| /* |
| * PowerPC emulation helpers for qemu. |
| * |
| * Copyright (c) 2003-2007 Jocelyn Mayer |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA |
| */ |
| #include <string.h> |
| #include "exec.h" |
| #include "host-utils.h" |
| #include "helper.h" |
| |
| #include "helper_regs.h" |
| |
| //#define DEBUG_OP |
| //#define DEBUG_EXCEPTIONS |
| //#define DEBUG_SOFTWARE_TLB |
| |
| #ifdef DEBUG_SOFTWARE_TLB |
| # define LOG_SWTLB(...) qemu_log(__VA_ARGS__) |
| #else |
| # define LOG_SWTLB(...) do { } while (0) |
| #endif |
| |
| |
| /*****************************************************************************/ |
| /* Exceptions processing helpers */ |
| |
| void helper_raise_exception_err (uint32_t exception, uint32_t error_code) |
| { |
| #if 0 |
| printf("Raise exception %3x code : %d\n", exception, error_code); |
| #endif |
| env->exception_index = exception; |
| env->error_code = error_code; |
| cpu_loop_exit(); |
| } |
| |
| void helper_raise_exception (uint32_t exception) |
| { |
| helper_raise_exception_err(exception, 0); |
| } |
| |
| /*****************************************************************************/ |
| /* Registers load and stores */ |
| target_ulong helper_load_cr (void) |
| { |
| return (env->crf[0] << 28) | |
| (env->crf[1] << 24) | |
| (env->crf[2] << 20) | |
| (env->crf[3] << 16) | |
| (env->crf[4] << 12) | |
| (env->crf[5] << 8) | |
| (env->crf[6] << 4) | |
| (env->crf[7] << 0); |
| } |
| |
| void helper_store_cr (target_ulong val, uint32_t mask) |
| { |
| int i, sh; |
| |
| for (i = 0, sh = 7; i < 8; i++, sh--) { |
| if (mask & (1 << sh)) |
| env->crf[i] = (val >> (sh * 4)) & 0xFUL; |
| } |
| } |
| |
| /*****************************************************************************/ |
| /* SPR accesses */ |
| void helper_load_dump_spr (uint32_t sprn) |
| { |
| qemu_log("Read SPR %d %03x => " ADDRX "\n", |
| sprn, sprn, env->spr[sprn]); |
| } |
| |
| void helper_store_dump_spr (uint32_t sprn) |
| { |
| qemu_log("Write SPR %d %03x <= " ADDRX "\n", |
| sprn, sprn, env->spr[sprn]); |
| } |
| |
| target_ulong helper_load_tbl (void) |
| { |
| return cpu_ppc_load_tbl(env); |
| } |
| |
| target_ulong helper_load_tbu (void) |
| { |
| return cpu_ppc_load_tbu(env); |
| } |
| |
| target_ulong helper_load_atbl (void) |
| { |
| return cpu_ppc_load_atbl(env); |
| } |
| |
| target_ulong helper_load_atbu (void) |
| { |
| return cpu_ppc_load_atbu(env); |
| } |
| |
| target_ulong helper_load_601_rtcl (void) |
| { |
| return cpu_ppc601_load_rtcl(env); |
| } |
| |
| target_ulong helper_load_601_rtcu (void) |
| { |
| return cpu_ppc601_load_rtcu(env); |
| } |
| |
| #if !defined(CONFIG_USER_ONLY) |
| #if defined (TARGET_PPC64) |
| void helper_store_asr (target_ulong val) |
| { |
| ppc_store_asr(env, val); |
| } |
| #endif |
| |
| void helper_store_sdr1 (target_ulong val) |
| { |
| ppc_store_sdr1(env, val); |
| } |
| |
| void helper_store_tbl (target_ulong val) |
| { |
| cpu_ppc_store_tbl(env, val); |
| } |
| |
| void helper_store_tbu (target_ulong val) |
| { |
| cpu_ppc_store_tbu(env, val); |
| } |
| |
| void helper_store_atbl (target_ulong val) |
| { |
| cpu_ppc_store_atbl(env, val); |
| } |
| |
| void helper_store_atbu (target_ulong val) |
| { |
| cpu_ppc_store_atbu(env, val); |
| } |
| |
| void helper_store_601_rtcl (target_ulong val) |
| { |
| cpu_ppc601_store_rtcl(env, val); |
| } |
| |
| void helper_store_601_rtcu (target_ulong val) |
| { |
| cpu_ppc601_store_rtcu(env, val); |
| } |
| |
| target_ulong helper_load_decr (void) |
| { |
| return cpu_ppc_load_decr(env); |
| } |
| |
| void helper_store_decr (target_ulong val) |
| { |
| cpu_ppc_store_decr(env, val); |
| } |
| |
| void helper_store_hid0_601 (target_ulong val) |
| { |
| target_ulong hid0; |
| |
| hid0 = env->spr[SPR_HID0]; |
| if ((val ^ hid0) & 0x00000008) { |
| /* Change current endianness */ |
| env->hflags &= ~(1 << MSR_LE); |
| env->hflags_nmsr &= ~(1 << MSR_LE); |
| env->hflags_nmsr |= (1 << MSR_LE) & (((val >> 3) & 1) << MSR_LE); |
| env->hflags |= env->hflags_nmsr; |
| qemu_log("%s: set endianness to %c => " ADDRX "\n", |
| __func__, val & 0x8 ? 'l' : 'b', env->hflags); |
| } |
| env->spr[SPR_HID0] = (uint32_t)val; |
| } |
| |
| void helper_store_403_pbr (uint32_t num, target_ulong value) |
| { |
| if (likely(env->pb[num] != value)) { |
| env->pb[num] = value; |
| /* Should be optimized */ |
| tlb_flush(env, 1); |
| } |
| } |
| |
| target_ulong helper_load_40x_pit (void) |
| { |
| return load_40x_pit(env); |
| } |
| |
| void helper_store_40x_pit (target_ulong val) |
| { |
| store_40x_pit(env, val); |
| } |
| |
| void helper_store_40x_dbcr0 (target_ulong val) |
| { |
| store_40x_dbcr0(env, val); |
| } |
| |
| void helper_store_40x_sler (target_ulong val) |
| { |
| store_40x_sler(env, val); |
| } |
| |
| void helper_store_booke_tcr (target_ulong val) |
| { |
| store_booke_tcr(env, val); |
| } |
| |
| void helper_store_booke_tsr (target_ulong val) |
| { |
| store_booke_tsr(env, val); |
| } |
| |
| void helper_store_ibatu (uint32_t nr, target_ulong val) |
| { |
| ppc_store_ibatu(env, nr, val); |
| } |
| |
| void helper_store_ibatl (uint32_t nr, target_ulong val) |
| { |
| ppc_store_ibatl(env, nr, val); |
| } |
| |
| void helper_store_dbatu (uint32_t nr, target_ulong val) |
| { |
| ppc_store_dbatu(env, nr, val); |
| } |
| |
| void helper_store_dbatl (uint32_t nr, target_ulong val) |
| { |
| ppc_store_dbatl(env, nr, val); |
| } |
| |
| void helper_store_601_batl (uint32_t nr, target_ulong val) |
| { |
| ppc_store_ibatl_601(env, nr, val); |
| } |
| |
| void helper_store_601_batu (uint32_t nr, target_ulong val) |
| { |
| ppc_store_ibatu_601(env, nr, val); |
| } |
| #endif |
| |
| /*****************************************************************************/ |
| /* Memory load and stores */ |
| |
| static always_inline target_ulong addr_add(target_ulong addr, target_long arg) |
| { |
| #if defined(TARGET_PPC64) |
| if (!msr_sf) |
| return (uint32_t)(addr + arg); |
| else |
| #endif |
| return addr + arg; |
| } |
| |
| void helper_lmw (target_ulong addr, uint32_t reg) |
| { |
| for (; reg < 32; reg++) { |
| if (msr_le) |
| env->gpr[reg] = bswap32(ldl(addr)); |
| else |
| env->gpr[reg] = ldl(addr); |
| addr = addr_add(addr, 4); |
| } |
| } |
| |
| void helper_stmw (target_ulong addr, uint32_t reg) |
| { |
| for (; reg < 32; reg++) { |
| if (msr_le) |
| stl(addr, bswap32((uint32_t)env->gpr[reg])); |
| else |
| stl(addr, (uint32_t)env->gpr[reg]); |
| addr = addr_add(addr, 4); |
| } |
| } |
| |
| void helper_lsw(target_ulong addr, uint32_t nb, uint32_t reg) |
| { |
| int sh; |
| for (; nb > 3; nb -= 4) { |
| env->gpr[reg] = ldl(addr); |
| reg = (reg + 1) % 32; |
| addr = addr_add(addr, 4); |
| } |
| if (unlikely(nb > 0)) { |
| env->gpr[reg] = 0; |
| for (sh = 24; nb > 0; nb--, sh -= 8) { |
| env->gpr[reg] |= ldub(addr) << sh; |
| addr = addr_add(addr, 1); |
| } |
| } |
| } |
| /* PPC32 specification says we must generate an exception if |
| * rA is in the range of registers to be loaded. |
| * In an other hand, IBM says this is valid, but rA won't be loaded. |
| * For now, I'll follow the spec... |
| */ |
| void helper_lswx(target_ulong addr, uint32_t reg, uint32_t ra, uint32_t rb) |
| { |
| if (likely(xer_bc != 0)) { |
| if (unlikely((ra != 0 && reg < ra && (reg + xer_bc) > ra) || |
| (reg < rb && (reg + xer_bc) > rb))) { |
| helper_raise_exception_err(POWERPC_EXCP_PROGRAM, |
| POWERPC_EXCP_INVAL | |
| POWERPC_EXCP_INVAL_LSWX); |
| } else { |
| helper_lsw(addr, xer_bc, reg); |
| } |
| } |
| } |
| |
| void helper_stsw(target_ulong addr, uint32_t nb, uint32_t reg) |
| { |
| int sh; |
| for (; nb > 3; nb -= 4) { |
| stl(addr, env->gpr[reg]); |
| reg = (reg + 1) % 32; |
| addr = addr_add(addr, 4); |
| } |
| if (unlikely(nb > 0)) { |
| for (sh = 24; nb > 0; nb--, sh -= 8) { |
| stb(addr, (env->gpr[reg] >> sh) & 0xFF); |
| addr = addr_add(addr, 1); |
| } |
| } |
| } |
| |
| static void do_dcbz(target_ulong addr, int dcache_line_size) |
| { |
| addr &= ~(dcache_line_size - 1); |
| int i; |
| for (i = 0 ; i < dcache_line_size ; i += 4) { |
| stl(addr + i , 0); |
| } |
| if (env->reserve == addr) |
| env->reserve = (target_ulong)-1ULL; |
| } |
| |
| void helper_dcbz(target_ulong addr) |
| { |
| do_dcbz(addr, env->dcache_line_size); |
| } |
| |
| void helper_dcbz_970(target_ulong addr) |
| { |
| if (((env->spr[SPR_970_HID5] >> 7) & 0x3) == 1) |
| do_dcbz(addr, 32); |
| else |
| do_dcbz(addr, env->dcache_line_size); |
| } |
| |
| void helper_icbi(target_ulong addr) |
| { |
| uint32_t tmp; |
| |
| addr &= ~(env->dcache_line_size - 1); |
| /* Invalidate one cache line : |
| * PowerPC specification says this is to be treated like a load |
| * (not a fetch) by the MMU. To be sure it will be so, |
| * do the load "by hand". |
| */ |
| tmp = ldl(addr); |
| tb_invalidate_page_range(addr, addr + env->icache_line_size); |
| } |
| |
| // XXX: to be tested |
| target_ulong helper_lscbx (target_ulong addr, uint32_t reg, uint32_t ra, uint32_t rb) |
| { |
| int i, c, d; |
| d = 24; |
| for (i = 0; i < xer_bc; i++) { |
| c = ldub(addr); |
| addr = addr_add(addr, 1); |
| /* ra (if not 0) and rb are never modified */ |
| if (likely(reg != rb && (ra == 0 || reg != ra))) { |
| env->gpr[reg] = (env->gpr[reg] & ~(0xFF << d)) | (c << d); |
| } |
| if (unlikely(c == xer_cmp)) |
| break; |
| if (likely(d != 0)) { |
| d -= 8; |
| } else { |
| d = 24; |
| reg++; |
| reg = reg & 0x1F; |
| } |
| } |
| return i; |
| } |
| |
| /*****************************************************************************/ |
| /* Fixed point operations helpers */ |
| #if defined(TARGET_PPC64) |
| |
| /* multiply high word */ |
| uint64_t helper_mulhd (uint64_t arg1, uint64_t arg2) |
| { |
| uint64_t tl, th; |
| |
| muls64(&tl, &th, arg1, arg2); |
| return th; |
| } |
| |
| /* multiply high word unsigned */ |
| uint64_t helper_mulhdu (uint64_t arg1, uint64_t arg2) |
| { |
| uint64_t tl, th; |
| |
| mulu64(&tl, &th, arg1, arg2); |
| return th; |
| } |
| |
| uint64_t helper_mulldo (uint64_t arg1, uint64_t arg2) |
| { |
| int64_t th; |
| uint64_t tl; |
| |
| muls64(&tl, (uint64_t *)&th, arg1, arg2); |
