISCVState *env, int vxrm);
#define OPIVX2_RM(NAME, TD, T1, T2, TX1, TX2, HD, HS2, OP) \
static inline void \
do_##NAME(void *vd, target_long s1, void *vs2, int i, \
CPURISCVState *env, int vxrm) \
{ \
TX2 s2 = *((T2 *)vs2 + HS2(i)); \
*((TD *)vd + HD(i)) = OP(env, vxrm, s2, (TX1)(T1)s1); \
}
static inline void
vext_vx_rm_1(void *vd, void *v0, target_long s1, void *vs2,
CPURISCVState *env,
uint32_t vl, uint32_t vm, int vxrm,
opivx2_rm_fn *fn)
{
for (uint32_t i = env->vstart; i < vl; i++) {
if (!vm && !vext_elem_mask(v0, i)) {
continue;
}
fn(vd, s1, vs2, i, env, vxrm);
}
env->vstart = 0;
}
static inline void
vext_vx_rm_2(void *vd, void *v0, target_long s1, void *vs2,
CPURISCVState *env,
uint32_t desc, uint32_t esz, uint32_t dsz,
opivx2_rm_fn *fn)
{
uint32_t vm = vext_vm(desc);
uint32_t vl = env->vl;
switch (env->vxrm) {
case 0: /* rnu */
vext_vx_rm_1(vd, v0, s1, vs2,
env, vl, vm, 0, fn);
break;
case 1: /* rne */
vext_vx_rm_1(vd, v0, s1, vs2,
env, vl, vm, 1, fn);
break;
case 2: /* rdn */
vext_vx_rm_1(vd, v0, s1, vs2,
env, vl, vm, 2, fn);
break;
default: /* rod */
vext_vx_rm_1(vd, v0, s1, vs2,
env, vl, vm, 3, fn);
break;
}
}
/* generate helpers for fixed point instructions with OPIVX format */
#define GEN_VEXT_VX_RM(NAME, ESZ, DSZ) \
void HELPER(NAME)(void *vd, void *v0, target_ulong s1, \
void *vs2, CPURISCVState *env, uint32_t desc) \
{ \
vext_vx_rm_2(vd, v0, s1, vs2, env, desc, ESZ, DSZ, \
do_##NAME); \
}
RVVCALL(OPIVX2_RM, vsaddu_vx_b, OP_UUU_B, H1, H1, saddu8)
RVVCALL(OPIVX2_RM, vsaddu_vx_h, OP_UUU_H, H2, H2, saddu16)
RVVCALL(OPIVX2_RM, vsaddu_vx_w, OP_UUU_W, H4, H4, saddu32)
RVVCALL(OPIVX2_RM, vsaddu_vx_d, OP_UUU_D, H8, H8, saddu64)
GEN_VEXT_VX_RM(vsaddu_vx_b, 1, 1)
GEN_VEXT_VX_RM(vsaddu_vx_h, 2, 2)
GEN_VEXT_VX_RM(vsaddu_vx_w, 4, 4)
GEN_VEXT_VX_RM(vsaddu_vx_d, 8, 8)
static inline int8_t sadd8(CPURISCVState *env, int vxrm, int8_t a, int8_t b)
{
int8_t res = a + b;
if ((res ^ a) & (res ^ b) & INT8_MIN) {
res = a > 0 ? INT8_MAX : INT8_MIN;
env->vxsat = 0x1;
}
return res;
}
static inline int16_t sadd16(CPURISCVState *env, int vxrm, int16_t a, int16_t b)
{
int16_t res = a + b;
if ((res ^ a) & (res ^ b) & INT16_MIN) {
res = a > 0 ? INT16_MAX : INT16_MIN;
env->vxsat = 0x1;
}
return res;
}
static inline int32_t sadd32(CPURISCVState *env, int vxrm, int32_t a, int32_t b)
{
int32_t res = a + b;
if ((res ^ a) & (res ^ b) & INT32_MIN) {
res = a > 0 ? INT32_MAX : INT32_MIN;
env->vxsat = 0x1;
}
return res;
}
static inline int64_t sadd64(CPURISCVState *env, int vxrm, int64_t a, int64_t b)
{
int64_t res = a + b;
if ((res ^ a) & (res ^ b) & INT64_MIN) {
res = a > 0 ? INT64_MAX : INT64_MIN;
env->vxsat = 0x1;
}
return res;
}
RVVCALL(OPIVV2_RM, vsadd_vv_b, OP_SSS_B, H1, H1, H1, sadd8)
RVVCALL(OPIVV2_RM, vsadd_vv_h, OP_SSS_H, H2, H2, H2, sadd16)
RVVCALL(OPIVV2_RM, vsadd_vv_w, OP_SSS_W, H4, H4, H4, sadd32)
RVVCALL(OPIVV2_RM, vsadd_vv_d, OP_SSS_D, H8, H8, H8, sadd64)
GEN_VEXT_VV_RM(vsadd_vv_b, 1, 1)
GEN_VEXT_VV_RM(vsadd_vv_h, 2, 2)
GEN_VEXT_VV_RM(vsadd_vv_w, 4, 4)
GEN_VEXT_VV_RM(vsadd_vv_d, 8, 8)
RVVCALL(OPIVX2_RM, vsadd_vx_b, OP_SSS_B, H1, H1, sadd8)
RVVCALL(OPIVX2_RM, vsadd_vx_h, OP_SSS_H, H2, H2, sadd16)
RVVCALL(OPIVX2_RM, vsadd_vx_w, OP_SSS_W, H4, H4, sadd32)
RVVCALL(OPIVX2_RM, vsadd_vx_d, OP_SSS_D, H8, H8, sadd64)
GEN_VEXT_VX_RM(vsadd_vx_b, 1, 1)
GEN_VEXT_VX_RM(vsadd_vx_h, 2, 2)
GEN_VEXT_VX_RM(vsadd_vx_w, 4, 4)
GEN_VEXT_VX_RM(vsadd_vx_d, 8, 8)
static inline uint8_t ssubu8(CPURISCVState *env, int vxrm, uint8_t a, uint8_t b)
{
uint8_t res = a - b;
if (res > a) {
res = 0;
env->vxsat = 0x1;
}
return res;
}
static inline uint16_t ssubu16(CPURISCVState *env, int vxrm, uint16_t a,
uint16_t b)
{
uint16_t res = a - b;
if (res > a) {
res = 0;
env->vxsat = 0x1;
}
return res;
}
static inline uint32_t ssubu32(CPURISCVState *env, int vxrm, uint32_t a,
uint32_t b)
{
uint32_t res = a - b;
if (res > a) {
res = 0;
env->vxsat = 0x1;
}
return res;
}
static inline uint64_t ssubu64(CPURISCVState *env, int vxrm, uint64_t a,
uint64_t b)
{
uint64_t res = a - b;
if (res > a) {
res = 0;
env->vxsat = 0x1;
}
return res;
}
RVVCALL(OPIVV2_RM, vssubu_vv_b, OP_UUU_B, H1, H1, H1, ssubu8)
RVVCALL(OPIVV2_RM, vssubu_vv_h, OP_UUU_H, H2, H2, H2, ssubu16)
RVVCALL(OPIVV2_RM, vssubu_vv_w, OP_UUU_W, H4, H4, H4, ssubu32)
RVVCALL(OPIVV2_RM, vssubu_vv_d, OP_UUU_D, H8, H8, H8, ssubu64)
GEN_VEXT_VV_RM(vssubu_vv_b, 1, 1)
GEN_VEXT_VV_RM(vssubu_vv_h, 2, 2)
GEN_VEXT_VV_RM(vssubu_vv_w, 4, 4)
GEN_VEXT_VV_RM(vssubu_vv_d, 8, 8)
RVVCALL(OPIVX2_RM, vssubu_vx_b, OP_UUU_B, H1, H1, ssubu8)
RVVCALL(OPIVX2_RM, vssubu_vx_h, OP_UUU_H, H2, H2, ssubu16)
RVVCALL(OPIVX2_RM, vssubu_vx_w, OP_UUU_W, H4, H4, ssubu32)
RVVCALL(OPIVX2_RM, vssubu_vx_d, OP_UUU_D, H8, H8, ssubu64)
GEN_VEXT_VX_RM(vssubu_vx_b, 1, 1)
GEN_VEXT_VX_RM(vssubu_vx_h, 2, 2)
GEN_VEXT_VX_RM(vssubu_vx_w, 4, 4)
GEN_VEXT_VX_RM(vssubu_vx_d, 8, 8)
static inline int8_t ssub8(CPURISCVState *env, int vxrm, int8_t a, int8_t b)
{
int8_t res = a - b;
if ((res ^ a) & (a ^ b) & INT8_MIN) {
res = a >= 0 ? INT8_MAX : INT8_MIN;
env->vxsat = 0x1;
}
return res;
}
static inline int16_t ssub16(CPURISCVState *env, int vxrm, int16_t a, int16_t b)
{
int16_t res = a - b;
if ((res ^ a) & (a ^ b) & INT16_MIN) {
res = a >= 0 ? INT16_MAX : INT16_MIN;
env->vxsat = 0x1;
}
return res;
}
static inline int32_t ssub32(CPURISCVState *env, int vxrm, int32_t a, int32_t b)
{
int32_t res = a - b;
if ((res ^ a) & (a ^ b) & INT32_MIN) {
res = a >= 0 ? INT32_MAX : INT32_MIN;
env->vxsat = 0x1;
}
return res;
}
static inline int64_t ssub64(CPURISCVState *env, int vxrm, int64_t a, int64_t b)
{
int64_t res = a - b;
if ((res ^ a) & (a ^ b) & INT64_MIN) {
res = a >= 0 ? INT64_MAX : INT64_MIN;
env->vxsat = 0x1;
}
return res;
}
RVVCALL(OPIVV2_RM, vssub_vv_b, OP_SSS_B, H1, H1, H1, ssub8)
RVVCALL(OPIVV2_RM, vssub_vv_h, OP_SSS_H, H2, H2, H2, ssub16)
RVVCALL(OPIVV2_RM, vssub_vv_w, OP_SSS_W, H4, H4, H4, ssub32)
RVVCALL(OPIVV2_RM, vssub_vv_d, OP_SSS_D, H8, H8, H8, ssub64)
GEN_VEXT_VV_RM(vssub_vv_b, 1, 1)
GEN_VEXT_VV_RM(vssub_vv_h, 2, 2)
GEN_VEXT_VV_RM(vssub_vv_w, 4, 4)
GEN_VEXT_VV_RM(vssub_vv_d, 8, 8)
RVVCALL(OPIVX2_RM, vssub_vx_b, OP_SSS_B, H1, H1, ssub8)
RVVCALL(OPIVX2_RM, vssub_vx_h, OP_SSS_H, H2, H2, ssub16)
RVVCALL(OPIVX2_RM, vssub_vx_w, OP_SSS_W, H4, H4, ssub32)
RVVCALL(OPIVX2_RM, vssub_vx_d, OP_SSS_D, H8, H8, ssub64)
GEN_VEXT_VX_RM(vssub_vx_b, 1, 1)
GEN_VEXT_VX_RM(vssub_vx_h, 2, 2)
GEN_VEXT_VX_RM(vssub_vx_w, 4, 4)
GEN_VEXT_VX_RM(vssub_vx_d, 8, 8)
/* Vector Single-Width Averaging Add and Subtract */
static inline uint8_t get_round(int vxrm, uint64_t v, uint8_t shift)
{
uint8_t d = extract64(v, shift, 1);
uint8_t d1;
uint64_t D1, D2;
if (shift == 0 || shift > 64) {
return 0;
}
d1 = extract64(v, shift - 1, 1);
D1 = extract64(v, 0, shift);
if (vxrm == 0) { /* round-to-nearest-up (add +0.5 LSB) */
return d1;
} else if (vxrm == 1) { /* round-to-nearest-even */
if (shift > 1) {
D2 = extract64(v, 0, shift - 1);
return d1 & ((D2 != 0) | d);
} else {
return d1 & d;
}
} else if (vxrm == 3) { /* round-to-odd (OR bits into LSB, aka "jam") */
return !d & (D1 != 0);
}
return 0; /* round-down (truncate) */
}
static inline int32_t aadd32(CPURISCVState *env, int vxrm, int32_t a, int32_t b)
{
int64_t res = (int64_t)a + b;
uint8_t round = get_round(vxrm, res, 1);
return (res >> 1) + round;
}
static inline int64_t aadd64(CPURISCVState *env, int vxrm, int64_t a, int64_t b)
{
int64_t res = a + b;
uint8_t round = get_round(vxrm, res, 1);
int64_t over = (res ^ a) & (res ^ b) & INT64_MIN;
/* With signed overflow, bit 64 is inverse of bit 63. */
return ((res >> 1) ^ over) + round;
}
RVVCALL(OPIVV2_RM, vaadd_vv_b, OP_SSS_B, H1, H1, H1, aadd32)
RVVCALL(OPIVV2_RM, vaadd_vv_h, OP_SSS_H, H2, H2, H2, aadd32)
RVVCALL(OPIVV2_RM, vaadd_vv_w, OP_SSS_W, H4, H4, H4, aadd32)
RVVCALL(OPIVV2_RM, vaadd_vv_d, OP_SSS_D, H8, H8, H8, aadd64)
GEN_VEXT_VV_RM(vaadd_vv_b, 1, 1)
GEN_VEXT_VV_RM(vaadd_vv_h, 2, 2)
GEN_VEXT_VV_RM(vaadd_vv_w, 4, 4)
GEN_VEXT_VV_RM(vaadd_vv_d, 8, 8)
RVVCALL(OPIVX2_RM, vaadd_vx_b, OP_SSS_B, H1, H1, aadd32)
RVVCALL(OPIVX2_RM, vaadd_vx_h, OP_SSS_H, H2, H2, aadd32)
RVVCALL(OPIVX2_RM, vaadd_vx_w, OP_SSS_W, H4, H4, aadd32)
RVVCALL(OPIVX2_RM, vaadd_vx_d, OP_SSS_D, H8, H8, aadd64)
GEN_VEXT_VX_RM(vaadd_vx_b, 1, 1)
GEN_VEXT_VX_RM(vaadd_vx_h, 2, 2)
GEN_VEXT_VX_RM(vaadd_vx_w, 4, 4)
GEN_VEXT_VX_RM(vaadd_vx_d, 8, 8)
static inline uint32_t aaddu32(CPURISCVState *env, int vxrm,
uint32_t a, uint32_t b)
{
uint64_t res = (uint64_t)a + b;
uint8_t round = get_round(vxrm, res, 1);
return (res >> 1) + round;
}
static inline uint64_t aaddu64(CPURISCVState *env, int vxrm,
uint64_t a, uint64_t b)
{
uint64_t res = a + b;
uint8_t round = get_round(vxrm, res, 1);
uint64_t over = (uint64_t)(res < a) << 63;
return ((res >> 1) | over) + round;
}
RVVCALL(OPIVV2_RM, vaaddu_vv_b, OP_UUU_B, H1, H1, H1, aaddu32)
RVVCALL(OPIVV2_RM, vaaddu_vv_h, OP_UUU_H, H2, H2, H2, aaddu32)
RVVCALL(OPIVV2_RM, vaaddu_vv_w, OP_UUU_W, H4, H4, H4, aaddu32)
RVVCALL(OPIVV2_RM, vaaddu_vv_d, OP_UUU_D, H8, H8, H8, aaddu64)
GEN_VEXT_VV_RM(vaaddu_vv_b, 1, 1)
GEN_VEXT_VV_RM(vaaddu_vv_h, 2, 2)
GEN_VEXT_VV_RM(vaaddu_vv_w, 4, 4)
GEN_VEXT_VV_RM(vaaddu_vv_d, 8, 8)
RVVCALL(OPIVX2_RM, vaaddu_vx_b, OP_UUU_B, H1, H1, aaddu32)
RVVCALL(OPIVX2_RM, vaaddu_vx_h, OP_UUU_H, H2, H2, aaddu32)
RVVCALL(OPIVX2_RM, vaaddu_vx_w, OP_UUU_W, H4, H4, aaddu32)
RVVCALL(OPIVX2_RM, vaaddu_vx_d, OP_UUU_D, H8, H8, aaddu64)
GEN_VEXT_VX_RM(vaaddu_vx_b, 1, 1)
GEN_VEXT_VX_RM(vaaddu_vx_h, 2, 2)
GEN_VEXT_VX_RM(vaaddu_vx_w, 4, 4)
GEN_VEXT_VX_RM(vaaddu_vx_d, 8, 8)
static inline int32_t asub32(CPURISCVState *env, int vxrm, int32_t a, int32_t b)
{
int64_t res = (int64_t)a - b;
uint8_t round = get_round(vxrm, res, 1);
return (res >> 1) + round;
}
static inline int64_t asub64(CPURISCVState *env, int vxrm, int64_t a, int64_t b)
{
int64_t res = (int64_t)a - b;
uint8_t round = get_round(vxrm, res, 1);
int64_t over = (res ^ a) & (a ^ b) & INT64_MIN;
/* With signed overflow, bit 64 is inverse of bit 63. */
return ((res >> 1) ^ over) + round;
}
RVVCALL(OPIVV2_RM, vasub_vv_b, OP_SSS_B, H1, H1, H1, asub32)
RVVCALL(OPIVV2_RM, vasub_vv_h, OP_SSS_H, H2, H2, H2, asub32)
RVVCALL(OPIVV2_RM, vasub_vv_w, OP_SSS_W, H4, H4, H4, asub32)
RVVCALL(OPIVV2_RM, vasub_vv_d, OP_SSS_D, H8, H8, H8, asub64)
GEN_VEXT_VV_RM(vasub_vv_b, 1, 1)
GEN_VEXT_VV_RM(vasub_vv_h, 2, 2)
GEN_VEXT_VV_RM(vasub_vv_w, 4, 4)
GEN_VEXT_VV_RM(vasub_vv_d, 8, 8)
RVVCALL(OPIVX2_RM, vasub_vx_b, OP_SSS_B, H1, H1, asub32)
RVVCALL(OPIVX2_RM, vasub_vx_h, OP_SSS_H, H2, H2, asub32)
RVVCALL(OPIVX2_RM, vasub_vx_w, OP_SSS_W, H4, H4, asub32)
RVVCALL(OPIVX2_RM, vasub_vx_d, OP_SSS_D, H8, H8, asub64)
GEN_VEXT_VX_RM(vasub_vx_b, 1, 1)
GEN_VEXT_VX_RM(vasub_vx_h, 2, 2)
GEN_VEXT_VX_RM(vasub_vx_w, 4, 4)
GEN_VEXT_VX_RM(vasub_vx_d, 8, 8)
static inline uint32_t asubu32(CPURISCVState *env, int vxrm,
uint32_t a, uint32_t b)
{
int64_t res = (int64_t)a - b;
uint8_t round = get_round(vxrm, res, 1);
return (res >> 1) + round;
}
static inline uint64_t asubu64(CPURISCVState *env, int vxrm,
uint64_t a, uint64_t b)
{
uint64_t res = (uint64_t)a - b;
uint8_t round = get_round(vxrm, res, 1);
uint64_t over = (uint64_t)(res > a) << 63;
return ((res >> 1) | over) + round;
}
RVVCALL(OPIVV2_RM, vasubu_vv_b, OP_UUU_B, H1, H1, H1, asubu32)
RVVCALL(OPIVV2_RM, vasubu_vv_h, OP_UUU_H, H2, H2, H2, asubu32)
RVVCALL(OPIVV2_RM, vasubu_vv_w, OP_UUU_W, H4, H4, H4, asubu32)
RVVCALL(OPIVV2_RM, vasubu_vv_d, OP_UUU_D, H8, H8, H8, asubu64)
GEN_VEXT_VV_RM(vasubu_vv_b, 1, 1)
GEN_VEXT_VV_RM(vasubu_vv_h, 2, 2)
GEN_VEXT_VV_RM(vasubu_vv_w, 4, 4)
GEN_VEXT_VV_RM(vasubu_vv_d, 8, 8)
RVVCALL(OPIVX2_RM, vasubu_vx_b, OP_UUU_B, H1, H1, asubu32)
RVVCALL(OPIVX2_RM, vasubu_vx_h, OP_UUU_H, H2, H2, asubu32)
RVVCALL(OPIVX2_RM, vasubu_vx_w, OP_UUU_W, H4, H4, asubu32)
RVVCALL(OPIVX2_RM, vasubu_vx_d, OP_UUU_D, H8, H8, asubu64)
GEN_VEXT_VX_RM(vasubu_vx_b, 1, 1)
GEN_VEXT_VX_RM(vasubu_vx_h, 2, 2)
GEN_VEXT_VX_RM(vasubu_vx_w, 4, 4)
GEN_VEXT_VX_RM(vasubu_vx_d, 8, 8)
/* Vector Single-Width Fractional Multiply with Rounding and Saturation */
static inline int8_t vsmul8(CPURISCVState *env, int vxrm, int8_t a, int8_t b)
{
uint8_t round;
int16_t res;
res = (int16_t)a * (int16_t)b;
round = get_round(vxrm, res, 7);
res = (res >> 7) + round;
if (res > INT8_MAX) {
env->vxsat = 0x1;
return INT8_MAX;
} else if (res < INT8_MIN) {
env->vxsat = 0x1;
return INT8_MIN;
} else {
return res;
}
}
static int16_t vsmul16(CPURISCVState *env, int vxrm, int16_t a, int16_t b)
{
uint8_t round;
int32_t res;
res = (int32_t)a * (int32_t)b;
round = get_round(vxrm, res, 15);
res = (res >> 15) + round;
if (res > INT16_MAX) {
env->vxsat = 0x1;
return INT16_MAX;
} else if (res < INT16_MIN) {
env->vxsat = 0x1;
return INT16_MIN;
} else {
return res;
}
}
static int32_t vsmul32(CPURISCVState *env, int vxrm, int32_t a, int32_t b)
{
uint8_t round;
int64_t res;
res = (int64_t)a * (int64_t)b;
round = get_round(vxrm, res, 31);
res = (res >> 31) + round;
if (res > INT32_MAX) {
env->vxsat = 0x1;
return INT32_MAX;
} else if (res < INT32_MIN) {
env->vxsat = 0x1;
return INT32_MIN;
} else {
return res;
}
}
static int64_t vsmul64(CPURISCVState *env, int vxrm, int64_t a, int64_t b)
{
uint8_t round;
uint64_t hi_64, lo_64;
int64_t res;
if (a == INT64_MIN && b == INT64_MIN) {
env->vxsat = 1;
return INT64_MAX;
}
muls64(&lo_64, &hi_64, a, b);
round = get_round(vxrm, lo_64, 63);
/*
* Cannot overflow, as there are always
* 2 sign bits after multiply.
