| /* |
| * PowerPC emulation micro-operations for qemu. |
| * |
| * Copyright (c) 2003-2007 Jocelyn Mayer |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| */ |
| |
| #include "op_mem_access.h" |
| |
| /*** Integer load ***/ |
| #define PPC_LD_OP(name, op) \ |
| void OPPROTO glue(glue(op_l, name), MEMSUFFIX) (void) \ |
| { \ |
| T1 = glue(op, MEMSUFFIX)((uint32_t)T0); \ |
| RETURN(); \ |
| } |
| |
| #if defined(TARGET_PPC64) |
| #define PPC_LD_OP_64(name, op) \ |
| void OPPROTO glue(glue(glue(op_l, name), _64), MEMSUFFIX) (void) \ |
| { \ |
| T1 = glue(op, MEMSUFFIX)((uint64_t)T0); \ |
| RETURN(); \ |
| } |
| #endif |
| |
| #define PPC_ST_OP(name, op) \ |
| void OPPROTO glue(glue(op_st, name), MEMSUFFIX) (void) \ |
| { \ |
| glue(op, MEMSUFFIX)((uint32_t)T0, T1); \ |
| RETURN(); \ |
| } |
| |
| #if defined(TARGET_PPC64) |
| #define PPC_ST_OP_64(name, op) \ |
| void OPPROTO glue(glue(glue(op_st, name), _64), MEMSUFFIX) (void) \ |
| { \ |
| glue(op, MEMSUFFIX)((uint64_t)T0, T1); \ |
| RETURN(); \ |
| } |
| #endif |
| |
| PPC_LD_OP(bz, ldu8); |
| PPC_LD_OP(ha, lds16); |
| PPC_LD_OP(hz, ldu16); |
| PPC_LD_OP(wz, ldu32); |
| #if defined(TARGET_PPC64) |
| PPC_LD_OP(wa, lds32); |
| PPC_LD_OP(d, ldu64); |
| PPC_LD_OP_64(bz, ldu8); |
| PPC_LD_OP_64(ha, lds16); |
| PPC_LD_OP_64(hz, ldu16); |
| PPC_LD_OP_64(wz, ldu32); |
| PPC_LD_OP_64(wa, lds32); |
| PPC_LD_OP_64(d, ldu64); |
| #endif |
| |
| PPC_LD_OP(ha_le, lds16r); |
| PPC_LD_OP(hz_le, ldu16r); |
| PPC_LD_OP(wz_le, ldu32r); |
| #if defined(TARGET_PPC64) |
| PPC_LD_OP(wa_le, lds32r); |
| PPC_LD_OP(d_le, ldu64r); |
| PPC_LD_OP_64(ha_le, lds16r); |
| PPC_LD_OP_64(hz_le, ldu16r); |
| PPC_LD_OP_64(wz_le, ldu32r); |
| PPC_LD_OP_64(wa_le, lds32r); |
| PPC_LD_OP_64(d_le, ldu64r); |
| #endif |
| |
| /*** Integer store ***/ |
| PPC_ST_OP(b, st8); |
| PPC_ST_OP(h, st16); |
| PPC_ST_OP(w, st32); |
| #if defined(TARGET_PPC64) |
| PPC_ST_OP(d, st64); |
| PPC_ST_OP_64(b, st8); |
| PPC_ST_OP_64(h, st16); |
| PPC_ST_OP_64(w, st32); |
| PPC_ST_OP_64(d, st64); |
| #endif |
| |
| PPC_ST_OP(h_le, st16r); |
| PPC_ST_OP(w_le, st32r); |
| #if defined(TARGET_PPC64) |
| PPC_ST_OP(d_le, st64r); |
| PPC_ST_OP_64(h_le, st16r); |
| PPC_ST_OP_64(w_le, st32r); |
| PPC_ST_OP_64(d_le, st64r); |
| #endif |
| |
| /*** Integer load and store with byte reverse ***/ |
| PPC_LD_OP(hbr, ldu16r); |
| PPC_LD_OP(wbr, ldu32r); |
| PPC_ST_OP(hbr, st16r); |
| PPC_ST_OP(wbr, st32r); |
| #if defined(TARGET_PPC64) |
| PPC_LD_OP_64(hbr, ldu16r); |
| PPC_LD_OP_64(wbr, ldu32r); |
| PPC_ST_OP_64(hbr, st16r); |
| PPC_ST_OP_64(wbr, st32r); |
| #endif |
| |
| PPC_LD_OP(hbr_le, ldu16); |
| PPC_LD_OP(wbr_le, ldu32); |
| PPC_ST_OP(hbr_le, st16); |
| PPC_ST_OP(wbr_le, st32); |
| #if defined(TARGET_PPC64) |
| PPC_LD_OP_64(hbr_le, ldu16); |
| PPC_LD_OP_64(wbr_le, ldu32); |
| PPC_ST_OP_64(hbr_le, st16); |
| PPC_ST_OP_64(wbr_le, st32); |
| #endif |
| |
| /*** Integer load and store multiple ***/ |
| void OPPROTO glue(op_lmw, MEMSUFFIX) (void) |
| { |
| glue(do_lmw, MEMSUFFIX)(PARAM1); |
| RETURN(); |
| } |
| |
| #if defined(TARGET_PPC64) |
| void OPPROTO glue(op_lmw_64, MEMSUFFIX) (void) |
| { |
| glue(do_lmw_64, MEMSUFFIX)(PARAM1); |
| RETURN(); |
| } |
| #endif |
| |
| void OPPROTO glue(op_lmw_le, MEMSUFFIX) (void) |
| { |
| glue(do_lmw_le, MEMSUFFIX)(PARAM1); |
| RETURN(); |
| } |
| |
| #if defined(TARGET_PPC64) |
| void OPPROTO glue(op_lmw_le_64, MEMSUFFIX) (void) |
| { |
| glue(do_lmw_le_64, MEMSUFFIX)(PARAM1); |
| RETURN(); |
| } |
| #endif |
| |
| void OPPROTO glue(op_stmw, MEMSUFFIX) (void) |
| { |
| glue(do_stmw, MEMSUFFIX)(PARAM1); |
| RETURN(); |
| } |
| |
| #if defined(TARGET_PPC64) |
| void OPPROTO glue(op_stmw_64, MEMSUFFIX) (void) |
| { |
| glue(do_stmw_64, MEMSUFFIX)(PARAM1); |
| RETURN(); |
| } |
| #endif |
| |
| void OPPROTO glue(op_stmw_le, MEMSUFFIX) (void) |
| { |
| glue(do_stmw_le, MEMSUFFIX)(PARAM1); |
| RETURN(); |
| } |
| |
| #if defined(TARGET_PPC64) |
| void OPPROTO glue(op_stmw_le_64, MEMSUFFIX) (void) |
| { |
| glue(do_stmw_le_64, MEMSUFFIX)(PARAM1); |
| RETURN(); |
| } |
| #endif |
| |
| /*** Integer load and store strings ***/ |
| void OPPROTO glue(op_lswi, MEMSUFFIX) (void) |
| { |
| glue(do_lsw, MEMSUFFIX)(PARAM1); |
| RETURN(); |
| } |
| |
| #if defined(TARGET_PPC64) |
| void OPPROTO glue(op_lswi_64, MEMSUFFIX) (void) |
| { |
| glue(do_lsw_64, MEMSUFFIX)(PARAM1); |
