blob: c7182dfa64b25025c060d3bf2d48ec8195381b65 [file] [log] [blame]
/*
* QEMU Executable loader
*
* Copyright (c) 2006 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* Gunzip functionality in this file is derived from u-boot:
*
* (C) Copyright 2008 Semihalf
*
* (C) Copyright 2000-2005
* Wolfgang Denk, DENX Software Engineering, wd@denx.de.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "hw/hw.h"
#include "disas/disas.h"
#include "monitor/monitor.h"
#include "sysemu/sysemu.h"
#include "uboot_image.h"
#include "hw/loader.h"
#include "hw/nvram/fw_cfg.h"
#include "exec/memory.h"
#include "exec/address-spaces.h"
#include "hw/boards.h"
#include "qemu/cutils.h"
#include <zlib.h>
static int roms_loaded;
/* return the size or -1 if error */
int64_t get_image_size(const char *filename)
{
int fd;
int64_t size;
fd = open(filename, O_RDONLY | O_BINARY);
if (fd < 0)
return -1;
size = lseek(fd, 0, SEEK_END);
close(fd);
return size;
}
/* return the size or -1 if error */
ssize_t load_image_size(const char *filename, void *addr, size_t size)
{
int fd;
ssize_t actsize;
fd = open(filename, O_RDONLY | O_BINARY);
if (fd < 0) {
return -1;
}
actsize = read(fd, addr, size);
if (actsize < 0) {
close(fd);
return -1;
}
close(fd);
return actsize;
}
/* read()-like version */
ssize_t read_targphys(const char *name,
int fd, hwaddr dst_addr, size_t nbytes)
{
uint8_t *buf;
ssize_t did;
buf = g_malloc(nbytes);
did = read(fd, buf, nbytes);
if (did > 0)
rom_add_blob_fixed("read", buf, did, dst_addr);
g_free(buf);
return did;
}
int load_image_targphys(const char *filename,
hwaddr addr, uint64_t max_sz)
{
return load_image_targphys_as(filename, addr, max_sz, NULL);
}
/* return the size or -1 if error */
int load_image_targphys_as(const char *filename,
hwaddr addr, uint64_t max_sz, AddressSpace *as)
{
int size;
size = get_image_size(filename);
if (size < 0 || size > max_sz) {
return -1;
}
if (size > 0) {
if (rom_add_file_fixed_as(filename, addr, -1, as) < 0) {
return -1;
}
}
return size;
}
int load_image_mr(const char *filename, MemoryRegion *mr)
{
int size;
if (!memory_access_is_direct(mr, false)) {
/* Can only load an image into RAM or ROM */
return -1;
}
size = get_image_size(filename);
if (size < 0 || size > memory_region_size(mr)) {
return -1;
}
if (size > 0) {
if (rom_add_file_mr(filename, mr, -1) < 0) {
return -1;
}
}
return size;
}
void pstrcpy_targphys(const char *name, hwaddr dest, int buf_size,
const char *source)
{
const char *nulp;
char *ptr;
if (buf_size <= 0) return;
nulp = memchr(source, 0, buf_size);
if (nulp) {
rom_add_blob_fixed(name, source, (nulp - source) + 1, dest);
} else {
rom_add_blob_fixed(name, source, buf_size, dest);
ptr = rom_ptr(dest + buf_size - 1, sizeof(*ptr));
*ptr = 0;
}
}
/* A.OUT loader */
struct exec
{
uint32_t a_info; /* Use macros N_MAGIC, etc for access */
uint32_t a_text; /* length of text, in bytes */
uint32_t a_data; /* length of data, in bytes */
uint32_t a_bss; /* length of uninitialized data area, in bytes */
uint32_t a_syms; /* length of symbol table data in file, in bytes */
uint32_t a_entry; /* start address */
uint32_t a_trsize; /* length of relocation info for text, in bytes */
uint32_t a_drsize; /* length of relocation info for data, in bytes */
};
static void bswap_ahdr(struct exec *e)
{
bswap32s(&e->a_info);
bswap32s(&e->a_text);
bswap32s(&e->a_data);
bswap32s(&e->a_bss);
bswap32s(&e->a_syms);
bswap32s(&e->a_entry);
bswap32s(&e->a_trsize);
bswap32s(&e->a_drsize);
}
#define N_MAGIC(exec) ((exec).a_info & 0xffff)
#define OMAGIC 0407
#define NMAGIC 0410
#define ZMAGIC 0413
#define QMAGIC 0314
#define _N_HDROFF(x) (1024 - sizeof (struct exec))
#define N_TXTOFF(x) \
(N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) : \
(N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec)))
#define N_TXTADDR(x, target_page_size) (N_MAGIC(x) == QMAGIC ? target_page_size : 0)
#define _N_SEGMENT_ROUND(x, target_page_size) (((x) + target_page_size - 1) & ~(target_page_size - 1))
#define _N_TXTENDADDR(x, target_page_size) (N_TXTADDR(x, target_page_size)+(x).a_text)
#define N_DATADDR(x, target_page_size) \
(N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x, target_page_size)) \