*/
res = (hi_64 << 1) | (lo_64 >> 63);
if (round) {
if (res == INT64_MAX) {
env->vxsat = 1;
} else {
res += 1;
}
}
return res;
}
RVVCALL(OPIVV2_RM, vsmul_vv_b, OP_SSS_B, H1, H1, H1, vsmul8)
RVVCALL(OPIVV2_RM, vsmul_vv_h, OP_SSS_H, H2, H2, H2, vsmul16)
RVVCALL(OPIVV2_RM, vsmul_vv_w, OP_SSS_W, H4, H4, H4, vsmul32)
RVVCALL(OPIVV2_RM, vsmul_vv_d, OP_SSS_D, H8, H8, H8, vsmul64)
GEN_VEXT_VV_RM(vsmul_vv_b, 1, 1)
GEN_VEXT_VV_RM(vsmul_vv_h, 2, 2)
GEN_VEXT_VV_RM(vsmul_vv_w, 4, 4)
GEN_VEXT_VV_RM(vsmul_vv_d, 8, 8)
RVVCALL(OPIVX2_RM, vsmul_vx_b, OP_SSS_B, H1, H1, vsmul8)
RVVCALL(OPIVX2_RM, vsmul_vx_h, OP_SSS_H, H2, H2, vsmul16)
RVVCALL(OPIVX2_RM, vsmul_vx_w, OP_SSS_W, H4, H4, vsmul32)
RVVCALL(OPIVX2_RM, vsmul_vx_d, OP_SSS_D, H8, H8, vsmul64)
GEN_VEXT_VX_RM(vsmul_vx_b, 1, 1)
GEN_VEXT_VX_RM(vsmul_vx_h, 2, 2)
GEN_VEXT_VX_RM(vsmul_vx_w, 4, 4)
GEN_VEXT_VX_RM(vsmul_vx_d, 8, 8)
/* Vector Single-Width Scaling Shift Instructions */
static inline uint8_t
vssrl8(CPURISCVState *env, int vxrm, uint8_t a, uint8_t b)
{
uint8_t round, shift = b & 0x7;
uint8_t res;
round = get_round(vxrm, a, shift);
res = (a >> shift) + round;
return res;
}
static inline uint16_t
vssrl16(CPURISCVState *env, int vxrm, uint16_t a, uint16_t b)
{
uint8_t round, shift = b & 0xf;
uint16_t res;
round = get_round(vxrm, a, shift);
res = (a >> shift) + round;
return res;
}
static inline uint32_t
vssrl32(CPURISCVState *env, int vxrm, uint32_t a, uint32_t b)
{
uint8_t round, shift = b & 0x1f;
uint32_t res;
round = get_round(vxrm, a, shift);
res = (a >> shift) + round;
return res;
}
static inline uint64_t
vssrl64(CPURISCVState *env, int vxrm, uint64_t a, uint64_t b)
{
uint8_t round, shift = b & 0x3f;
uint64_t res;
round = get_round(vxrm, a, shift);
res = (a >> shift) + round;
return res;
}
RVVCALL(OPIVV2_RM, vssrl_vv_b, OP_UUU_B, H1, H1, H1, vssrl8)
RVVCALL(OPIVV2_RM, vssrl_vv_h, OP_UUU_H, H2, H2, H2, vssrl16)
RVVCALL(OPIVV2_RM, vssrl_vv_w, OP_UUU_W, H4, H4, H4, vssrl32)
RVVCALL(OPIVV2_RM, vssrl_vv_d, OP_UUU_D, H8, H8, H8, vssrl64)
GEN_VEXT_VV_RM(vssrl_vv_b, 1, 1)
GEN_VEXT_VV_RM(vssrl_vv_h, 2, 2)
GEN_VEXT_VV_RM(vssrl_vv_w, 4, 4)
GEN_VEXT_VV_RM(vssrl_vv_d, 8, 8)
RVVCALL(OPIVX2_RM, vssrl_vx_b, OP_UUU_B, H1, H1, vssrl8)
RVVCALL(OPIVX2_RM, vssrl_vx_h, OP_UUU_H, H2, H2, vssrl16)
RVVCALL(OPIVX2_RM, vssrl_vx_w, OP_UUU_W, H4, H4, vssrl32)
RVVCALL(OPIVX2_RM, vssrl_vx_d, OP_UUU_D, H8, H8, vssrl64)
GEN_VEXT_VX_RM(vssrl_vx_b, 1, 1)
GEN_VEXT_VX_RM(vssrl_vx_h, 2, 2)
GEN_VEXT_VX_RM(vssrl_vx_w, 4, 4)
GEN_VEXT_VX_RM(vssrl_vx_d, 8, 8)
static inline int8_t
vssra8(CPURISCVState *env, int vxrm, int8_t a, int8_t b)
{
uint8_t round, shift = b & 0x7;
int8_t res;
round = get_round(vxrm, a, shift);
res = (a >> shift) + round;
return res;
}
static inline int16_t
vssra16(CPURISCVState *env, int vxrm, int16_t a, int16_t b)
{
uint8_t round, shift = b & 0xf;
int16_t res;
round = get_round(vxrm, a, shift);
res = (a >> shift) + round;
return res;
}
static inline int32_t
vssra32(CPURISCVState *env, int vxrm, int32_t a, int32_t b)
{
uint8_t round, shift = b & 0x1f;
int32_t res;
round = get_round(vxrm, a, shift);
res = (a >> shift) + round;
return res;
}
static inline int64_t
vssra64(CPURISCVState *env, int vxrm, int64_t a, int64_t b)
{
uint8_t round, shift = b & 0x3f;
int64_t res;
round = get_round(vxrm, a, shift);
res = (a >> shift) + round;
return res;
}
RVVCALL(OPIVV2_RM, vssra_vv_b, OP_SSS_B, H1, H1, H1, vssra8)
RVVCALL(OPIVV2_RM, vssra_vv_h, OP_SSS_H, H2, H2, H2, vssra16)
RVVCALL(OPIVV2_RM, vssra_vv_w, OP_SSS_W, H4, H4, H4, vssra32)
RVVCALL(OPIVV2_RM, vssra_vv_d, OP_SSS_D, H8, H8, H8, vssra64)
GEN_VEXT_VV_RM(vssra_vv_b, 1, 1)
GEN_VEXT_VV_RM(vssra_vv_h, 2, 2)
GEN_VEXT_VV_RM(vssra_vv_w, 4, 4)
GEN_VEXT_VV_RM(vssra_vv_d, 8, 8)
RVVCALL(OPIVX2_RM, vssra_vx_b, OP_SSS_B, H1, H1, vssra8)
RVVCALL(OPIVX2_RM, vssra_vx_h, OP_SSS_H, H2, H2, vssra16)
RVVCALL(OPIVX2_RM, vssra_vx_w, OP_SSS_W, H4, H4, vssra32)
RVVCALL(OPIVX2_RM, vssra_vx_d, OP_SSS_D, H8, H8, vssra64)
GEN_VEXT_VX_RM(vssra_vx_b, 1, 1)
GEN_VEXT_VX_RM(vssra_vx_h, 2, 2)
GEN_VEXT_VX_RM(vssra_vx_w, 4, 4)
GEN_VEXT_VX_RM(vssra_vx_d, 8, 8)
/* Vector Narrowing Fixed-Point Clip Instructions */
static inline int8_t
vnclip8(CPURISCVState *env, int vxrm, int16_t a, int8_t b)
{
uint8_t round, shift = b & 0xf;
int16_t res;
round = get_round(vxrm, a, shift);
res = (a >> shift) + round;
if (res > INT8_MAX) {
env->vxsat = 0x1;
return INT8_MAX;
} else if (res < INT8_MIN) {
env->vxsat = 0x1;
return INT8_MIN;
} else {
return res;
}
}
static inline int16_t
vnclip16(CPURISCVState *env, int vxrm, int32_t a, int16_t b)
{
uint8_t round, shift = b & 0x1f;
int32_t res;
round = get_round(vxrm, a, shift);
res = (a >> shift) + round;
if (res > INT16_MAX) {
env->vxsat = 0x1;
return INT16_MAX;
} else if (res < INT16_MIN) {
env->vxsat = 0x1;
return INT16_MIN;
} else {
return res;
}
}
static inline int32_t
vnclip32(CPURISCVState *env, int vxrm, int64_t a, int32_t b)
{
uint8_t round, shift = b & 0x3f;
int64_t res;
round = get_round(vxrm, a, shift);
res = (a >> shift) + round;
if (res > INT32_MAX) {
env->vxsat = 0x1;
return INT32_MAX;
} else if (res < INT32_MIN) {
env->vxsat = 0x1;
return INT32_MIN;
} else {
return res;
}
}
RVVCALL(OPIVV2_RM, vnclip_wv_b, NOP_SSS_B, H1, H2, H1, vnclip8)
RVVCALL(OPIVV2_RM, vnclip_wv_h, NOP_SSS_H, H2, H4, H2, vnclip16)
RVVCALL(OPIVV2_RM, vnclip_wv_w, NOP_SSS_W, H4, H8, H4, vnclip32)
GEN_VEXT_VV_RM(vnclip_wv_b, 1, 1)
GEN_VEXT_VV_RM(vnclip_wv_h, 2, 2)
GEN_VEXT_VV_RM(vnclip_wv_w, 4, 4)
RVVCALL(OPIVX2_RM, vnclip_wx_b, NOP_SSS_B, H1, H2, vnclip8)
RVVCALL(OPIVX2_RM, vnclip_wx_h, NOP_SSS_H, H2, H4, vnclip16)
RVVCALL(OPIVX2_RM, vnclip_wx_w, NOP_SSS_W, H4, H8, vnclip32)
GEN_VEXT_VX_RM(vnclip_wx_b, 1, 1)
GEN_VEXT_VX_RM(vnclip_wx_h, 2, 2)
GEN_VEXT_VX_RM(vnclip_wx_w, 4, 4)
static inline uint8_t
vnclipu8(CPURISCVState *env, int vxrm, uint16_t a, uint8_t b)
{
uint8_t round, shift = b & 0xf;
uint16_t res;
round = get_round(vxrm, a, shift);
res = (a >> shift) + round;
if (res > UINT8_MAX) {
env->vxsat = 0x1;
return UINT8_MAX;
} else {
return res;
}
}
static inline uint16_t
vnclipu16(CPURISCVState *env, int vxrm, uint32_t a, uint16_t b)
{
uint8_t round, shift = b & 0x1f;
uint32_t res;
round = get_round(vxrm, a, shift);
res = (a >> shift) + round;
if (res > UINT16_MAX) {
env->vxsat = 0x1;
return UINT16_MAX;
} else {
return res;
}
}
static inline uint32_t
vnclipu32(CPURISCVState *env, int vxrm, uint64_t a, uint32_t b)
{
uint8_t round, shift = b & 0x3f;
uint64_t res;
round = get_round(vxrm, a, shift);
res = (a >> shift) + round;
if (res > UINT32_MAX) {
env->vxsat = 0x1;
return UINT32_MAX;
} else {
return res;
}
}
RVVCALL(OPIVV2_RM, vnclipu_wv_b, NOP_UUU_B, H1, H2, H1, vnclipu8)
RVVCALL(OPIVV2_RM, vnclipu_wv_h, NOP_UUU_H, H2, H4, H2, vnclipu16)
RVVCALL(OPIVV2_RM, vnclipu_wv_w, NOP_UUU_W, H4, H8, H4, vnclipu32)
GEN_VEXT_VV_RM(vnclipu_wv_b, 1, 1)
GEN_VEXT_VV_RM(vnclipu_wv_h, 2, 2)
GEN_VEXT_VV_RM(vnclipu_wv_w, 4, 4)
RVVCALL(OPIVX2_RM, vnclipu_wx_b, NOP_UUU_B, H1, H2, vnclipu8)
RVVCALL(OPIVX2_RM, vnclipu_wx_h, NOP_UUU_H, H2, H4, vnclipu16)
RVVCALL(OPIVX2_RM, vnclipu_wx_w, NOP_UUU_W, H4, H8, vnclipu32)
GEN_VEXT_VX_RM(vnclipu_wx_b, 1, 1)
GEN_VEXT_VX_RM(vnclipu_wx_h, 2, 2)
GEN_VEXT_VX_RM(vnclipu_wx_w, 4, 4)
/*
*** Vector Float Point Arithmetic Instructions
*/
/* Vector Single-Width Floating-Point Add/Subtract Instructions */
#define OPFVV2(NAME, TD, T1, T2, TX1, TX2, HD, HS1, HS2, OP) \
static void do_##NAME(void *vd, void *vs1, void *vs2, int i, \
CPURISCVState *env) \
{ \
TX1 s1 = *((T1 *)vs1 + HS1(i)); \
TX2 s2 = *((T2 *)vs2 + HS2(i)); \
*((TD *)vd + HD(i)) = OP(s2, s1, &env->fp_status); \
}
#define GEN_VEXT_VV_ENV(NAME, ESZ, DSZ) \
void HELPER(NAME)(void *vd, void *v0, void *vs1, \
void *vs2, CPURISCVState *env, \
uint32_t desc) \
{ \
uint32_t vm = vext_vm(desc); \
uint32_t vl = env->vl; \
uint32_t i; \
\
for (i = env->vstart; i < vl; i++) { \
if (!vm && !vext_elem_mask(v0, i)) { \
continue; \
} \
do_##NAME(vd, vs1, vs2, i, env); \
} \
env->vstart = 0; \
}
RVVCALL(OPFVV2, vfadd_vv_h, OP_UUU_H, H2, H2, H2, float16_add)
RVVCALL(OPFVV2, vfadd_vv_w, OP_UUU_W, H4, H4, H4, float32_add)
RVVCALL(OPFVV2, vfadd_vv_d, OP_UUU_D, H8, H8, H8, float64_add)
GEN_VEXT_VV_ENV(vfadd_vv_h, 2, 2)
GEN_VEXT_VV_ENV(vfadd_vv_w, 4, 4)
GEN_VEXT_VV_ENV(vfadd_vv_d, 8, 8)
#define OPFVF2(NAME, TD, T1, T2, TX1, TX2, HD, HS2, OP) \
static void do_##NAME(void *vd, uint64_t s1, void *vs2, int i, \
CPURISCVState *env) \
{ \
TX2 s2 = *((T2 *)vs2 + HS2(i)); \
*((TD *)vd + HD(i)) = OP(s2, (TX1)(T1)s1, &env->fp_status);\
}
#define GEN_VEXT_VF(NAME, ESZ, DSZ) \
void HELPER(NAME)(void *vd, void *v0, uint64_t s1, \
void *vs2, CPURISCVState *env, \
uint32_t desc) \
{ \
uint32_t vm = vext_vm(desc); \
uint32_t vl = env->vl; \
uint32_t i; \
\
for (i = env->vstart; i < vl; i++) { \
if (!vm && !vext_elem_mask(v0, i)) { \
continue; \
} \
do_##NAME(vd, s1, vs2, i, env); \
} \
env->vstart = 0; \
}
RVVCALL(OPFVF2, vfadd_vf_h, OP_UUU_H, H2, H2, float16_add)
RVVCALL(OPFVF2, vfadd_vf_w, OP_UUU_W, H4, H4, float32_add)
RVVCALL(OPFVF2, vfadd_vf_d, OP_UUU_D, H8, H8, float64_add)
GEN_VEXT_VF(vfadd_vf_h, 2, 2)
GEN_VEXT_VF(vfadd_vf_w, 4, 4)
GEN_VEXT_VF(vfadd_vf_d, 8, 8)
RVVCALL(OPFVV2, vfsub_vv_h, OP_UUU_H, H2, H2, H2, float16_sub)
RVVCALL(OPFVV2, vfsub_vv_w, OP_UUU_W, H4, H4, H4, float32_sub)
RVVCALL(OPFVV2, vfsub_vv_d, OP_UUU_D, H8, H8, H8, float64_sub)
GEN_VEXT_VV_ENV(vfsub_vv_h, 2, 2)
GEN_VEXT_VV_ENV(vfsub_vv_w, 4, 4)
GEN_VEXT_VV_ENV(vfsub_vv_d, 8, 8)
RVVCALL(OPFVF2, vfsub_vf_h, OP_UUU_H, H2, H2, float16_sub)
RVVCALL(OPFVF2, vfsub_vf_w, OP_UUU_W, H4, H4, float32_sub)
RVVCALL(OPFVF2, vfsub_vf_d, OP_UUU_D, H8, H8, float64_sub)
GEN_VEXT_VF(vfsub_vf_h, 2, 2)
GEN_VEXT_VF(vfsub_vf_w, 4, 4)
GEN_VEXT_VF(vfsub_vf_d, 8, 8)
static uint16_t float16_rsub(uint16_t a, uint16_t b, float_status *s)
{
return float16_sub(b, a, s);
}
static uint32_t float32_rsub(uint32_t a, uint32_t b, float_status *s)
{
return float32_sub(b, a, s);
}
static uint64_t float64_rsub(uint64_t a, uint64_t b, float_status *s)
{
return float64_sub(b, a, s);
}
RVVCALL(OPFVF2, vfrsub_vf_h, OP_UUU_H, H2, H2, float16_rsub)
RVVCALL(OPFVF2, vfrsub_vf_w, OP_UUU_W, H4, H4, float32_rsub)
RVVCALL(OPFVF2, vfrsub_vf_d, OP_UUU_D, H8, H8, float64_rsub)
GEN_VEXT_VF(vfrsub_vf_h, 2, 2)
GEN_VEXT_VF(vfrsub_vf_w, 4, 4)
GEN_VEXT_VF(vfrsub_vf_d, 8, 8)
/* Vector Widening Floating-Point Add/Subtract Instructions */
static uint32_t vfwadd16(uint16_t a, uint16_t b, float_status *s)
{
return float32_add(float16_to_float32(a, true, s),