| RETURN(); |
| } |
| #endif |
| |
| /* PPC32 specification says we must generate an exception if |
| * rA is in the range of registers to be loaded. |
| * In an other hand, IBM says this is valid, but rA won't be loaded. |
| * For now, I'll follow the spec... |
| */ |
| void OPPROTO glue(op_lswx, MEMSUFFIX) (void) |
| { |
| /* Note: T1 comes from xer_bc then no cast is needed */ |
| if (likely(T1 != 0)) { |
| if (unlikely((PARAM1 < PARAM2 && (PARAM1 + T1) > PARAM2) || |
| (PARAM1 < PARAM3 && (PARAM1 + T1) > PARAM3))) { |
| do_raise_exception_err(POWERPC_EXCP_PROGRAM, |
| POWERPC_EXCP_INVAL | |
| POWERPC_EXCP_INVAL_LSWX); |
| } else { |
| glue(do_lsw, MEMSUFFIX)(PARAM1); |
| } |
| } |
| RETURN(); |
| } |
| |
| #if defined(TARGET_PPC64) |
| void OPPROTO glue(op_lswx_64, MEMSUFFIX) (void) |
| { |
| /* Note: T1 comes from xer_bc then no cast is needed */ |
| if (likely(T1 != 0)) { |
| if (unlikely((PARAM1 < PARAM2 && (PARAM1 + T1) > PARAM2) || |
| (PARAM1 < PARAM3 && (PARAM1 + T1) > PARAM3))) { |
| do_raise_exception_err(POWERPC_EXCP_PROGRAM, |
| POWERPC_EXCP_INVAL | |
| POWERPC_EXCP_INVAL_LSWX); |
| } else { |
| glue(do_lsw_64, MEMSUFFIX)(PARAM1); |
| } |
| } |
| RETURN(); |
| } |
| #endif |
| |
| void OPPROTO glue(op_stsw, MEMSUFFIX) (void) |
| { |
| glue(do_stsw, MEMSUFFIX)(PARAM1); |
| RETURN(); |
| } |
| |
| #if defined(TARGET_PPC64) |
| void OPPROTO glue(op_stsw_64, MEMSUFFIX) (void) |
| { |
| glue(do_stsw_64, MEMSUFFIX)(PARAM1); |
| RETURN(); |
| } |
| #endif |
| |
| /*** Floating-point store ***/ |
| #define PPC_STF_OP(name, op) \ |
| void OPPROTO glue(glue(op_st, name), MEMSUFFIX) (void) \ |
| { \ |
| glue(op, MEMSUFFIX)((uint32_t)T0, FT0); \ |
| RETURN(); \ |
| } |
| |
| #if defined(TARGET_PPC64) |
| #define PPC_STF_OP_64(name, op) \ |
| void OPPROTO glue(glue(glue(op_st, name), _64), MEMSUFFIX) (void) \ |
| { \ |
| glue(op, MEMSUFFIX)((uint64_t)T0, FT0); \ |
| RETURN(); \ |
| } |
| #endif |
| |
| static always_inline void glue(stfs, MEMSUFFIX) (target_ulong EA, double d) |
| { |
| glue(stfl, MEMSUFFIX)(EA, float64_to_float32(d, &env->fp_status)); |
| } |
| |
| #if defined(WORDS_BIGENDIAN) |
| #define WORD0 0 |
| #define WORD1 1 |
| #else |
| #define WORD0 1 |
| #define WORD1 0 |
| #endif |
| static always_inline void glue(stfiw, MEMSUFFIX) (target_ulong EA, double d) |
| { |
| union { |
| double d; |
| uint32_t u[2]; |
| } u; |
| |
| /* Store the low order 32 bits without any conversion */ |
| u.d = d; |
| glue(st32, MEMSUFFIX)(EA, u.u[WORD0]); |
| } |
| #undef WORD0 |
| #undef WORD1 |
| |
| PPC_STF_OP(fd, stfq); |
| PPC_STF_OP(fs, stfs); |
| PPC_STF_OP(fiw, stfiw); |
| #if defined(TARGET_PPC64) |
| PPC_STF_OP_64(fd, stfq); |
| PPC_STF_OP_64(fs, stfs); |
| PPC_STF_OP_64(fiw, stfiw); |
| #endif |
| |
| static always_inline void glue(stfqr, MEMSUFFIX) (target_ulong EA, double d) |
| { |
| union { |
| double d; |
| uint64_t u; |
| } u; |
| |
| u.d = d; |
| u.u = bswap64(u.u); |
| glue(stfq, MEMSUFFIX)(EA, u.d); |
| } |
| |
| static always_inline void glue(stfsr, MEMSUFFIX) (target_ulong EA, double d) |
| { |
| union { |
| float f; |
| uint32_t u; |
| } u; |
| |
| u.f = float64_to_float32(d, &env->fp_status); |
| u.u = bswap32(u.u); |
| glue(stfl, MEMSUFFIX)(EA, u.f); |
| } |
| |
| static always_inline void glue(stfiwr, MEMSUFFIX) (target_ulong EA, double d) |
| { |
| union { |
| double d; |
| uint64_t u; |
| } u; |
| |
| /* Store the low order 32 bits without any conversion */ |
| u.d = d; |
| u.u = bswap32(u.u); |
| glue(st32, MEMSUFFIX)(EA, u.u); |
| } |
| |
| PPC_STF_OP(fd_le, stfqr); |
| PPC_STF_OP(fs_le, stfsr); |
| PPC_STF_OP(fiw_le, stfiwr); |
| #if defined(TARGET_PPC64) |
| PPC_STF_OP_64(fd_le, stfqr); |
| PPC_STF_OP_64(fs_le, stfsr); |
| PPC_STF_OP_64(fiw_le, stfiwr); |
| #endif |
| |
| /*** Floating-point load ***/ |
| #define PPC_LDF_OP(name, op) \ |
| void OPPROTO glue(glue(op_l, name), MEMSUFFIX) (void) \ |
| { \ |
| FT0 = glue(op, MEMSUFFIX)((uint32_t)T0); \ |
| RETURN(); \ |
| } |
| |
| #if defined(TARGET_PPC64) |
| #define PPC_LDF_OP_64(name, op) \ |
| void OPPROTO glue(glue(glue(op_l, name), _64), MEMSUFFIX) (void) \ |
| { \ |
| FT0 = glue(op, MEMSUFFIX)((uint64_t)T0); \ |
| RETURN(); \ |
| } |
| #endif |
| |
| static always_inline double glue(ldfs, MEMSUFFIX) (target_ulong EA) |
| { |
| return float32_to_float64(glue(ldfl, MEMSUFFIX)(EA), &env->fp_status); |