| /* If th != 0 && th != -1, then we had an overflow */ |
| if (likely((uint64_t)(th + 1) <= 1)) { |
| env->xer &= ~(1 << XER_OV); |
| } else { |
| env->xer |= (1 << XER_OV) | (1 << XER_SO); |
| } |
| return (int64_t)tl; |
| } |
| #endif |
| |
| target_ulong helper_cntlzw (target_ulong t) |
| { |
| return clz32(t); |
| } |
| |
| #if defined(TARGET_PPC64) |
| target_ulong helper_cntlzd (target_ulong t) |
| { |
| return clz64(t); |
| } |
| #endif |
| |
| /* shift right arithmetic helper */ |
| target_ulong helper_sraw (target_ulong value, target_ulong shift) |
| { |
| int32_t ret; |
| |
| if (likely(!(shift & 0x20))) { |
| if (likely((uint32_t)shift != 0)) { |
| shift &= 0x1f; |
| ret = (int32_t)value >> shift; |
| if (likely(ret >= 0 || (value & ((1 << shift) - 1)) == 0)) { |
| env->xer &= ~(1 << XER_CA); |
| } else { |
| env->xer |= (1 << XER_CA); |
| } |
| } else { |
| ret = (int32_t)value; |
| env->xer &= ~(1 << XER_CA); |
| } |
| } else { |
| ret = (int32_t)value >> 31; |
| if (ret) { |
| env->xer |= (1 << XER_CA); |
| } else { |
| env->xer &= ~(1 << XER_CA); |
| } |
| } |
| return (target_long)ret; |
| } |
| |
| #if defined(TARGET_PPC64) |
| target_ulong helper_srad (target_ulong value, target_ulong shift) |
| { |
| int64_t ret; |
| |
| if (likely(!(shift & 0x40))) { |
| if (likely((uint64_t)shift != 0)) { |
| shift &= 0x3f; |
| ret = (int64_t)value >> shift; |
| if (likely(ret >= 0 || (value & ((1 << shift) - 1)) == 0)) { |
| env->xer &= ~(1 << XER_CA); |
| } else { |
| env->xer |= (1 << XER_CA); |
| } |
| } else { |
| ret = (int64_t)value; |
| env->xer &= ~(1 << XER_CA); |
| } |
| } else { |
| ret = (int64_t)value >> 63; |
| if (ret) { |
| env->xer |= (1 << XER_CA); |
| } else { |
| env->xer &= ~(1 << XER_CA); |
| } |
| } |
| return ret; |
| } |
| #endif |
| |
| target_ulong helper_popcntb (target_ulong val) |
| { |
| val = (val & 0x55555555) + ((val >> 1) & 0x55555555); |
| val = (val & 0x33333333) + ((val >> 2) & 0x33333333); |
| val = (val & 0x0f0f0f0f) + ((val >> 4) & 0x0f0f0f0f); |
| return val; |
| } |
| |
| #if defined(TARGET_PPC64) |
| target_ulong helper_popcntb_64 (target_ulong val) |
| { |
| val = (val & 0x5555555555555555ULL) + ((val >> 1) & 0x5555555555555555ULL); |
| val = (val & 0x3333333333333333ULL) + ((val >> 2) & 0x3333333333333333ULL); |
| val = (val & 0x0f0f0f0f0f0f0f0fULL) + ((val >> 4) & 0x0f0f0f0f0f0f0f0fULL); |
| return val; |
| } |
| #endif |
| |
| /*****************************************************************************/ |
| /* Floating point operations helpers */ |
| uint64_t helper_float32_to_float64(uint32_t arg) |
| { |
| CPU_FloatU f; |
| CPU_DoubleU d; |
| f.l = arg; |
| d.d = float32_to_float64(f.f, &env->fp_status); |
| return d.ll; |
| } |
| |
| uint32_t helper_float64_to_float32(uint64_t arg) |
| { |
| CPU_FloatU f; |
| CPU_DoubleU d; |
| d.ll = arg; |
| f.f = float64_to_float32(d.d, &env->fp_status); |
| return f.l; |
| } |
| |
| static always_inline int isden (float64 d) |
| { |
| CPU_DoubleU u; |
| |
| u.d = d; |
| |
| return ((u.ll >> 52) & 0x7FF) == 0; |
| } |
| |
| uint32_t helper_compute_fprf (uint64_t arg, uint32_t set_fprf) |
| { |
| CPU_DoubleU farg; |
| int isneg; |
| int ret; |
| farg.ll = arg; |
| isneg = float64_is_neg(farg.d); |
| if (unlikely(float64_is_nan(farg.d))) { |
| if (float64_is_signaling_nan(farg.d)) { |
| /* Signaling NaN: flags are undefined */ |
| ret = 0x00; |
| } else { |
| /* Quiet NaN */ |
| ret = 0x11; |
| } |
| } else if (unlikely(float64_is_infinity(farg.d))) { |
| /* +/- infinity */ |
| if (isneg) |
| ret = 0x09; |
| else |
| ret = 0x05; |
| } else { |
| if (float64_is_zero(farg.d)) { |
| /* +/- zero */ |
| if (isneg) |
| ret = 0x12; |
| else |
| ret = 0x02; |
| } else { |
| if (isden(farg.d)) { |
| /* Denormalized numbers */ |
| ret = 0x10; |
| } else { |
| /* Normalized numbers */ |
| ret = 0x00; |
| } |
| if (isneg) { |
| ret |= 0x08; |
| } else { |
| ret |= 0x04; |
| } |
| } |
| } |
| if (set_fprf) { |
| /* We update FPSCR_FPRF */ |
| env->fpscr &= ~(0x1F << FPSCR_FPRF); |
| env->fpscr |= ret << FPSCR_FPRF; |
| } |
| /* We just need fpcc to update Rc1 */ |
| return ret & 0xF; |
| } |
| |
| /* Floating-point invalid operations exception */ |
| static always_inline uint64_t fload_invalid_op_excp (int op) |
| { |
| uint64_t ret = 0; |
| int ve; |
| |
| ve = fpscr_ve; |
| switch (op) { |
| case POWERPC_EXCP_FP_VXSNAN: |
| env->fpscr |= 1 << FPSCR_VXSNAN; |
| break; |
| case POWERPC_EXCP_FP_VXSOFT: |
| env->fpscr |= 1 << FPSCR_VXSOFT; |
| break; |
| case POWERPC_EXCP_FP_VXISI: |
| /* Magnitude subtraction of infinities */ |
| env->fpscr |= 1 << FPSCR_VXISI; |
| goto update_arith; |
| case POWERPC_EXCP_FP_VXIDI: |
| /* Division of infinity by infinity */ |
| env->fpscr |= 1 << FPSCR_VXIDI; |
| goto update_arith; |
| case POWERPC_EXCP_FP_VXZDZ: |
| /* Division of zero by zero */ |
| env->fpscr |= 1 << FPSCR_VXZDZ; |
| goto update_arith; |
| case POWERPC_EXCP_FP_VXIMZ: |
| /* Multiplication of zero by infinity */ |
| env->fpscr |= 1 << FPSCR_VXIMZ; |
| goto update_arith; |
| case POWERPC_EXCP_FP_VXVC: |
| /* Ordered comparison of NaN */ |
| env->fpscr |= 1 << FPSCR_VXVC; |
| env->fpscr &= ~(0xF << FPSCR_FPCC); |
| env->fpscr |= 0x11 << FPSCR_FPCC; |
| /* We must update the target FPR before raising the exception */ |
| if (ve != 0) { |
| env->exception_index = POWERPC_EXCP_PROGRAM; |
| env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC; |
| /* Update the floating-point enabled exception summary */ |
| env->fpscr |= 1 << FPSCR_FEX; |
| /* Exception is differed */ |
| ve = 0; |
| } |
| break; |
| case POWERPC_EXCP_FP_VXSQRT: |
| /* Square root of a negative number */ |
| env->fpscr |= 1 << FPSCR_VXSQRT; |
| update_arith: |
| env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI)); |
| if (ve == 0) { |
| /* Set the result to quiet NaN */ |
| ret = 0xFFF8000000000000ULL; |
| env->fpscr &= ~(0xF << FPSCR_FPCC); |
| env->fpscr |= 0x11 << FPSCR_FPCC; |
| } |
| break; |
| case POWERPC_EXCP_FP_VXCVI: |
| /* Invalid conversion */ |
| env->fpscr |= 1 << FPSCR_VXCVI; |
| env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI)); |
| if (ve == 0) { |
| /* Set the result to quiet NaN */ |
| ret = 0xFFF8000000000000ULL; |
| env->fpscr &= ~(0xF << FPSCR_FPCC); |
| env->fpscr |= 0x11 << FPSCR_FPCC; |
| } |
| break; |
| } |
| /* Update the floating-point invalid operation summary */ |
| env->fpscr |= 1 << FPSCR_VX; |
| /* Update the floating-point exception summary */ |
| env->fpscr |= 1 << FPSCR_FX; |
| if (ve != 0) { |
| /* Update the floating-point enabled exception summary */ |
| env->fpscr |= 1 << FPSCR_FEX; |
| if (msr_fe0 != 0 || msr_fe1 != 0) |
| helper_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_FP | op); |
| } |
| return ret; |
| } |
| |
| static always_inline void float_zero_divide_excp (void) |
| { |
| env->fpscr |= 1 << FPSCR_ZX; |
| env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI)); |
| /* Update the floating-point exception summary */ |
| env->fpscr |= 1 << FPSCR_FX; |
| if (fpscr_ze != 0) { |
| /* Update the floating-point enabled exception summary */ |
| env->fpscr |= 1 << FPSCR_FEX; |
| if (msr_fe0 != 0 || msr_fe1 != 0) { |
| helper_raise_exception_err(POWERPC_EXCP_PROGRAM, |
| POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX); |
| } |
| } |
| } |
| |
| static always_inline void float_overflow_excp (void) |
| { |
| env->fpscr |= 1 << FPSCR_OX; |
| /* Update the floating-point exception summary */ |
| env->fpscr |= 1 << FPSCR_FX; |
| if (fpscr_oe != 0) { |
| /* XXX: should adjust the result */ |
| /* Update the floating-point enabled exception summary */ |
| env->fpscr |= 1 << FPSCR_FEX; |
| /* We must update the target FPR before raising the exception */ |
| env->exception_index = POWERPC_EXCP_PROGRAM; |
| env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX; |
| } else { |
| env->fpscr |= 1 << FPSCR_XX; |
| env->fpscr |= 1 << FPSCR_FI; |
| } |
| } |
| |
| static always_inline void float_underflow_excp (void) |
| { |
| env->fpscr |= 1 << FPSCR_UX; |
| /* Update the floating-point exception summary */ |
| env->fpscr |= 1 << FPSCR_FX; |
| if (fpscr_ue != 0) { |
| /* XXX: should adjust the result */ |
| /* Update the floating-point enabled exception summary */ |
| env->fpscr |= 1 << FPSCR_FEX; |
| /* We must update the target FPR before raising the exception */ |
| env->exception_index = POWERPC_EXCP_PROGRAM; |
| env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX; |
| } |
| } |
| |
| static always_inline void float_inexact_excp (void) |
| { |
| env->fpscr |= 1 << FPSCR_XX; |
| /* Update the floating-point exception summary */ |
| env->fpscr |= 1 << FPSCR_FX; |
| if (fpscr_xe != 0) { |
| /* Update the floating-point enabled exception summary */ |
| env->fpscr |= 1 << FPSCR_FEX; |
| /* We must update the target FPR before raising the exception */ |
| env->exception_index = POWERPC_EXCP_PROGRAM; |
| env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX; |
| } |
| } |
| |
| static always_inline void fpscr_set_rounding_mode (void) |
| { |
| int rnd_type; |
| |
| /* Set rounding mode */ |
| switch (fpscr_rn) { |
| case 0: |
| /* Best approximation (round to nearest) */ |
| rnd_type = float_round_nearest_even; |
| break; |
| case 1: |
| /* Smaller magnitude (round toward zero) */ |
| rnd_type = float_round_to_zero; |
| break; |
| case 2: |
| /* Round toward +infinite */ |
| rnd_type = float_round_up; |
| break; |
| default: |
| case 3: |
| /* Round toward -infinite */ |
| rnd_type = float_round_down; |
| break; |
| } |
| set_float_rounding_mode(rnd_type, &env->fp_status); |
| } |
| |
| void helper_fpscr_clrbit (uint32_t bit) |
| { |
| int prev; |
| |
| prev = (env->fpscr >> bit) & 1; |
| env->fpscr &= ~(1 << bit); |
| if (prev == 1) { |
| switch (bit) { |
| case FPSCR_RN1: |
| case FPSCR_RN: |
| fpscr_set_rounding_mode(); |
| break; |
| default: |
| break; |
| } |
| } |
| } |
| |
| void helper_fpscr_setbit (uint32_t bit) |
| { |
| int prev; |
| |
| prev = (env->fpscr >> bit) & 1; |
| env->fpscr |= 1 << bit; |
| if (prev == 0) { |
| switch (bit) { |
| case FPSCR_VX: |
| env->fpscr |= 1 << FPSCR_FX; |