float16_to_float32(b, true, s), s);
}
static uint64_t vfwadd32(uint32_t a, uint32_t b, float_status *s)
{
return float64_add(float32_to_float64(a, s),
float32_to_float64(b, s), s);
}
RVVCALL(OPFVV2, vfwadd_vv_h, WOP_UUU_H, H4, H2, H2, vfwadd16)
RVVCALL(OPFVV2, vfwadd_vv_w, WOP_UUU_W, H8, H4, H4, vfwadd32)
GEN_VEXT_VV_ENV(vfwadd_vv_h, 2, 4)
GEN_VEXT_VV_ENV(vfwadd_vv_w, 4, 8)
RVVCALL(OPFVF2, vfwadd_vf_h, WOP_UUU_H, H4, H2, vfwadd16)
RVVCALL(OPFVF2, vfwadd_vf_w, WOP_UUU_W, H8, H4, vfwadd32)
GEN_VEXT_VF(vfwadd_vf_h, 2, 4)
GEN_VEXT_VF(vfwadd_vf_w, 4, 8)
static uint32_t vfwsub16(uint16_t a, uint16_t b, float_status *s)
{
return float32_sub(float16_to_float32(a, true, s),
float16_to_float32(b, true, s), s);
}
static uint64_t vfwsub32(uint32_t a, uint32_t b, float_status *s)
{
return float64_sub(float32_to_float64(a, s),
float32_to_float64(b, s), s);
}
RVVCALL(OPFVV2, vfwsub_vv_h, WOP_UUU_H, H4, H2, H2, vfwsub16)
RVVCALL(OPFVV2, vfwsub_vv_w, WOP_UUU_W, H8, H4, H4, vfwsub32)
GEN_VEXT_VV_ENV(vfwsub_vv_h, 2, 4)
GEN_VEXT_VV_ENV(vfwsub_vv_w, 4, 8)
RVVCALL(OPFVF2, vfwsub_vf_h, WOP_UUU_H, H4, H2, vfwsub16)
RVVCALL(OPFVF2, vfwsub_vf_w, WOP_UUU_W, H8, H4, vfwsub32)
GEN_VEXT_VF(vfwsub_vf_h, 2, 4)
GEN_VEXT_VF(vfwsub_vf_w, 4, 8)
static uint32_t vfwaddw16(uint32_t a, uint16_t b, float_status *s)
{
return float32_add(a, float16_to_float32(b, true, s), s);
}
static uint64_t vfwaddw32(uint64_t a, uint32_t b, float_status *s)
{
return float64_add(a, float32_to_float64(b, s), s);
}
RVVCALL(OPFVV2, vfwadd_wv_h, WOP_WUUU_H, H4, H2, H2, vfwaddw16)
RVVCALL(OPFVV2, vfwadd_wv_w, WOP_WUUU_W, H8, H4, H4, vfwaddw32)
GEN_VEXT_VV_ENV(vfwadd_wv_h, 2, 4)
GEN_VEXT_VV_ENV(vfwadd_wv_w, 4, 8)
RVVCALL(OPFVF2, vfwadd_wf_h, WOP_WUUU_H, H4, H2, vfwaddw16)
RVVCALL(OPFVF2, vfwadd_wf_w, WOP_WUUU_W, H8, H4, vfwaddw32)
GEN_VEXT_VF(vfwadd_wf_h, 2, 4)
GEN_VEXT_VF(vfwadd_wf_w, 4, 8)
static uint32_t vfwsubw16(uint32_t a, uint16_t b, float_status *s)
{
return float32_sub(a, float16_to_float32(b, true, s), s);
}
static uint64_t vfwsubw32(uint64_t a, uint32_t b, float_status *s)
{
return float64_sub(a, float32_to_float64(b, s), s);
}
RVVCALL(OPFVV2, vfwsub_wv_h, WOP_WUUU_H, H4, H2, H2, vfwsubw16)
RVVCALL(OPFVV2, vfwsub_wv_w, WOP_WUUU_W, H8, H4, H4, vfwsubw32)
GEN_VEXT_VV_ENV(vfwsub_wv_h, 2, 4)
GEN_VEXT_VV_ENV(vfwsub_wv_w, 4, 8)
RVVCALL(OPFVF2, vfwsub_wf_h, WOP_WUUU_H, H4, H2, vfwsubw16)
RVVCALL(OPFVF2, vfwsub_wf_w, WOP_WUUU_W, H8, H4, vfwsubw32)
GEN_VEXT_VF(vfwsub_wf_h, 2, 4)
GEN_VEXT_VF(vfwsub_wf_w, 4, 8)
/* Vector Single-Width Floating-Point Multiply/Divide Instructions */
RVVCALL(OPFVV2, vfmul_vv_h, OP_UUU_H, H2, H2, H2, float16_mul)
RVVCALL(OPFVV2, vfmul_vv_w, OP_UUU_W, H4, H4, H4, float32_mul)
RVVCALL(OPFVV2, vfmul_vv_d, OP_UUU_D, H8, H8, H8, float64_mul)
GEN_VEXT_VV_ENV(vfmul_vv_h, 2, 2)
GEN_VEXT_VV_ENV(vfmul_vv_w, 4, 4)
GEN_VEXT_VV_ENV(vfmul_vv_d, 8, 8)
RVVCALL(OPFVF2, vfmul_vf_h, OP_UUU_H, H2, H2, float16_mul)
RVVCALL(OPFVF2, vfmul_vf_w, OP_UUU_W, H4, H4, float32_mul)
RVVCALL(OPFVF2, vfmul_vf_d, OP_UUU_D, H8, H8, float64_mul)
GEN_VEXT_VF(vfmul_vf_h, 2, 2)
GEN_VEXT_VF(vfmul_vf_w, 4, 4)
GEN_VEXT_VF(vfmul_vf_d, 8, 8)
RVVCALL(OPFVV2, vfdiv_vv_h, OP_UUU_H, H2, H2, H2, float16_div)
RVVCALL(OPFVV2, vfdiv_vv_w, OP_UUU_W, H4, H4, H4, float32_div)
RVVCALL(OPFVV2, vfdiv_vv_d, OP_UUU_D, H8, H8, H8, float64_div)
GEN_VEXT_VV_ENV(vfdiv_vv_h, 2, 2)
GEN_VEXT_VV_ENV(vfdiv_vv_w, 4, 4)
GEN_VEXT_VV_ENV(vfdiv_vv_d, 8, 8)
RVVCALL(OPFVF2, vfdiv_vf_h, OP_UUU_H, H2, H2, float16_div)
RVVCALL(OPFVF2, vfdiv_vf_w, OP_UUU_W, H4, H4, float32_div)
RVVCALL(OPFVF2, vfdiv_vf_d, OP_UUU_D, H8, H8, float64_div)
GEN_VEXT_VF(vfdiv_vf_h, 2, 2)
GEN_VEXT_VF(vfdiv_vf_w, 4, 4)
GEN_VEXT_VF(vfdiv_vf_d, 8, 8)
static uint16_t float16_rdiv(uint16_t a, uint16_t b, float_status *s)
{
return float16_div(b, a, s);
}
static uint32_t float32_rdiv(uint32_t a, uint32_t b, float_status *s)
{
return float32_div(b, a, s);
}
static uint64_t float64_rdiv(uint64_t a, uint64_t b, float_status *s)
{
return float64_div(b, a, s);
}
RVVCALL(OPFVF2, vfrdiv_vf_h, OP_UUU_H, H2, H2, float16_rdiv)
RVVCALL(OPFVF2, vfrdiv_vf_w, OP_UUU_W, H4, H4, float32_rdiv)
RVVCALL(OPFVF2, vfrdiv_vf_d, OP_UUU_D, H8, H8, float64_rdiv)
GEN_VEXT_VF(vfrdiv_vf_h, 2, 2)
GEN_VEXT_VF(vfrdiv_vf_w, 4, 4)
GEN_VEXT_VF(vfrdiv_vf_d, 8, 8)
/* Vector Widening Floating-Point Multiply */
static uint32_t vfwmul16(uint16_t a, uint16_t b, float_status *s)
{
return float32_mul(float16_to_float32(a, true, s),
float16_to_float32(b, true, s), s);
}
static uint64_t vfwmul32(uint32_t a, uint32_t b, float_status *s)
{
return float64_mul(float32_to_float64(a, s),
float32_to_float64(b, s), s);
}
RVVCALL(OPFVV2, vfwmul_vv_h, WOP_UUU_H, H4, H2, H2, vfwmul16)
RVVCALL(OPFVV2, vfwmul_vv_w, WOP_UUU_W, H8, H4, H4, vfwmul32)
GEN_VEXT_VV_ENV(vfwmul_vv_h, 2, 4)
GEN_VEXT_VV_ENV(vfwmul_vv_w, 4, 8)
RVVCALL(OPFVF2, vfwmul_vf_h, WOP_UUU_H, H4, H2, vfwmul16)
RVVCALL(OPFVF2, vfwmul_vf_w, WOP_UUU_W, H8, H4, vfwmul32)
GEN_VEXT_VF(vfwmul_vf_h, 2, 4)
GEN_VEXT_VF(vfwmul_vf_w, 4, 8)
/* Vector Single-Width Floating-Point Fused Multiply-Add Instructions */
#define OPFVV3(NAME, TD, T1, T2, TX1, TX2, HD, HS1, HS2, OP) \
static void do_##NAME(void *vd, void *vs1, void *vs2, int i, \
CPURISCVState *env) \
{ \
TX1 s1 = *((T1 *)vs1 + HS1(i)); \
TX2 s2 = *((T2 *)vs2 + HS2(i)); \
TD d = *((TD *)vd + HD(i)); \
*((TD *)vd + HD(i)) = OP(s2, s1, d, &env->fp_status); \
}
static uint16_t fmacc16(uint16_t a, uint16_t b, uint16_t d, float_status *s)
{
return float16_muladd(a, b, d, 0, s);
}
static uint32_t fmacc32(uint32_t a, uint32_t b, uint32_t d, float_status *s)
{
return float32_muladd(a, b, d, 0, s);
}
static uint64_t fmacc64(uint64_t a, uint64_t b, uint64_t d, float_status *s)
{
return float64_muladd(a, b, d, 0, s);
}
RVVCALL(OPFVV3, vfmacc_vv_h, OP_UUU_H, H2, H2, H2, fmacc16)
RVVCALL(OPFVV3, vfmacc_vv_w, OP_UUU_W, H4, H4, H4, fmacc32)
RVVCALL(OPFVV3, vfmacc_vv_d, OP_UUU_D, H8, H8, H8, fmacc64)
GEN_VEXT_VV_ENV(vfmacc_vv_h, 2, 2)
GEN_VEXT_VV_ENV(vfmacc_vv_w, 4, 4)
GEN_VEXT_VV_ENV(vfmacc_vv_d, 8, 8)
#define OPFVF3(NAME, TD, T1, T2, TX1, TX2, HD, HS2, OP) \
static void do_##NAME(void *vd, uint64_t s1, void *vs2, int i, \
CPURISCVState *env) \
{ \
TX2 s2 = *((T2 *)vs2 + HS2(i)); \
TD d = *((TD *)vd + HD(i)); \
*((TD *)vd + HD(i)) = OP(s2, (TX1)(T1)s1, d, &env->fp_status);\
}
RVVCALL(OPFVF3, vfmacc_vf_h, OP_UUU_H, H2, H2, fmacc16)
RVVCALL(OPFVF3, vfmacc_vf_w, OP_UUU_W, H4, H4, fmacc32)
RVVCALL(OPFVF3, vfmacc_vf_d, OP_UUU_D, H8, H8, fmacc64)
GEN_VEXT_VF(vfmacc_vf_h, 2, 2)
GEN_VEXT_VF(vfmacc_vf_w, 4, 4)
GEN_VEXT_VF(vfmacc_vf_d, 8, 8)
static uint16_t fnmacc16(uint16_t a, uint16_t b, uint16_t d, float_status *s)
{
return float16_muladd(a, b, d,
float_muladd_negate_c | float_muladd_negate_product, s);
}
static uint32_t fnmacc32(uint32_t a, uint32_t b, uint32_t d, float_status *s)
{
return float32_muladd(a, b, d,
float_muladd_negate_c | float_muladd_negate_product, s);
}
static uint64_t fnmacc64(uint64_t a, uint64_t b, uint64_t d, float_status *s)
{
return float64_muladd(a, b, d,
float_muladd_negate_c | float_muladd_negate_product, s);
}
RVVCALL(OPFVV3, vfnmacc_vv_h, OP_UUU_H, H2, H2, H2, fnmacc16)
RVVCALL(OPFVV3, vfnmacc_vv_w, OP_UUU_W, H4, H4, H4, fnmacc32)
RVVCALL(OPFVV3, vfnmacc_vv_d, OP_UUU_D, H8, H8, H8, fnmacc64)
GEN_VEXT_VV_ENV(vfnmacc_vv_h, 2, 2)
GEN_VEXT_VV_ENV(vfnmacc_vv_w, 4, 4)
GEN_VEXT_VV_ENV(vfnmacc_vv_d, 8, 8)
RVVCALL(OPFVF3, vfnmacc_vf_h, OP_UUU_H, H2, H2, fnmacc16)
RVVCALL(OPFVF3, vfnmacc_vf_w, OP_UUU_W, H4, H4, fnmacc32)
RVVCALL(OPFVF3, vfnmacc_vf_d, OP_UUU_D, H8, H8, fnmacc64)
GEN_VEXT_VF(vfnmacc_vf_h, 2, 2)
GEN_VEXT_VF(vfnmacc_vf_w, 4, 4)
GEN_VEXT_VF(vfnmacc_vf_d, 8, 8)
static uint16_t fmsac16(uint16_t a, uint16_t b, uint16_t d, float_status *s)
{
return float16_muladd(a, b, d, float_muladd_negate_c, s);
}
static uint32_t fmsac32(uint32_t a, uint32_t b, uint32_t d, float_status *s)
{
return float32_muladd(a, b, d, float_muladd_negate_c, s);
}
static uint64_t fmsac64(uint64_t a, uint64_t b, uint64_t d, float_status *s)
{
return float64_muladd(a, b, d, float_muladd_negate_c, s);
}
RVVCALL(OPFVV3, vfmsac_vv_h, OP_UUU_H, H2, H2, H2, fmsac16)
RVVCALL(OPFVV3, vfmsac_vv_w, OP_UUU_W, H4, H4, H4, fmsac32)
RVVCALL(OPFVV3, vfmsac_vv_d, OP_UUU_D, H8, H8, H8, fmsac64)
GEN_VEXT_VV_ENV(vfmsac_vv_h, 2, 2)
GEN_VEXT_VV_ENV(vfmsac_vv_w, 4, 4)
GEN_VEXT_VV_ENV(vfmsac_vv_d, 8, 8)
RVVCALL(OPFVF3, vfmsac_vf_h, OP_UUU_H, H2, H2, fmsac16)
RVVCALL(OPFVF3, vfmsac_vf_w, OP_UUU_W, H4, H4, fmsac32)
RVVCALL(OPFVF3, vfmsac_vf_d, OP_UUU_D, H8, H8, fmsac64)
GEN_VEXT_VF(vfmsac_vf_h, 2, 2)
GEN_VEXT_VF(vfmsac_vf_w, 4, 4)
GEN_VEXT_VF(vfmsac_vf_d, 8, 8)
static uint16_t fnmsac16(uint16_t a, uint16_t b, uint16_t d, float_status *s)
{
return float16_muladd(a, b, d, float_muladd_negate_product, s);
}
static uint32_t fnmsac32(uint32_t a, uint32_t b, uint32_t d, float_status *s)
{
return float32_muladd(a, b, d, float_muladd_negate_product, s);
}
static uint64_t fnmsac64(uint64_t a, uint64_t b, uint64_t d, float_status *s)
{
return float64_muladd(a, b, d, float_muladd_negate_product, s);
}
RVVCALL(OPFVV3, vfnmsac_vv_h, OP_UUU_H, H2, H2, H2, fnmsac16)
RVVCALL(OPFVV3, vfnmsac_vv_w, OP_UUU_W, H4, H4, H4, fnmsac32)
RVVCALL(OPFVV3, vfnmsac_vv_d, OP_UUU_D, H8, H8, H8, fnmsac64)
GEN_VEXT_VV_ENV(vfnmsac_vv_h, 2, 2)
GEN_VEXT_VV_ENV(vfnmsac_vv_w, 4, 4)
GEN_VEXT_VV_ENV(vfnmsac_vv_d, 8, 8)
RVVCALL(OPFVF3, vfnmsac_vf_h, OP_UUU_H, H2, H2, fnmsac16)
RVVCALL(OPFVF3, vfnmsac_vf_w, OP_UUU_W, H4, H4, fnmsac32)
RVVCALL(OPFVF3, vfnmsac_vf_d, OP_UUU_D, H8, H8, fnmsac64)
GEN_VEXT_VF(vfnmsac_vf_h, 2, 2)
GEN_VEXT_VF(vfnmsac_vf_w, 4, 4)
GEN_VEXT_VF(vfnmsac_vf_d, 8, 8)
static uint16_t fmadd16(uint16_t a, uint16_t b, uint16_t d, float_status *s)
{
return float16_muladd(d, b, a, 0, s);
}
static uint32_t fmadd32(uint32_t a, uint32_t b, uint32_t d, float_status *s)
{
return float32_muladd(d, b, a, 0, s);
}
static uint64_t fmadd64(uint64_t a, uint64_t b, uint64_t d, float_status *s)
{
return float64_muladd(d, b, a, 0, s);
}
RVVCALL(OPFVV3, vfmadd_vv_h, OP_UUU_H, H2, H2, H2, fmadd16)
RVVCALL(OPFVV3, vfmadd_vv_w, OP_UUU_W, H4, H4, H4, fmadd32)
RVVCALL(OPFVV3, vfmadd_vv_d, OP_UUU_D, H8, H8, H8, fmadd64)
GEN_VEXT_VV_ENV(vfmadd_vv_h, 2, 2)
GEN_VEXT_VV_ENV(vfmadd_vv_w, 4, 4)
GEN_VEXT_VV_ENV(vfmadd_vv_d, 8, 8)
RVVCALL(OPFVF3, vfmadd_vf_h, OP_UUU_H, H2, H2, fmadd16)
RVVCALL(OPFVF3, vfmadd_vf_w, OP_UUU_W, H4, H4, fmadd32)
RVVCALL(OPFVF3, vfmadd_vf_d, OP_UUU_D, H8, H8, fmadd64)
GEN_VEXT_VF(vfmadd_vf_h, 2, 2)