| } |
| |
| PPC_LDF_OP(fd, ldfq); |
| PPC_LDF_OP(fs, ldfs); |
| #if defined(TARGET_PPC64) |
| PPC_LDF_OP_64(fd, ldfq); |
| PPC_LDF_OP_64(fs, ldfs); |
| #endif |
| |
| static always_inline double glue(ldfqr, MEMSUFFIX) (target_ulong EA) |
| { |
| union { |
| double d; |
| uint64_t u; |
| } u; |
| |
| u.d = glue(ldfq, MEMSUFFIX)(EA); |
| u.u = bswap64(u.u); |
| |
| return u.d; |
| } |
| |
| static always_inline double glue(ldfsr, MEMSUFFIX) (target_ulong EA) |
| { |
| union { |
| float f; |
| uint32_t u; |
| } u; |
| |
| u.f = glue(ldfl, MEMSUFFIX)(EA); |
| u.u = bswap32(u.u); |
| |
| return float32_to_float64(u.f, &env->fp_status); |
| } |
| |
| PPC_LDF_OP(fd_le, ldfqr); |
| PPC_LDF_OP(fs_le, ldfsr); |
| #if defined(TARGET_PPC64) |
| PPC_LDF_OP_64(fd_le, ldfqr); |
| PPC_LDF_OP_64(fs_le, ldfsr); |
| #endif |
| |
| /* Load and set reservation */ |
| void OPPROTO glue(op_lwarx, MEMSUFFIX) (void) |
| { |
| if (unlikely(T0 & 0x03)) { |
| do_raise_exception(POWERPC_EXCP_ALIGN); |
| } else { |
| T1 = glue(ldu32, MEMSUFFIX)((uint32_t)T0); |
| env->reserve = (uint32_t)T0; |
| } |
| RETURN(); |
| } |
| |
| #if defined(TARGET_PPC64) |
| void OPPROTO glue(op_lwarx_64, MEMSUFFIX) (void) |
| { |
| if (unlikely(T0 & 0x03)) { |
| do_raise_exception(POWERPC_EXCP_ALIGN); |
| } else { |
| T1 = glue(ldu32, MEMSUFFIX)((uint64_t)T0); |
| env->reserve = (uint64_t)T0; |
| } |
| RETURN(); |
| } |
| |
| void OPPROTO glue(op_ldarx, MEMSUFFIX) (void) |
| { |
| if (unlikely(T0 & 0x03)) { |
| do_raise_exception(POWERPC_EXCP_ALIGN); |
| } else { |
| T1 = glue(ldu64, MEMSUFFIX)((uint32_t)T0); |
| env->reserve = (uint32_t)T0; |
| } |
| RETURN(); |
| } |
| |
| void OPPROTO glue(op_ldarx_64, MEMSUFFIX) (void) |
| { |
| if (unlikely(T0 & 0x03)) { |
| do_raise_exception(POWERPC_EXCP_ALIGN); |
| } else { |
| T1 = glue(ldu64, MEMSUFFIX)((uint64_t)T0); |
| env->reserve = (uint64_t)T0; |
| } |
| RETURN(); |
| } |
| #endif |
| |
| void OPPROTO glue(op_lwarx_le, MEMSUFFIX) (void) |
| { |
| if (unlikely(T0 & 0x03)) { |
| do_raise_exception(POWERPC_EXCP_ALIGN); |
| } else { |
| T1 = glue(ldu32r, MEMSUFFIX)((uint32_t)T0); |
| env->reserve = (uint32_t)T0; |
| } |
| RETURN(); |
| } |
| |
| #if defined(TARGET_PPC64) |
| void OPPROTO glue(op_lwarx_le_64, MEMSUFFIX) (void) |
| { |
| if (unlikely(T0 & 0x03)) { |
| do_raise_exception(POWERPC_EXCP_ALIGN); |
| } else { |
| T1 = glue(ldu32r, MEMSUFFIX)((uint64_t)T0); |
| env->reserve = (uint64_t)T0; |
| } |
| RETURN(); |
| } |
| |
| void OPPROTO glue(op_ldarx_le, MEMSUFFIX) (void) |
| { |
| if (unlikely(T0 & 0x03)) { |
| do_raise_exception(POWERPC_EXCP_ALIGN); |
| } else { |
| T1 = glue(ldu64r, MEMSUFFIX)((uint32_t)T0); |
| env->reserve = (uint32_t)T0; |
| } |
| RETURN(); |
| } |
| |
| void OPPROTO glue(op_ldarx_le_64, MEMSUFFIX) (void) |
| { |
| if (unlikely(T0 & 0x03)) { |
| do_raise_exception(POWERPC_EXCP_ALIGN); |
| } else { |
| T1 = glue(ldu64r, MEMSUFFIX)((uint64_t)T0); |
| env->reserve = (uint64_t)T0; |
| } |
| RETURN(); |
| } |
| #endif |
| |
| /* Store with reservation */ |
| void OPPROTO glue(op_stwcx, MEMSUFFIX) (void) |
| { |
| if (unlikely(T0 & 0x03)) { |
| do_raise_exception(POWERPC_EXCP_ALIGN); |
| } else { |
| if (unlikely(env->reserve != (uint32_t)T0)) { |
| env->crf[0] = xer_so; |
| } else { |
| glue(st32, MEMSUFFIX)((uint32_t)T0, T1); |
| env->crf[0] = xer_so | 0x02; |
| } |
| } |
| env->reserve = (target_ulong)-1ULL; |
| RETURN(); |
| } |
| |
| #if defined(TARGET_PPC64) |
| void OPPROTO glue(op_stwcx_64, MEMSUFFIX) (void) |
| { |
| if (unlikely(T0 & 0x03)) { |
| do_raise_exception(POWERPC_EXCP_ALIGN); |
| } else { |
| if (unlikely(env->reserve != (uint64_t)T0)) { |
| env->crf[0] = xer_so; |
| } else { |
| glue(st32, MEMSUFFIX)((uint64_t)T0, T1); |
| env->crf[0] = xer_so | 0x02; |
| } |
| } |
| env->reserve = (target_ulong)-1ULL; |
| RETURN(); |
| } |
| |
| void OPPROTO glue(op_stdcx, MEMSUFFIX) (void) |
| { |
| if (unlikely(T0 & 0x03)) { |
| do_raise_exception(POWERPC_EXCP_ALIGN); |
| } else { |
| if (unlikely(env->reserve != (uint32_t)T0)) { |
| env->crf[0] = xer_so; |
| } else { |
| glue(st64, MEMSUFFIX)((uint32_t)T0, T1); |
| env->crf[0] = xer_so | 0x02; |
| } |
| } |
| env->reserve = (target_ulong)-1ULL; |
| RETURN(); |
| } |
| |
| void OPPROTO glue(op_stdcx_64, MEMSUFFIX) (void) |
| { |
| if (unlikely(T0 & 0x03)) { |
| do_raise_exception(POWERPC_EXCP_ALIGN); |