| if (fpscr_ve) |
| goto raise_ve; |
| case FPSCR_OX: |
| env->fpscr |= 1 << FPSCR_FX; |
| if (fpscr_oe) |
| goto raise_oe; |
| break; |
| case FPSCR_UX: |
| env->fpscr |= 1 << FPSCR_FX; |
| if (fpscr_ue) |
| goto raise_ue; |
| break; |
| case FPSCR_ZX: |
| env->fpscr |= 1 << FPSCR_FX; |
| if (fpscr_ze) |
| goto raise_ze; |
| break; |
| case FPSCR_XX: |
| env->fpscr |= 1 << FPSCR_FX; |
| if (fpscr_xe) |
| goto raise_xe; |
| break; |
| case FPSCR_VXSNAN: |
| case FPSCR_VXISI: |
| case FPSCR_VXIDI: |
| case FPSCR_VXZDZ: |
| case FPSCR_VXIMZ: |
| case FPSCR_VXVC: |
| case FPSCR_VXSOFT: |
| case FPSCR_VXSQRT: |
| case FPSCR_VXCVI: |
| env->fpscr |= 1 << FPSCR_VX; |
| env->fpscr |= 1 << FPSCR_FX; |
| if (fpscr_ve != 0) |
| goto raise_ve; |
| break; |
| case FPSCR_VE: |
| if (fpscr_vx != 0) { |
| raise_ve: |
| env->error_code = POWERPC_EXCP_FP; |
| if (fpscr_vxsnan) |
| env->error_code |= POWERPC_EXCP_FP_VXSNAN; |
| if (fpscr_vxisi) |
| env->error_code |= POWERPC_EXCP_FP_VXISI; |
| if (fpscr_vxidi) |
| env->error_code |= POWERPC_EXCP_FP_VXIDI; |
| if (fpscr_vxzdz) |
| env->error_code |= POWERPC_EXCP_FP_VXZDZ; |
| if (fpscr_vximz) |
| env->error_code |= POWERPC_EXCP_FP_VXIMZ; |
| if (fpscr_vxvc) |
| env->error_code |= POWERPC_EXCP_FP_VXVC; |
| if (fpscr_vxsoft) |
| env->error_code |= POWERPC_EXCP_FP_VXSOFT; |
| if (fpscr_vxsqrt) |
| env->error_code |= POWERPC_EXCP_FP_VXSQRT; |
| if (fpscr_vxcvi) |
| env->error_code |= POWERPC_EXCP_FP_VXCVI; |
| goto raise_excp; |
| } |
| break; |
| case FPSCR_OE: |
| if (fpscr_ox != 0) { |
| raise_oe: |
| env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX; |
| goto raise_excp; |
| } |
| break; |
| case FPSCR_UE: |
| if (fpscr_ux != 0) { |
| raise_ue: |
| env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX; |
| goto raise_excp; |
| } |
| break; |
| case FPSCR_ZE: |
| if (fpscr_zx != 0) { |
| raise_ze: |
| env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX; |
| goto raise_excp; |
| } |
| break; |
| case FPSCR_XE: |
| if (fpscr_xx != 0) { |
| raise_xe: |
| env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX; |
| goto raise_excp; |
| } |
| break; |
| case FPSCR_RN1: |
| case FPSCR_RN: |
| fpscr_set_rounding_mode(); |
| break; |
| default: |
| break; |
| raise_excp: |
| /* Update the floating-point enabled exception summary */ |
| env->fpscr |= 1 << FPSCR_FEX; |
| /* We have to update Rc1 before raising the exception */ |
| env->exception_index = POWERPC_EXCP_PROGRAM; |
| break; |
| } |
| } |
| } |
| |
| void helper_store_fpscr (uint64_t arg, uint32_t mask) |
| { |
| /* |
| * We use only the 32 LSB of the incoming fpr |
| */ |
| uint32_t prev, new; |
| int i; |
| |
| prev = env->fpscr; |
| new = (uint32_t)arg; |
| new &= ~0x60000000; |
| new |= prev & 0x60000000; |
| for (i = 0; i < 8; i++) { |
| if (mask & (1 << i)) { |
| env->fpscr &= ~(0xF << (4 * i)); |
| env->fpscr |= new & (0xF << (4 * i)); |
| } |
| } |
| /* Update VX and FEX */ |
| if (fpscr_ix != 0) |
| env->fpscr |= 1 << FPSCR_VX; |
| else |
| env->fpscr &= ~(1 << FPSCR_VX); |
| if ((fpscr_ex & fpscr_eex) != 0) { |
| env->fpscr |= 1 << FPSCR_FEX; |
| env->exception_index = POWERPC_EXCP_PROGRAM; |
| /* XXX: we should compute it properly */ |
| env->error_code = POWERPC_EXCP_FP; |
| } |
| else |
| env->fpscr &= ~(1 << FPSCR_FEX); |
| fpscr_set_rounding_mode(); |
| } |
| |
| void helper_float_check_status (void) |
| { |
| #ifdef CONFIG_SOFTFLOAT |
| if (env->exception_index == POWERPC_EXCP_PROGRAM && |
| (env->error_code & POWERPC_EXCP_FP)) { |
| /* Differred floating-point exception after target FPR update */ |
| if (msr_fe0 != 0 || msr_fe1 != 0) |
| helper_raise_exception_err(env->exception_index, env->error_code); |
| } else { |
| int status = get_float_exception_flags(&env->fp_status); |
| if (status & float_flag_divbyzero) { |
| float_zero_divide_excp(); |
| } else if (status & float_flag_overflow) { |
| float_overflow_excp(); |
| } else if (status & float_flag_underflow) { |
| float_underflow_excp(); |
| } else if (status & float_flag_inexact) { |
| float_inexact_excp(); |
| } |
| } |
| #else |
| if (env->exception_index == POWERPC_EXCP_PROGRAM && |
| (env->error_code & POWERPC_EXCP_FP)) { |
| /* Differred floating-point exception after target FPR update */ |
| if (msr_fe0 != 0 || msr_fe1 != 0) |
| helper_raise_exception_err(env->exception_index, env->error_code); |
| } |
| #endif |
| } |
| |
| #ifdef CONFIG_SOFTFLOAT |
| void helper_reset_fpstatus (void) |
| { |
| set_float_exception_flags(0, &env->fp_status); |
| } |
| #endif |
| |
| /* fadd - fadd. */ |
| uint64_t helper_fadd (uint64_t arg1, uint64_t arg2) |
| { |
| CPU_DoubleU farg1, farg2; |
| |
| farg1.ll = arg1; |
| farg2.ll = arg2; |
| #if USE_PRECISE_EMULATION |
| if (unlikely(float64_is_signaling_nan(farg1.d) || |
| float64_is_signaling_nan(farg2.d))) { |
| /* sNaN addition */ |
| farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); |
| } else if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d) && |
| float64_is_neg(farg1.d) != float64_is_neg(farg2.d))) { |
| /* Magnitude subtraction of infinities */ |
| farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI); |
| } else { |
| farg1.d = float64_add(farg1.d, farg2.d, &env->fp_status); |
| } |
| #else |
| farg1.d = float64_add(farg1.d, farg2.d, &env->fp_status); |
| #endif |
| return farg1.ll; |
| } |
| |
| /* fsub - fsub. */ |
| uint64_t helper_fsub (uint64_t arg1, uint64_t arg2) |
| { |
| CPU_DoubleU farg1, farg2; |
| |
| farg1.ll = arg1; |
| farg2.ll = arg2; |
| #if USE_PRECISE_EMULATION |
| { |
| if (unlikely(float64_is_signaling_nan(farg1.d) || |
| float64_is_signaling_nan(farg2.d))) { |
| /* sNaN subtraction */ |
| farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); |
| } else if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d) && |
| float64_is_neg(farg1.d) == float64_is_neg(farg2.d))) { |
| /* Magnitude subtraction of infinities */ |
| farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI); |
| } else { |
| farg1.d = float64_sub(farg1.d, farg2.d, &env->fp_status); |
| } |
| } |
| #else |
| farg1.d = float64_sub(farg1.d, farg2.d, &env->fp_status); |
| #endif |
| return farg1.ll; |
| } |
| |
| /* fmul - fmul. */ |
| uint64_t helper_fmul (uint64_t arg1, uint64_t arg2) |
| { |
| CPU_DoubleU farg1, farg2; |
| |
| farg1.ll = arg1; |
| farg2.ll = arg2; |
| #if USE_PRECISE_EMULATION |
| if (unlikely(float64_is_signaling_nan(farg1.d) || |
| float64_is_signaling_nan(farg2.d))) { |
| /* sNaN multiplication */ |
| farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); |
| } else if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) || |
| (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) { |
| /* Multiplication of zero by infinity */ |
| farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ); |
| } else { |
| farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status); |
| } |
| #else |
| farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status); |
| #endif |
| return farg1.ll; |
| } |
| |
| /* fdiv - fdiv. */ |
| uint64_t helper_fdiv (uint64_t arg1, uint64_t arg2) |
| { |
| CPU_DoubleU farg1, farg2; |
| |
| farg1.ll = arg1; |
| farg2.ll = arg2; |
| #if USE_PRECISE_EMULATION |
| if (unlikely(float64_is_signaling_nan(farg1.d) || |
| float64_is_signaling_nan(farg2.d))) { |
| /* sNaN division */ |
| farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); |
| } else if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d))) { |
| /* Division of infinity by infinity */ |
| farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIDI); |
| } else if (unlikely(float64_is_zero(farg1.d) && float64_is_zero(farg2.d))) { |
| /* Division of zero by zero */ |
| farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXZDZ); |
| } else { |
| farg1.d = float64_div(farg1.d, farg2.d, &env->fp_status); |
| } |
| #else |
| farg1.d = float64_div(farg1.d, farg2.d, &env->fp_status); |
| #endif |
| return farg1.ll; |
| } |
| |
| /* fabs */ |
| uint64_t helper_fabs (uint64_t arg) |
| { |
| CPU_DoubleU farg; |
| |
| farg.ll = arg; |
| farg.d = float64_abs(farg.d); |
| return farg.ll; |
| } |
| |
| /* fnabs */ |
| uint64_t helper_fnabs (uint64_t arg) |
| { |
| CPU_DoubleU farg; |
| |
| farg.ll = arg; |
| farg.d = float64_abs(farg.d); |
| farg.d = float64_chs(farg.d); |
| return farg.ll; |
| } |
| |
| /* fneg */ |
| uint64_t helper_fneg (uint64_t arg) |
| { |
| CPU_DoubleU farg; |
| |
| farg.ll = arg; |
| farg.d = float64_chs(farg.d); |
| return farg.ll; |
| } |
| |
| /* fctiw - fctiw. */ |
| uint64_t helper_fctiw (uint64_t arg) |
| { |
| CPU_DoubleU farg; |
| farg.ll = arg; |
| |
| if (unlikely(float64_is_signaling_nan(farg.d))) { |
| /* sNaN conversion */ |
| farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI); |
| } else if (unlikely(float64_is_nan(farg.d) || float64_is_infinity(farg.d))) { |
| /* qNan / infinity conversion */ |
| farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI); |
| } else { |
| farg.ll = float64_to_int32(farg.d, &env->fp_status); |
| #if USE_PRECISE_EMULATION |
| /* XXX: higher bits are not supposed to be significant. |
| * to make tests easier, return the same as a real PowerPC 750 |
| */ |
| farg.ll |= 0xFFF80000ULL << 32; |
| #endif |
| } |
| return farg.ll; |
| } |
| |
| /* fctiwz - fctiwz. */ |
| uint64_t helper_fctiwz (uint64_t arg) |
| { |
| CPU_DoubleU farg; |
| farg.ll = arg; |
| |
| if (unlikely(float64_is_signaling_nan(farg.d))) { |
| /* sNaN conversion */ |
| farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI); |
| } else if (unlikely(float64_is_nan(farg.d) || float64_is_infinity(farg.d))) { |
| /* qNan / infinity conversion */ |
| farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI); |
| } else { |
| farg.ll = float64_to_int32_round_to_zero(farg.d, &env->fp_status); |
| #if USE_PRECISE_EMULATION |
| /* XXX: higher bits are not supposed to be significant. |
| * to make tests easier, return the same as a real PowerPC 750 |
| */ |
| farg.ll |= 0xFFF80000ULL << 32; |
| #endif |
| } |
| return farg.ll; |
| } |
| |
| #if defined(TARGET_PPC64) |
| /* fcfid - fcfid. */ |
| uint64_t helper_fcfid (uint64_t arg) |
| { |