GEN_VEXT_VF(vfmadd_vf_w, 4, 4)
GEN_VEXT_VF(vfmadd_vf_d, 8, 8)
static uint16_t fnmadd16(uint16_t a, uint16_t b, uint16_t d, float_status *s)
{
return float16_muladd(d, b, a,
float_muladd_negate_c | float_muladd_negate_product, s);
}
static uint32_t fnmadd32(uint32_t a, uint32_t b, uint32_t d, float_status *s)
{
return float32_muladd(d, b, a,
float_muladd_negate_c | float_muladd_negate_product, s);
}
static uint64_t fnmadd64(uint64_t a, uint64_t b, uint64_t d, float_status *s)
{
return float64_muladd(d, b, a,
float_muladd_negate_c | float_muladd_negate_product, s);
}
RVVCALL(OPFVV3, vfnmadd_vv_h, OP_UUU_H, H2, H2, H2, fnmadd16)
RVVCALL(OPFVV3, vfnmadd_vv_w, OP_UUU_W, H4, H4, H4, fnmadd32)
RVVCALL(OPFVV3, vfnmadd_vv_d, OP_UUU_D, H8, H8, H8, fnmadd64)
GEN_VEXT_VV_ENV(vfnmadd_vv_h, 2, 2)
GEN_VEXT_VV_ENV(vfnmadd_vv_w, 4, 4)
GEN_VEXT_VV_ENV(vfnmadd_vv_d, 8, 8)
RVVCALL(OPFVF3, vfnmadd_vf_h, OP_UUU_H, H2, H2, fnmadd16)
RVVCALL(OPFVF3, vfnmadd_vf_w, OP_UUU_W, H4, H4, fnmadd32)
RVVCALL(OPFVF3, vfnmadd_vf_d, OP_UUU_D, H8, H8, fnmadd64)
GEN_VEXT_VF(vfnmadd_vf_h, 2, 2)
GEN_VEXT_VF(vfnmadd_vf_w, 4, 4)
GEN_VEXT_VF(vfnmadd_vf_d, 8, 8)
static uint16_t fmsub16(uint16_t a, uint16_t b, uint16_t d, float_status *s)
{
return float16_muladd(d, b, a, float_muladd_negate_c, s);
}
static uint32_t fmsub32(uint32_t a, uint32_t b, uint32_t d, float_status *s)
{
return float32_muladd(d, b, a, float_muladd_negate_c, s);
}
static uint64_t fmsub64(uint64_t a, uint64_t b, uint64_t d, float_status *s)
{
return float64_muladd(d, b, a, float_muladd_negate_c, s);
}
RVVCALL(OPFVV3, vfmsub_vv_h, OP_UUU_H, H2, H2, H2, fmsub16)
RVVCALL(OPFVV3, vfmsub_vv_w, OP_UUU_W, H4, H4, H4, fmsub32)
RVVCALL(OPFVV3, vfmsub_vv_d, OP_UUU_D, H8, H8, H8, fmsub64)
GEN_VEXT_VV_ENV(vfmsub_vv_h, 2, 2)
GEN_VEXT_VV_ENV(vfmsub_vv_w, 4, 4)
GEN_VEXT_VV_ENV(vfmsub_vv_d, 8, 8)
RVVCALL(OPFVF3, vfmsub_vf_h, OP_UUU_H, H2, H2, fmsub16)
RVVCALL(OPFVF3, vfmsub_vf_w, OP_UUU_W, H4, H4, fmsub32)
RVVCALL(OPFVF3, vfmsub_vf_d, OP_UUU_D, H8, H8, fmsub64)
GEN_VEXT_VF(vfmsub_vf_h, 2, 2)
GEN_VEXT_VF(vfmsub_vf_w, 4, 4)
GEN_VEXT_VF(vfmsub_vf_d, 8, 8)
static uint16_t fnmsub16(uint16_t a, uint16_t b, uint16_t d, float_status *s)
{
return float16_muladd(d, b, a, float_muladd_negate_product, s);
}
static uint32_t fnmsub32(uint32_t a, uint32_t b, uint32_t d, float_status *s)
{
return float32_muladd(d, b, a, float_muladd_negate_product, s);
}
static uint64_t fnmsub64(uint64_t a, uint64_t b, uint64_t d, float_status *s)
{
return float64_muladd(d, b, a, float_muladd_negate_product, s);
}
RVVCALL(OPFVV3, vfnmsub_vv_h, OP_UUU_H, H2, H2, H2, fnmsub16)
RVVCALL(OPFVV3, vfnmsub_vv_w, OP_UUU_W, H4, H4, H4, fnmsub32)
RVVCALL(OPFVV3, vfnmsub_vv_d, OP_UUU_D, H8, H8, H8, fnmsub64)
GEN_VEXT_VV_ENV(vfnmsub_vv_h, 2, 2)
GEN_VEXT_VV_ENV(vfnmsub_vv_w, 4, 4)
GEN_VEXT_VV_ENV(vfnmsub_vv_d, 8, 8)
RVVCALL(OPFVF3, vfnmsub_vf_h, OP_UUU_H, H2, H2, fnmsub16)
RVVCALL(OPFVF3, vfnmsub_vf_w, OP_UUU_W, H4, H4, fnmsub32)
RVVCALL(OPFVF3, vfnmsub_vf_d, OP_UUU_D, H8, H8, fnmsub64)
GEN_VEXT_VF(vfnmsub_vf_h, 2, 2)
GEN_VEXT_VF(vfnmsub_vf_w, 4, 4)
GEN_VEXT_VF(vfnmsub_vf_d, 8, 8)
/* Vector Widening Floating-Point Fused Multiply-Add Instructions */
static uint32_t fwmacc16(uint16_t a, uint16_t b, uint32_t d, float_status *s)
{
return float32_muladd(float16_to_float32(a, true, s),
float16_to_float32(b, true, s), d, 0, s);
}
static uint64_t fwmacc32(uint32_t a, uint32_t b, uint64_t d, float_status *s)
{
return float64_muladd(float32_to_float64(a, s),
float32_to_float64(b, s), d, 0, s);
}
RVVCALL(OPFVV3, vfwmacc_vv_h, WOP_UUU_H, H4, H2, H2, fwmacc16)
RVVCALL(OPFVV3, vfwmacc_vv_w, WOP_UUU_W, H8, H4, H4, fwmacc32)
GEN_VEXT_VV_ENV(vfwmacc_vv_h, 2, 4)
GEN_VEXT_VV_ENV(vfwmacc_vv_w, 4, 8)
RVVCALL(OPFVF3, vfwmacc_vf_h, WOP_UUU_H, H4, H2, fwmacc16)
RVVCALL(OPFVF3, vfwmacc_vf_w, WOP_UUU_W, H8, H4, fwmacc32)
GEN_VEXT_VF(vfwmacc_vf_h, 2, 4)
GEN_VEXT_VF(vfwmacc_vf_w, 4, 8)
static uint32_t fwnmacc16(uint16_t a, uint16_t b, uint32_t d, float_status *s)
{
return float32_muladd(float16_to_float32(a, true, s),
float16_to_float32(b, true, s), d,
float_muladd_negate_c | float_muladd_negate_product, s);
}
static uint64_t fwnmacc32(uint32_t a, uint32_t b, uint64_t d, float_status *s)
{
return float64_muladd(float32_to_float64(a, s),
float32_to_float64(b, s), d,
float_muladd_negate_c | float_muladd_negate_product, s);
}
RVVCALL(OPFVV3, vfwnmacc_vv_h, WOP_UUU_H, H4, H2, H2, fwnmacc16)
RVVCALL(OPFVV3, vfwnmacc_vv_w, WOP_UUU_W, H8, H4, H4, fwnmacc32)
GEN_VEXT_VV_ENV(vfwnmacc_vv_h, 2, 4)
GEN_VEXT_VV_ENV(vfwnmacc_vv_w, 4, 8)
RVVCALL(OPFVF3, vfwnmacc_vf_h, WOP_UUU_H, H4, H2, fwnmacc16)
RVVCALL(OPFVF3, vfwnmacc_vf_w, WOP_UUU_W, H8, H4, fwnmacc32)
GEN_VEXT_VF(vfwnmacc_vf_h, 2, 4)
GEN_VEXT_VF(vfwnmacc_vf_w, 4, 8)
static uint32_t fwmsac16(uint16_t a, uint16_t b, uint32_t d, float_status *s)
{
return float32_muladd(float16_to_float32(a, true, s),
float16_to_float32(b, true, s), d,
float_muladd_negate_c, s);
}
static uint64_t fwmsac32(uint32_t a, uint32_t b, uint64_t d, float_status *s)
{
return float64_muladd(float32_to_float64(a, s),
float32_to_float64(b, s), d,
float_muladd_negate_c, s);
}
RVVCALL(OPFVV3, vfwmsac_vv_h, WOP_UUU_H, H4, H2, H2, fwmsac16)
RVVCALL(OPFVV3, vfwmsac_vv_w, WOP_UUU_W, H8, H4, H4, fwmsac32)
GEN_VEXT_VV_ENV(vfwmsac_vv_h, 2, 4)
GEN_VEXT_VV_ENV(vfwmsac_vv_w, 4, 8)
RVVCALL(OPFVF3, vfwmsac_vf_h, WOP_UUU_H, H4, H2, fwmsac16)
RVVCALL(OPFVF3, vfwmsac_vf_w, WOP_UUU_W, H8, H4, fwmsac32)
GEN_VEXT_VF(vfwmsac_vf_h, 2, 4)
GEN_VEXT_VF(vfwmsac_vf_w, 4, 8)
static uint32_t fwnmsac16(uint16_t a, uint16_t b, uint32_t d, float_status *s)
{
return float32_muladd(float16_to_float32(a, true, s),
float16_to_float32(b, true, s), d,
float_muladd_negate_product, s);
}
static uint64_t fwnmsac32(uint32_t a, uint32_t b, uint64_t d, float_status *s)
{
return float64_muladd(float32_to_float64(a, s),
float32_to_float64(b, s), d,
float_muladd_negate_product, s);
}
RVVCALL(OPFVV3, vfwnmsac_vv_h, WOP_UUU_H, H4, H2, H2, fwnmsac16)
RVVCALL(OPFVV3, vfwnmsac_vv_w, WOP_UUU_W, H8, H4, H4, fwnmsac32)
GEN_VEXT_VV_ENV(vfwnmsac_vv_h, 2, 4)
GEN_VEXT_VV_ENV(vfwnmsac_vv_w, 4, 8)
RVVCALL(OPFVF3, vfwnmsac_vf_h, WOP_UUU_H, H4, H2, fwnmsac16)
RVVCALL(OPFVF3, vfwnmsac_vf_w, WOP_UUU_W, H8, H4, fwnmsac32)
GEN_VEXT_VF(vfwnmsac_vf_h, 2, 4)
GEN_VEXT_VF(vfwnmsac_vf_w, 4, 8)
/* Vector Floating-Point Square-Root Instruction */
/* (TD, T2, TX2) */
#define OP_UU_H uint16_t, uint16_t, uint16_t
#define OP_UU_W uint32_t, uint32_t, uint32_t
#define OP_UU_D uint64_t, uint64_t, uint64_t
#define OPFVV1(NAME, TD, T2, TX2, HD, HS2, OP) \
static void do_##NAME(void *vd, void *vs2, int i, \
CPURISCVState *env) \
{ \
TX2 s2 = *((T2 *)vs2 + HS2(i)); \
*((TD *)vd + HD(i)) = OP(s2, &env->fp_status); \
}
#define GEN_VEXT_V_ENV(NAME, ESZ, DSZ) \
void HELPER(NAME)(void *vd, void *v0, void *vs2, \
CPURISCVState *env, uint32_t desc) \
{ \
uint32_t vm = vext_vm(desc); \
uint32_t vl = env->vl; \
uint32_t i; \
\
if (vl == 0) { \
return; \
} \
for (i = env->vstart; i < vl; i++) { \
if (!vm && !vext_elem_mask(v0, i)) { \
continue; \
} \
do_##NAME(vd, vs2, i, env); \
} \
env->vstart = 0; \
}
RVVCALL(OPFVV1, vfsqrt_v_h, OP_UU_H, H2, H2, float16_sqrt)
RVVCALL(OPFVV1, vfsqrt_v_w, OP_UU_W, H4, H4, float32_sqrt)
RVVCALL(OPFVV1, vfsqrt_v_d, OP_UU_D, H8, H8, float64_sqrt)
GEN_VEXT_V_ENV(vfsqrt_v_h, 2, 2)
GEN_VEXT_V_ENV(vfsqrt_v_w, 4, 4)
GEN_VEXT_V_ENV(vfsqrt_v_d, 8, 8)
/*
* Vector Floating-Point Reciprocal Square-Root Estimate Instruction
*
* Adapted from riscv-v-spec recip.c:
* https://github.com/riscv/riscv-v-spec/blob/master/recip.c
*/
static uint64_t frsqrt7(uint64_t f, int exp_size, int frac_size)
{
uint64_t sign = extract64(f, frac_size + exp_size, 1);
uint64_t exp = extract64(f, frac_size, exp_size);
uint64_t frac = extract64(f, 0, frac_size);
const uint8_t lookup_table[] = {
52, 51, 50, 48, 47, 46, 44, 43,
42, 41, 40, 39, 38, 36, 35, 34,
33, 32, 31, 30, 30, 29, 28, 27,
26, 25, 24, 23, 23, 22, 21, 20,
19, 19, 18, 17, 16, 16, 15, 14,
14, 13, 12, 12, 11, 10, 10, 9,
9, 8, 7, 7, 6, 6, 5, 4,
4, 3, 3, 2, 2, 1, 1, 0,
127, 125, 123, 121, 119, 118, 116, 114,
113, 111, 109, 108, 106, 105, 103, 102,
100, 99, 97, 96, 95, 93, 92, 91,
90, 88, 87, 86, 85, 84, 83, 82,
80, 79, 78, 77, 76, 75, 74, 73,
72, 71, 70, 70, 69, 68, 67, 66,
65, 64, 63, 63, 62, 61, 60, 59,
59, 58, 57, 56, 56, 55, 54, 53
};
const int precision = 7;
if (exp == 0 && frac != 0) { /* subnormal */
/* Normalize the subnormal. */
while (extract64(frac, frac_size - 1, 1) == 0) {
exp--;
frac <<= 1;
}
frac = (frac << 1) & MAKE_64BIT_MASK(0, frac_size);
}
int idx = ((exp & 1) << (precision - 1)) |
(frac >> (frac_size - precision + 1));
uint64_t out_frac = (uint64_t)(lookup_table[idx]) <<
(frac_size - precision);
uint64_t out_exp = (3 * MAKE_64BIT_MASK(0, exp_size - 1) + ~exp) / 2;
uint64_t val = 0;
val = deposit64(val, 0, frac_size, out_frac);
val = deposit64(val, frac_size, exp_size, out_exp);
val = deposit64(val, frac_size + exp_size, 1, sign);
return val;
}
static float16 frsqrt7_h(float16 f, float_status *s)
{
int exp_size = 5, frac_size = 10;
bool sign = float16_is_neg(f);
/*
* frsqrt7(sNaN) = canonical NaN
* frsqrt7(-inf) = canonical NaN
* frsqrt7(-normal) = canonical NaN
* frsqrt7(-subnormal) = canonical NaN
*/
if (float16_is_signaling_nan(f, s) ||
(float16_is_infinity(f) && sign) ||
(float16_is_normal(f) && sign) ||
(float16_is_zero_or_denormal(f) && !float16_is_zero(f) && sign)) {
s->float_exception_flags |= float_flag_invalid;
return float16_default_nan(s);
}
/* frsqrt7(qNaN) = canonical NaN */
if (float16_is_quiet_nan(f, s)) {
return float16_default_nan(s);
}
/* frsqrt7(+-0) = +-inf */
if (float16_is_zero(f)) {
s->float_exception_flags |= float_flag_divbyzero;
return float16_set_sign(float16_infinity, sign);
}
/* frsqrt7(+inf) = +0 */
if (float16_is_infinity(f) && !sign) {
return float16_set_sign(float16_zero, sign);
}
/* +normal, +subnormal */
uint64_t val = frsqrt7(f, exp_size, frac_size);
return make_float16(val);
}
static float32 frsqrt7_s(float32 f, float_status *s)
{
int exp_size = 8, frac_size = 23;
bool sign = float32_is_neg(f);
/*
* frsqrt7(sNaN) = canonical NaN
* frsqrt7(-inf) = canonical NaN
* frsqrt7(-normal) = canonical NaN
* frsqrt7(-subnormal) = canonical NaN
*/
if (float32_is_signaling_nan(f, s) ||
(float32_is_infinity(f) && sign) ||
(float32_is_normal(f) && sign) ||
(float32_is_zero_or_denormal(f) && !float32_is_zero(f) && sign)) {
s->float_exception_flags |= float_flag_invalid;