| } else { |
| if (unlikely(env->reserve != (uint64_t)T0)) { |
| env->crf[0] = xer_so; |
| } else { |
| glue(st64, MEMSUFFIX)((uint64_t)T0, T1); |
| env->crf[0] = xer_so | 0x02; |
| } |
| } |
| env->reserve = (target_ulong)-1ULL; |
| RETURN(); |
| } |
| #endif |
| |
| void OPPROTO glue(op_stwcx_le, MEMSUFFIX) (void) |
| { |
| if (unlikely(T0 & 0x03)) { |
| do_raise_exception(POWERPC_EXCP_ALIGN); |
| } else { |
| if (unlikely(env->reserve != (uint32_t)T0)) { |
| env->crf[0] = xer_so; |
| } else { |
| glue(st32r, MEMSUFFIX)((uint32_t)T0, T1); |
| env->crf[0] = xer_so | 0x02; |
| } |
| } |
| env->reserve = (target_ulong)-1ULL; |
| RETURN(); |
| } |
| |
| #if defined(TARGET_PPC64) |
| void OPPROTO glue(op_stwcx_le_64, MEMSUFFIX) (void) |
| { |
| if (unlikely(T0 & 0x03)) { |
| do_raise_exception(POWERPC_EXCP_ALIGN); |
| } else { |
| if (unlikely(env->reserve != (uint64_t)T0)) { |
| env->crf[0] = xer_so; |
| } else { |
| glue(st32r, MEMSUFFIX)((uint64_t)T0, T1); |
| env->crf[0] = xer_so | 0x02; |
| } |
| } |
| env->reserve = (target_ulong)-1ULL; |
| RETURN(); |
| } |
| |
| void OPPROTO glue(op_stdcx_le, MEMSUFFIX) (void) |
| { |
| if (unlikely(T0 & 0x03)) { |
| do_raise_exception(POWERPC_EXCP_ALIGN); |
| } else { |
| if (unlikely(env->reserve != (uint32_t)T0)) { |
| env->crf[0] = xer_so; |
| } else { |
| glue(st64r, MEMSUFFIX)((uint32_t)T0, T1); |
| env->crf[0] = xer_so | 0x02; |
| } |
| } |
| env->reserve = (target_ulong)-1ULL; |
| RETURN(); |
| } |
| |
| void OPPROTO glue(op_stdcx_le_64, MEMSUFFIX) (void) |
| { |
| if (unlikely(T0 & 0x03)) { |
| do_raise_exception(POWERPC_EXCP_ALIGN); |
| } else { |
| if (unlikely(env->reserve != (uint64_t)T0)) { |
| env->crf[0] = xer_so; |
| } else { |
| glue(st64r, MEMSUFFIX)((uint64_t)T0, T1); |
| env->crf[0] = xer_so | 0x02; |
| } |
| } |
| env->reserve = (target_ulong)-1ULL; |
| RETURN(); |
| } |
| #endif |
| |
| void OPPROTO glue(op_dcbz_l32, MEMSUFFIX) (void) |
| { |
| T0 &= ~((uint32_t)31); |
| glue(st32, MEMSUFFIX)((uint32_t)(T0 + 0x00), 0); |
| glue(st32, MEMSUFFIX)((uint32_t)(T0 + 0x04), 0); |
| glue(st32, MEMSUFFIX)((uint32_t)(T0 + 0x08), 0); |
| glue(st32, MEMSUFFIX)((uint32_t)(T0 + 0x0C), 0); |
| glue(st32, MEMSUFFIX)((uint32_t)(T0 + 0x10), 0); |
| glue(st32, MEMSUFFIX)((uint32_t)(T0 + 0x14), 0); |
| glue(st32, MEMSUFFIX)((uint32_t)(T0 + 0x18), 0); |
| glue(st32, MEMSUFFIX)((uint32_t)(T0 + 0x1C), 0); |
| RETURN(); |
| } |
| |
| void OPPROTO glue(op_dcbz_l64, MEMSUFFIX) (void) |
| { |
| T0 &= ~((uint32_t)63); |
| glue(st32, MEMSUFFIX)((uint32_t)(T0 + 0x00), 0); |
| glue(st32, MEMSUFFIX)((uint32_t)(T0 + 0x04), 0); |
| glue(st32, MEMSUFFIX)((uint32_t)(T0 + 0x08), 0); |
| glue(st32, MEMSUFFIX)((uint32_t)(T0 + 0x0C), 0); |
| glue(st32, MEMSUFFIX)((uint32_t)(T0 + 0x10), 0); |
| glue(st32, MEMSUFFIX)((uint32_t)(T0 + 0x14), 0); |
| glue(st32, MEMSUFFIX)((uint32_t)(T0 + 0x18), 0); |
| glue(st32, MEMSUFFIX)((uint32_t)(T0 + 0x1C), 0); |
| glue(st32, MEMSUFFIX)((uint32_t)(T0 + 0x20UL), 0); |
| glue(st32, MEMSUFFIX)((uint32_t)(T0 + 0x24UL), 0); |
| glue(st32, MEMSUFFIX)((uint32_t)(T0 + 0x28UL), 0); |
| glue(st32, MEMSUFFIX)((uint32_t)(T0 + 0x2CUL), 0); |
| glue(st32, MEMSUFFIX)((uint32_t)(T0 + 0x30UL), 0); |
| glue(st32, MEMSUFFIX)((uint32_t)(T0 + 0x34UL), 0); |
| glue(st32, MEMSUFFIX)((uint32_t)(T0 + 0x38UL), 0); |
| glue(st32, MEMSUFFIX)((uint32_t)(T0 + 0x3CUL), 0); |
| RETURN(); |
| } |
| |
| void OPPROTO glue(op_dcbz_l128, MEMSUFFIX) (void) |
| { |
| T0 &= ~((uint32_t)127); |
| glue(st32, MEMSUFFIX)((uint32_t)(T0 + 0x00), 0); |
| glue(st32, MEMSUFFIX)((uint32_t)(T0 + 0x04), 0); |
| glue(st32, MEMSUFFIX)((uint32_t)(T0 + 0x08), 0); |
| glue(st32, MEMSUFFIX)((uint32_t)(T0 + 0x0C), 0); |
| glue(st32, MEMSUFFIX)((uint32_t)(T0 + 0x10), 0); |
| glue(st32, MEMSUFFIX)((uint32_t)(T0 + 0x14), 0); |
| glue(st32, MEMSUFFIX)((uint32_t)(T0 + 0x18), 0); |
| glue(st32, MEMSUFFIX)((uint32_t)(T0 + 0x1C), 0); |
| glue(st32, MEMSUFFIX)((uint32_t)(T0 + 0x20UL), 0); |
| glue(st32, MEMSUFFIX)((uint32_t)(T0 + 0x24UL), 0); |
| glue(st32, MEMSUFFIX)((uint32_t)(T0 + 0x28UL), 0); |
| glue(st32, MEMSUFFIX)((uint32_t)(T0 + 0x2CUL), 0); |
| glue(st32, MEMSUFFIX)((uint32_t)(T0 + 0x30UL), 0); |
| glue(st32, MEMSUFFIX)((uint32_t)(T0 + 0x34UL), 0); |
| glue(st32, MEMSUFFIX)((uint32_t)(T0 + 0x38UL), 0); |
| glue(st32, MEMSUFFIX)((uint32_t)(T0 + 0x3CUL), 0); |