| CPU_DoubleU farg; |
| farg.d = int64_to_float64(arg, &env->fp_status); |
| return farg.ll; |
| } |
| |
| /* fctid - fctid. */ |
| uint64_t helper_fctid (uint64_t arg) |
| { |
| CPU_DoubleU farg; |
| farg.ll = arg; |
| |
| if (unlikely(float64_is_signaling_nan(farg.d))) { |
| /* sNaN conversion */ |
| farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI); |
| } else if (unlikely(float64_is_nan(farg.d) || float64_is_infinity(farg.d))) { |
| /* qNan / infinity conversion */ |
| farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI); |
| } else { |
| farg.ll = float64_to_int64(farg.d, &env->fp_status); |
| } |
| return farg.ll; |
| } |
| |
| /* fctidz - fctidz. */ |
| uint64_t helper_fctidz (uint64_t arg) |
| { |
| CPU_DoubleU farg; |
| farg.ll = arg; |
| |
| if (unlikely(float64_is_signaling_nan(farg.d))) { |
| /* sNaN conversion */ |
| farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI); |
| } else if (unlikely(float64_is_nan(farg.d) || float64_is_infinity(farg.d))) { |
| /* qNan / infinity conversion */ |
| farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI); |
| } else { |
| farg.ll = float64_to_int64_round_to_zero(farg.d, &env->fp_status); |
| } |
| return farg.ll; |
| } |
| |
| #endif |
| |
| static always_inline uint64_t do_fri (uint64_t arg, int rounding_mode) |
| { |
| CPU_DoubleU farg; |
| farg.ll = arg; |
| |
| if (unlikely(float64_is_signaling_nan(farg.d))) { |
| /* sNaN round */ |
| farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI); |
| } else if (unlikely(float64_is_nan(farg.d) || float64_is_infinity(farg.d))) { |
| /* qNan / infinity round */ |
| farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI); |
| } else { |
| set_float_rounding_mode(rounding_mode, &env->fp_status); |
| farg.ll = float64_round_to_int(farg.d, &env->fp_status); |
| /* Restore rounding mode from FPSCR */ |
| fpscr_set_rounding_mode(); |
| } |
| return farg.ll; |
| } |
| |
| uint64_t helper_frin (uint64_t arg) |
| { |
| return do_fri(arg, float_round_nearest_even); |
| } |
| |
| uint64_t helper_friz (uint64_t arg) |
| { |
| return do_fri(arg, float_round_to_zero); |
| } |
| |
| uint64_t helper_frip (uint64_t arg) |
| { |
| return do_fri(arg, float_round_up); |
| } |
| |
| uint64_t helper_frim (uint64_t arg) |
| { |
| return do_fri(arg, float_round_down); |
| } |
| |
| /* fmadd - fmadd. */ |
| uint64_t helper_fmadd (uint64_t arg1, uint64_t arg2, uint64_t arg3) |
| { |
| CPU_DoubleU farg1, farg2, farg3; |
| |
| farg1.ll = arg1; |
| farg2.ll = arg2; |
| farg3.ll = arg3; |
| #if USE_PRECISE_EMULATION |
| if (unlikely(float64_is_signaling_nan(farg1.d) || |
| float64_is_signaling_nan(farg2.d) || |
| float64_is_signaling_nan(farg3.d))) { |
| /* sNaN operation */ |
| farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); |
| } else if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) || |
| (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) { |
| /* Multiplication of zero by infinity */ |
| farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ); |
| } else { |
| #ifdef FLOAT128 |
| /* This is the way the PowerPC specification defines it */ |
| float128 ft0_128, ft1_128; |
| |
| ft0_128 = float64_to_float128(farg1.d, &env->fp_status); |
| ft1_128 = float64_to_float128(farg2.d, &env->fp_status); |
| ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status); |
| if (unlikely(float128_is_infinity(ft0_128) && float64_is_infinity(farg3.d) && |
| float128_is_neg(ft0_128) != float64_is_neg(farg3.d))) { |
| /* Magnitude subtraction of infinities */ |
| farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI); |
| } else { |
| ft1_128 = float64_to_float128(farg3.d, &env->fp_status); |
| ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status); |
| farg1.d = float128_to_float64(ft0_128, &env->fp_status); |
| } |
| #else |
| /* This is OK on x86 hosts */ |
| farg1.d = (farg1.d * farg2.d) + farg3.d; |
| #endif |
| } |
| #else |
| farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status); |
| farg1.d = float64_add(farg1.d, farg3.d, &env->fp_status); |
| #endif |
| return farg1.ll; |
| } |
| |
| /* fmsub - fmsub. */ |
| uint64_t helper_fmsub (uint64_t arg1, uint64_t arg2, uint64_t arg3) |
| { |
| CPU_DoubleU farg1, farg2, farg3; |
| |
| farg1.ll = arg1; |
| farg2.ll = arg2; |
| farg3.ll = arg3; |
| #if USE_PRECISE_EMULATION |
| if (unlikely(float64_is_signaling_nan(farg1.d) || |
| float64_is_signaling_nan(farg2.d) || |
| float64_is_signaling_nan(farg3.d))) { |
| /* sNaN operation */ |
| farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); |
| } else if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) || |
| (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) { |
| /* Multiplication of zero by infinity */ |
| farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ); |
| } else { |
| #ifdef FLOAT128 |
| /* This is the way the PowerPC specification defines it */ |
| float128 ft0_128, ft1_128; |
| |
| ft0_128 = float64_to_float128(farg1.d, &env->fp_status); |
| ft1_128 = float64_to_float128(farg2.d, &env->fp_status); |
| ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status); |
| if (unlikely(float128_is_infinity(ft0_128) && float64_is_infinity(farg3.d) && |
| float128_is_neg(ft0_128) == float64_is_neg(farg3.d))) { |
| /* Magnitude subtraction of infinities */ |
| farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI); |
| } else { |
| ft1_128 = float64_to_float128(farg3.d, &env->fp_status); |
| ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status); |
| farg1.d = float128_to_float64(ft0_128, &env->fp_status); |
| } |
| #else |
| /* This is OK on x86 hosts */ |
| farg1.d = (farg1.d * farg2.d) - farg3.d; |
| #endif |
| } |
| #else |
| farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status); |
| farg1.d = float64_sub(farg1.d, farg3.d, &env->fp_status); |
| #endif |
| return farg1.ll; |
| } |
| |
| /* fnmadd - fnmadd. */ |
| uint64_t helper_fnmadd (uint64_t arg1, uint64_t arg2, uint64_t arg3) |
| { |
| CPU_DoubleU farg1, farg2, farg3; |
| |
| farg1.ll = arg1; |
| farg2.ll = arg2; |
| farg3.ll = arg3; |
| |
| if (unlikely(float64_is_signaling_nan(farg1.d) || |
| float64_is_signaling_nan(farg2.d) || |
| float64_is_signaling_nan(farg3.d))) { |
| /* sNaN operation */ |
| farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); |
| } else if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) || |
| (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) { |
| /* Multiplication of zero by infinity */ |
| farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ); |
| } else { |
| #if USE_PRECISE_EMULATION |
| #ifdef FLOAT128 |
| /* This is the way the PowerPC specification defines it */ |
| float128 ft0_128, ft1_128; |
| |
| ft0_128 = float64_to_float128(farg1.d, &env->fp_status); |
| ft1_128 = float64_to_float128(farg2.d, &env->fp_status); |
| ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status); |
| if (unlikely(float128_is_infinity(ft0_128) && float64_is_infinity(farg3.d) && |
| float128_is_neg(ft0_128) != float64_is_neg(farg3.d))) { |
| /* Magnitude subtraction of infinities */ |
| farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI); |
| } else { |
| ft1_128 = float64_to_float128(farg3.d, &env->fp_status); |
| ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status); |
| farg1.d = float128_to_float64(ft0_128, &env->fp_status); |
| } |
| #else |
| /* This is OK on x86 hosts */ |
| farg1.d = (farg1.d * farg2.d) + farg3.d; |
| #endif |
| #else |
| farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status); |
| farg1.d = float64_add(farg1.d, farg3.d, &env->fp_status); |
| #endif |
| if (likely(!float64_is_nan(farg1.d))) |
| farg1.d = float64_chs(farg1.d); |
| } |
| return farg1.ll; |
| } |
| |
| /* fnmsub - fnmsub. */ |
| uint64_t helper_fnmsub (uint64_t arg1, uint64_t arg2, uint64_t arg3) |
| { |
| CPU_DoubleU farg1, farg2, farg3; |
| |
| farg1.ll = arg1; |
| farg2.ll = arg2; |
| farg3.ll = arg3; |
| |
| if (unlikely(float64_is_signaling_nan(farg1.d) || |
| float64_is_signaling_nan(farg2.d) || |
| float64_is_signaling_nan(farg3.d))) { |
| /* sNaN operation */ |
| farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); |
| } else if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) || |
| (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) { |
| /* Multiplication of zero by infinity */ |
| farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ); |
| } else { |
| #if USE_PRECISE_EMULATION |
| #ifdef FLOAT128 |
| /* This is the way the PowerPC specification defines it */ |
| float128 ft0_128, ft1_128; |
| |
| ft0_128 = float64_to_float128(farg1.d, &env->fp_status); |
| ft1_128 = float64_to_float128(farg2.d, &env->fp_status); |
| ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status); |
| if (unlikely(float128_is_infinity(ft0_128) && float64_is_infinity(farg3.d) && |
| float128_is_neg(ft0_128) == float64_is_neg(farg3.d))) { |
| /* Magnitude subtraction of infinities */ |
| farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI); |
| } else { |
| ft1_128 = float64_to_float128(farg3.d, &env->fp_status); |
| ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status); |
| farg1.d = float128_to_float64(ft0_128, &env->fp_status); |
| } |
| #else |
| /* This is OK on x86 hosts */ |
| farg1.d = (farg1.d * farg2.d) - farg3.d; |
| #endif |
| #else |
| farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status); |
| farg1.d = float64_sub(farg1.d, farg3.d, &env->fp_status); |
| #endif |
| if (likely(!float64_is_nan(farg1.d))) |
| farg1.d = float64_chs(farg1.d); |
| } |
| return farg1.ll; |
| } |
| |
| /* frsp - frsp. */ |
| uint64_t helper_frsp (uint64_t arg) |
| { |
| CPU_DoubleU farg; |
| float32 f32; |
| farg.ll = arg; |
| |
| #if USE_PRECISE_EMULATION |
| if (unlikely(float64_is_signaling_nan(farg.d))) { |
| /* sNaN square root */ |
| farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); |
| } else { |
| f32 = float64_to_float32(farg.d, &env->fp_status); |
| farg.d = float32_to_float64(f32, &env->fp_status); |
| } |
| #else |
| f32 = float64_to_float32(farg.d, &env->fp_status); |
| farg.d = float32_to_float64(f32, &env->fp_status); |