return float32_default_nan(s);
}
/* frsqrt7(qNaN) = canonical NaN */
if (float32_is_quiet_nan(f, s)) {
return float32_default_nan(s);
}
/* frsqrt7(+-0) = +-inf */
if (float32_is_zero(f)) {
s->float_exception_flags |= float_flag_divbyzero;
return float32_set_sign(float32_infinity, sign);
}
/* frsqrt7(+inf) = +0 */
if (float32_is_infinity(f) && !sign) {
return float32_set_sign(float32_zero, sign);
}
/* +normal, +subnormal */
uint64_t val = frsqrt7(f, exp_size, frac_size);
return make_float32(val);
}
static float64 frsqrt7_d(float64 f, float_status *s)
{
int exp_size = 11, frac_size = 52;
bool sign = float64_is_neg(f);
/*
* frsqrt7(sNaN) = canonical NaN
* frsqrt7(-inf) = canonical NaN
* frsqrt7(-normal) = canonical NaN
* frsqrt7(-subnormal) = canonical NaN
*/
if (float64_is_signaling_nan(f, s) ||
(float64_is_infinity(f) && sign) ||
(float64_is_normal(f) && sign) ||
(float64_is_zero_or_denormal(f) && !float64_is_zero(f) && sign)) {
s->float_exception_flags |= float_flag_invalid;
return float64_default_nan(s);
}
/* frsqrt7(qNaN) = canonical NaN */
if (float64_is_quiet_nan(f, s)) {
return float64_default_nan(s);
}
/* frsqrt7(+-0) = +-inf */
if (float64_is_zero(f)) {
s->float_exception_flags |= float_flag_divbyzero;
return float64_set_sign(float64_infinity, sign);
}
/* frsqrt7(+inf) = +0 */
if (float64_is_infinity(f) && !sign) {
return float64_set_sign(float64_zero, sign);
}
/* +normal, +subnormal */
uint64_t val = frsqrt7(f, exp_size, frac_size);
return make_float64(val);
}
RVVCALL(OPFVV1, vfrsqrt7_v_h, OP_UU_H, H2, H2, frsqrt7_h)
RVVCALL(OPFVV1, vfrsqrt7_v_w, OP_UU_W, H4, H4, frsqrt7_s)
RVVCALL(OPFVV1, vfrsqrt7_v_d, OP_UU_D, H8, H8, frsqrt7_d)
GEN_VEXT_V_ENV(vfrsqrt7_v_h, 2, 2)
GEN_VEXT_V_ENV(vfrsqrt7_v_w, 4, 4)
GEN_VEXT_V_ENV(vfrsqrt7_v_d, 8, 8)
/*
* Vector Floating-Point Reciprocal Estimate Instruction
*
* Adapted from riscv-v-spec recip.c:
* https://github.com/riscv/riscv-v-spec/blob/master/recip.c
*/
static uint64_t frec7(uint64_t f, int exp_size, int frac_size,
float_status *s)
{
uint64_t sign = extract64(f, frac_size + exp_size, 1);
uint64_t exp = extract64(f, frac_size, exp_size);
uint64_t frac = extract64(f, 0, frac_size);
const uint8_t lookup_table[] = {
127, 125, 123, 121, 119, 117, 116, 114,
112, 110, 109, 107, 105, 104, 102, 100,
99, 97, 96, 94, 93, 91, 90, 88,
87, 85, 84, 83, 81, 80, 79, 77,
76, 75, 74, 72, 71, 70, 69, 68,
66, 65, 64, 63, 62, 61, 60, 59,
58, 57, 56, 55, 54, 53, 52, 51,
50, 49, 48, 47, 46, 45, 44, 43,
42, 41, 40, 40, 39, 38, 37, 36,
35, 35, 34, 33, 32, 31, 31, 30,
29, 28, 28, 27, 26, 25, 25, 24,
23, 23, 22, 21, 21, 20, 19, 19,
18, 17, 17, 16, 15, 15, 14, 14,
13, 12, 12, 11, 11, 10, 9, 9,
8, 8, 7, 7, 6, 5, 5, 4,
4, 3, 3, 2, 2, 1, 1, 0
};
const int precision = 7;
if (exp == 0 && frac != 0) { /* subnormal */
/* Normalize the subnormal. */
while (extract64(frac, frac_size - 1, 1) == 0) {
exp--;
frac <<= 1;
}
frac = (frac << 1) & MAKE_64BIT_MASK(0, frac_size);
if (exp != 0 && exp != UINT64_MAX) {
/*
* Overflow to inf or max value of same sign,
* depending on sign and rounding mode.
*/
s->float_exception_flags |= (float_flag_inexact |
float_flag_overflow);
if ((s->float_rounding_mode == float_round_to_zero) ||
((s->float_rounding_mode == float_round_down) && !sign) ||
((s->float_rounding_mode == float_round_up) && sign)) {
/* Return greatest/negative finite value. */
return (sign << (exp_size + frac_size)) |
(MAKE_64BIT_MASK(frac_size, exp_size) - 1);
} else {
/* Return +-inf. */
return (sign << (exp_size + frac_size)) |
MAKE_64BIT_MASK(frac_size, exp_size);
}
}
}
int idx = frac >> (frac_size - precision);
uint64_t out_frac = (uint64_t)(lookup_table[idx]) <<
(frac_size - precision);
uint64_t out_exp = 2 * MAKE_64BIT_MASK(0, exp_size - 1) + ~exp;
if (out_exp == 0 || out_exp == UINT64_MAX) {
/*
* The result is subnormal, but don't raise the underflow exception,
* because there's no additional loss of precision.
*/
out_frac = (out_frac >> 1) | MAKE_64BIT_MASK(frac_size - 1, 1);
if (out_exp == UINT64_MAX) {
out_frac >>= 1;
out_exp = 0;
}
}
uint64_t val = 0;
val = deposit64(val, 0, frac_size, out_frac);
val = deposit64(val, frac_size, exp_size, out_exp);
val = deposit64(val, frac_size + exp_size, 1, sign);
return val;
}
static float16 frec7_h(float16 f, float_status *s)
{
int exp_size = 5, frac_size = 10;
bool sign = float16_is_neg(f);
/* frec7(+-inf) = +-0 */
if (float16_is_infinity(f)) {
return float16_set_sign(float16_zero, sign);
}
/* frec7(+-0) = +-inf */
if (float16_is_zero(f)) {
s->float_exception_flags |= float_flag_divbyzero;
return float16_set_sign(float16_infinity, sign);
}
/* frec7(sNaN) = canonical NaN */
if (float16_is_signaling_nan(f, s)) {
s->float_exception_flags |= float_flag_invalid;
return float16_default_nan(s);
}
/* frec7(qNaN) = canonical NaN */
if (float16_is_quiet_nan(f, s)) {
return float16_default_nan(s);
}
/* +-normal, +-subnormal */
uint64_t val = frec7(f, exp_size, frac_size, s);
return make_float16(val);
}
static float32 frec7_s(float32 f, float_status *s)
{
int exp_size = 8, frac_size = 23;
bool sign = float32_is_neg(f);
/* frec7(+-inf) = +-0 */
if (float32_is_infinity(f)) {
return float32_set_sign(float32_zero, sign);
}
/* frec7(+-0) = +-inf */
if (float32_is_zero(f)) {
s->float_exception_flags |= float_flag_divbyzero;
return float32_set_sign(float32_infinity, sign);
}
/* frec7(sNaN) = canonical NaN */
if (float32_is_signaling_nan(f, s)) {
s->float_exception_flags |= float_flag_invalid;
return float32_default_nan(s);
}
/* frec7(qNaN) = canonical NaN */
if (float32_is_quiet_nan(f, s)) {
return float32_default_nan(s);
}
/* +-normal, +-subnormal */
uint64_t val = frec7(f, exp_size, frac_size, s);
return make_float32(val);
}
static float64 frec7_d(float64 f, float_status *s)
{
int exp_size = 11, frac_size = 52;
bool sign = float64_is_neg(f);
/* frec7(+-inf) = +-0 */
if (float64_is_infinity(f)) {
return float64_set_sign(float64_zero, sign);
}
/* frec7(+-0) = +-inf */
if (float64_is_zero(f)) {
s->float_exception_flags |= float_flag_divbyzero;
return float64_set_sign(float64_infinity, sign);
}
/* frec7(sNaN) = canonical NaN */
if (float64_is_signaling_nan(f, s)) {
s->float_exception_flags |= float_flag_invalid;
return float64_default_nan(s);
}
/* frec7(qNaN) = canonical NaN */
if (float64_is_quiet_nan(f, s)) {
return float64_default_nan(s);
}
/* +-normal, +-subnormal */
uint64_t val = frec7(f, exp_size, frac_size, s);
return make_float64(val);
}
RVVCALL(OPFVV1, vfrec7_v_h, OP_UU_H, H2, H2, frec7_h)
RVVCALL(OPFVV1, vfrec7_v_w, OP_UU_W, H4, H4, frec7_s)
RVVCALL(OPFVV1, vfrec7_v_d, OP_UU_D, H8, H8, frec7_d)
GEN_VEXT_V_ENV(vfrec7_v_h, 2, 2)
GEN_VEXT_V_ENV(vfrec7_v_w, 4, 4)
GEN_VEXT_V_ENV(vfrec7_v_d, 8, 8)
/* Vector Floating-Point MIN/MAX Instructions */
RVVCALL(OPFVV2, vfmin_vv_h, OP_UUU_H, H2, H2, H2, float16_minimum_number)
RVVCALL(OPFVV2, vfmin_vv_w, OP_UUU_W, H4, H4, H4, float32_minimum_number)
RVVCALL(OPFVV2, vfmin_vv_d, OP_UUU_D, H8, H8, H8, float64_minimum_number)
GEN_VEXT_VV_ENV(vfmin_vv_h, 2, 2)
GEN_VEXT_VV_ENV(vfmin_vv_w, 4, 4)
GEN_VEXT_VV_ENV(vfmin_vv_d, 8, 8)
RVVCALL(OPFVF2, vfmin_vf_h, OP_UUU_H, H2, H2, float16_minimum_number)
RVVCALL(OPFVF2, vfmin_vf_w, OP_UUU_W, H4, H4, float32_minimum_number)
RVVCALL(OPFVF2, vfmin_vf_d, OP_UUU_D, H8, H8, float64_minimum_number)
GEN_VEXT_VF(vfmin_vf_h, 2, 2)
GEN_VEXT_VF(vfmin_vf_w, 4, 4)
GEN_VEXT_VF(vfmin_vf_d, 8, 8)
RVVCALL(OPFVV2, vfmax_vv_h, OP_UUU_H, H2, H2, H2, float16_maximum_number)
RVVCALL(OPFVV2, vfmax_vv_w, OP_UUU_W, H4, H4, H4, float32_maximum_number)
RVVCALL(OPFVV2, vfmax_vv_d, OP_UUU_D, H8, H8, H8, float64_maximum_number)
GEN_VEXT_VV_ENV(vfmax_vv_h, 2, 2)
GEN_VEXT_VV_ENV(vfmax_vv_w, 4, 4)
GEN_VEXT_VV_ENV(vfmax_vv_d, 8, 8)
RVVCALL(OPFVF2, vfmax_vf_h, OP_UUU_H, H2, H2, float16_maximum_number)
RVVCALL(OPFVF2, vfmax_vf_w, OP_UUU_W, H4, H4, float32_maximum_number)
RVVCALL(OPFVF2, vfmax_vf_d, OP_UUU_D, H8, H8, float64_maximum_number)
GEN_VEXT_VF(vfmax_vf_h, 2, 2)
GEN_VEXT_VF(vfmax_vf_w, 4, 4)
GEN_VEXT_VF(vfmax_vf_d, 8, 8)
/* Vector Floating-Point Sign-Injection Instructions */
static uint16_t fsgnj16(uint16_t a, uint16_t b, float_status *s)
{
return deposit64(b, 0, 15, a);
}
static uint32_t fsgnj32(uint32_t a, uint32_t b, float_status *s)
{
return deposit64(b, 0, 31, a);
}
static uint64_t fsgnj64(uint64_t a, uint64_t b, float_status *s)
{
return deposit64(b, 0, 63, a);
}
RVVCALL(OPFVV2, vfsgnj_vv_h, OP_UUU_H, H2, H2, H2, fsgnj16)
RVVCALL(OPFVV2, vfsgnj_vv_w, OP_UUU_W, H4, H4, H4, fsgnj32)
RVVCALL(OPFVV2, vfsgnj_vv_d, OP_UUU_D, H8, H8, H8, fsgnj64)
GEN_VEXT_VV_ENV(vfsgnj_vv_h, 2, 2)
GEN_VEXT_VV_ENV(vfsgnj_vv_w, 4, 4)
GEN_VEXT_VV_ENV(vfsgnj_vv_d, 8, 8)
RVVCALL(OPFVF2, vfsgnj_vf_h, OP_UUU_H, H2, H2, fsgnj16)
RVVCALL(OPFVF2, vfsgnj_vf_w, OP_UUU_W, H4, H4, fsgnj32)
RVVCALL(OPFVF2, vfsgnj_vf_d, OP_UUU_D, H8, H8, fsgnj64)
GEN_VEXT_VF(vfsgnj_vf_h, 2, 2)
GEN_VEXT_VF(vfsgnj_vf_w, 4, 4)
GEN_VEXT_VF(vfsgnj_vf_d, 8, 8)
static uint16_t fsgnjn16(uint16_t a, uint16_t b, float_status *s)
{
return deposit64(~b, 0, 15, a);
}
static uint32_t fsgnjn32(uint32_t a, uint32_t b, float_status *s)
{
return deposit64(~b, 0, 31, a);
}
static uint64_t fsgnjn64(uint64_t a, uint64_t b, float_status *s)
{
return deposit64(~b, 0, 63, a);
}
RVVCALL(OPFVV2, vfsgnjn_vv_h, OP_UUU_H, H2, H2, H2, fsgnjn16)
RVVCALL(OPFVV2, vfsgnjn_vv_w, OP_UUU_W, H4, H4, H4, fsgnjn32)
RVVCALL(OPFVV2, vfsgnjn_vv_d, OP_UUU_D, H8, H8, H8, fsgnjn64)
GEN_VEXT_VV_ENV(vfsgnjn_vv_h, 2, 2)
GEN_VEXT_VV_ENV(vfsgnjn_vv_w, 4, 4)
GEN_VEXT_VV_ENV(vfsgnjn_vv_d, 8, 8)
RVVCALL(OPFVF2, vfsgnjn_vf_h, OP_UUU_H, H2, H2, fsgnjn16)
RVVCALL(OPFVF2, vfsgnjn_vf_w, OP_UUU_W, H4, H4, fsgnjn32)
RVVCALL(OPFVF2, vfsgnjn_vf_d, OP_UUU_D, H8, H8, fsgnjn64)
GEN_VEXT_VF(vfsgnjn_vf_h, 2, 2)
GEN_VEXT_VF(vfsgnjn_vf_w, 4, 4)
GEN_VEXT_VF(vfsgnjn_vf_d, 8, 8)
static uint16_t fsgnjx16(uint16_t a, uint16_t b, float_status *s)
{
return deposit64(b ^ a, 0, 15, a);
}
static uint32_t fsgnjx32(uint32_t a, uint32_t b, float_status *s)
{
return deposit64(b ^ a, 0, 31, a);
}
static uint64_t fsgnjx64(uint64_t a, uint64_t b, float_status *s)
{
return deposit64(b ^ a, 0, 63, a);
}
RVVCALL(OPFVV2, vfsgnjx_vv_h, OP_UUU_H, H2, H2, H2, fsgnjx16)
RVVCALL(OPFVV2, vfsgnjx_vv_w, OP_UUU_W, H4, H4, H4, fsgnjx32)
RVVCALL(OPFVV2, vfsgnjx_vv_d, OP_UUU_D, H8, H8, H8, fsgnjx64)
GEN_VEXT_VV_ENV(vfsgnjx_vv_h, 2, 2)
GEN_VEXT_VV_ENV(vfsgnjx_vv_w, 4, 4)
GEN_VEXT_VV_ENV(vfsgnjx_vv_d, 8, 8)
RVVCALL(OPFVF2, vfsgnjx_vf_h, OP_UUU_H, H2, H2, fsgnjx16)