| glue(st32, MEMSUFFIX)((uint32_t)(T0 + 0x40UL), 0); |
| glue(st32, MEMSUFFIX)((uint32_t)(T0 + 0x44UL), 0); |
| glue(st32, MEMSUFFIX)((uint32_t)(T0 + 0x48UL), 0); |
| glue(st32, MEMSUFFIX)((uint32_t)(T0 + 0x4CUL), 0); |
| glue(st32, MEMSUFFIX)((uint32_t)(T0 + 0x50UL), 0); |
| glue(st32, MEMSUFFIX)((uint32_t)(T0 + 0x54UL), 0); |
| glue(st32, MEMSUFFIX)((uint32_t)(T0 + 0x58UL), 0); |
| glue(st32, MEMSUFFIX)((uint32_t)(T0 + 0x5CUL), 0); |
| glue(st32, MEMSUFFIX)((uint32_t)(T0 + 0x60UL), 0); |
| glue(st32, MEMSUFFIX)((uint32_t)(T0 + 0x64UL), 0); |
| glue(st32, MEMSUFFIX)((uint32_t)(T0 + 0x68UL), 0); |
| glue(st32, MEMSUFFIX)((uint32_t)(T0 + 0x6CUL), 0); |
| glue(st32, MEMSUFFIX)((uint32_t)(T0 + 0x70UL), 0); |
| glue(st32, MEMSUFFIX)((uint32_t)(T0 + 0x74UL), 0); |
| glue(st32, MEMSUFFIX)((uint32_t)(T0 + 0x78UL), 0); |
| glue(st32, MEMSUFFIX)((uint32_t)(T0 + 0x7CUL), 0); |
| RETURN(); |
| } |
| |
| void OPPROTO glue(op_dcbz, MEMSUFFIX) (void) |
| { |
| glue(do_dcbz, MEMSUFFIX)(); |
| RETURN(); |
| } |
| |
| #if defined(TARGET_PPC64) |
| void OPPROTO glue(op_dcbz_l32_64, MEMSUFFIX) (void) |
| { |
| T0 &= ~((uint64_t)31); |
| glue(st32, MEMSUFFIX)((uint64_t)(T0 + 0x00), 0); |
| glue(st32, MEMSUFFIX)((uint64_t)(T0 + 0x04), 0); |
| glue(st32, MEMSUFFIX)((uint64_t)(T0 + 0x08), 0); |
| glue(st32, MEMSUFFIX)((uint64_t)(T0 + 0x0C), 0); |
| glue(st32, MEMSUFFIX)((uint64_t)(T0 + 0x10), 0); |
| glue(st32, MEMSUFFIX)((uint64_t)(T0 + 0x14), 0); |
| glue(st32, MEMSUFFIX)((uint64_t)(T0 + 0x18), 0); |
| glue(st32, MEMSUFFIX)((uint64_t)(T0 + 0x1C), 0); |
| RETURN(); |
| } |
| |
| void OPPROTO glue(op_dcbz_l64_64, MEMSUFFIX) (void) |
| { |
| T0 &= ~((uint64_t)63); |
| glue(st32, MEMSUFFIX)((uint64_t)(T0 + 0x00), 0); |
| glue(st32, MEMSUFFIX)((uint64_t)(T0 + 0x04), 0); |
| glue(st32, MEMSUFFIX)((uint64_t)(T0 + 0x08), 0); |
| glue(st32, MEMSUFFIX)((uint64_t)(T0 + 0x0C), 0); |
| glue(st32, MEMSUFFIX)((uint64_t)(T0 + 0x10), 0); |
| glue(st32, MEMSUFFIX)((uint64_t)(T0 + 0x14), 0); |
| glue(st32, MEMSUFFIX)((uint64_t)(T0 + 0x18), 0); |
| glue(st32, MEMSUFFIX)((uint64_t)(T0 + 0x1C), 0); |
| glue(st32, MEMSUFFIX)((uint64_t)(T0 + 0x20UL), 0); |
| glue(st32, MEMSUFFIX)((uint64_t)(T0 + 0x24UL), 0); |
| glue(st32, MEMSUFFIX)((uint64_t)(T0 + 0x28UL), 0); |
| glue(st32, MEMSUFFIX)((uint64_t)(T0 + 0x2CUL), 0); |
| glue(st32, MEMSUFFIX)((uint64_t)(T0 + 0x30UL), 0); |
| glue(st32, MEMSUFFIX)((uint64_t)(T0 + 0x34UL), 0); |
| glue(st32, MEMSUFFIX)((uint64_t)(T0 + 0x38UL), 0); |
| glue(st32, MEMSUFFIX)((uint64_t)(T0 + 0x3CUL), 0); |
| RETURN(); |
| } |
| |
| void OPPROTO glue(op_dcbz_l128_64, MEMSUFFIX) (void) |
| { |
| T0 &= ~((uint64_t)127); |
| glue(st32, MEMSUFFIX)((uint64_t)(T0 + 0x00), 0); |
| glue(st32, MEMSUFFIX)((uint64_t)(T0 + 0x04), 0); |
| glue(st32, MEMSUFFIX)((uint64_t)(T0 + 0x08), 0); |
| glue(st32, MEMSUFFIX)((uint64_t)(T0 + 0x0C), 0); |
| glue(st32, MEMSUFFIX)((uint64_t)(T0 + 0x10), 0); |
| glue(st32, MEMSUFFIX)((uint64_t)(T0 + 0x14), 0); |
| glue(st32, MEMSUFFIX)((uint64_t)(T0 + 0x18), 0); |
| glue(st32, MEMSUFFIX)((uint64_t)(T0 + 0x1C), 0); |
| glue(st32, MEMSUFFIX)((uint64_t)(T0 + 0x20UL), 0); |
| glue(st32, MEMSUFFIX)((uint64_t)(T0 + 0x24UL), 0); |
| glue(st32, MEMSUFFIX)((uint64_t)(T0 + 0x28UL), 0); |
| glue(st32, MEMSUFFIX)((uint64_t)(T0 + 0x2CUL), 0); |
| glue(st32, MEMSUFFIX)((uint64_t)(T0 + 0x30UL), 0); |
| glue(st32, MEMSUFFIX)((uint64_t)(T0 + 0x34UL), 0); |
| glue(st32, MEMSUFFIX)((uint64_t)(T0 + 0x38UL), 0); |
| glue(st32, MEMSUFFIX)((uint64_t)(T0 + 0x3CUL), 0); |
| glue(st32, MEMSUFFIX)((uint64_t)(T0 + 0x40UL), 0); |
| glue(st32, MEMSUFFIX)((uint64_t)(T0 + 0x44UL), 0); |
| glue(st32, MEMSUFFIX)((uint64_t)(T0 + 0x48UL), 0); |
| glue(st32, MEMSUFFIX)((uint64_t)(T0 + 0x4CUL), 0); |
| glue(st32, MEMSUFFIX)((uint64_t)(T0 + 0x50UL), 0); |
| glue(st32, MEMSUFFIX)((uint64_t)(T0 + 0x54UL), 0); |
| glue(st32, MEMSUFFIX)((uint64_t)(T0 + 0x58UL), 0); |
| glue(st32, MEMSUFFIX)((uint64_t)(T0 + 0x5CUL), 0); |
| glue(st32, MEMSUFFIX)((uint64_t)(T0 + 0x60UL), 0); |
| glue(st32, MEMSUFFIX)((uint64_t)(T0 + 0x64UL), 0); |
| glue(st32, MEMSUFFIX)((uint64_t)(T0 + 0x68UL), 0); |
| glue(st32, MEMSUFFIX)((uint64_t)(T0 + 0x6CUL), 0); |
| glue(st32, MEMSUFFIX)((uint64_t)(T0 + 0x70UL), 0); |
| glue(st32, MEMSUFFIX)((uint64_t)(T0 + 0x74UL), 0); |
| glue(st32, MEMSUFFIX)((uint64_t)(T0 + 0x78UL), 0); |
| glue(st32, MEMSUFFIX)((uint64_t)(T0 + 0x7CUL), 0); |