: (_N_SEGMENT_ROUND (_N_TXTENDADDR(x, target_page_size), target_page_size)))
int load_aout(const char *filename, hwaddr addr, int max_sz,
int bswap_needed, hwaddr target_page_size)
{
int fd;
ssize_t size, ret;
struct exec e;
uint32_t magic;
fd = open(filename, O_RDONLY | O_BINARY);
if (fd < 0)
return -1;
size = read(fd, &e, sizeof(e));
if (size < 0)
goto fail;
if (bswap_needed) {
bswap_ahdr(&e);
}
magic = N_MAGIC(e);
switch (magic) {
case ZMAGIC:
case QMAGIC:
case OMAGIC:
if (e.a_text + e.a_data > max_sz)
goto fail;
lseek(fd, N_TXTOFF(e), SEEK_SET);
size = read_targphys(filename, fd, addr, e.a_text + e.a_data);
if (size < 0)
goto fail;
break;
case NMAGIC:
if (N_DATADDR(e, target_page_size) + e.a_data > max_sz)
goto fail;
lseek(fd, N_TXTOFF(e), SEEK_SET);
size = read_targphys(filename, fd, addr, e.a_text);
if (size < 0)
goto fail;
ret = read_targphys(filename, fd, addr + N_DATADDR(e, target_page_size),
e.a_data);
if (ret < 0)
goto fail;
size += ret;
break;
default:
goto fail;
}
close(fd);
return size;
fail:
close(fd);
return -1;
}
/* ELF loader */
static void *load_at(int fd, off_t offset, size_t size)
{
void *ptr;
if (lseek(fd, offset, SEEK_SET) < 0)
return NULL;
ptr = g_malloc(size);
if (read(fd, ptr, size) != size) {
g_free(ptr);
return NULL;
}
return ptr;
}
#ifdef ELF_CLASS
#undef ELF_CLASS
#endif
#define ELF_CLASS ELFCLASS32
#include "elf.h"
#define SZ 32
#define elf_word uint32_t
#define elf_sword int32_t
#define bswapSZs bswap32s
#include "hw/elf_ops.h"
#undef elfhdr
#undef elf_phdr
#undef elf_shdr
#undef elf_sym
#undef elf_rela
#undef elf_note
#undef elf_word
#undef elf_sword
#undef bswapSZs
#undef SZ
#define elfhdr elf64_hdr
#define elf_phdr elf64_phdr
#define elf_note elf64_note
#define elf_shdr elf64_shdr
#define elf_sym elf64_sym
#define elf_rela elf64_rela
#define elf_word uint64_t
#define elf_sword int64_t
#define bswapSZs bswap64s
#define SZ 64
#include "hw/elf_ops.h"
const char *load_elf_strerror(int error)
{
switch (error) {
case 0:
return "No error";
case ELF_LOAD_FAILED:
return "Failed to load ELF";
case ELF_LOAD_NOT_ELF:
return "The image is not ELF";
case ELF_LOAD_WRONG_ARCH:
return "The image is from incompatible architecture";
case ELF_LOAD_WRONG_ENDIAN:
return "The image has incorrect endianness";
default:
return "Unknown error";
}
}
void load_elf_hdr(const char *filename, void *hdr, bool *is64, Error **errp)
{
int fd;
uint8_t e_ident_local[EI_NIDENT];
uint8_t *e_ident;
size_t hdr_size, off;
bool is64l;
if (!hdr) {
hdr = e_ident_local;
}
e_ident = hdr;
fd = open(filename, O_RDONLY | O_BINARY);
if (fd < 0) {
error_setg_errno(errp, errno, "Failed to open file: %s", filename);
return;
}
if (read(fd, hdr, EI_NIDENT) != EI_NIDENT) {
error_setg_errno(errp, errno, "Failed to read file: %s", filename);
goto fail;
}
if (e_ident[0] != ELFMAG0 ||
e_ident[1] != ELFMAG1 ||
e_ident[2] != ELFMAG2 ||
e_ident[3] != ELFMAG3) {
error_setg(errp, "Bad ELF magic");
goto fail;
}
is64l = e_ident[EI_CLASS] == ELFCLASS64;
hdr_size = is64l ? sizeof(Elf64_Ehdr) : sizeof(Elf32_Ehdr);
if (is64) {
*is64 = is64l;
}
off = EI_NIDENT;
while (hdr != e_ident_local && off < hdr_size) {
size_t br = read(fd, hdr + off, hdr_size - off);
switch (br) {
case 0:
error_setg(errp, "File too short: %s", filename);
goto fail;
case -1:
error_setg_errno(errp, errno, "Failed to read file: %s",
filename);
goto fail;
}
off += br;
}
fail:
close(fd);
}
/* return < 0 if error, otherwise the number of bytes loaded in memory */
int load_elf(const char *filename, uint64_t (*translate_fn)(void *, uint64_t),
void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
uint64_t *highaddr, int big_endian, int elf_machine,
int clear_lsb, int data_swab)
{
return load_elf_as(filename, translate_fn, translate_opaque, pentry,
lowaddr, highaddr, big_endian, elf_machine, clear_lsb,
data_swab, NULL);
}
/* return < 0 if error, otherwise the number of bytes loaded in memory */
int load_elf_as(const char *filename,
uint64_t (*translate_fn)(void *, uint64_t),
void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
uint64_t *highaddr, int big_endian, int elf_machine,
int clear_lsb, int data_swab, AddressSpace *as)
{
return load_elf_ram(filename, translate_fn, translate_opaque,