RVVCALL(OPFVF2, vfsgnjx_vf_w, OP_UUU_W, H4, H4, fsgnjx32)
RVVCALL(OPFVF2, vfsgnjx_vf_d, OP_UUU_D, H8, H8, fsgnjx64)
GEN_VEXT_VF(vfsgnjx_vf_h, 2, 2)
GEN_VEXT_VF(vfsgnjx_vf_w, 4, 4)
GEN_VEXT_VF(vfsgnjx_vf_d, 8, 8)
/* Vector Floating-Point Compare Instructions */
#define GEN_VEXT_CMP_VV_ENV(NAME, ETYPE, H, DO_OP) \
void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2, \
CPURISCVState *env, uint32_t desc) \
{ \
uint32_t vm = vext_vm(desc); \
uint32_t vl = env->vl; \
uint32_t i; \
\
for (i = env->vstart; i < vl; i++) { \
ETYPE s1 = *((ETYPE *)vs1 + H(i)); \
ETYPE s2 = *((ETYPE *)vs2 + H(i)); \
if (!vm && !vext_elem_mask(v0, i)) { \
continue; \
} \
vext_set_elem_mask(vd, i, \
DO_OP(s2, s1, &env->fp_status)); \
} \
env->vstart = 0; \
}
GEN_VEXT_CMP_VV_ENV(vmfeq_vv_h, uint16_t, H2, float16_eq_quiet)
GEN_VEXT_CMP_VV_ENV(vmfeq_vv_w, uint32_t, H4, float32_eq_quiet)
GEN_VEXT_CMP_VV_ENV(vmfeq_vv_d, uint64_t, H8, float64_eq_quiet)
#define GEN_VEXT_CMP_VF(NAME, ETYPE, H, DO_OP) \
void HELPER(NAME)(void *vd, void *v0, uint64_t s1, void *vs2, \
CPURISCVState *env, uint32_t desc) \
{ \
uint32_t vm = vext_vm(desc); \
uint32_t vl = env->vl; \
uint32_t i; \
\
for (i = env->vstart; i < vl; i++) { \
ETYPE s2 = *((ETYPE *)vs2 + H(i)); \
if (!vm && !vext_elem_mask(v0, i)) { \
continue; \
} \
vext_set_elem_mask(vd, i, \
DO_OP(s2, (ETYPE)s1, &env->fp_status)); \
} \
env->vstart = 0; \
}
GEN_VEXT_CMP_VF(vmfeq_vf_h, uint16_t, H2, float16_eq_quiet)
GEN_VEXT_CMP_VF(vmfeq_vf_w, uint32_t, H4, float32_eq_quiet)
GEN_VEXT_CMP_VF(vmfeq_vf_d, uint64_t, H8, float64_eq_quiet)
static bool vmfne16(uint16_t a, uint16_t b, float_status *s)
{
FloatRelation compare = float16_compare_quiet(a, b, s);
return compare != float_relation_equal;
}
static bool vmfne32(uint32_t a, uint32_t b, float_status *s)
{
FloatRelation compare = float32_compare_quiet(a, b, s);
return compare != float_relation_equal;
}
static bool vmfne64(uint64_t a, uint64_t b, float_status *s)
{
FloatRelation compare = float64_compare_quiet(a, b, s);
return compare != float_relation_equal;
}
GEN_VEXT_CMP_VV_ENV(vmfne_vv_h, uint16_t, H2, vmfne16)
GEN_VEXT_CMP_VV_ENV(vmfne_vv_w, uint32_t, H4, vmfne32)
GEN_VEXT_CMP_VV_ENV(vmfne_vv_d, uint64_t, H8, vmfne64)
GEN_VEXT_CMP_VF(vmfne_vf_h, uint16_t, H2, vmfne16)
GEN_VEXT_CMP_VF(vmfne_vf_w, uint32_t, H4, vmfne32)
GEN_VEXT_CMP_VF(vmfne_vf_d, uint64_t, H8, vmfne64)
GEN_VEXT_CMP_VV_ENV(vmflt_vv_h, uint16_t, H2, float16_lt)
GEN_VEXT_CMP_VV_ENV(vmflt_vv_w, uint32_t, H4, float32_lt)
GEN_VEXT_CMP_VV_ENV(vmflt_vv_d, uint64_t, H8, float64_lt)
GEN_VEXT_CMP_VF(vmflt_vf_h, uint16_t, H2, float16_lt)
GEN_VEXT_CMP_VF(vmflt_vf_w, uint32_t, H4, float32_lt)
GEN_VEXT_CMP_VF(vmflt_vf_d, uint64_t, H8, float64_lt)
GEN_VEXT_CMP_VV_ENV(vmfle_vv_h, uint16_t, H2, float16_le)
GEN_VEXT_CMP_VV_ENV(vmfle_vv_w, uint32_t, H4, float32_le)
GEN_VEXT_CMP_VV_ENV(vmfle_vv_d, uint64_t, H8, float64_le)
GEN_VEXT_CMP_VF(vmfle_vf_h, uint16_t, H2, float16_le)
GEN_VEXT_CMP_VF(vmfle_vf_w, uint32_t, H4, float32_le)
GEN_VEXT_CMP_VF(vmfle_vf_d, uint64_t, H8, float64_le)
static bool vmfgt16(uint16_t a, uint16_t b, float_status *s)
{
FloatRelation compare = float16_compare(a, b, s);
return compare == float_relation_greater;
}
static bool vmfgt32(uint32_t a, uint32_t b, float_status *s)
{
FloatRelation compare = float32_compare(a, b, s);
return compare == float_relation_greater;
}
static bool vmfgt64(uint64_t a, uint64_t b, float_status *s)
{
FloatRelation compare = float64_compare(a, b, s);
return compare == float_relation_greater;
}
GEN_VEXT_CMP_VF(vmfgt_vf_h, uint16_t, H2, vmfgt16)
GEN_VEXT_CMP_VF(vmfgt_vf_w, uint32_t, H4, vmfgt32)
GEN_VEXT_CMP_VF(vmfgt_vf_d, uint64_t, H8, vmfgt64)
static bool vmfge16(uint16_t a, uint16_t b, float_status *s)
{
FloatRelation compare = float16_compare(a, b, s);
return compare == float_relation_greater ||
compare == float_relation_equal;
}
static bool vmfge32(uint32_t a, uint32_t b, float_status *s)
{
FloatRelation compare = float32_compare(a, b, s);
return compare == float_relation_greater ||
compare == float_relation_equal;
}
static bool vmfge64(uint64_t a, uint64_t b, float_status *s)
{
FloatRelation compare = float64_compare(a, b, s);
return compare == float_relation_greater ||
compare == float_relation_equal;
}
GEN_VEXT_CMP_VF(vmfge_vf_h, uint16_t, H2, vmfge16)
GEN_VEXT_CMP_VF(vmfge_vf_w, uint32_t, H4, vmfge32)
GEN_VEXT_CMP_VF(vmfge_vf_d, uint64_t, H8, vmfge64)
/* Vector Floating-Point Classify Instruction */
#define OPIVV1(NAME, TD, T2, TX2, HD, HS2, OP) \
static void do_##NAME(void *vd, void *vs2, int i) \
{ \
TX2 s2 = *((T2 *)vs2 + HS2(i)); \
*((TD *)vd + HD(i)) = OP(s2); \
}
#define GEN_VEXT_V(NAME, ESZ, DSZ) \
void HELPER(NAME)(void *vd, void *v0, void *vs2, \
CPURISCVState *env, uint32_t desc) \
{ \
uint32_t vm = vext_vm(desc); \
uint32_t vl = env->vl; \
uint32_t i; \
\
for (i = env->vstart; i < vl; i++) { \
if (!vm && !vext_elem_mask(v0, i)) { \
continue; \
} \
do_##NAME(vd, vs2, i); \
} \
env->vstart = 0; \
}
target_ulong fclass_h(uint64_t frs1)
{
float16 f = frs1;
bool sign = float16_is_neg(f);
if (float16_is_infinity(f)) {
return sign ? 1 << 0 : 1 << 7;
} else if (float16_is_zero(f)) {
return sign ? 1 << 3 : 1 << 4;
} else if (float16_is_zero_or_denormal(f)) {
return sign ? 1 << 2 : 1 << 5;
} else if (float16_is_any_nan(f)) {
float_status s = { }; /* for snan_bit_is_one */
return float16_is_quiet_nan(f, &s) ? 1 << 9 : 1 << 8;
} else {
return sign ? 1 << 1 : 1 << 6;
}
}
target_ulong fclass_s(uint64_t frs1)
{
float32 f = frs1;
bool sign = float32_is_neg(f);
if (float32_is_infinity(f)) {
return sign ? 1 << 0 : 1 << 7;
} else if (float32_is_zero(f)) {
return sign ? 1 << 3 : 1 << 4;
} else if (float32_is_zero_or_denormal(f)) {
return sign ? 1 << 2 : 1 << 5;
} else if (float32_is_any_nan(f)) {
float_status s = { }; /* for snan_bit_is_one */
return float32_is_quiet_nan(f, &s) ? 1 << 9 : 1 << 8;
} else {
return sign ? 1 << 1 : 1 << 6;
}
}
target_ulong fclass_d(uint64_t frs1)
{
float64 f = frs1;
bool sign = float64_is_neg(f);
if (float64_is_infinity(f)) {
return sign ? 1 << 0 : 1 << 7;
} else if (float64_is_zero(f)) {
return sign ? 1 << 3 : 1 << 4;
} else if (float64_is_zero_or_denormal(f)) {
return sign ? 1 << 2 : 1 << 5;
} else if (float64_is_any_nan(f)) {
float_status s = { }; /* for snan_bit_is_one */
return float64_is_quiet_nan(f, &s) ? 1 << 9 : 1 << 8;
} else {
return sign ? 1 << 1 : 1 << 6;
}
}
RVVCALL(OPIVV1, vfclass_v_h, OP_UU_H, H2, H2, fclass_h)
RVVCALL(OPIVV1, vfclass_v_w, OP_UU_W, H4, H4, fclass_s)
RVVCALL(OPIVV1, vfclass_v_d, OP_UU_D, H8, H8, fclass_d)
GEN_VEXT_V(vfclass_v_h, 2, 2)
GEN_VEXT_V(vfclass_v_w, 4, 4)
GEN_VEXT_V(vfclass_v_d, 8, 8)
/* Vector Floating-Point Merge Instruction */
#define GEN_VFMERGE_VF(NAME, ETYPE, H) \
void HELPER(NAME)(void *vd, void *v0, uint64_t s1, void *vs2, \
CPURISCVState *env, uint32_t desc) \
{ \
uint32_t vm = vext_vm(desc); \
uint32_t vl = env->vl; \
uint32_t i; \
\
for (i = env->vstart; i < vl; i++) { \
ETYPE s2 = *((ETYPE *)vs2 + H(i)); \
*((ETYPE *)vd + H(i)) \
= (!vm && !vext_elem_mask(v0, i) ? s2 : s1); \
} \
env->vstart = 0; \
}
GEN_VFMERGE_VF(vfmerge_vfm_h, int16_t, H2)
GEN_VFMERGE_VF(vfmerge_vfm_w, int32_t, H4)
GEN_VFMERGE_VF(vfmerge_vfm_d, int64_t, H8)
/* Single-Width Floating-Point/Integer Type-Convert Instructions */
/* vfcvt.xu.f.v vd, vs2, vm # Convert float to unsigned integer. */
RVVCALL(OPFVV1, vfcvt_xu_f_v_h, OP_UU_H, H2, H2, float16_to_uint16)
RVVCALL(OPFVV1, vfcvt_xu_f_v_w, OP_UU_W, H4, H4, float32_to_uint32)
RVVCALL(OPFVV1, vfcvt_xu_f_v_d, OP_UU_D, H8, H8, float64_to_uint64)
GEN_VEXT_V_ENV(vfcvt_xu_f_v_h, 2, 2)
GEN_VEXT_V_ENV(vfcvt_xu_f_v_w, 4, 4)
GEN_VEXT_V_ENV(vfcvt_xu_f_v_d, 8, 8)
/* vfcvt.x.f.v vd, vs2, vm # Convert float to signed integer. */
RVVCALL(OPFVV1, vfcvt_x_f_v_h, OP_UU_H, H2, H2, float16_to_int16)
RVVCALL(OPFVV1, vfcvt_x_f_v_w, OP_UU_W, H4, H4, float32_to_int32)
RVVCALL(OPFVV1, vfcvt_x_f_v_d, OP_UU_D, H8, H8, float64_to_int64)
GEN_VEXT_V_ENV(vfcvt_x_f_v_h, 2, 2)
GEN_VEXT_V_ENV(vfcvt_x_f_v_w, 4, 4)
GEN_VEXT_V_ENV(vfcvt_x_f_v_d, 8, 8)
/* vfcvt.f.xu.v vd, vs2, vm # Convert unsigned integer to float. */
RVVCALL(OPFVV1, vfcvt_f_xu_v_h, OP_UU_H, H2, H2, uint16_to_float16)
RVVCALL(OPFVV1, vfcvt_f_xu_v_w, OP_UU_W, H4, H4, uint32_to_float32)
RVVCALL(OPFVV1, vfcvt_f_xu_v_d, OP_UU_D, H8, H8, uint64_to_float64)
GEN_VEXT_V_ENV(vfcvt_f_xu_v_h, 2, 2)
GEN_VEXT_V_ENV(vfcvt_f_xu_v_w, 4, 4)
GEN_VEXT_V_ENV(vfcvt_f_xu_v_d, 8, 8)
/* vfcvt.f.x.v vd, vs2, vm # Convert integer to float. */
RVVCALL(OPFVV1, vfcvt_f_x_v_h, OP_UU_H, H2, H2, int16_to_float16)
RVVCALL(OPFVV1, vfcvt_f_x_v_w, OP_UU_W, H4, H4, int32_to_float32)
RVVCALL(OPFVV1, vfcvt_f_x_v_d, OP_UU_D, H8, H8, int64_to_float64)
GEN_VEXT_V_ENV(vfcvt_f_x_v_h, 2, 2)
GEN_VEXT_V_ENV(vfcvt_f_x_v_w, 4, 4)
GEN_VEXT_V_ENV(vfcvt_f_x_v_d, 8, 8)
/* Widening Floating-Point/Integer Type-Convert Instructions */
/* (TD, T2, TX2) */
#define WOP_UU_B uint16_t, uint8_t, uint8_t
#define WOP_UU_H uint32_t, uint16_t, uint16_t
#define WOP_UU_W uint64_t, uint32_t, uint32_t
/* vfwcvt.xu.f.v vd, vs2, vm # Convert float to double-width unsigned integer.*/
RVVCALL(OPFVV1, vfwcvt_xu_f_v_h, WOP_UU_H, H4, H2, float16_to_uint32)
RVVCALL(OPFVV1, vfwcvt_xu_f_v_w, WOP_UU_W, H8, H4, float32_to_uint64)
GEN_VEXT_V_ENV(vfwcvt_xu_f_v_h, 2, 4)
GEN_VEXT_V_ENV(vfwcvt_xu_f_v_w, 4, 8)
/* vfwcvt.x.f.v vd, vs2, vm # Convert float to double-width signed integer. */
RVVCALL(OPFVV1, vfwcvt_x_f_v_h, WOP_UU_H, H4, H2, float16_to_int32)
RVVCALL(OPFVV1, vfwcvt_x_f_v_w, WOP_UU_W, H8, H4, float32_to_int64)
GEN_VEXT_V_ENV(vfwcvt_x_f_v_h, 2, 4)
GEN_VEXT_V_ENV(vfwcvt_x_f_v_w, 4, 8)
/* vfwcvt.f.xu.v vd, vs2, vm # Convert unsigned integer to double-width float */
RVVCALL(OPFVV1, vfwcvt_f_xu_v_b, WOP_UU_B, H2, H1, uint8_to_float16)
RVVCALL(OPFVV1, vfwcvt_f_xu_v_h, WOP_UU_H, H4, H2, uint16_to_float32)
RVVCALL(OPFVV1, vfwcvt_f_xu_v_w, WOP_UU_W, H8, H4, uint32_to_float64)
GEN_VEXT_V_ENV(vfwcvt_f_xu_v_b, 1, 2)
GEN_VEXT_V_ENV(vfwcvt_f_xu_v_h, 2, 4)
GEN_VEXT_V_ENV(vfwcvt_f_xu_v_w, 4, 8)
/* vfwcvt.f.x.v vd, vs2, vm # Convert integer to double-width float. */
RVVCALL(OPFVV1, vfwcvt_f_x_v_b, WOP_UU_B, H2, H1, int8_to_float16)
RVVCALL(OPFVV1, vfwcvt_f_x_v_h, WOP_UU_H, H4, H2, int16_to_float32)
RVVCALL(OPFVV1, vfwcvt_f_x_v_w, WOP_UU_W, H8, H4, int32_to_float64)
GEN_VEXT_V_ENV(vfwcvt_f_x_v_b, 1, 2)
GEN_VEXT_V_ENV(vfwcvt_f_x_v_h, 2, 4)
GEN_VEXT_V_ENV(vfwcvt_f_x_v_w, 4, 8)
/*
* vfwcvt.f.f.v vd, vs2, vm
* Convert single-width float to double-width float.