| RETURN(); |
| } |
| |
| void OPPROTO glue(op_dcbz_64, MEMSUFFIX) (void) |
| { |
| glue(do_dcbz_64, MEMSUFFIX)(); |
| RETURN(); |
| } |
| #endif |
| |
| /* Instruction cache block invalidate */ |
| void OPPROTO glue(op_icbi, MEMSUFFIX) (void) |
| { |
| glue(do_icbi, MEMSUFFIX)(); |
| RETURN(); |
| } |
| |
| #if defined(TARGET_PPC64) |
| void OPPROTO glue(op_icbi_64, MEMSUFFIX) (void) |
| { |
| glue(do_icbi_64, MEMSUFFIX)(); |
| RETURN(); |
| } |
| #endif |
| |
| /* External access */ |
| void OPPROTO glue(op_eciwx, MEMSUFFIX) (void) |
| { |
| T1 = glue(ldu32, MEMSUFFIX)((uint32_t)T0); |
| RETURN(); |
| } |
| |
| #if defined(TARGET_PPC64) |
| void OPPROTO glue(op_eciwx_64, MEMSUFFIX) (void) |
| { |
| T1 = glue(ldu32, MEMSUFFIX)((uint64_t)T0); |
| RETURN(); |
| } |
| #endif |
| |
| void OPPROTO glue(op_ecowx, MEMSUFFIX) (void) |
| { |
| glue(st32, MEMSUFFIX)((uint32_t)T0, T1); |
| RETURN(); |
| } |
| |
| #if defined(TARGET_PPC64) |
| void OPPROTO glue(op_ecowx_64, MEMSUFFIX) (void) |
| { |
| glue(st32, MEMSUFFIX)((uint64_t)T0, T1); |
| RETURN(); |
| } |
| #endif |
| |
| void OPPROTO glue(op_eciwx_le, MEMSUFFIX) (void) |
| { |
| T1 = glue(ldu32r, MEMSUFFIX)((uint32_t)T0); |
| RETURN(); |
| } |
| |
| #if defined(TARGET_PPC64) |
| void OPPROTO glue(op_eciwx_le_64, MEMSUFFIX) (void) |
| { |
| T1 = glue(ldu32r, MEMSUFFIX)((uint64_t)T0); |
| RETURN(); |
| } |
| #endif |
| |
| void OPPROTO glue(op_ecowx_le, MEMSUFFIX) (void) |
| { |
| glue(st32r, MEMSUFFIX)((uint32_t)T0, T1); |
| RETURN(); |
| } |
| |
| #if defined(TARGET_PPC64) |
| void OPPROTO glue(op_ecowx_le_64, MEMSUFFIX) (void) |
| { |
| glue(st32r, MEMSUFFIX)((uint64_t)T0, T1); |
| RETURN(); |
| } |
| #endif |
| |
| /* XXX: those micro-ops need tests ! */ |
| /* PowerPC 601 specific instructions (POWER bridge) */ |
| void OPPROTO glue(op_POWER_lscbx, MEMSUFFIX) (void) |
| { |
| /* When byte count is 0, do nothing */ |
| if (likely(T1 != 0)) { |
| glue(do_POWER_lscbx, MEMSUFFIX)(PARAM1, PARAM2, PARAM3); |
| } |
| RETURN(); |
| } |
| |
| /* POWER2 quad load and store */ |
| /* XXX: TAGs are not managed */ |
| void OPPROTO glue(op_POWER2_lfq, MEMSUFFIX) (void) |
| { |
| glue(do_POWER2_lfq, MEMSUFFIX)(); |
| RETURN(); |
| } |
| |
| void glue(op_POWER2_lfq_le, MEMSUFFIX) (void) |
| { |
| glue(do_POWER2_lfq_le, MEMSUFFIX)(); |
| RETURN(); |
| } |
| |
| void OPPROTO glue(op_POWER2_stfq, MEMSUFFIX) (void) |
| { |
| glue(do_POWER2_stfq, MEMSUFFIX)(); |
| RETURN(); |
| } |
| |
| void OPPROTO glue(op_POWER2_stfq_le, MEMSUFFIX) (void) |
| { |
| glue(do_POWER2_stfq_le, MEMSUFFIX)(); |
| RETURN(); |
| } |
| |
| /* Altivec vector extension */ |
| #if defined(WORDS_BIGENDIAN) |
| #define VR_DWORD0 0 |
| #define VR_DWORD1 1 |
| #else |
| #define VR_DWORD0 1 |
| #define VR_DWORD1 0 |
| #endif |
| void OPPROTO glue(op_vr_lvx, MEMSUFFIX) (void) |
| { |
| AVR0.u64[VR_DWORD0] = glue(ldu64, MEMSUFFIX)((uint32_t)T0); |
| AVR0.u64[VR_DWORD1] = glue(ldu64, MEMSUFFIX)((uint32_t)T0 + 8); |
| } |
| |
| void OPPROTO glue(op_vr_lvx_le, MEMSUFFIX) (void) |
| { |
| AVR0.u64[VR_DWORD1] = glue(ldu64r, MEMSUFFIX)((uint32_t)T0); |
| AVR0.u64[VR_DWORD0] = glue(ldu64r, MEMSUFFIX)((uint32_t)T0 + 8); |
| } |
| |
| void OPPROTO glue(op_vr_stvx, MEMSUFFIX) (void) |
| { |
| glue(st64, MEMSUFFIX)((uint32_t)T0, AVR0.u64[VR_DWORD0]); |
| glue(st64, MEMSUFFIX)((uint32_t)T0 + 8, AVR0.u64[VR_DWORD1]); |
| } |
| |
| void OPPROTO glue(op_vr_stvx_le, MEMSUFFIX) (void) |
| { |
| glue(st64r, MEMSUFFIX)((uint32_t)T0, AVR0.u64[VR_DWORD1]); |
| glue(st64r, MEMSUFFIX)((uint32_t)T0 + 8, AVR0.u64[VR_DWORD0]); |
| } |
| |
| #if defined(TARGET_PPC64) |
| void OPPROTO glue(op_vr_lvx_64, MEMSUFFIX) (void) |
| { |
| AVR0.u64[VR_DWORD0] = glue(ldu64, MEMSUFFIX)((uint64_t)T0); |
| AVR0.u64[VR_DWORD1] = glue(ldu64, MEMSUFFIX)((uint64_t)T0 + 8); |
| } |
| |
| void OPPROTO glue(op_vr_lvx_le_64, MEMSUFFIX) (void) |
| { |
| AVR0.u64[VR_DWORD1] = glue(ldu64r, MEMSUFFIX)((uint64_t)T0); |
| AVR0.u64[VR_DWORD0] = glue(ldu64r, MEMSUFFIX)((uint64_t)T0 + 8); |
| } |
| |
| void OPPROTO glue(op_vr_stvx_64, MEMSUFFIX) (void) |
| { |
| glue(st64, MEMSUFFIX)((uint64_t)T0, AVR0.u64[VR_DWORD0]); |
| glue(st64, MEMSUFFIX)((uint64_t)T0 + 8, AVR0.u64[VR_DWORD1]); |
| } |
| |
| void OPPROTO glue(op_vr_stvx_le_64, MEMSUFFIX) (void) |
| { |
| glue(st64r, MEMSUFFIX)((uint64_t)T0, AVR0.u64[VR_DWORD1]); |