pentry, lowaddr, highaddr, big_endian, elf_machine,
clear_lsb, data_swab, as, true);
}
/* return < 0 if error, otherwise the number of bytes loaded in memory */
int load_elf_ram(const char *filename,
uint64_t (*translate_fn)(void *, uint64_t),
void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
uint64_t *highaddr, int big_endian, int elf_machine,
int clear_lsb, int data_swab, AddressSpace *as,
bool load_rom)
{
return load_elf_ram_sym(filename, translate_fn, translate_opaque,
pentry, lowaddr, highaddr, big_endian,
elf_machine, clear_lsb, data_swab, as,
load_rom, NULL);
}
/* return < 0 if error, otherwise the number of bytes loaded in memory */
int load_elf_ram_sym(const char *filename,
uint64_t (*translate_fn)(void *, uint64_t),
void *translate_opaque, uint64_t *pentry,
uint64_t *lowaddr, uint64_t *highaddr, int big_endian,
int elf_machine, int clear_lsb, int data_swab,
AddressSpace *as, bool load_rom, symbol_fn_t sym_cb)
{
int fd, data_order, target_data_order, must_swab, ret = ELF_LOAD_FAILED;
uint8_t e_ident[EI_NIDENT];
fd = open(filename, O_RDONLY | O_BINARY);
if (fd < 0) {
perror(filename);
return -1;
}
if (read(fd, e_ident, sizeof(e_ident)) != sizeof(e_ident))
goto fail;
if (e_ident[0] != ELFMAG0 ||
e_ident[1] != ELFMAG1 ||
e_ident[2] != ELFMAG2 ||
e_ident[3] != ELFMAG3) {
ret = ELF_LOAD_NOT_ELF;
goto fail;
}
#ifdef HOST_WORDS_BIGENDIAN
data_order = ELFDATA2MSB;
#else
data_order = ELFDATA2LSB;
#endif
must_swab = data_order != e_ident[EI_DATA];
if (big_endian) {
target_data_order = ELFDATA2MSB;
} else {
target_data_order = ELFDATA2LSB;
}
if (target_data_order != e_ident[EI_DATA]) {
ret = ELF_LOAD_WRONG_ENDIAN;
goto fail;
}
lseek(fd, 0, SEEK_SET);
if (e_ident[EI_CLASS] == ELFCLASS64) {
ret = load_elf64(filename, fd, translate_fn, translate_opaque, must_swab,
pentry, lowaddr, highaddr, elf_machine, clear_lsb,
data_swab, as, load_rom, sym_cb);
} else {
ret = load_elf32(filename, fd, translate_fn, translate_opaque, must_swab,
pentry, lowaddr, highaddr, elf_machine, clear_lsb,
data_swab, as, load_rom, sym_cb);
}
fail:
close(fd);
return ret;
}
static void bswap_uboot_header(uboot_image_header_t *hdr)
{
#ifndef HOST_WORDS_BIGENDIAN
bswap32s(&hdr->ih_magic);
bswap32s(&hdr->ih_hcrc);
bswap32s(&hdr->ih_time);
bswap32s(&hdr->ih_size);
bswap32s(&hdr->ih_load);
bswap32s(&hdr->ih_ep);
bswap32s(&hdr->ih_dcrc);
#endif
}
#define ZALLOC_ALIGNMENT 16
static void *zalloc(void *x, unsigned items, unsigned size)
{
void *p;
size *= items;
size = (size + ZALLOC_ALIGNMENT - 1) & ~(ZALLOC_ALIGNMENT - 1);
p = g_malloc(size);
return (p);
}
static void zfree(void *x, void *addr)
{
g_free(addr);
}
#define HEAD_CRC 2
#define EXTRA_FIELD 4
#define ORIG_NAME 8
#define COMMENT 0x10
#define RESERVED 0xe0
#define DEFLATED 8
ssize_t gunzip(void *dst, size_t dstlen, uint8_t *src, size_t srclen)
{
z_stream s;
ssize_t dstbytes;
int r, i, flags;
/* skip header */
i = 10;
flags = src[3];
if (src[2] != DEFLATED || (flags & RESERVED) != 0) {
puts ("Error: Bad gzipped data\n");
return -1;
}
if ((flags & EXTRA_FIELD) != 0)
i = 12 + src[10] + (src[11] << 8);
if ((flags & ORIG_NAME) != 0)
while (src[i++] != 0)
;
if ((flags & COMMENT) != 0)
while (src[i++] != 0)
;
if ((flags & HEAD_CRC) != 0)
i += 2;
if (i >= srclen) {
puts ("Error: gunzip out of data in header\n");
return -1;
}
s.zalloc = zalloc;
s.zfree = zfree;
r = inflateInit2(&s, -MAX_WBITS);
if (r != Z_OK) {
printf ("Error: inflateInit2() returned %d\n", r);
return (-1);
}
s.next_in = src + i;
s.avail_in = srclen - i;
s.next_out = dst;
s.avail_out = dstlen;
r = inflate(&s, Z_FINISH);
if (r != Z_OK && r != Z_STREAM_END) {
printf ("Error: inflate() returned %d\n", r);
return -1;
}
dstbytes = s.next_out - (unsigned char *) dst;
inflateEnd(&s);
return dstbytes;
}
/* Load a U-Boot image. */
static int load_uboot_image(const char *filename, hwaddr *ep, hwaddr *loadaddr,
int *is_linux, uint8_t image_type,
uint64_t (*translate_fn)(void *, uint64_t),
void *translate_opaque, AddressSpace *as)
{
int fd;
int size;
hwaddr address;
uboot_image_header_t h;
uboot_image_header_t *hdr = &h;
uint8_t *data = NULL;
int ret = -1;
int do_uncompress = 0;
fd = open(filename, O_RDONLY | O_BINARY);
if (fd < 0)
return -1;