*/
static uint32_t vfwcvtffv16(uint16_t a, float_status *s)
{
return float16_to_float32(a, true, s);
}
RVVCALL(OPFVV1, vfwcvt_f_f_v_h, WOP_UU_H, H4, H2, vfwcvtffv16)
RVVCALL(OPFVV1, vfwcvt_f_f_v_w, WOP_UU_W, H8, H4, float32_to_float64)
GEN_VEXT_V_ENV(vfwcvt_f_f_v_h, 2, 4)
GEN_VEXT_V_ENV(vfwcvt_f_f_v_w, 4, 8)
/* Narrowing Floating-Point/Integer Type-Convert Instructions */
/* (TD, T2, TX2) */
#define NOP_UU_B uint8_t, uint16_t, uint32_t
#define NOP_UU_H uint16_t, uint32_t, uint32_t
#define NOP_UU_W uint32_t, uint64_t, uint64_t
/* vfncvt.xu.f.v vd, vs2, vm # Convert float to unsigned integer. */
RVVCALL(OPFVV1, vfncvt_xu_f_w_b, NOP_UU_B, H1, H2, float16_to_uint8)
RVVCALL(OPFVV1, vfncvt_xu_f_w_h, NOP_UU_H, H2, H4, float32_to_uint16)
RVVCALL(OPFVV1, vfncvt_xu_f_w_w, NOP_UU_W, H4, H8, float64_to_uint32)
GEN_VEXT_V_ENV(vfncvt_xu_f_w_b, 1, 1)
GEN_VEXT_V_ENV(vfncvt_xu_f_w_h, 2, 2)
GEN_VEXT_V_ENV(vfncvt_xu_f_w_w, 4, 4)
/* vfncvt.x.f.v vd, vs2, vm # Convert double-width float to signed integer. */
RVVCALL(OPFVV1, vfncvt_x_f_w_b, NOP_UU_B, H1, H2, float16_to_int8)
RVVCALL(OPFVV1, vfncvt_x_f_w_h, NOP_UU_H, H2, H4, float32_to_int16)
RVVCALL(OPFVV1, vfncvt_x_f_w_w, NOP_UU_W, H4, H8, float64_to_int32)
GEN_VEXT_V_ENV(vfncvt_x_f_w_b, 1, 1)
GEN_VEXT_V_ENV(vfncvt_x_f_w_h, 2, 2)
GEN_VEXT_V_ENV(vfncvt_x_f_w_w, 4, 4)
/* vfncvt.f.xu.v vd, vs2, vm # Convert double-width unsigned integer to float */
RVVCALL(OPFVV1, vfncvt_f_xu_w_h, NOP_UU_H, H2, H4, uint32_to_float16)
RVVCALL(OPFVV1, vfncvt_f_xu_w_w, NOP_UU_W, H4, H8, uint64_to_float32)
GEN_VEXT_V_ENV(vfncvt_f_xu_w_h, 2, 2)
GEN_VEXT_V_ENV(vfncvt_f_xu_w_w, 4, 4)
/* vfncvt.f.x.v vd, vs2, vm # Convert double-width integer to float. */
RVVCALL(OPFVV1, vfncvt_f_x_w_h, NOP_UU_H, H2, H4, int32_to_float16)
RVVCALL(OPFVV1, vfncvt_f_x_w_w, NOP_UU_W, H4, H8, int64_to_float32)
GEN_VEXT_V_ENV(vfncvt_f_x_w_h, 2, 2)
GEN_VEXT_V_ENV(vfncvt_f_x_w_w, 4, 4)
/* vfncvt.f.f.v vd, vs2, vm # Convert double float to single-width float. */
static uint16_t vfncvtffv16(uint32_t a, float_status *s)
{
return float32_to_float16(a, true, s);
}
RVVCALL(OPFVV1, vfncvt_f_f_w_h, NOP_UU_H, H2, H4, vfncvtffv16)
RVVCALL(OPFVV1, vfncvt_f_f_w_w, NOP_UU_W, H4, H8, float64_to_float32)
GEN_VEXT_V_ENV(vfncvt_f_f_w_h, 2, 2)
GEN_VEXT_V_ENV(vfncvt_f_f_w_w, 4, 4)
/*
*** Vector Reduction Operations
*/
/* Vector Single-Width Integer Reduction Instructions */
#define GEN_VEXT_RED(NAME, TD, TS2, HD, HS2, OP) \
void HELPER(NAME)(void *vd, void *v0, void *vs1, \
void *vs2, CPURISCVState *env, uint32_t desc) \
{ \
uint32_t vm = vext_vm(desc); \
uint32_t vl = env->vl; \
uint32_t i; \
TD s1 = *((TD *)vs1 + HD(0)); \
\
for (i = env->vstart; i < vl; i++) { \
TS2 s2 = *((TS2 *)vs2 + HS2(i)); \
if (!vm && !vext_elem_mask(v0, i)) { \
continue; \
} \
s1 = OP(s1, (TD)s2); \
} \
*((TD *)vd + HD(0)) = s1; \
env->vstart = 0; \
}
/* vd[0] = sum(vs1[0], vs2[*]) */
GEN_VEXT_RED(vredsum_vs_b, int8_t, int8_t, H1, H1, DO_ADD)
GEN_VEXT_RED(vredsum_vs_h, int16_t, int16_t, H2, H2, DO_ADD)
GEN_VEXT_RED(vredsum_vs_w, int32_t, int32_t, H4, H4, DO_ADD)
GEN_VEXT_RED(vredsum_vs_d, int64_t, int64_t, H8, H8, DO_ADD)
/* vd[0] = maxu(vs1[0], vs2[*]) */
GEN_VEXT_RED(vredmaxu_vs_b, uint8_t, uint8_t, H1, H1, DO_MAX)
GEN_VEXT_RED(vredmaxu_vs_h, uint16_t, uint16_t, H2, H2, DO_MAX)
GEN_VEXT_RED(vredmaxu_vs_w, uint32_t, uint32_t, H4, H4, DO_MAX)
GEN_VEXT_RED(vredmaxu_vs_d, uint64_t, uint64_t, H8, H8, DO_MAX)
/* vd[0] = max(vs1[0], vs2[*]) */
GEN_VEXT_RED(vredmax_vs_b, int8_t, int8_t, H1, H1, DO_MAX)
GEN_VEXT_RED(vredmax_vs_h, int16_t, int16_t, H2, H2, DO_MAX)
GEN_VEXT_RED(vredmax_vs_w, int32_t, int32_t, H4, H4, DO_MAX)
GEN_VEXT_RED(vredmax_vs_d, int64_t, int64_t, H8, H8, DO_MAX)
/* vd[0] = minu(vs1[0], vs2[*]) */
GEN_VEXT_RED(vredminu_vs_b, uint8_t, uint8_t, H1, H1, DO_MIN)
GEN_VEXT_RED(vredminu_vs_h, uint16_t, uint16_t, H2, H2, DO_MIN)
GEN_VEXT_RED(vredminu_vs_w, uint32_t, uint32_t, H4, H4, DO_MIN)
GEN_VEXT_RED(vredminu_vs_d, uint64_t, uint64_t, H8, H8, DO_MIN)
/* vd[0] = min(vs1[0], vs2[*]) */
GEN_VEXT_RED(vredmin_vs_b, int8_t, int8_t, H1, H1, DO_MIN)
GEN_VEXT_RED(vredmin_vs_h, int16_t, int16_t, H2, H2, DO_MIN)
GEN_VEXT_RED(vredmin_vs_w, int32_t, int32_t, H4, H4, DO_MIN)
GEN_VEXT_RED(vredmin_vs_d, int64_t, int64_t, H8, H8, DO_MIN)
/* vd[0] = and(vs1[0], vs2[*]) */
GEN_VEXT_RED(vredand_vs_b, int8_t, int8_t, H1, H1, DO_AND)
GEN_VEXT_RED(vredand_vs_h, int16_t, int16_t, H2, H2, DO_AND)
GEN_VEXT_RED(vredand_vs_w, int32_t, int32_t, H4, H4, DO_AND)
GEN_VEXT_RED(vredand_vs_d, int64_t, int64_t, H8, H8, DO_AND)
/* vd[0] = or(vs1[0], vs2[*]) */
GEN_VEXT_RED(vredor_vs_b, int8_t, int8_t, H1, H1, DO_OR)
GEN_VEXT_RED(vredor_vs_h, int16_t, int16_t, H2, H2, DO_OR)
GEN_VEXT_RED(vredor_vs_w, int32_t, int32_t, H4, H4, DO_OR)
GEN_VEXT_RED(vredor_vs_d, int64_t, int64_t, H8, H8, DO_OR)
/* vd[0] = xor(vs1[0], vs2[*]) */
GEN_VEXT_RED(vredxor_vs_b, int8_t, int8_t, H1, H1, DO_XOR)
GEN_VEXT_RED(vredxor_vs_h, int16_t, int16_t, H2, H2, DO_XOR)
GEN_VEXT_RED(vredxor_vs_w, int32_t, int32_t, H4, H4, DO_XOR)
GEN_VEXT_RED(vredxor_vs_d, int64_t, int64_t, H8, H8, DO_XOR)
/* Vector Widening Integer Reduction Instructions */
/* signed sum reduction into double-width accumulator */
GEN_VEXT_RED(vwredsum_vs_b, int16_t, int8_t, H2, H1, DO_ADD)
GEN_VEXT_RED(vwredsum_vs_h, int32_t, int16_t, H4, H2, DO_ADD)
GEN_VEXT_RED(vwredsum_vs_w, int64_t, int32_t, H8, H4, DO_ADD)
/* Unsigned sum reduction into double-width accumulator */
GEN_VEXT_RED(vwredsumu_vs_b, uint16_t, uint8_t, H2, H1, DO_ADD)
GEN_VEXT_RED(vwredsumu_vs_h, uint32_t, uint16_t, H4, H2, DO_ADD)
GEN_VEXT_RED(vwredsumu_vs_w, uint64_t, uint32_t, H8, H4, DO_ADD)
/* Vector Single-Width Floating-Point Reduction Instructions */
#define GEN_VEXT_FRED(NAME, TD, TS2, HD, HS2, OP) \
void HELPER(NAME)(void *vd, void *v0, void *vs1, \
void *vs2, CPURISCVState *env, \
uint32_t desc) \
{ \
uint32_t vm = vext_vm(desc); \
uint32_t vl = env->vl; \
uint32_t i; \
TD s1 = *((TD *)vs1 + HD(0)); \
\
for (i = env->vstart; i < vl; i++) { \
TS2 s2 = *((TS2 *)vs2 + HS2(i)); \
if (!vm && !vext_elem_mask(v0, i)) { \
continue; \
} \
s1 = OP(s1, (TD)s2, &env->fp_status); \
} \
*((TD *)vd + HD(0)) = s1; \
env->vstart = 0; \
}
/* Unordered sum */
GEN_VEXT_FRED(vfredsum_vs_h, uint16_t, uint16_t, H2, H2, float16_add)
GEN_VEXT_FRED(vfredsum_vs_w, uint32_t, uint32_t, H4, H4, float32_add)
GEN_VEXT_FRED(vfredsum_vs_d, uint64_t, uint64_t, H8, H8, float64_add)
/* Maximum value */
GEN_VEXT_FRED(vfredmax_vs_h, uint16_t, uint16_t, H2, H2, float16_maximum_number)
GEN_VEXT_FRED(vfredmax_vs_w, uint32_t, uint32_t, H4, H4, float32_maximum_number)
GEN_VEXT_FRED(vfredmax_vs_d, uint64_t, uint64_t, H8, H8, float64_maximum_number)
/* Minimum value */
GEN_VEXT_FRED(vfredmin_vs_h, uint16_t, uint16_t, H2, H2, float16_minimum_number)
GEN_VEXT_FRED(vfredmin_vs_w, uint32_t, uint32_t, H4, H4, float32_minimum_number)
GEN_VEXT_FRED(vfredmin_vs_d, uint64_t, uint64_t, H8, H8, float64_minimum_number)
/* Vector Widening Floating-Point Reduction Instructions */
/* Unordered reduce 2*SEW = 2*SEW + sum(promote(SEW)) */
void HELPER(vfwredsum_vs_h)(void *vd, void *v0, void *vs1,
void *vs2, CPURISCVState *env, uint32_t desc)
{
uint32_t vm = vext_vm(desc);
uint32_t vl = env->vl;
uint32_t i;
uint32_t s1 = *((uint32_t *)vs1 + H4(0));
for (i = env->vstart; i < vl; i++) {
uint16_t s2 = *((uint16_t *)vs2 + H2(i));
if (!vm && !vext_elem_mask(v0, i)) {
continue;
}
s1 = float32_add(s1, float16_to_float32(s2, true, &env->fp_status),
&env->fp_status);
}
*((uint32_t *)vd + H4(0)) = s1;
env->vstart = 0;
}
void HELPER(vfwredsum_vs_w)(void *vd, void *v0, void *vs1,
void *vs2, CPURISCVState *env, uint32_t desc)
{
uint32_t vm = vext_vm(desc);
uint32_t vl = env->vl;
uint32_t i;
uint64_t s1 = *((uint64_t *)vs1);
for (i = env->vstart; i < vl; i++) {
uint32_t s2 = *((uint32_t *)vs2 + H4(i));
if (!vm && !vext_elem_mask(v0, i)) {
continue;
}
s1 = float64_add(s1, float32_to_float64(s2, &env->fp_status),
&env->fp_status);
}
*((uint64_t *)vd) = s1;
env->vstart = 0;
}
/*
*** Vector Mask Operations
*/
/* Vector Mask-Register Logical Instructions */
#define GEN_VEXT_MASK_VV(NAME, OP) \
void HELPER(NAME)(void *vd, void *v0, void *vs1, \
void *vs2, CPURISCVState *env, \
uint32_t desc) \
{ \
uint32_t vl = env->vl; \
uint32_t i; \
int a, b; \
\
for (i = env->vstart; i < vl; i++) { \
a = vext_elem_mask(vs1, i); \
b = vext_elem_mask(vs2, i); \
vext_set_elem_mask(vd, i, OP(b, a)); \
} \
env->vstart = 0; \
}
#define DO_NAND(N, M) (!(N & M))
#define DO_ANDNOT(N, M) (N & !M)
#define DO_NOR(N, M) (!(N | M))
#define DO_ORNOT(N, M) (N | !M)
#define DO_XNOR(N, M) (!(N ^ M))
GEN_VEXT_MASK_VV(vmand_mm, DO_AND)
GEN_VEXT_MASK_VV(vmnand_mm, DO_NAND)
GEN_VEXT_MASK_VV(vmandn_mm, DO_ANDNOT)
GEN_VEXT_MASK_VV(vmxor_mm, DO_XOR)
GEN_VEXT_MASK_VV(vmor_mm, DO_OR)
GEN_VEXT_MASK_VV(vmnor_mm, DO_NOR)
GEN_VEXT_MASK_VV(vmorn_mm, DO_ORNOT)
GEN_VEXT_MASK_VV(vmxnor_mm, DO_XNOR)
/* Vector count population in mask vcpop */
target_ulong HELPER(vcpop_m)(void *v0, void *vs2, CPURISCVState *env,
uint32_t desc)
{
target_ulong cnt = 0;
uint32_t vm = vext_vm(desc);
uint32_t vl = env->vl;
int i;
for (i = env->vstart; i < vl; i++) {
if (vm || vext_elem_mask(v0, i)) {
if (vext_elem_mask(vs2, i)) {
cnt++;
}
}
}
env->vstart = 0;
return cnt;
}
/* vfirst find-first-set mask bit*/
target_ulong HELPER(vfirst_m)(void *v0, void *vs2, CPURISCVState *env,
uint32_t desc)
{
uint32_t vm = vext_vm(desc);
uint32_t vl = env->vl;
int i;
for (i = env->vstart; i < vl; i++) {
if (vm || vext_elem_mask(v0, i)) {
if (vext_elem_mask(vs2, i)) {
return i;
}
}
}
env->vstart = 0;
return -1LL;
}
enum set_mask_type {
ONLY_FIRST = 1,
INCLUDE_FIRST,
BEFORE_FIRST,
};
static void vmsetm(void *vd, void *v0, void *vs2, CPURISCVState *env,
uint32_t desc, enum set_mask_type type)
{
uint32_t vm = vext_vm(desc);
uint32_t vl = env->vl;
int i;
bool first_mask_bit = false;
for (i = env->vstart; i < vl; i++) {
if (!vm && !vext_elem_mask(v0, i)) {
continue;
}
/* write a zero to all following active elements */
if (first_mask_bit) {
vext_set_elem_mask(vd, i, 0);
continue;
}
if (vext_elem_mask(vs2, i)) {
first_mask_bit = true;
if (type == BEFORE_FIRST) {
vext_set_elem_mask(vd, i, 0);
} else {
vext_set_elem_mask(vd, i, 1);
}
} else {
if (type == ONLY_FIRST) {
vext_set_elem_mask(vd, i, 0);
} else {
vext_set_elem_mask(vd, i, 1);
}
}
}
env->vstart = 0;
}
void HELPER(vmsbf_m)(void *vd, void *v0, void *vs2, CPURISCVState *env,