| glue(st64r, MEMSUFFIX)((uint64_t)T0 + 8, AVR0.u64[VR_DWORD0]); |
| } |
| #endif |
| #undef VR_DWORD0 |
| #undef VR_DWORD1 |
| |
| /* SPE extension */ |
| #define _PPC_SPE_LD_OP(name, op) \ |
| void OPPROTO glue(glue(op_spe_l, name), MEMSUFFIX) (void) \ |
| { \ |
| T1_64 = glue(op, MEMSUFFIX)((uint32_t)T0); \ |
| RETURN(); \ |
| } |
| |
| #if defined(TARGET_PPC64) |
| #define _PPC_SPE_LD_OP_64(name, op) \ |
| void OPPROTO glue(glue(glue(op_spe_l, name), _64), MEMSUFFIX) (void) \ |
| { \ |
| T1_64 = glue(op, MEMSUFFIX)((uint64_t)T0); \ |
| RETURN(); \ |
| } |
| #define PPC_SPE_LD_OP(name, op) \ |
| _PPC_SPE_LD_OP(name, op); \ |
| _PPC_SPE_LD_OP_64(name, op) |
| #else |
| #define PPC_SPE_LD_OP(name, op) \ |
| _PPC_SPE_LD_OP(name, op) |
| #endif |
| |
| #define _PPC_SPE_ST_OP(name, op) \ |
| void OPPROTO glue(glue(op_spe_st, name), MEMSUFFIX) (void) \ |
| { \ |
| glue(op, MEMSUFFIX)((uint32_t)T0, T1_64); \ |
| RETURN(); \ |
| } |
| |
| #if defined(TARGET_PPC64) |
| #define _PPC_SPE_ST_OP_64(name, op) \ |
| void OPPROTO glue(glue(glue(op_spe_st, name), _64), MEMSUFFIX) (void) \ |
| { \ |
| glue(op, MEMSUFFIX)((uint64_t)T0, T1_64); \ |
| RETURN(); \ |
| } |
| #define PPC_SPE_ST_OP(name, op) \ |
| _PPC_SPE_ST_OP(name, op); \ |
| _PPC_SPE_ST_OP_64(name, op) |
| #else |
| #define PPC_SPE_ST_OP(name, op) \ |
| _PPC_SPE_ST_OP(name, op) |
| #endif |
| |
| #if !defined(TARGET_PPC64) |
| PPC_SPE_LD_OP(dd, ldu64); |
| PPC_SPE_ST_OP(dd, st64); |
| PPC_SPE_LD_OP(dd_le, ldu64r); |
| PPC_SPE_ST_OP(dd_le, st64r); |
| #endif |
| static always_inline uint64_t glue(spe_ldw, MEMSUFFIX) (target_ulong EA) |
| { |
| uint64_t ret; |
| ret = (uint64_t)glue(ldu32, MEMSUFFIX)(EA) << 32; |
| ret |= (uint64_t)glue(ldu32, MEMSUFFIX)(EA + 4); |
| return ret; |
| } |
| PPC_SPE_LD_OP(dw, spe_ldw); |
| static always_inline void glue(spe_stdw, MEMSUFFIX) (target_ulong EA, |
| uint64_t data) |
| { |
| glue(st32, MEMSUFFIX)(EA, data >> 32); |
| glue(st32, MEMSUFFIX)(EA + 4, data); |
| } |
| PPC_SPE_ST_OP(dw, spe_stdw); |
| static always_inline uint64_t glue(spe_ldw_le, MEMSUFFIX) (target_ulong EA) |
| { |
| uint64_t ret; |
| ret = (uint64_t)glue(ldu32r, MEMSUFFIX)(EA) << 32; |
| ret |= (uint64_t)glue(ldu32r, MEMSUFFIX)(EA + 4); |
| return ret; |
| } |
| PPC_SPE_LD_OP(dw_le, spe_ldw_le); |
| static always_inline void glue(spe_stdw_le, MEMSUFFIX) (target_ulong EA, |
| uint64_t data) |
| { |
| glue(st32r, MEMSUFFIX)(EA, data >> 32); |
| glue(st32r, MEMSUFFIX)(EA + 4, data); |
| } |
| PPC_SPE_ST_OP(dw_le, spe_stdw_le); |
| static always_inline uint64_t glue(spe_ldh, MEMSUFFIX) (target_ulong EA) |
| { |
| uint64_t ret; |
| ret = (uint64_t)glue(ldu16, MEMSUFFIX)(EA) << 48; |
| ret |= (uint64_t)glue(ldu16, MEMSUFFIX)(EA + 2) << 32; |
| ret |= (uint64_t)glue(ldu16, MEMSUFFIX)(EA + 4) << 16; |
| ret |= (uint64_t)glue(ldu16, MEMSUFFIX)(EA + 6); |
| return ret; |
| } |
| PPC_SPE_LD_OP(dh, spe_ldh); |
| static always_inline void glue(spe_stdh, MEMSUFFIX) (target_ulong EA, |
| uint64_t data) |
| { |
| glue(st16, MEMSUFFIX)(EA, data >> 48); |
| glue(st16, MEMSUFFIX)(EA + 2, data >> 32); |
| glue(st16, MEMSUFFIX)(EA + 4, data >> 16); |
| glue(st16, MEMSUFFIX)(EA + 6, data); |
| } |
| PPC_SPE_ST_OP(dh, spe_stdh); |
| static always_inline uint64_t glue(spe_ldh_le, MEMSUFFIX) (target_ulong EA) |
| { |
| uint64_t ret; |
| ret = (uint64_t)glue(ldu16r, MEMSUFFIX)(EA) << 48; |
| ret |= (uint64_t)glue(ldu16r, MEMSUFFIX)(EA + 2) << 32; |
| ret |= (uint64_t)glue(ldu16r, MEMSUFFIX)(EA + 4) << 16; |
| ret |= (uint64_t)glue(ldu16r, MEMSUFFIX)(EA + 6); |
| return ret; |
| } |
| PPC_SPE_LD_OP(dh_le, spe_ldh_le); |
| static always_inline void glue(spe_stdh_le, MEMSUFFIX) (target_ulong EA, |
| uint64_t data) |
| { |
| glue(st16r, MEMSUFFIX)(EA, data >> 48); |
| glue(st16r, MEMSUFFIX)(EA + 2, data >> 32); |
| glue(st16r, MEMSUFFIX)(EA + 4, data >> 16); |
| glue(st16r, MEMSUFFIX)(EA + 6, data); |
| } |
| PPC_SPE_ST_OP(dh_le, spe_stdh_le); |
| static always_inline uint64_t glue(spe_lwhe, MEMSUFFIX) (target_ulong EA) |
| { |
| uint64_t ret; |
| ret = (uint64_t)glue(ldu16, MEMSUFFIX)(EA) << 48; |
| ret |= (uint64_t)glue(ldu16, MEMSUFFIX)(EA + 2) << 16; |
| return ret; |
| } |
| PPC_SPE_LD_OP(whe, spe_lwhe); |
| static always_inline void glue(spe_stwhe, MEMSUFFIX) (target_ulong EA, |
| uint64_t data) |
| { |
| glue(st16, MEMSUFFIX)(EA, data >> 48); |