size = read(fd, hdr, sizeof(uboot_image_header_t));
if (size < sizeof(uboot_image_header_t)) {
goto out;
}
bswap_uboot_header(hdr);
if (hdr->ih_magic != IH_MAGIC)
goto out;
if (hdr->ih_type != image_type) {
if (!(image_type == IH_TYPE_KERNEL &&
hdr->ih_type == IH_TYPE_KERNEL_NOLOAD)) {
fprintf(stderr, "Wrong image type %d, expected %d\n", hdr->ih_type,
image_type);
goto out;
}
}
/* TODO: Implement other image types. */
switch (hdr->ih_type) {
case IH_TYPE_KERNEL_NOLOAD:
if (!loadaddr || *loadaddr == LOAD_UIMAGE_LOADADDR_INVALID) {
fprintf(stderr, "this image format (kernel_noload) cannot be "
"loaded on this machine type");
goto out;
}
hdr->ih_load = *loadaddr + sizeof(*hdr);
hdr->ih_ep += hdr->ih_load;
/* fall through */
case IH_TYPE_KERNEL:
address = hdr->ih_load;
if (translate_fn) {
address = translate_fn(translate_opaque, address);
}
if (loadaddr) {
*loadaddr = hdr->ih_load;
}
switch (hdr->ih_comp) {
case IH_COMP_NONE:
break;
case IH_COMP_GZIP:
do_uncompress = 1;
break;
default:
fprintf(stderr,
"Unable to load u-boot images with compression type %d\n",
hdr->ih_comp);
goto out;
}
if (ep) {
*ep = hdr->ih_ep;
}
/* TODO: Check CPU type. */
if (is_linux) {
if (hdr->ih_os == IH_OS_LINUX) {
*is_linux = 1;
} else {
*is_linux = 0;
}
}
break;
case IH_TYPE_RAMDISK:
address = *loadaddr;
break;
default:
fprintf(stderr, "Unsupported u-boot image type %d\n", hdr->ih_type);
goto out;
}
data = g_malloc(hdr->ih_size);
if (read(fd, data, hdr->ih_size) != hdr->ih_size) {
fprintf(stderr, "Error reading file\n");
goto out;
}
if (do_uncompress) {
uint8_t *compressed_data;
size_t max_bytes;
ssize_t bytes;
compressed_data = data;
max_bytes = UBOOT_MAX_GUNZIP_BYTES;
data = g_malloc(max_bytes);
bytes = gunzip(data, max_bytes, compressed_data, hdr->ih_size);
g_free(compressed_data);
if (bytes < 0) {
fprintf(stderr, "Unable to decompress gzipped image!\n");
goto out;
}
hdr->ih_size = bytes;
}
rom_add_blob_fixed_as(filename, data, hdr->ih_size, address, as);
ret = hdr->ih_size;
out:
g_free(data);
close(fd);
return ret;
}
int load_uimage(const char *filename, hwaddr *ep, hwaddr *loadaddr,
int *is_linux,
uint64_t (*translate_fn)(void *, uint64_t),
void *translate_opaque)
{
return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL,
translate_fn, translate_opaque, NULL);
}
int load_uimage_as(const char *filename, hwaddr *ep, hwaddr *loadaddr,
int *is_linux,
uint64_t (*translate_fn)(void *, uint64_t),
void *translate_opaque, AddressSpace *as)
{
return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL,
translate_fn, translate_opaque, as);
}
/* Load a ramdisk. */
int load_ramdisk(const char *filename, hwaddr addr, uint64_t max_sz)
{
return load_ramdisk_as(filename, addr, max_sz, NULL);
}
int load_ramdisk_as(const char *filename, hwaddr addr, uint64_t max_sz,
AddressSpace *as)
{
return load_uboot_image(filename, NULL, &addr, NULL, IH_TYPE_RAMDISK,
NULL, NULL, as);
}
/* Load a gzip-compressed kernel to a dynamically allocated buffer. */
int load_image_gzipped_buffer(const char *filename, uint64_t max_sz,
uint8_t **buffer)
{
uint8_t *compressed_data = NULL;
uint8_t *data = NULL;
gsize len;
ssize_t bytes;
int ret = -1;
if (!g_file_get_contents(filename, (char **) &compressed_data, &len,
NULL)) {
goto out;
}
/* Is it a gzip-compressed file? */
if (len < 2 ||
compressed_data[0] != 0x1f ||
compressed_data[1] != 0x8b) {
goto out;
}
if (max_sz > LOAD_IMAGE_MAX_GUNZIP_BYTES) {
max_sz = LOAD_IMAGE_MAX_GUNZIP_BYTES;
}
data = g_malloc(max_sz);
bytes = gunzip(data, max_sz, compressed_data, len);
if (bytes < 0) {
fprintf(stderr, "%s: unable to decompress gzipped kernel file\n",
filename);
goto out;
}
/* trim to actual size and return to caller */
*buffer = g_realloc(data, bytes);
ret = bytes;
/* ownership has been transferred to caller */
data = NULL;
out:
g_free(compressed_data);
g_free(data);
return ret;
}
/* Load a gzip-compressed kernel. */
int load_image_gzipped(const char *filename, hwaddr addr, uint64_t max_sz)
{
int bytes;
uint8_t *data;
bytes = load_image_gzipped_buffer(filename, max_sz, &data);
if (bytes != -1) {
rom_add_blob_fixed(filename, data, bytes, addr);
g_free(data);
}
return bytes;
}
/*
* Functions for reboot-persistent memory regions.