uint32_t desc)
{
vmsetm(vd, v0, vs2, env, desc, BEFORE_FIRST);
}
void HELPER(vmsif_m)(void *vd, void *v0, void *vs2, CPURISCVState *env,
uint32_t desc)
{
vmsetm(vd, v0, vs2, env, desc, INCLUDE_FIRST);
}
void HELPER(vmsof_m)(void *vd, void *v0, void *vs2, CPURISCVState *env,
uint32_t desc)
{
vmsetm(vd, v0, vs2, env, desc, ONLY_FIRST);
}
/* Vector Iota Instruction */
#define GEN_VEXT_VIOTA_M(NAME, ETYPE, H) \
void HELPER(NAME)(void *vd, void *v0, void *vs2, CPURISCVState *env, \
uint32_t desc) \
{ \
uint32_t vm = vext_vm(desc); \
uint32_t vl = env->vl; \
uint32_t sum = 0; \
int i; \
\
for (i = env->vstart; i < vl; i++) { \
if (!vm && !vext_elem_mask(v0, i)) { \
continue; \
} \
*((ETYPE *)vd + H(i)) = sum; \
if (vext_elem_mask(vs2, i)) { \
sum++; \
} \
} \
env->vstart = 0; \
}
GEN_VEXT_VIOTA_M(viota_m_b, uint8_t, H1)
GEN_VEXT_VIOTA_M(viota_m_h, uint16_t, H2)
GEN_VEXT_VIOTA_M(viota_m_w, uint32_t, H4)
GEN_VEXT_VIOTA_M(viota_m_d, uint64_t, H8)
/* Vector Element Index Instruction */
#define GEN_VEXT_VID_V(NAME, ETYPE, H) \
void HELPER(NAME)(void *vd, void *v0, CPURISCVState *env, uint32_t desc) \
{ \
uint32_t vm = vext_vm(desc); \
uint32_t vl = env->vl; \
int i; \
\
for (i = env->vstart; i < vl; i++) { \
if (!vm && !vext_elem_mask(v0, i)) { \
continue; \
} \
*((ETYPE *)vd + H(i)) = i; \
} \
env->vstart = 0; \
}
GEN_VEXT_VID_V(vid_v_b, uint8_t, H1)
GEN_VEXT_VID_V(vid_v_h, uint16_t, H2)
GEN_VEXT_VID_V(vid_v_w, uint32_t, H4)
GEN_VEXT_VID_V(vid_v_d, uint64_t, H8)
/*
*** Vector Permutation Instructions
*/
/* Vector Slide Instructions */
#define GEN_VEXT_VSLIDEUP_VX(NAME, ETYPE, H) \
void HELPER(NAME)(void *vd, void *v0, target_ulong s1, void *vs2, \
CPURISCVState *env, uint32_t desc) \
{ \
uint32_t vm = vext_vm(desc); \
uint32_t vl = env->vl; \
target_ulong offset = s1, i_min, i; \
\
i_min = MAX(env->vstart, offset); \
for (i = i_min; i < vl; i++) { \
if (!vm && !vext_elem_mask(v0, i)) { \
continue; \
} \
*((ETYPE *)vd + H(i)) = *((ETYPE *)vs2 + H(i - offset)); \
} \
}
/* vslideup.vx vd, vs2, rs1, vm # vd[i+rs1] = vs2[i] */
GEN_VEXT_VSLIDEUP_VX(vslideup_vx_b, uint8_t, H1)
GEN_VEXT_VSLIDEUP_VX(vslideup_vx_h, uint16_t, H2)
GEN_VEXT_VSLIDEUP_VX(vslideup_vx_w, uint32_t, H4)
GEN_VEXT_VSLIDEUP_VX(vslideup_vx_d, uint64_t, H8)
#define GEN_VEXT_VSLIDEDOWN_VX(NAME, ETYPE, H) \
void HELPER(NAME)(void *vd, void *v0, target_ulong s1, void *vs2, \
CPURISCVState *env, uint32_t desc) \
{ \
uint32_t vlmax = vext_max_elems(desc, ctzl(sizeof(ETYPE))); \
uint32_t vm = vext_vm(desc); \
uint32_t vl = env->vl; \
target_ulong i_max, i; \
\
i_max = MAX(MIN(s1 < vlmax ? vlmax - s1 : 0, vl), env->vstart); \
for (i = env->vstart; i < i_max; ++i) { \
if (vm || vext_elem_mask(v0, i)) { \
*((ETYPE *)vd + H(i)) = *((ETYPE *)vs2 + H(i + s1)); \
} \
} \
\
for (i = i_max; i < vl; ++i) { \
if (vm || vext_elem_mask(v0, i)) { \
*((ETYPE *)vd + H(i)) = 0; \
} \
} \
\
env->vstart = 0; \
}
/* vslidedown.vx vd, vs2, rs1, vm # vd[i] = vs2[i+rs1] */
GEN_VEXT_VSLIDEDOWN_VX(vslidedown_vx_b, uint8_t, H1)
GEN_VEXT_VSLIDEDOWN_VX(vslidedown_vx_h, uint16_t, H2)
GEN_VEXT_VSLIDEDOWN_VX(vslidedown_vx_w, uint32_t, H4)
GEN_VEXT_VSLIDEDOWN_VX(vslidedown_vx_d, uint64_t, H8)
#define GEN_VEXT_VSLIE1UP(ESZ, H) \
static void vslide1up_##ESZ(void *vd, void *v0, target_ulong s1, void *vs2, \
CPURISCVState *env, uint32_t desc) \
{ \
typedef uint##ESZ##_t ETYPE; \
uint32_t vm = vext_vm(desc); \
uint32_t vl = env->vl; \
uint32_t i; \
\
for (i = env->vstart; i < vl; i++) { \
if (!vm && !vext_elem_mask(v0, i)) { \
continue; \
} \
if (i == 0) { \
*((ETYPE *)vd + H(i)) = s1; \
} else { \
*((ETYPE *)vd + H(i)) = *((ETYPE *)vs2 + H(i - 1)); \
} \
} \
env->vstart = 0; \
}
GEN_VEXT_VSLIE1UP(8, H1)
GEN_VEXT_VSLIE1UP(16, H2)
GEN_VEXT_VSLIE1UP(32, H4)
GEN_VEXT_VSLIE1UP(64, H8)
#define GEN_VEXT_VSLIDE1UP_VX(NAME, ESZ) \
void HELPER(NAME)(void *vd, void *v0, target_ulong s1, void *vs2, \
CPURISCVState *env, uint32_t desc) \
{ \
vslide1up_##ESZ(vd, v0, s1, vs2, env, desc); \
}
/* vslide1up.vx vd, vs2, rs1, vm # vd[0]=x[rs1], vd[i+1] = vs2[i] */
GEN_VEXT_VSLIDE1UP_VX(vslide1up_vx_b, 8)
GEN_VEXT_VSLIDE1UP_VX(vslide1up_vx_h, 16)
GEN_VEXT_VSLIDE1UP_VX(vslide1up_vx_w, 32)
GEN_VEXT_VSLIDE1UP_VX(vslide1up_vx_d, 64)
#define GEN_VEXT_VSLIDE1DOWN(ESZ, H) \
static void vslide1down_##ESZ(void *vd, void *v0, target_ulong s1, void *vs2, \
CPURISCVState *env, uint32_t desc) \
{ \
typedef uint##ESZ##_t ETYPE; \
uint32_t vm = vext_vm(desc); \
uint32_t vl = env->vl; \
uint32_t i; \
\
for (i = env->vstart; i < vl; i++) { \
if (!vm && !vext_elem_mask(v0, i)) { \
continue; \
} \
if (i == vl - 1) { \
*((ETYPE *)vd + H(i)) = s1; \
} else { \
*((ETYPE *)vd + H(i)) = *((ETYPE *)vs2 + H(i + 1)); \
} \
} \
env->vstart = 0; \
}
GEN_VEXT_VSLIDE1DOWN(8, H1)
GEN_VEXT_VSLIDE1DOWN(16, H2)
GEN_VEXT_VSLIDE1DOWN(32, H4)
GEN_VEXT_VSLIDE1DOWN(64, H8)
#define GEN_VEXT_VSLIDE1DOWN_VX(NAME, ESZ) \
void HELPER(NAME)(void *vd, void *v0, target_ulong s1, void *vs2, \
CPURISCVState *env, uint32_t desc) \
{ \
vslide1down_##ESZ(vd, v0, s1, vs2, env, desc); \
}
/* vslide1down.vx vd, vs2, rs1, vm # vd[i] = vs2[i+1], vd[vl-1]=x[rs1] */
GEN_VEXT_VSLIDE1DOWN_VX(vslide1down_vx_b, 8)
GEN_VEXT_VSLIDE1DOWN_VX(vslide1down_vx_h, 16)
GEN_VEXT_VSLIDE1DOWN_VX(vslide1down_vx_w, 32)
GEN_VEXT_VSLIDE1DOWN_VX(vslide1down_vx_d, 64)
/* Vector Floating-Point Slide Instructions */
#define GEN_VEXT_VFSLIDE1UP_VF(NAME, ESZ) \
void HELPER(NAME)(void *vd, void *v0, uint64_t s1, void *vs2, \
CPURISCVState *env, uint32_t desc) \
{ \
vslide1up_##ESZ(vd, v0, s1, vs2, env, desc); \
}
/* vfslide1up.vf vd, vs2, rs1, vm # vd[0]=f[rs1], vd[i+1] = vs2[i] */
GEN_VEXT_VFSLIDE1UP_VF(vfslide1up_vf_h, 16)
GEN_VEXT_VFSLIDE1UP_VF(vfslide1up_vf_w, 32)
GEN_VEXT_VFSLIDE1UP_VF(vfslide1up_vf_d, 64)
#define GEN_VEXT_VFSLIDE1DOWN_VF(NAME, ESZ) \
void HELPER(NAME)(void *vd, void *v0, uint64_t s1, void *vs2, \
CPURISCVState *env, uint32_t desc) \
{ \
vslide1down_##ESZ(vd, v0, s1, vs2, env, desc); \
}
/* vfslide1down.vf vd, vs2, rs1, vm # vd[i] = vs2[i+1], vd[vl-1]=f[rs1] */
GEN_VEXT_VFSLIDE1DOWN_VF(vfslide1down_vf_h, 16)
GEN_VEXT_VFSLIDE1DOWN_VF(vfslide1down_vf_w, 32)
GEN_VEXT_VFSLIDE1DOWN_VF(vfslide1down_vf_d, 64)
/* Vector Register Gather Instruction */
#define GEN_VEXT_VRGATHER_VV(NAME, TS1, TS2, HS1, HS2) \
void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2, \
CPURISCVState *env, uint32_t desc) \
{ \
uint32_t vlmax = vext_max_elems(desc, ctzl(sizeof(TS2))); \
uint32_t vm = vext_vm(desc); \
uint32_t vl = env->vl; \
uint64_t index; \
uint32_t i; \
\
for (i = env->vstart; i < vl; i++) { \
if (!vm && !vext_elem_mask(v0, i)) { \
continue; \
} \
index = *((TS1 *)vs1 + HS1(i)); \
if (index >= vlmax) { \
*((TS2 *)vd + HS2(i)) = 0; \
} else { \
*((TS2 *)vd + HS2(i)) = *((TS2 *)vs2 + HS2(index)); \
} \
} \
env->vstart = 0; \
}
/* vd[i] = (vs1[i] >= VLMAX) ? 0 : vs2[vs1[i]]; */
GEN_VEXT_VRGATHER_VV(vrgather_vv_b, uint8_t, uint8_t, H1, H1)
GEN_VEXT_VRGATHER_VV(vrgather_vv_h, uint16_t, uint16_t, H2, H2)
GEN_VEXT_VRGATHER_VV(vrgather_vv_w, uint32_t, uint32_t, H4, H4)
GEN_VEXT_VRGATHER_VV(vrgather_vv_d, uint64_t, uint64_t, H8, H8)
GEN_VEXT_VRGATHER_VV(vrgatherei16_vv_b, uint16_t, uint8_t, H2, H1)
GEN_VEXT_VRGATHER_VV(vrgatherei16_vv_h, uint16_t, uint16_t, H2, H2)
GEN_VEXT_VRGATHER_VV(vrgatherei16_vv_w, uint16_t, uint32_t, H2, H4)
GEN_VEXT_VRGATHER_VV(vrgatherei16_vv_d, uint16_t, uint64_t, H2, H8)
#define GEN_VEXT_VRGATHER_VX(NAME, ETYPE, H) \
void HELPER(NAME)(void *vd, void *v0, target_ulong s1, void *vs2, \
CPURISCVState *env, uint32_t desc) \
{ \
uint32_t vlmax = vext_max_elems(desc, ctzl(sizeof(ETYPE))); \
uint32_t vm = vext_vm(desc); \
uint32_t vl = env->vl; \
uint64_t index = s1; \
uint32_t i; \
\
for (i = env->vstart; i < vl; i++) { \
if (!vm && !vext_elem_mask(v0, i)) { \
continue; \
} \
if (index >= vlmax) { \
*((ETYPE *)vd + H(i)) = 0; \
} else { \
*((ETYPE *)vd + H(i)) = *((ETYPE *)vs2 + H(index)); \
} \
} \
env->vstart = 0; \
}
/* vd[i] = (x[rs1] >= VLMAX) ? 0 : vs2[rs1] */
GEN_VEXT_VRGATHER_VX(vrgather_vx_b, uint8_t, H1)
GEN_VEXT_VRGATHER_VX(vrgather_vx_h, uint16_t, H2)
GEN_VEXT_VRGATHER_VX(vrgather_vx_w, uint32_t, H4)
GEN_VEXT_VRGATHER_VX(vrgather_vx_d, uint64_t, H8)
/* Vector Compress Instruction */
#define GEN_VEXT_VCOMPRESS_VM(NAME, ETYPE, H) \
void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2, \
CPURISCVState *env, uint32_t desc) \
{ \
uint32_t vl = env->vl; \
uint32_t num = 0, i; \
\
for (i = env->vstart; i < vl; i++) { \
if (!vext_elem_mask(vs1, i)) { \
continue; \
} \
*((ETYPE *)vd + H(num)) = *((ETYPE *)vs2 + H(i)); \
num++; \
} \
env->vstart = 0; \
}
/* Compress into vd elements of vs2 where vs1 is enabled */
GEN_VEXT_VCOMPRESS_VM(vcompress_vm_b, uint8_t, H1)
GEN_VEXT_VCOMPRESS_VM(vcompress_vm_h, uint16_t, H2)
GEN_VEXT_VCOMPRESS_VM(vcompress_vm_w, uint32_t, H4)
GEN_VEXT_VCOMPRESS_VM(vcompress_vm_d, uint64_t, H8)
/* Vector Whole Register Move */
#define GEN_VEXT_VMV_WHOLE(NAME, LEN) \
void HELPER(NAME)(void *vd, void *vs2, CPURISCVState *env, \
uint32_t desc) \
{ \
/* EEW = 8 */ \
uint32_t maxsz = simd_maxsz(desc); \
uint32_t i = env->vstart; \
\
memcpy((uint8_t *)vd + H1(i), \
(uint8_t *)vs2 + H1(i), \
maxsz - env->vstart); \
\
env->vstart = 0; \
}
GEN_VEXT_VMV_WHOLE(vmv1r_v, 1)
GEN_VEXT_VMV_WHOLE(vmv2r_v, 2)
GEN_VEXT_VMV_WHOLE(vmv4r_v, 4)
GEN_VEXT_VMV_WHOLE(vmv8r_v, 8)
/* Vector Integer Extension */
#define GEN_VEXT_INT_EXT(NAME, ETYPE, DTYPE, HD, HS1) \
void HELPER(NAME)(void *vd, void *v0, void *vs2, \
CPURISCVState *env, uint32_t desc) \
{ \
uint32_t vl = env->vl; \
uint32_t vm = vext_vm(desc); \
uint32_t i; \
\
for (i = env->vstart; i < vl; i++) { \
if (!vm && !vext_elem_mask(v0, i)) { \
continue; \
} \
*((ETYPE *)vd + HD(i)) = *((DTYPE *)vs2 + HS1(i)); \
} \
env->vstart = 0; \
}
GEN_VEXT_INT_EXT(vzext_vf2_h, uint16_t, uint8_t, H2, H1)
GEN_VEXT_INT_EXT(vzext_vf2_w, uint32_t, uint16_t, H4, H2)
GEN_VEXT_INT_EXT(vzext_vf2_d, uint64_t, uint32_t, H8, H4)
GEN_VEXT_INT_EXT(vzext_vf4_w, uint32_t, uint8_t, H4, H1)
GEN_VEXT_INT_EXT(vzext_vf4_d, uint64_t, uint16_t, H8, H2)
GEN_VEXT_INT_EXT(vzext_vf8_d, uint64_t, uint8_t, H8, H1)
GEN_VEXT_INT_EXT(vsext_vf2_h, int16_t, int8_t, H2, H1)
GEN_VEXT_INT_EXT(vsext_vf2_w, int32_t, int16_t, H4, H2)
GEN_VEXT_INT_EXT(vsext_vf2_d, int64_t, int32_t, H8, H4)
GEN_VEXT_INT_EXT(vsext_vf4_w, int32_t, int8_t, H4, H1)
GEN_VEXT_INT_EXT(vsext_vf4_d, int64_t, int16_t, H8, H2)
GEN_VEXT_INT_EXT(vsext_vf8_d, int64_t, int8_t, H8, H1)