| glue(st16, MEMSUFFIX)(EA + 2, data >> 16); |
| } |
| PPC_SPE_ST_OP(whe, spe_stwhe); |
| static always_inline uint64_t glue(spe_lwhe_le, MEMSUFFIX) (target_ulong EA) |
| { |
| uint64_t ret; |
| ret = (uint64_t)glue(ldu16r, MEMSUFFIX)(EA) << 48; |
| ret |= (uint64_t)glue(ldu16r, MEMSUFFIX)(EA + 2) << 16; |
| return ret; |
| } |
| PPC_SPE_LD_OP(whe_le, spe_lwhe_le); |
| static always_inline void glue(spe_stwhe_le, MEMSUFFIX) (target_ulong EA, |
| uint64_t data) |
| { |
| glue(st16r, MEMSUFFIX)(EA, data >> 48); |
| glue(st16r, MEMSUFFIX)(EA + 2, data >> 16); |
| } |
| PPC_SPE_ST_OP(whe_le, spe_stwhe_le); |
| static always_inline uint64_t glue(spe_lwhou, MEMSUFFIX) (target_ulong EA) |
| { |
| uint64_t ret; |
| ret = (uint64_t)glue(ldu16, MEMSUFFIX)(EA) << 32; |
| ret |= (uint64_t)glue(ldu16, MEMSUFFIX)(EA + 2); |
| return ret; |
| } |
| PPC_SPE_LD_OP(whou, spe_lwhou); |
| static always_inline uint64_t glue(spe_lwhos, MEMSUFFIX) (target_ulong EA) |
| { |
| uint64_t ret; |
| ret = ((uint64_t)((int32_t)glue(lds16, MEMSUFFIX)(EA))) << 32; |
| ret |= (uint64_t)((int32_t)glue(lds16, MEMSUFFIX)(EA + 2)); |
| return ret; |
| } |
| PPC_SPE_LD_OP(whos, spe_lwhos); |
| static always_inline void glue(spe_stwho, MEMSUFFIX) (target_ulong EA, |
| uint64_t data) |
| { |
| glue(st16, MEMSUFFIX)(EA, data >> 32); |
| glue(st16, MEMSUFFIX)(EA + 2, data); |
| } |
| PPC_SPE_ST_OP(who, spe_stwho); |
| static always_inline uint64_t glue(spe_lwhou_le, MEMSUFFIX) (target_ulong EA) |
| { |
| uint64_t ret; |
| ret = (uint64_t)glue(ldu16r, MEMSUFFIX)(EA) << 32; |
| ret |= (uint64_t)glue(ldu16r, MEMSUFFIX)(EA + 2); |
| return ret; |
| } |
| PPC_SPE_LD_OP(whou_le, spe_lwhou_le); |
| static always_inline uint64_t glue(spe_lwhos_le, MEMSUFFIX) (target_ulong EA) |
| { |
| uint64_t ret; |
| ret = ((uint64_t)((int32_t)glue(lds16r, MEMSUFFIX)(EA))) << 32; |
| ret |= (uint64_t)((int32_t)glue(lds16r, MEMSUFFIX)(EA + 2)); |
| return ret; |
| } |
| PPC_SPE_LD_OP(whos_le, spe_lwhos_le); |
| static always_inline void glue(spe_stwho_le, MEMSUFFIX) (target_ulong EA, |
| uint64_t data) |
| { |
| glue(st16r, MEMSUFFIX)(EA, data >> 32); |
| glue(st16r, MEMSUFFIX)(EA + 2, data); |
| } |
| PPC_SPE_ST_OP(who_le, spe_stwho_le); |
| #if !defined(TARGET_PPC64) |
| static always_inline void glue(spe_stwwo, MEMSUFFIX) (target_ulong EA, |
| uint64_t data) |
| { |
| glue(st32, MEMSUFFIX)(EA, data); |
| } |
| PPC_SPE_ST_OP(wwo, spe_stwwo); |
| static always_inline void glue(spe_stwwo_le, MEMSUFFIX) (target_ulong EA, |
| uint64_t data) |
| { |
| glue(st32r, MEMSUFFIX)(EA, data); |
| } |
| PPC_SPE_ST_OP(wwo_le, spe_stwwo_le); |
| #endif |
| static always_inline uint64_t glue(spe_lh, MEMSUFFIX) (target_ulong EA) |
| { |
| uint16_t tmp; |
| tmp = glue(ldu16, MEMSUFFIX)(EA); |
| return ((uint64_t)tmp << 48) | ((uint64_t)tmp << 16); |
| } |
| PPC_SPE_LD_OP(h, spe_lh); |
| static always_inline uint64_t glue(spe_lh_le, MEMSUFFIX) (target_ulong EA) |
| { |
| uint16_t tmp; |
| tmp = glue(ldu16r, MEMSUFFIX)(EA); |
| return ((uint64_t)tmp << 48) | ((uint64_t)tmp << 16); |
| } |
| PPC_SPE_LD_OP(h_le, spe_lh_le); |
| static always_inline uint64_t glue(spe_lwwsplat, MEMSUFFIX) (target_ulong EA) |
| { |
| uint32_t tmp; |
| tmp = glue(ldu32, MEMSUFFIX)(EA); |
| return ((uint64_t)tmp << 32) | (uint64_t)tmp; |
| } |
| PPC_SPE_LD_OP(wwsplat, spe_lwwsplat); |
| static always_inline |
| uint64_t glue(spe_lwwsplat_le, MEMSUFFIX) (target_ulong EA) |
| { |
| uint32_t tmp; |
| tmp = glue(ldu32r, MEMSUFFIX)(EA); |
| return ((uint64_t)tmp << 32) | (uint64_t)tmp; |
| } |
| PPC_SPE_LD_OP(wwsplat_le, spe_lwwsplat_le); |
| static always_inline uint64_t glue(spe_lwhsplat, MEMSUFFIX) (target_ulong EA) |
| { |
| uint64_t ret; |
| uint16_t tmp; |
| tmp = glue(ldu16, MEMSUFFIX)(EA); |
| ret = ((uint64_t)tmp << 48) | ((uint64_t)tmp << 32); |
| tmp = glue(ldu16, MEMSUFFIX)(EA + 2); |
| ret |= ((uint64_t)tmp << 16) | (uint64_t)tmp; |
| return ret; |
| } |
| PPC_SPE_LD_OP(whsplat, spe_lwhsplat); |
| static always_inline |
| uint64_t glue(spe_lwhsplat_le, MEMSUFFIX) (target_ulong EA) |
| { |
| uint64_t ret; |
| uint16_t tmp; |
| tmp = glue(ldu16r, MEMSUFFIX)(EA); |
| ret = ((uint64_t)tmp << 48) | ((uint64_t)tmp << 32); |
| tmp = glue(ldu16r, MEMSUFFIX)(EA + 2); |
| ret |= ((uint64_t)tmp << 16) | (uint64_t)tmp; |
| return ret; |
| } |
| PPC_SPE_LD_OP(whsplat_le, spe_lwhsplat_le); |
| |
| #undef MEMSUFFIX |