* - used for vga bios and option roms.
* - also linux kernel (-kernel / -initrd).
*/
typedef struct Rom Rom;
struct Rom {
char *name;
char *path;
/* datasize is the amount of memory allocated in "data". If datasize is less
* than romsize, it means that the area from datasize to romsize is filled
* with zeros.
*/
size_t romsize;
size_t datasize;
uint8_t *data;
MemoryRegion *mr;
AddressSpace *as;
int isrom;
char *fw_dir;
char *fw_file;
bool committed;
hwaddr addr;
QTAILQ_ENTRY(Rom) next;
};
static FWCfgState *fw_cfg;
static QTAILQ_HEAD(, Rom) roms = QTAILQ_HEAD_INITIALIZER(roms);
/* rom->data must be heap-allocated (do not use with rom_add_elf_program()) */
static void rom_free(Rom *rom)
{
g_free(rom->data);
g_free(rom->path);
g_free(rom->name);
g_free(rom->fw_dir);
g_free(rom->fw_file);
g_free(rom);
}
static inline bool rom_order_compare(Rom *rom, Rom *item)
{
return ((uintptr_t)(void *)rom->as > (uintptr_t)(void *)item->as) ||
(rom->as == item->as && rom->addr >= item->addr);
}
static void rom_insert(Rom *rom)
{
Rom *item;
if (roms_loaded) {
hw_error ("ROM images must be loaded at startup\n");
}
/* The user didn't specify an address space, this is the default */
if (!rom->as) {
rom->as = &address_space_memory;
}
rom->committed = false;
/* List is ordered by load address in the same address space */
QTAILQ_FOREACH(item, &roms, next) {
if (rom_order_compare(rom, item)) {
continue;
}
QTAILQ_INSERT_BEFORE(item, rom, next);
return;
}
QTAILQ_INSERT_TAIL(&roms, rom, next);
}
static void fw_cfg_resized(const char *id, uint64_t length, void *host)
{
if (fw_cfg) {
fw_cfg_modify_file(fw_cfg, id + strlen("/rom@"), host, length);
}
}
static void *rom_set_mr(Rom *rom, Object *owner, const char *name, bool ro)
{
void *data;
rom->mr = g_malloc(sizeof(*rom->mr));
memory_region_init_resizeable_ram(rom->mr, owner, name,
rom->datasize, rom->romsize,
fw_cfg_resized,
&error_fatal);
memory_region_set_readonly(rom->mr, ro);
vmstate_register_ram_global(rom->mr);
data = memory_region_get_ram_ptr(rom->mr);
memcpy(data, rom->data, rom->datasize);
return data;
}
int rom_add_file(const char *file, const char *fw_dir,
hwaddr addr, int32_t bootindex,
bool option_rom, MemoryRegion *mr,
AddressSpace *as)
{
MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
Rom *rom;
int rc, fd = -1;
char devpath[100];
if (as && mr) {
fprintf(stderr, "Specifying an Address Space and Memory Region is " \
"not valid when loading a rom\n");
/* We haven't allocated anything so we don't need any cleanup */
return -1;
}
rom = g_malloc0(sizeof(*rom));
rom->name = g_strdup(file);
rom->path = qemu_find_file(QEMU_FILE_TYPE_BIOS, rom->name);
rom->as = as;
if (rom->path == NULL) {
rom->path = g_strdup(file);
}
fd = open(rom->path, O_RDONLY | O_BINARY);
if (fd == -1) {
fprintf(stderr, "Could not open option rom '%s': %s\n",
rom->path, strerror(errno));
goto err;
}
if (fw_dir) {
rom->fw_dir = g_strdup(fw_dir);
rom->fw_file = g_strdup(file);
}
rom->addr = addr;
rom->romsize = lseek(fd, 0, SEEK_END);
if (rom->romsize == -1) {
fprintf(stderr, "rom: file %-20s: get size error: %s\n",
rom->name, strerror(errno));
goto err;
}
rom->datasize = rom->romsize;
rom->data = g_malloc0(rom->datasize);
lseek(fd, 0, SEEK_SET);
rc = read(fd, rom->data, rom->datasize);
if (rc != rom->datasize) {
fprintf(stderr, "rom: file %-20s: read error: rc=%d (expected %zd)\n",
rom->name, rc, rom->datasize);
goto err;
}
close(fd);
rom_insert(rom);
if (rom->fw_file && fw_cfg) {