| #endif |
| return farg.ll; |
| } |
| |
| /* fsqrt - fsqrt. */ |
| uint64_t helper_fsqrt (uint64_t arg) |
| { |
| CPU_DoubleU farg; |
| farg.ll = arg; |
| |
| if (unlikely(float64_is_signaling_nan(farg.d))) { |
| /* sNaN square root */ |
| farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); |
| } else if (unlikely(float64_is_neg(farg.d) && !float64_is_zero(farg.d))) { |
| /* Square root of a negative nonzero number */ |
| farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT); |
| } else { |
| farg.d = float64_sqrt(farg.d, &env->fp_status); |
| } |
| return farg.ll; |
| } |
| |
| /* fre - fre. */ |
| uint64_t helper_fre (uint64_t arg) |
| { |
| CPU_DoubleU farg; |
| farg.ll = arg; |
| |
| if (unlikely(float64_is_signaling_nan(farg.d))) { |
| /* sNaN reciprocal */ |
| farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); |
| } else { |
| farg.d = float64_div(float64_one, farg.d, &env->fp_status); |
| } |
| return farg.d; |
| } |
| |
| /* fres - fres. */ |
| uint64_t helper_fres (uint64_t arg) |
| { |
| CPU_DoubleU farg; |
| float32 f32; |
| farg.ll = arg; |
| |
| if (unlikely(float64_is_signaling_nan(farg.d))) { |
| /* sNaN reciprocal */ |
| farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); |
| } else { |
| farg.d = float64_div(float64_one, farg.d, &env->fp_status); |
| f32 = float64_to_float32(farg.d, &env->fp_status); |
| farg.d = float32_to_float64(f32, &env->fp_status); |
| } |
| return farg.ll; |
| } |
| |
| /* frsqrte - frsqrte. */ |
| uint64_t helper_frsqrte (uint64_t arg) |
| { |
| CPU_DoubleU farg; |
| float32 f32; |
| farg.ll = arg; |
| |
| if (unlikely(float64_is_signaling_nan(farg.d))) { |
| /* sNaN reciprocal square root */ |
| farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); |
| } else if (unlikely(float64_is_neg(farg.d) && !float64_is_zero(farg.d))) { |
| /* Reciprocal square root of a negative nonzero number */ |
| farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT); |
| } else { |
| farg.d = float64_sqrt(farg.d, &env->fp_status); |
| farg.d = float64_div(float64_one, farg.d, &env->fp_status); |
| f32 = float64_to_float32(farg.d, &env->fp_status); |
| farg.d = float32_to_float64(f32, &env->fp_status); |
| } |
| return farg.ll; |
| } |
| |
| /* fsel - fsel. */ |
| uint64_t helper_fsel (uint64_t arg1, uint64_t arg2, uint64_t arg3) |
| { |
| CPU_DoubleU farg1; |
| |
| farg1.ll = arg1; |
| |
| if ((!float64_is_neg(farg1.d) || float64_is_zero(farg1.d)) && !float64_is_nan(farg1.d)) |
| return arg2; |
| else |
| return arg3; |
| } |
| |
| void helper_fcmpu (uint64_t arg1, uint64_t arg2, uint32_t crfD) |
| { |
| CPU_DoubleU farg1, farg2; |
| uint32_t ret = 0; |
| farg1.ll = arg1; |
| farg2.ll = arg2; |
| |
| if (unlikely(float64_is_nan(farg1.d) || |
| float64_is_nan(farg2.d))) { |
| ret = 0x01UL; |
| } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) { |
| ret = 0x08UL; |
| } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) { |
| ret = 0x04UL; |
| } else { |
| ret = 0x02UL; |
| } |
| |
| env->fpscr &= ~(0x0F << FPSCR_FPRF); |
| env->fpscr |= ret << FPSCR_FPRF; |
| env->crf[crfD] = ret; |
| if (unlikely(ret == 0x01UL |
| && (float64_is_signaling_nan(farg1.d) || |
| float64_is_signaling_nan(farg2.d)))) { |
| /* sNaN comparison */ |
| fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); |
| } |
| } |
| |
| void helper_fcmpo (uint64_t arg1, uint64_t arg2, uint32_t crfD) |
| { |
| CPU_DoubleU farg1, farg2; |
| uint32_t ret = 0; |
| farg1.ll = arg1; |
| farg2.ll = arg2; |
| |
| if (unlikely(float64_is_nan(farg1.d) || |
| float64_is_nan(farg2.d))) { |
| ret = 0x01UL; |
| } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) { |
| ret = 0x08UL; |
| } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) { |
| ret = 0x04UL; |
| } else { |
| ret = 0x02UL; |
| } |
| |
| env->fpscr &= ~(0x0F << FPSCR_FPRF); |
| env->fpscr |= ret << FPSCR_FPRF; |
| env->crf[crfD] = ret; |
| if (unlikely (ret == 0x01UL)) { |
| if (float64_is_signaling_nan(farg1.d) || |
| float64_is_signaling_nan(farg2.d)) { |
| /* sNaN comparison */ |
| fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | |
| POWERPC_EXCP_FP_VXVC); |
| } else { |
| /* qNaN comparison */ |
| fload_invalid_op_excp(POWERPC_EXCP_FP_VXVC); |
| } |
| } |
| } |
| |
| #if !defined (CONFIG_USER_ONLY) |
| void helper_store_msr (target_ulong val) |
| { |
| val = hreg_store_msr(env, val, 0); |
| if (val != 0) { |
| env->interrupt_request |= CPU_INTERRUPT_EXITTB; |
| helper_raise_exception(val); |
| } |
| } |
| |
| static always_inline void do_rfi (target_ulong nip, target_ulong msr, |
| target_ulong msrm, int keep_msrh) |
| { |
| #if defined(TARGET_PPC64) |
| if (msr & (1ULL << MSR_SF)) { |
| nip = (uint64_t)nip; |
| msr &= (uint64_t)msrm; |
| } else { |
| nip = (uint32_t)nip; |
| msr = (uint32_t)(msr & msrm); |
| if (keep_msrh) |
| msr |= env->msr & ~((uint64_t)0xFFFFFFFF); |
| } |
| #else |
| nip = (uint32_t)nip; |
| msr &= (uint32_t)msrm; |
| #endif |
| /* XXX: beware: this is false if VLE is supported */ |
| env->nip = nip & ~((target_ulong)0x00000003); |
| hreg_store_msr(env, msr, 1); |
| #if defined (DEBUG_OP) |
| cpu_dump_rfi(env->nip, env->msr); |
| #endif |
| /* No need to raise an exception here, |
| * as rfi is always the last insn of a TB |
| */ |
| env->interrupt_request |= CPU_INTERRUPT_EXITTB; |
| } |
| |
| void helper_rfi (void) |
| { |
| do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1], |
| ~((target_ulong)0xFFFF0000), 1); |
| } |
| |
| #if defined(TARGET_PPC64) |
| void helper_rfid (void) |
| { |
| do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1], |
| ~((target_ulong)0xFFFF0000), 0); |
| } |
| |
| void helper_hrfid (void) |
| { |
| do_rfi(env->spr[SPR_HSRR0], env->spr[SPR_HSRR1], |
| ~((target_ulong)0xFFFF0000), 0); |
| } |
| #endif |
| #endif |
| |
| void helper_tw (target_ulong arg1, target_ulong arg2, uint32_t flags) |
| { |
| if (!likely(!(((int32_t)arg1 < (int32_t)arg2 && (flags & 0x10)) || |
| ((int32_t)arg1 > (int32_t)arg2 && (flags & 0x08)) || |
| ((int32_t)arg1 == (int32_t)arg2 && (flags & 0x04)) || |
| ((uint32_t)arg1 < (uint32_t)arg2 && (flags & 0x02)) || |
| ((uint32_t)arg1 > (uint32_t)arg2 && (flags & 0x01))))) { |
| helper_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP); |
| } |
| } |
| |
| #if defined(TARGET_PPC64) |
| void helper_td (target_ulong arg1, target_ulong arg2, uint32_t flags) |
| { |
| if (!likely(!(((int64_t)arg1 < (int64_t)arg2 && (flags & 0x10)) || |
| ((int64_t)arg1 > (int64_t)arg2 && (flags & 0x08)) || |
| ((int64_t)arg1 == (int64_t)arg2 && (flags & 0x04)) || |
| ((uint64_t)arg1 < (uint64_t)arg2 && (flags & 0x02)) || |
| ((uint64_t)arg1 > (uint64_t)arg2 && (flags & 0x01))))) |
| helper_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP); |
| } |
| #endif |
| |
| /*****************************************************************************/ |
| /* PowerPC 601 specific instructions (POWER bridge) */ |
| |
| target_ulong helper_clcs (uint32_t arg) |
| { |
| switch (arg) { |
| case 0x0CUL: |
| /* Instruction cache line size */ |
| return env->icache_line_size; |
| break; |
| case 0x0DUL: |
| /* Data cache line size */ |
| return env->dcache_line_size; |
| break; |
| case 0x0EUL: |
| /* Minimum cache line size */ |
| return (env->icache_line_size < env->dcache_line_size) ? |
| env->icache_line_size : env->dcache_line_size; |
| break; |
| case 0x0FUL: |
| /* Maximum cache line size */ |
| return (env->icache_line_size > env->dcache_line_size) ? |
| env->icache_line_size : env->dcache_line_size; |
| break; |
| default: |
| /* Undefined */ |
| return 0; |
| break; |
| } |
| } |
| |
| target_ulong helper_div (target_ulong arg1, target_ulong arg2) |
| { |
| uint64_t tmp = (uint64_t)arg1 << 32 | env->spr[SPR_MQ]; |
| |
| if (((int32_t)tmp == INT32_MIN && (int32_t)arg2 == (int32_t)-1) || |
| (int32_t)arg2 == 0) { |
| env->spr[SPR_MQ] = 0; |
| return INT32_MIN; |
| } else { |
| env->spr[SPR_MQ] = tmp % arg2; |
| return tmp / (int32_t)arg2; |
| } |
| } |
| |
| target_ulong helper_divo (target_ulong arg1, target_ulong arg2) |
| { |
| uint64_t tmp = (uint64_t)arg1 << 32 | env->spr[SPR_MQ]; |
| |
| if (((int32_t)tmp == INT32_MIN && (int32_t)arg2 == (int32_t)-1) || |
| (int32_t)arg2 == 0) { |
| env->xer |= (1 << XER_OV) | (1 << XER_SO); |
| env->spr[SPR_MQ] = 0; |
| return INT32_MIN; |
| } else { |
| env->spr[SPR_MQ] = tmp % arg2; |
| tmp /= (int32_t)arg2; |
| if ((int32_t)tmp != tmp) { |
| env->xer |= (1 << XER_OV) | (1 << XER_SO); |
| } else { |
| env->xer &= ~(1 << XER_OV); |
| } |
| return tmp; |
| } |
| } |
| |
| target_ulong helper_divs (target_ulong arg1, target_ulong arg2) |
| { |
| if (((int32_t)arg1 == INT32_MIN && (int32_t)arg2 == (int32_t)-1) || |
| (int32_t)arg2 == 0) { |
| env->spr[SPR_MQ] = 0; |
| return INT32_MIN; |
| } else { |
| env->spr[SPR_MQ] = (int32_t)arg1 % (int32_t)arg2; |
| return (int32_t)arg1 / (int32_t)arg2; |
| } |
| } |
| |
| target_ulong helper_divso (target_ulong arg1, target_ulong arg2) |
| { |
| if (((int32_t)arg1 == INT32_MIN && (int32_t)arg2 == (int32_t)-1) || |
| (int32_t)arg2 == 0) { |
| env->xer |= (1 << XER_OV) | (1 << XER_SO); |
| env->spr[SPR_MQ] = 0; |
| return INT32_MIN; |
| } else { |
| env->xer &= ~(1 << XER_OV); |
| env->spr[SPR_MQ] = (int32_t)arg1 % (int32_t)arg2; |
| return (int32_t)arg1 / (int32_t)arg2; |
| } |
| } |
| |
| #if !defined (CONFIG_USER_ONLY) |
| target_ulong helper_rac (target_ulong addr) |
| { |
| mmu_ctx_t ctx; |
| int nb_BATs; |
| target_ulong ret = 0; |
| |
| /* We don't have to generate many instances of this instruction, |
| * as rac is supervisor only. |
| */ |
| /* XXX: FIX THIS: Pretend we have no BAT */ |
| nb_BATs = env->nb_BATs; |
| env->nb_BATs = 0; |
| if (get_physical_address(env, &ctx, addr, 0, ACCESS_INT) == 0) |
| ret = ctx.raddr; |
| env->nb_BATs = nb_BATs; |
| return ret; |
| } |
| |
| void helper_rfsvc (void) |
| { |
| do_rfi(env->lr, env->ctr, 0x0000FFFF, 0); |
| } |
| #endif |
| |
| /*****************************************************************************/ |
| /* 602 specific instructions */ |
| /* mfrom is the most crazy instruction ever seen, imho ! */ |
| /* Real implementation uses a ROM table. Do the same */ |
| /* Extremly decomposed: |
| * -arg / 256 |
| * return 256 * log10(10 + 1.0) + 0.5 |
| */ |
| #if !defined (CONFIG_USER_ONLY) |
| target_ulong helper_602_mfrom (target_ulong arg) |
| { |
| if (likely(arg < 602)) { |
| #include "mfrom_table.c" |
| return mfrom_ROM_table[arg]; |
| } else { |
| return 0; |
| } |
| } |
| #endif |
| |
| /*****************************************************************************/ |
| /* Embedded PowerPC specific helpers */ |
| |
| /* XXX: to be improved to check access rights when in user-mode */ |
| target_ulong helper_load_dcr (target_ulong dcrn) |
| { |
| target_ulong val = 0; |
| |
| if (unlikely(env->dcr_env == NULL)) { |
| qemu_log("No DCR environment\n"); |
| helper_raise_exception_err(POWERPC_EXCP_PROGRAM, |
| POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL); |
| } else if (unlikely(ppc_dcr_read(env->dcr_env, dcrn, &val) != 0)) { |
| qemu_log("DCR read error %d %03x\n", (int)dcrn, (int)dcrn); |
| helper_raise_exception_err(POWERPC_EXCP_PROGRAM, |
| POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG); |
| } |
| return val; |
| } |
| |
| void helper_store_dcr (target_ulong dcrn, target_ulong val) |
| { |
| if (unlikely(env->dcr_env == NULL)) { |
| qemu_log("No DCR environment\n"); |
| helper_raise_exception_err(POWERPC_EXCP_PROGRAM, |
| POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL); |
| } else if (unlikely(ppc_dcr_write(env->dcr_env, dcrn, val) != 0)) { |
| qemu_log("DCR write error %d %03x\n", (int)dcrn, (int)dcrn); |
| helper_raise_exception_err(POWERPC_EXCP_PROGRAM, |
| POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG); |
| } |
| } |
| |
| #if !defined(CONFIG_USER_ONLY) |
| void helper_40x_rfci (void) |
| { |
| do_rfi(env->spr[SPR_40x_SRR2], env->spr[SPR_40x_SRR3], |
| ~((target_ulong)0xFFFF0000), 0); |
| } |
| |
| void helper_rfci (void) |
| { |
| do_rfi(env->spr[SPR_BOOKE_CSRR0], SPR_BOOKE_CSRR1, |
| ~((target_ulong)0x3FFF0000), 0); |
| } |
| |
| void helper_rfdi (void) |
| { |
| do_rfi(env->spr[SPR_BOOKE_DSRR0], SPR_BOOKE_DSRR1, |
| ~((target_ulong)0x3FFF0000), 0); |
| } |
| |
| void helper_rfmci (void) |
| { |
| do_rfi(env->spr[SPR_BOOKE_MCSRR0], SPR_BOOKE_MCSRR1, |
| ~((target_ulong)0x3FFF0000), 0); |
| } |
| #endif |
| |
| /* 440 specific */ |
| target_ulong helper_dlmzb (target_ulong high, target_ulong low, uint32_t update_Rc) |
| { |
| target_ulong mask; |
| int i; |
| |
| i = 1; |
| for (mask = 0xFF000000; mask != 0; mask = mask >> 8) { |
| if ((high & mask) == 0) { |
| if (update_Rc) { |
| env->crf[0] = 0x4; |
| } |
| goto done; |
| } |
| i++; |
| } |
| for (mask = 0xFF000000; mask != 0; mask = mask >> 8) { |
| if ((low & mask) == 0) { |
| if (update_Rc) { |
| env->crf[0] = 0x8; |
| } |
| goto done; |
| } |
| i++; |
| } |
| if (update_Rc) { |
| env->crf[0] = 0x2; |
| } |
| done: |
| env->xer = (env->xer & ~0x7F) | i; |
| if (update_Rc) { |
| env->crf[0] |= xer_so; |
| } |
| return i; |
| } |
| |
| /*****************************************************************************/ |
| /* Altivec extension helpers */ |
| #if defined(WORDS_BIGENDIAN) |
| #define HI_IDX 0 |
| #define LO_IDX 1 |
| #else |
| #define HI_IDX 1 |
| #define LO_IDX 0 |
| #endif |
| |
| #if defined(WORDS_BIGENDIAN) |
| #define VECTOR_FOR_INORDER_I(index, element) \ |
| for (index = 0; index < ARRAY_SIZE(r->element); index++) |
| #else |
| #define VECTOR_FOR_INORDER_I(index, element) \ |
| for (index = ARRAY_SIZE(r->element)-1; index >= 0; index--) |
| #endif |
| |
| /* If X is a NaN, store the corresponding QNaN into RESULT. Otherwise, |
| * execute the following block. */ |
| #define DO_HANDLE_NAN(result, x) \ |
| if (float32_is_nan(x) || float32_is_signaling_nan(x)) { \ |
| CPU_FloatU __f; \ |
| __f.f = x; \ |
| __f.l = __f.l | (1 << 22); /* Set QNaN bit. */ \ |
| result = __f.f; \ |
| } else |
| |
| #define HANDLE_NAN1(result, x) \ |
| DO_HANDLE_NAN(result, x) |
| #define HANDLE_NAN2(result, x, y) \ |
| DO_HANDLE_NAN(result, x) DO_HANDLE_NAN(result, y) |
| #define HANDLE_NAN3(result, x, y, z) \ |
| DO_HANDLE_NAN(result, x) DO_HANDLE_NAN(result, y) DO_HANDLE_NAN(result, z) |
| |
| /* Saturating arithmetic helpers. */ |
| #define SATCVT(from, to, from_type, to_type, min, max, use_min, use_max) \ |
| static always_inline to_type cvt##from##to (from_type x, int *sat) \ |
| { \ |
| to_type r; \ |
| if (use_min && x < min) { \ |
| r = min; \ |
| *sat = 1; \ |
| } else if (use_max && x > max) { \ |
| r = max; \ |
| *sat = 1; \ |
| } else { \ |
| r = x; \ |
| } \ |
| return r; \ |
| } |
| SATCVT(sh, sb, int16_t, int8_t, INT8_MIN, INT8_MAX, 1, 1) |
| SATCVT(sw, sh, int32_t, int16_t, INT16_MIN, INT16_MAX, 1, 1) |
| SATCVT(sd, sw, int64_t, int32_t, INT32_MIN, INT32_MAX, 1, 1) |
| SATCVT(uh, ub, uint16_t, uint8_t, 0, UINT8_MAX, 0, 1) |
| SATCVT(uw, uh, uint32_t, uint16_t, 0, UINT16_MAX, 0, 1) |
| SATCVT(ud, uw, uint64_t, uint32_t, 0, UINT32_MAX, 0, 1) |
| SATCVT(sh, ub, int16_t, uint8_t, 0, UINT8_MAX, 1, 1) |
| SATCVT(sw, uh, int32_t, uint16_t, 0, UINT16_MAX, 1, 1) |
| SATCVT(sd, uw, int64_t, uint32_t, 0, UINT32_MAX, 1, 1) |
| #undef SATCVT |
| |
| #define LVE(name, access, swap, element) \ |
| void helper_##name (ppc_avr_t *r, target_ulong addr) \ |
| { \ |
| size_t n_elems = ARRAY_SIZE(r->element); \ |
| int adjust = HI_IDX*(n_elems-1); \ |
| int sh = sizeof(r->element[0]) >> 1; \ |
| int index = (addr & 0xf) >> sh; \ |
| if(msr_le) { \ |
| r->element[LO_IDX ? index : (adjust - index)] = swap(access(addr)); \ |
| } else { \ |
| r->element[LO_IDX ? index : (adjust - index)] = access(addr); \ |
| } \ |
| } |
| #define I(x) (x) |
| LVE(lvebx, ldub, I, u8) |
| LVE(lvehx, lduw, bswap16, u16) |
| LVE(lvewx, ldl, bswap32, u32) |
| #undef I |
| #undef LVE |
| |
| void helper_lvsl (ppc_avr_t *r, target_ulong sh) |
| { |
| int i, j = (sh & 0xf); |
| |
| VECTOR_FOR_INORDER_I (i, u8) { |
| r->u8[i] = j++; |
| } |
| } |
| |
| void helper_lvsr (ppc_avr_t *r, target_ulong sh) |
| { |
| int i, j = 0x10 - (sh & 0xf); |
| |
| VECTOR_FOR_INORDER_I (i, u8) { |
| r->u8[i] = j++; |
| } |
| } |
| |
| #define STVE(name, access, swap, element) \ |
| void helper_##name (ppc_avr_t *r, target_ulong addr) \ |
| { \ |
| size_t n_elems = ARRAY_SIZE(r->element); \ |
| int adjust = HI_IDX*(n_elems-1); \ |
| int sh = sizeof(r->element[0]) >> 1; \ |
| int index = (addr & 0xf) >> sh; \ |
| if(msr_le) { \ |
| access(addr, swap(r->element[LO_IDX ? index : (adjust - index)])); \ |
| } else { \ |
| access(addr, r->element[LO_IDX ? index : (adjust - index)]); \ |
| } \ |
| } |
| #define I(x) (x) |
| STVE(stvebx, stb, I, u8) |
| STVE(stvehx, stw, bswap16, u16) |
| STVE(stvewx, stl, bswap32, u32) |
| #undef I |
| #undef LVE |
| |
| void helper_mtvscr (ppc_avr_t *r) |
| { |
| #if defined(WORDS_BIGENDIAN) |
| env->vscr = r->u32[3]; |
| #else |
| env->vscr = r->u32[0]; |
| #endif |
| set_flush_to_zero(vscr_nj, &env->vec_status); |
| } |
| |
| void helper_vaddcuw (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) |
| { |
| int i; |
| for (i = 0; i < ARRAY_SIZE(r->u32); i++) { |
| r->u32[i] = ~a->u32[i] < b->u32[i]; |
| } |
| } |
| |
| #define VARITH_DO(name, op, element) \ |
| void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ |
| { \ |
| int i; \ |
| for (i = 0; i < ARRAY_SIZE(r->element); i++) { \ |
| r->element[i] = a->element[i] op b->element[i]; \ |
| } \ |
| } |
| #define VARITH(suffix, element) \ |
| VARITH_DO(add##suffix, +, element) \ |
| VARITH_DO(sub##suffix, -, element) |
| VARITH(ubm, u8) |
| VARITH(uhm, u16) |
| VARITH(uwm, u32) |
| #undef VARITH_DO |
| #undef VARITH |
| |
| #define VARITHFP(suffix, func) \ |
| void helper_v##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ |
| { \ |
| int i; \ |
| for (i = 0; i < ARRAY_SIZE(r->f); i++) { \ |
| HANDLE_NAN2(r->f[i], a->f[i], b->f[i]) { \ |
| r->f[i] = func(a->f[i], b->f[i], &env->vec_status); \ |
| } \ |
| } \ |
| } |
| VARITHFP(addfp, float32_add) |
| VARITHFP(subfp, float32_sub) |
| #undef VARITHFP |
| |
| #define VARITHSAT_CASE(type, op, cvt, element) \ |
| { \ |
| type result = (type)a->element[i] op (type)b->element[i]; \ |
| r->element[i] = cvt(result, &sat); \ |
| } |
| |
| #define VARITHSAT_DO(name, op, optype, cvt, element) \ |
| void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ |
| { \ |
| int sat = 0; \ |
| int i; \ |
| for (i = 0; i < ARRAY_SIZE(r->element); i++) { \ |
| switch (sizeof(r->element[0])) { \ |
| case 1: VARITHSAT_CASE(optype, op, cvt, element); break; \ |
| case 2: VARITHSAT_CASE(optype, op, cvt, element); break; \ |
| case 4: VARITHSAT_CASE(optype, op, cvt, element); break; \ |
| } \ |
| } \ |
| if (sat) { \ |
| env->vscr |= (1 << VSCR_SAT); \ |
| } \ |
| } |
| #define VARITHSAT_SIGNED(suffix, element, optype, cvt) \ |
| VARITHSAT_DO(adds##suffix##s, +, optype, cvt, element) \ |
| VARITHSAT_DO(subs##suffix##s, -, optype, cvt, element) |
| #define VARITHSAT_UNSIGNED(suffix, element, optype, cvt) \ |
| VARITHSAT_DO(addu##suffix##s, +, optype, cvt, element) \ |
| VARITHSAT_DO(subu##suffix##s, -, optype, cvt, element) |
| VARITHSAT_SIGNED(b, s8, int16_t, cvtshsb) |
| VARITHSAT_SIGNED(h, s16, int32_t, cvtswsh) |
| VARITHSAT_SIGNED(w, s32, int64_t, cvtsdsw) |
| VARITHSAT_UNSIGNED(b, u8, uint16_t, cvtshub) |
| VARITHSAT_UNSIGNED(h, u16, uint32_t, cvtswuh) |
| VARITHSAT_UNSIGNED(w, u32, uint64_t, cvtsduw) |
| #undef VARITHSAT_CASE |
| #undef VARITHSAT_DO |
| #undef VARITHSAT_SIGNED |
| #undef VARITHSAT_UNSIGNED |
| |
| #define VAVG_DO(name, element, etype) \ |
| void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ |
| { \ |
| int i; \ |
| for (i = 0; i < ARRAY_SIZE(r->element); i++) { \ |
| etype x = (etype)a->element[i] + (etype)b->element[i] + 1; \ |
| r->element[i] = x >> 1; \ |
| } \ |
| } |
| |
| #define VAVG(type, signed_element, signed_type, unsigned_element, unsigned_type) \ |
| VAVG_DO(avgs##type, signed_element, signed_type) \ |
| VAVG_DO(avgu##type, unsigned_element, unsigned_type) |
| VAVG(b, s8, int16_t, u8, uint16_t) |
| VAVG(h, s16, int32_t, u16, uint32_t) |
| VAVG(w, s32, int64_t, u32, uint64_t) |
| #undef VAVG_DO |
| #undef VAVG |