const char *basename;
char fw_file_name[FW_CFG_MAX_FILE_PATH];
void *data;
basename = strrchr(rom->fw_file, '/');
if (basename) {
basename++;
} else {
basename = rom->fw_file;
}
snprintf(fw_file_name, sizeof(fw_file_name), "%s/%s", rom->fw_dir,
basename);
snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name);
if ((!option_rom || mc->option_rom_has_mr) && mc->rom_file_has_mr) {
data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, true);
} else {
data = rom->data;
}
fw_cfg_add_file(fw_cfg, fw_file_name, data, rom->romsize);
} else {
if (mr) {
rom->mr = mr;
snprintf(devpath, sizeof(devpath), "/rom@%s", file);
} else {
snprintf(devpath, sizeof(devpath), "/rom@" TARGET_FMT_plx, addr);
}
}
add_boot_device_path(bootindex, NULL, devpath);
return 0;
err:
if (fd != -1)
close(fd);
rom_free(rom);
return -1;
}
MemoryRegion *rom_add_blob(const char *name, const void *blob, size_t len,
size_t max_len, hwaddr addr, const char *fw_file_name,
FWCfgCallback fw_callback, void *callback_opaque,
AddressSpace *as, bool read_only)
{
MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
Rom *rom;
MemoryRegion *mr = NULL;
rom = g_malloc0(sizeof(*rom));
rom->name = g_strdup(name);
rom->as = as;
rom->addr = addr;
rom->romsize = max_len ? max_len : len;
rom->datasize = len;
rom->data = g_malloc0(rom->datasize);
memcpy(rom->data, blob, len);
rom_insert(rom);
if (fw_file_name && fw_cfg) {
char devpath[100];
void *data;
if (read_only) {
snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name);
} else {
snprintf(devpath, sizeof(devpath), "/ram@%s", fw_file_name);
}
if (mc->rom_file_has_mr) {
data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, read_only);
mr = rom->mr;
} else {
data = rom->data;
}
fw_cfg_add_file_callback(fw_cfg, fw_file_name,
fw_callback, NULL, callback_opaque,
data, rom->datasize, read_only);
}
return mr;
}
/* This function is specific for elf program because we don't need to allocate
* all the rom. We just allocate the first part and the rest is just zeros. This
* is why romsize and datasize are different. Also, this function seize the
* memory ownership of "data", so we don't have to allocate and copy the buffer.
*/
int rom_add_elf_program(const char *name, void *data, size_t datasize,
size_t romsize, hwaddr addr, AddressSpace *as)
{
Rom *rom;
rom = g_malloc0(sizeof(*rom));
rom->name = g_strdup(name);
rom->addr = addr;
rom->datasize = datasize;
rom->romsize = romsize;
rom->data = data;
rom->as = as;
rom_insert(rom);
return 0;
}
int rom_add_vga(const char *file)
{
return rom_add_file(file, "vgaroms", 0, -1, true, NULL, NULL);
}
int rom_add_option(const char *file, int32_t bootindex)
{
return rom_add_file(file, "genroms", 0, bootindex, true, NULL, NULL);
}
static void rom_reset(void *unused)
{
Rom *rom;
QTAILQ_FOREACH(rom, &roms, next) {
if (rom->fw_file) {
continue;
}
if (rom->data == NULL) {
continue;
}
if (rom->mr) {
void *host = memory_region_get_ram_ptr(rom->mr);
memcpy(host, rom->data, rom->datasize);
} else {
address_space_write_rom(rom->as, rom->addr, MEMTXATTRS_UNSPECIFIED,
rom->data, rom->datasize);
}
if (rom->isrom) {
/* rom needs to be written only once */
g_free(rom->data);
rom->data = NULL;
}
/*
* The rom loader is really on the same level as firmware in the guest
* shadowing a ROM into RAM. Such a shadowing mechanism needs to ensure
* that the instruction cache for that new region is clear, so that the
* CPU definitely fetches its instructions from the just written data.