| |
| #define VCF(suffix, cvt, element) \ |
| void helper_vcf##suffix (ppc_avr_t *r, ppc_avr_t *b, uint32_t uim) \ |
| { \ |
| int i; \ |
| for (i = 0; i < ARRAY_SIZE(r->f); i++) { \ |
| float32 t = cvt(b->element[i], &env->vec_status); \ |
| r->f[i] = float32_scalbn (t, -uim, &env->vec_status); \ |
| } \ |
| } |
| VCF(ux, uint32_to_float32, u32) |
| VCF(sx, int32_to_float32, s32) |
| #undef VCF |
| |
| #define VCMP_DO(suffix, compare, element, record) \ |
| void helper_vcmp##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ |
| { \ |
| uint32_t ones = (uint32_t)-1; \ |
| uint32_t all = ones; \ |
| uint32_t none = 0; \ |
| int i; \ |
| for (i = 0; i < ARRAY_SIZE(r->element); i++) { \ |
| uint32_t result = (a->element[i] compare b->element[i] ? ones : 0x0); \ |
| switch (sizeof (a->element[0])) { \ |
| case 4: r->u32[i] = result; break; \ |
| case 2: r->u16[i] = result; break; \ |
| case 1: r->u8[i] = result; break; \ |
| } \ |
| all &= result; \ |
| none |= result; \ |
| } \ |
| if (record) { \ |
| env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1); \ |
| } \ |
| } |
| #define VCMP(suffix, compare, element) \ |
| VCMP_DO(suffix, compare, element, 0) \ |
| VCMP_DO(suffix##_dot, compare, element, 1) |
| VCMP(equb, ==, u8) |
| VCMP(equh, ==, u16) |
| VCMP(equw, ==, u32) |
| VCMP(gtub, >, u8) |
| VCMP(gtuh, >, u16) |
| VCMP(gtuw, >, u32) |
| VCMP(gtsb, >, s8) |
| VCMP(gtsh, >, s16) |
| VCMP(gtsw, >, s32) |
| #undef VCMP_DO |
| #undef VCMP |
| |
| #define VCMPFP_DO(suffix, compare, order, record) \ |
| void helper_vcmp##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ |
| { \ |
| uint32_t ones = (uint32_t)-1; \ |
| uint32_t all = ones; \ |
| uint32_t none = 0; \ |
| int i; \ |
| for (i = 0; i < ARRAY_SIZE(r->f); i++) { \ |
| uint32_t result; \ |
| int rel = float32_compare_quiet(a->f[i], b->f[i], &env->vec_status); \ |
| if (rel == float_relation_unordered) { \ |
| result = 0; \ |
| } else if (rel compare order) { \ |
| result = ones; \ |
| } else { \ |
| result = 0; \ |
| } \ |
| r->u32[i] = result; \ |
| all &= result; \ |
| none |= result; \ |
| } \ |
| if (record) { \ |
| env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1); \ |
| } \ |
| } |
| #define VCMPFP(suffix, compare, order) \ |
| VCMPFP_DO(suffix, compare, order, 0) \ |
| VCMPFP_DO(suffix##_dot, compare, order, 1) |
| VCMPFP(eqfp, ==, float_relation_equal) |
| VCMPFP(gefp, !=, float_relation_less) |
| VCMPFP(gtfp, ==, float_relation_greater) |
| #undef VCMPFP_DO |
| #undef VCMPFP |
| |
| static always_inline void vcmpbfp_internal (ppc_avr_t *r, ppc_avr_t *a, |
| ppc_avr_t *b, int record) |
| { |
| int i; |
| int all_in = 0; |
| for (i = 0; i < ARRAY_SIZE(r->f); i++) { |
| int le_rel = float32_compare_quiet(a->f[i], b->f[i], &env->vec_status); |
| if (le_rel == float_relation_unordered) { |
| r->u32[i] = 0xc0000000; |
| /* ALL_IN does not need to be updated here. */ |
| } else { |
| float32 bneg = float32_chs(b->f[i]); |
| int ge_rel = float32_compare_quiet(a->f[i], bneg, &env->vec_status); |
| int le = le_rel != float_relation_greater; |
| int ge = ge_rel != float_relation_less; |
| r->u32[i] = ((!le) << 31) | ((!ge) << 30); |
| all_in |= (!le | !ge); |
| } |
| } |
| if (record) { |
| env->crf[6] = (all_in == 0) << 1; |
| } |
| } |
| |
| void helper_vcmpbfp (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) |
| { |
| vcmpbfp_internal(r, a, b, 0); |
| } |
| |
| void helper_vcmpbfp_dot (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) |
| { |
| vcmpbfp_internal(r, a, b, 1); |
| } |
| |
| #define VCT(suffix, satcvt, element) \ |
| void helper_vct##suffix (ppc_avr_t *r, ppc_avr_t *b, uint32_t uim) \ |
| { \ |
| int i; \ |
| int sat = 0; \ |
| float_status s = env->vec_status; \ |
| set_float_rounding_mode(float_round_to_zero, &s); \ |
| for (i = 0; i < ARRAY_SIZE(r->f); i++) { \ |
| if (float32_is_nan(b->f[i]) || \ |
| float32_is_signaling_nan(b->f[i])) { \ |
| r->element[i] = 0; \ |
| } else { \ |
| float64 t = float32_to_float64(b->f[i], &s); \ |
| int64_t j; \ |
| t = float64_scalbn(t, uim, &s); \ |
| j = float64_to_int64(t, &s); \ |
| r->element[i] = satcvt(j, &sat); \ |
| } \ |
| } \ |
| if (sat) { \ |
| env->vscr |= (1 << VSCR_SAT); \ |
| } \ |
| } |
| VCT(uxs, cvtsduw, u32) |
| VCT(sxs, cvtsdsw, s32) |
| #undef VCT |
| |
| void helper_vmaddfp (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) |
| { |
| int i; |
| for (i = 0; i < ARRAY_SIZE(r->f); i++) { |
| HANDLE_NAN3(r->f[i], a->f[i], b->f[i], c->f[i]) { |
| /* Need to do the computation in higher precision and round |
| * once at the end. */ |
| float64 af, bf, cf, t; |
| af = float32_to_float64(a->f[i], &env->vec_status); |
| bf = float32_to_float64(b->f[i], &env->vec_status); |
| cf = float32_to_float64(c->f[i], &env->vec_status); |
| t = float64_mul(af, cf, &env->vec_status); |
| t = float64_add(t, bf, &env->vec_status); |
| r->f[i] = float64_to_float32(t, &env->vec_status); |
| } |
| } |
| } |
| |
| void helper_vmhaddshs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) |
| { |
| int sat = 0; |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(r->s16); i++) { |
| int32_t prod = a->s16[i] * b->s16[i]; |
| int32_t t = (int32_t)c->s16[i] + (prod >> 15); |
| r->s16[i] = cvtswsh (t, &sat); |
| } |
| |
| if (sat) { |
| env->vscr |= (1 << VSCR_SAT); |
| } |
| } |
| |
| void helper_vmhraddshs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) |
| { |
| int sat = 0; |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(r->s16); i++) { |
| int32_t prod = a->s16[i] * b->s16[i] + 0x00004000; |
| int32_t t = (int32_t)c->s16[i] + (prod >> 15); |
| r->s16[i] = cvtswsh (t, &sat); |
| } |
| |
| if (sat) { |
| env->vscr |= (1 << VSCR_SAT); |
| } |
| } |
| |
| #define VMINMAX_DO(name, compare, element) \ |
| void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ |
| { \ |
| int i; \ |
| for (i = 0; i < ARRAY_SIZE(r->element); i++) { \ |
| if (a->element[i] compare b->element[i]) { \ |
| r->element[i] = b->element[i]; \ |
| } else { \ |
| r->element[i] = a->element[i]; \ |
| } \ |
| } \ |
| } |
| #define VMINMAX(suffix, element) \ |
| VMINMAX_DO(min##suffix, >, element) \ |
| VMINMAX_DO(max##suffix, <, element) |
| VMINMAX(sb, s8) |
| VMINMAX(sh, s16) |
| VMINMAX(sw, s32) |
| VMINMAX(ub, u8) |
| VMINMAX(uh, u16) |
| VMINMAX(uw, u32) |
| #undef VMINMAX_DO |
| #undef VMINMAX |
| |
| #define VMINMAXFP(suffix, rT, rF) \ |
| void helper_v##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ |
| { \ |
| int i; \ |
| for (i = 0; i < ARRAY_SIZE(r->f); i++) { \ |
| HANDLE_NAN2(r->f[i], a->f[i], b->f[i]) { \ |
| if (float32_lt_quiet(a->f[i], b->f[i], &env->vec_status)) { \ |
| r->f[i] = rT->f[i]; \ |
| } else { \ |
| r->f[i] = rF->f[i]; \ |
| } \ |
| } \ |
| } \ |
| } |
| VMINMAXFP(minfp, a, b) |
| VMINMAXFP(maxfp, b, a) |
| #undef VMINMAXFP |
| |
| void helper_vmladduhm (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) |
| { |
| int i; |
| for (i = 0; i < ARRAY_SIZE(r->s16); i++) { |
| int32_t prod = a->s16[i] * b->s16[i]; |
| r->s16[i] = (int16_t) (prod + c->s16[i]); |
| } |
| } |
| |
| #define VMRG_DO(name, element, highp) \ |
| void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ |
| { \ |
| ppc_avr_t result; \ |
| int i; \ |
| size_t n_elems = ARRAY_SIZE(r->element); \ |
| for (i = 0; i < n_elems/2; i++) { \ |
| if (highp) { \ |
| result.element[i*2+HI_IDX] = a->element[i]; \ |
| result.element[i*2+LO_IDX] = b->element[i]; \ |
| } else { \ |
| result.element[n_elems - i*2 - (1+HI_IDX)] = b->element[n_elems - i - 1]; \ |
| result.element[n_elems - i*2 - (1+LO_IDX)] = a->element[n_elems - i - 1]; \ |
| } \ |
| } \ |
| *r = result; \ |
| } |
| #if defined(WORDS_BIGENDIAN) |
| #define MRGHI 0 |
| #define MRGLO 1 |
| #else |
| #define MRGHI 1 |
| #define MRGLO 0 |
| #endif |
| #define VMRG(suffix, element) \ |
| VMRG_DO(mrgl##suffix, element, MRGHI) \ |
| VMRG_DO(mrgh##suffix, element, MRGLO) |
| VMRG(b, u8) |
| VMRG(h, u16) |
| VMRG(w, u32) |
| #undef VMRG_DO |
| #undef VMRG |
| #undef MRGHI |
| #undef MRGLO |
| |
| void helper_vmsummbm (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) |
| { |
| int32_t prod[16]; |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(r->s8); i++) { |
| prod[i] = (int32_t)a->s8[i] * b->u8[i]; |
| } |
| |
| VECTOR_FOR_INORDER_I(i, s32) { |
| r->s32[i] = c->s32[i] + prod[4*i] + prod[4*i+1] + prod[4*i+2] + prod[4*i+3]; |
| } |
| } |
| |
| void helper_vmsumshm (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) |
| { |
| int32_t prod[8]; |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(r->s16); i++) { |
| prod[i] = a->s16[i] * b->s16[i]; |
| } |
| |
| VECTOR_FOR_INORDER_I(i, s32) { |
| r->s32[i] = c->s32[i] + prod[2*i] + prod[2*i+1]; |
| } |
| } |
| |
| void helper_vmsumshs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) |
| { |
| int32_t prod[8]; |
| int i; |
| int sat = 0; |
| |
| for (i = 0; i < ARRAY_SIZE(r->s16); i++) { |
| prod[i] = (int32_t)a->s16[i] * b->s16[i]; |
| } |
| |
| VECTOR_FOR_INORDER_I (i, s32) { |
| int64_t t = (int64_t)c->s32[i] + prod[2*i] + prod[2*i+1]; |
| r->u32[i] = cvtsdsw(t, &sat); |
| } |
| |
| if (sat) { |
| env->vscr |= (1 << VSCR_SAT); |
| } |
| } |
| |
| void helper_vmsumubm (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) |
| { |
| uint16_t prod[16]; |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(r->u8); i++) { |
| prod[i] = a->u8[i] * b->u8[i]; |
| } |
| |
| VECTOR_FOR_INORDER_I(i, u32) { |
| r->u32[i] = c->u32[i] + prod[4*i] + prod[4*i+1] + prod[4*i+2] + prod[4*i+3]; |
| } |
| } |
| |
| void helper_vmsumuhm (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) |
| { |
| uint32_t prod[8]; |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(r->u16); i++) { |
| prod[i] = a->u16[i] * b->u16[i]; |
| } |
| |
| VECTOR_FOR_INORDER_I(i, u32) { |
| r->u32[i] = c->u32[i] + prod[2*i] + prod[2*i+1]; |
| } |
| } |
| |
| void helper_vmsumuhs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) |
| { |
| uint32_t prod[8]; |
| int i; |
| int sat = 0; |
| |
| for (i = 0; i < ARRAY_SIZE(r->u16); i++) { |
| prod[i] = a->u16[i] * b->u16[i]; |
| } |
| |
| VECTOR_FOR_INORDER_I (i, s32) { |