*/
cpu_flush_icache_range(rom->addr, rom->datasize);
}
}
int rom_check_and_register_reset(void)
{
hwaddr addr = 0;
MemoryRegionSection section;
Rom *rom;
AddressSpace *as = NULL;
QTAILQ_FOREACH(rom, &roms, next) {
if (rom->fw_file) {
continue;
}
if (!rom->mr) {
if ((addr > rom->addr) && (as == rom->as)) {
fprintf(stderr, "rom: requested regions overlap "
"(rom %s. free=0x" TARGET_FMT_plx
", addr=0x" TARGET_FMT_plx ")\n",
rom->name, addr, rom->addr);
return -1;
}
addr = rom->addr;
addr += rom->romsize;
as = rom->as;
}
section = memory_region_find(rom->mr ? rom->mr : get_system_memory(),
rom->addr, 1);
rom->isrom = int128_nz(section.size) && memory_region_is_rom(section.mr);
memory_region_unref(section.mr);
}
qemu_register_reset(rom_reset, NULL);
roms_loaded = 1;
return 0;
}
void rom_set_fw(FWCfgState *f)
{
fw_cfg = f;
}
void rom_set_order_override(int order)
{
if (!fw_cfg)
return;
fw_cfg_set_order_override(fw_cfg, order);
}
void rom_reset_order_override(void)
{
if (!fw_cfg)
return;
fw_cfg_reset_order_override(fw_cfg);
}
void rom_transaction_begin(void)
{
Rom *rom;
/* Ignore ROMs added without the transaction API */
QTAILQ_FOREACH(rom, &roms, next) {
rom->committed = true;
}
}
void rom_transaction_end(bool commit)
{
Rom *rom;
Rom *tmp;
QTAILQ_FOREACH_SAFE(rom, &roms, next, tmp) {
if (rom->committed) {
continue;
}
if (commit) {
rom->committed = true;
} else {
QTAILQ_REMOVE(&roms, rom, next);
rom_free(rom);
}
}
}
static Rom *find_rom(hwaddr addr, size_t size)
{
Rom *rom;
QTAILQ_FOREACH(rom, &roms, next) {
if (rom->fw_file) {
continue;
}
if (rom->mr) {
continue;
}
if (rom->addr > addr) {
continue;
}
if (rom->addr + rom->romsize < addr + size) {
continue;
}
return rom;
}
return NULL;
}
/*
* Copies memory from registered ROMs to dest. Any memory that is contained in
* a ROM between addr and addr + size is copied. Note that this can involve
* multiple ROMs, which need not start at addr and need not end at addr + size.
*/
int rom_copy(uint8_t *dest, hwaddr addr, size_t size)
{
hwaddr end = addr + size;
uint8_t *s, *d = dest;
size_t l = 0;
Rom *rom;
QTAILQ_FOREACH(rom, &roms, next) {
if (rom->fw_file) {
continue;
}
if (rom->mr) {
continue;
}
if (rom->addr + rom->romsize < addr) {
continue;
}
if (rom->addr > end) {
break;
}
d = dest + (rom->addr - addr);
s = rom->data;
l = rom->datasize;
if ((d + l) > (dest + size)) {
l = dest - d;
}
if (l > 0) {
memcpy(d, s, l);
}
if (rom->romsize > rom->datasize) {
/* If datasize is less than romsize, it means that we didn't
* allocate all the ROM because the trailing data are only zeros.
*/
d += l;
l = rom->romsize - rom->datasize;
if ((d + l) > (dest + size)) {
/* Rom size doesn't fit in the destination area. Adjust to avoid
* overflow.
*/
l = dest - d;
}
if (l > 0) {
memset(d, 0x0, l);
}
}
}
return (d + l) - dest;
}
void *rom_ptr(hwaddr addr, size_t size)
{
Rom *rom;
rom = find_rom(addr, size);
if (!rom || !rom->data)
return NULL;
return rom->data + (addr - rom->addr);
}
void hmp_info_roms(Monitor *mon, const QDict *qdict)
{
Rom *rom;
QTAILQ_FOREACH(rom, &roms, next) {
if (rom->mr) {
monitor_printf(mon, "%s"
" size=0x%06zx name=\"%s\"\n",
memory_region_name(rom->mr),
rom->romsize,
rom->name);
} else if (!rom->fw_file) {
monitor_printf(mon, "addr=" TARGET_FMT_plx
" size=0x%06zx mem=%s name=\"%s\"\n",
rom->addr, rom->romsize,
rom->isrom ? "rom" : "ram",
rom->name);
} else {
monitor_printf(mon, "fw=%s/%s"
" size=0x%06zx name=\"%s\"\n",
rom->fw_dir,
rom->fw_file,
rom->romsize,
rom->name);
}
}
}
typedef enum HexRecord HexRecord;
enum HexRecord {
DATA_RECORD = 0,
EOF_RECORD,
EXT_SEG_ADDR_RECORD,
START_SEG_ADDR_RECORD,
EXT_LINEAR_ADDR_RECORD,
START_LINEAR_ADDR_RECORD,
};
/* Each record contains a 16-bit address which is combined with the upper 16
* bits of the implicit "next address" to form a 32-bit address.
*/
#define NEXT_ADDR_MASK 0xffff0000
#define DATA_FIELD_MAX_LEN 0xff
#define LEN_EXCEPT_DATA 0x5
/* 0x5 = sizeof(byte_count) + sizeof(address) + sizeof(record_type) +
* sizeof(checksum) */
typedef struct {
uint8_t byte_count;
uint16_t address;
uint8_t record_type;
uint8_t data[DATA_FIELD_MAX_LEN];
uint8_t checksum;
} HexLine;
/* return 0 or -1 if error */
static bool parse_record(HexLine *line, uint8_t *our_checksum, const uint8_t c,
uint32_t *index, const bool in_process)
{
/* +-------+---------------+-------+---------------------+--------+
* | byte | |record | | |
* | count | address | type | data |checksum|
* +-------+---------------+-------+---------------------+--------+
* ^ ^ ^ ^ ^ ^
* |1 byte | 2 bytes |1 byte | 0-255 bytes | 1 byte |
*/
uint8_t value = 0;
uint32_t idx = *index;
/* ignore space */
if (g_ascii_isspace(c)) {
return true;
}
if (!g_ascii_isxdigit(c) || !in_process) {
return false;
}
value = g_ascii_xdigit_value(c);
value = (idx & 0x1) ? (value & 0xf) : (value << 4);
if (idx < 2) {
line->byte_count |= value;
} else if (2 <= idx && idx < 6) {
line->address <<= 4;
line->address += g_ascii_xdigit_value(c);
} else if (6 <= idx && idx < 8) {
line->record_type |= value;
} else if (8 <= idx && idx < 8 + 2 * line->byte_count) {
line->data[(idx - 8) >> 1] |= value;
} else if (8 + 2 * line->byte_count <= idx &&
idx < 10 + 2 * line->byte_count) {
line->checksum |= value;
} else {
return false;
}
*our_checksum += value;
++(*index);
return true;
}
typedef struct {
const char *filename;
HexLine line;
uint8_t *bin_buf;
hwaddr *start_addr;
int total_size;
uint32_t next_address_to_write;
uint32_t current_address;
uint32_t current_rom_index;
uint32_t rom_start_address;
AddressSpace *as;
} HexParser;
/* return size or -1 if error */
static int handle_record_type(HexParser *parser)
{
HexLine *line = &(parser->line);
switch (line->record_type) {
case DATA_RECORD:
parser->current_address =
(parser->next_address_to_write & NEXT_ADDR_MASK) | line->address;
/* verify this is a contiguous block of memory */
if (parser->current_address != parser->next_address_to_write) {
if (parser->current_rom_index != 0) {
rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
parser->current_rom_index,
parser->rom_start_address, parser->as);
}
parser->rom_start_address = parser->current_address;
parser->current_rom_index = 0;
}
/* copy from line buffer to output bin_buf */
memcpy(parser->bin_buf + parser->current_rom_index, line->data,
line->byte_count);
parser->current_rom_index += line->byte_count;
parser->total_size += line->byte_count;
/* save next address to write */
parser->next_address_to_write =
parser->current_address + line->byte_count;
break;
case EOF_RECORD:
if (parser->current_rom_index != 0) {
rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
parser->current_rom_index,
parser->rom_start_address, parser->as);
}
return parser->total_size;
case EXT_SEG_ADDR_RECORD:
case EXT_LINEAR_ADDR_RECORD:
if (line->byte_count != 2 && line->address != 0) {
return -1;
}
if (parser->current_rom_index != 0) {
rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
parser->current_rom_index,
parser->rom_start_address, parser->as);
}
/* save next address to write,
* in case of non-contiguous block of memory */
parser->next_address_to_write = (line->data[0] << 12) |
(line->data[1] << 4);
if (line->record_type == EXT_LINEAR_ADDR_RECORD) {
parser->next_address_to_write <<= 12;
}
parser->rom_start_address = parser->next_address_to_write;
parser->current_rom_index = 0;
break;
case START_SEG_ADDR_RECORD:
if (line->byte_count != 4 && line->address != 0) {
return -1;
}
/* x86 16-bit CS:IP segmented addressing */
*(parser->start_addr) = (((line->data[0] << 8) | line->data[1]) << 4) +
((line->data[2] << 8) | line->data[3]);
break;
case START_LINEAR_ADDR_RECORD:
if (line->byte_count != 4 && line->address != 0) {
return -1;
}
*(parser->start_addr) = ldl_be_p(line->data);
break;
default:
return -1;
}
return parser->total_size;
}
/* return size or -1 if error */
static int parse_hex_blob(const char *filename, hwaddr *addr, uint8_t *hex_blob,
size_t hex_blob_size, AddressSpace *as)
{
bool in_process = false; /* avoid re-enter and
* check whether record begin with ':' */
uint8_t *end = hex_blob + hex_blob_size;
uint8_t our_checksum = 0;
uint32_t record_index = 0;
HexParser parser = {
.filename = filename,
.bin_buf = g_malloc(hex_blob_size),
.start_addr = addr,
.as = as,
};
rom_transaction_begin();
for (; hex_blob < end; ++hex_blob) {
switch (*hex_blob) {
case '\r':
case '\n':
if (!in_process) {
break;
}
in_process = false;
if ((LEN_EXCEPT_DATA + parser.line.byte_count) * 2 !=
record_index ||
our_checksum != 0) {
parser.total_size = -1;
goto out;
}
if (handle_record_type(&parser) == -1) {
parser.total_size = -1;
goto out;
}
break;
/* start of a new record. */
case ':':
memset(&parser.line, 0, sizeof(HexLine));
in_process = true;
record_index = 0;
break;
/* decoding lines */
default:
if (!parse_record(&parser.line, &our_checksum, *hex_blob,
&record_index, in_process)) {
parser.total_size = -1;
goto out;
}
break;
}
}
out:
g_free(parser.bin_buf);
rom_transaction_end(parser.total_size != -1);
return parser.total_size;
}
/* return size or -1 if error */
int load_targphys_hex_as(const char *filename, hwaddr *entry, AddressSpace *as)
{
gsize hex_blob_size;
gchar *hex_blob;
int total_size = 0;
if (!g_file_get_contents(filename, &hex_blob, &hex_blob_size, NULL)) {
return -1;
}
total_size = parse_hex_blob(filename, entry, (uint8_t *)hex_blob,
hex_blob_size, as);
g_free(hex_blob);
return total_size;
}