| uint64_t t = (uint64_t)c->u32[i] + prod[2*i] + prod[2*i+1]; |
| r->u32[i] = cvtuduw(t, &sat); |
| } |
| |
| if (sat) { |
| env->vscr |= (1 << VSCR_SAT); |
| } |
| } |
| |
| #define VMUL_DO(name, mul_element, prod_element, evenp) \ |
| void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ |
| { \ |
| int i; \ |
| VECTOR_FOR_INORDER_I(i, prod_element) { \ |
| if (evenp) { \ |
| r->prod_element[i] = a->mul_element[i*2+HI_IDX] * b->mul_element[i*2+HI_IDX]; \ |
| } else { \ |
| r->prod_element[i] = a->mul_element[i*2+LO_IDX] * b->mul_element[i*2+LO_IDX]; \ |
| } \ |
| } \ |
| } |
| #define VMUL(suffix, mul_element, prod_element) \ |
| VMUL_DO(mule##suffix, mul_element, prod_element, 1) \ |
| VMUL_DO(mulo##suffix, mul_element, prod_element, 0) |
| VMUL(sb, s8, s16) |
| VMUL(sh, s16, s32) |
| VMUL(ub, u8, u16) |
| VMUL(uh, u16, u32) |
| #undef VMUL_DO |
| #undef VMUL |
| |
| void helper_vnmsubfp (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) |
| { |
| int i; |
| for (i = 0; i < ARRAY_SIZE(r->f); i++) { |
| HANDLE_NAN3(r->f[i], a->f[i], b->f[i], c->f[i]) { |
| /* Need to do the computation is higher precision and round |
| * once at the end. */ |
| float64 af, bf, cf, t; |
| af = float32_to_float64(a->f[i], &env->vec_status); |
| bf = float32_to_float64(b->f[i], &env->vec_status); |
| cf = float32_to_float64(c->f[i], &env->vec_status); |
| t = float64_mul(af, cf, &env->vec_status); |
| t = float64_sub(t, bf, &env->vec_status); |
| t = float64_chs(t); |
| r->f[i] = float64_to_float32(t, &env->vec_status); |
| } |
| } |
| } |
| |
| void helper_vperm (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) |
| { |
| ppc_avr_t result; |
| int i; |
| VECTOR_FOR_INORDER_I (i, u8) { |
| int s = c->u8[i] & 0x1f; |
| #if defined(WORDS_BIGENDIAN) |
| int index = s & 0xf; |
| #else |
| int index = 15 - (s & 0xf); |
| #endif |
| if (s & 0x10) { |
| result.u8[i] = b->u8[index]; |
| } else { |
| result.u8[i] = a->u8[index]; |
| } |
| } |
| *r = result; |
| } |
| |
| #if defined(WORDS_BIGENDIAN) |
| #define PKBIG 1 |
| #else |
| #define PKBIG 0 |
| #endif |
| void helper_vpkpx (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) |
| { |
| int i, j; |
| ppc_avr_t result; |
| #if defined(WORDS_BIGENDIAN) |
| const ppc_avr_t *x[2] = { a, b }; |
| #else |
| const ppc_avr_t *x[2] = { b, a }; |
| #endif |
| |
| VECTOR_FOR_INORDER_I (i, u64) { |
| VECTOR_FOR_INORDER_I (j, u32){ |
| uint32_t e = x[i]->u32[j]; |
| result.u16[4*i+j] = (((e >> 9) & 0xfc00) | |
| ((e >> 6) & 0x3e0) | |
| ((e >> 3) & 0x1f)); |
| } |
| } |
| *r = result; |
| } |
| |
| #define VPK(suffix, from, to, cvt, dosat) \ |
| void helper_vpk##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ |
| { \ |
| int i; \ |
| int sat = 0; \ |
| ppc_avr_t result; \ |
| ppc_avr_t *a0 = PKBIG ? a : b; \ |
| ppc_avr_t *a1 = PKBIG ? b : a; \ |
| VECTOR_FOR_INORDER_I (i, from) { \ |
| result.to[i] = cvt(a0->from[i], &sat); \ |
| result.to[i+ARRAY_SIZE(r->from)] = cvt(a1->from[i], &sat); \ |
| } \ |
| *r = result; \ |
| if (dosat && sat) { \ |
| env->vscr |= (1 << VSCR_SAT); \ |
| } \ |
| } |
| #define I(x, y) (x) |
| VPK(shss, s16, s8, cvtshsb, 1) |
| VPK(shus, s16, u8, cvtshub, 1) |
| VPK(swss, s32, s16, cvtswsh, 1) |
| VPK(swus, s32, u16, cvtswuh, 1) |
| VPK(uhus, u16, u8, cvtuhub, 1) |
| VPK(uwus, u32, u16, cvtuwuh, 1) |
| VPK(uhum, u16, u8, I, 0) |
| VPK(uwum, u32, u16, I, 0) |
| #undef I |
| #undef VPK |
| #undef PKBIG |
| |
| void helper_vrefp (ppc_avr_t *r, ppc_avr_t *b) |
| { |
| int i; |
| for (i = 0; i < ARRAY_SIZE(r->f); i++) { |
| HANDLE_NAN1(r->f[i], b->f[i]) { |
| r->f[i] = float32_div(float32_one, b->f[i], &env->vec_status); |
| } |
| } |
| } |
| |
| #define VRFI(suffix, rounding) \ |
| void helper_vrfi##suffix (ppc_avr_t *r, ppc_avr_t *b) \ |
| { \ |
| int i; \ |
| float_status s = env->vec_status; \ |
| set_float_rounding_mode(rounding, &s); \ |
| for (i = 0; i < ARRAY_SIZE(r->f); i++) { \ |
| HANDLE_NAN1(r->f[i], b->f[i]) { \ |
| r->f[i] = float32_round_to_int (b->f[i], &s); \ |
| } \ |
| } \ |
| } |
| VRFI(n, float_round_nearest_even) |
| VRFI(m, float_round_down) |
| VRFI(p, float_round_up) |
| VRFI(z, float_round_to_zero) |
| #undef VRFI |
| |
| #define VROTATE(suffix, element) \ |
| void helper_vrl##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ |
| { \ |
| int i; \ |
| for (i = 0; i < ARRAY_SIZE(r->element); i++) { \ |
| unsigned int mask = ((1 << (3 + (sizeof (a->element[0]) >> 1))) - 1); \ |
| unsigned int shift = b->element[i] & mask; \ |
| r->element[i] = (a->element[i] << shift) | (a->element[i] >> (sizeof(a->element[0]) * 8 - shift)); \ |
| } \ |
| } |
| VROTATE(b, u8) |
| VROTATE(h, u16) |
| VROTATE(w, u32) |
| #undef VROTATE |
| |
| void helper_vrsqrtefp (ppc_avr_t *r, ppc_avr_t *b) |
| { |
| int i; |
| for (i = 0; i < ARRAY_SIZE(r->f); i++) { |
| HANDLE_NAN1(r->f[i], b->f[i]) { |
| float32 t = float32_sqrt(b->f[i], &env->vec_status); |
| r->f[i] = float32_div(float32_one, t, &env->vec_status); |
| } |
| } |
| } |
| |
| void helper_vsel (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) |
| { |
| r->u64[0] = (a->u64[0] & ~c->u64[0]) | (b->u64[0] & c->u64[0]); |
| r->u64[1] = (a->u64[1] & ~c->u64[1]) | (b->u64[1] & c->u64[1]); |
| } |
| |
| void helper_vlogefp (ppc_avr_t *r, ppc_avr_t *b) |
| { |
| int i; |
| for (i = 0; i < ARRAY_SIZE(r->f); i++) { |
| HANDLE_NAN1(r->f[i], b->f[i]) { |
| r->f[i] = float32_log2(b->f[i], &env->vec_status); |
| } |
| } |
| } |
| |
| #if defined(WORDS_BIGENDIAN) |
| #define LEFT 0 |
| #define RIGHT 1 |
| #else |
| #define LEFT 1 |
| #define RIGHT 0 |
| #endif |
| /* The specification says that the results are undefined if all of the |
| * shift counts are not identical. We check to make sure that they are |
| * to conform to what real hardware appears to do. */ |
| #define VSHIFT(suffix, leftp) \ |
| void helper_vs##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ |
| { \ |
| int shift = b->u8[LO_IDX*0x15] & 0x7; \ |
| int doit = 1; \ |
| int i; \ |
| for (i = 0; i < ARRAY_SIZE(r->u8); i++) { \ |
| doit = doit && ((b->u8[i] & 0x7) == shift); \ |
| } \ |
| if (doit) { \ |
| if (shift == 0) { \ |
| *r = *a; \ |
| } else if (leftp) { \ |
| uint64_t carry = a->u64[LO_IDX] >> (64 - shift); \ |
| r->u64[HI_IDX] = (a->u64[HI_IDX] << shift) | carry; \ |
| r->u64[LO_IDX] = a->u64[LO_IDX] << shift; \ |
| } else { \ |
| uint64_t carry = a->u64[HI_IDX] << (64 - shift); \ |
| r->u64[LO_IDX] = (a->u64[LO_IDX] >> shift) | carry; \ |
| r->u64[HI_IDX] = a->u64[HI_IDX] >> shift; \ |
| } \ |
| } \ |
| } |
| VSHIFT(l, LEFT) |
| VSHIFT(r, RIGHT) |
| #undef VSHIFT |
| #undef LEFT |
| #undef RIGHT |
| |
| #define VSL(suffix, element) \ |
| void helper_vsl##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ |
| { \ |
| int i; \ |
| for (i = 0; i < ARRAY_SIZE(r->element); i++) { \ |
| unsigned int mask = ((1 << (3 + (sizeof (a->element[0]) >> 1))) - 1); \ |
| unsigned int shift = b->element[i] & mask; \ |
| r->element[i] = a->element[i] << shift; \ |
| } \ |
| } |
| VSL(b, u8) |
| VSL(h, u16) |
| VSL(w, u32) |
| #undef VSL |
| |
| void helper_vsldoi (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t shift) |
| { |
| int sh = shift & 0xf; |
| int i; |
| ppc_avr_t result; |
| |
| #if defined(WORDS_BIGENDIAN) |
| for (i = 0; i < ARRAY_SIZE(r->u8); i++) { |
| int index = sh + i; |
| if (index > 0xf) { |
| result.u8[i] = b->u8[index-0x10]; |
| } else { |
| result.u8[i] = a->u8[index]; |
| } |
| } |
| #else |
| for (i = 0; i < ARRAY_SIZE(r->u8); i++) { |
| int index = (16 - sh) + i; |
| if (index > 0xf) { |
| result.u8[i] = a->u8[index-0x10]; |
| } else { |
| result.u8[i] = b->u8[index]; |
| } |
| } |
| #endif |
| *r = result; |
| } |
| |
| void helper_vslo (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) |
| { |
| int sh = (b->u8[LO_IDX*0xf] >> 3) & 0xf; |
| |
| #if defined (WORDS_BIGENDIAN) |
| memmove (&r->u8[0], &a->u8[sh], 16-sh); |
| memset (&r->u8[16-sh], 0, sh); |
| #else |
| memmove (&r->u8[sh], &a->u8[0], 16-sh); |
| memset (&r->u8[0], 0, sh); |
| #endif |
| } |
| |
| /* Experimental testing shows that hardware masks the immediate. */ |
| #define _SPLAT_MASKED(element) (splat & (ARRAY_SIZE(r->element) - 1)) |
| #if defined(WORDS_BIGENDIAN) |
| #define SPLAT_ELEMENT(element) _SPLAT_MASKED(element) |
| #else |
| #define SPLAT_ELEMENT(element) (ARRAY_SIZE(r->element)-1 - _SPLAT_MASKED(element)) |
| #endif |
| #define VSPLT(suffix, element) \ |
| void helper_vsplt##suffix (ppc_avr_t *r, ppc_avr_t *b, uint32_t splat) \ |
| { \ |
| uint32_t s = b->element[SPLAT_ELEMENT(element)]; \ |
| int i; \ |
| for (i = 0; i < ARRAY_SIZE(r->element); i++) { \ |
| r->element[i] = s; \ |
| } \ |
| } |
| VSPLT(b, u8) |
| VSPLT(h, u16) |
| VSPLT(w, u32) |
| #undef VSPLT |
| #undef SPLAT_ELEMENT |
| #undef _SPLAT_MASKED |
| |
| #define VSPLTI(suffix, element, splat_type) \ |
| void helper_vspltis##suffix (ppc_avr_t *r, uint32_t splat) \ |
| { \ |
| splat_type x = (int8_t)(splat << 3) >> 3; \ |
| int i; \ |
| for (i = 0; i < ARRAY_SIZE(r->element); i++) { \ |
| r->element[i] = x; \ |
| } \ |
| } |
| VSPLTI(b, s8, int8_t) |
| VSPLTI(h, s16, int16_t) |
| VSPLTI(w, s32, int32_t) |
| #undef VSPLTI |
| |
| #define VSR(suffix, element) \ |
| void helper_vsr##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ |
| { \ |
| int i; \ |
| for (i = 0; i < ARRAY_SIZE(r->element); i++) { \ |
| unsigned int mask = ((1 << (3 + (sizeof (a->element[0]) >> 1))) - 1); \ |
| unsigned int shift = b->element[i] & mask; \ |
| r->element[i] = a->element[i] >> shift; \ |
| } \ |
| } |
| VSR(ab, s8) |
| VSR(ah, s16) |
| VSR(aw, s32) |
| VSR(b, u8) |
| VSR(h, u16) |
| VSR(w, u32) |
| #undef VSR |
| |
| void helper_vsro (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) |
| { |
| int sh = (b->u8[LO_IDX*0xf] >> 3) & 0xf; |
| |
| #if defined (WORDS_BIGENDIAN) |
| memmove (&r->u8[sh], &a->u8[0], 16-sh); |
| memset (&r->u8[0], 0, sh); |
| #else |
| memmove (&r->u8[0], &a->u8[sh], 16-sh); |
| memset (&r->u8[16-sh], 0, sh); |
| #endif |
| } |
| |
| void helper_vsubcuw (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) |
| { |
| int i; |
| for (i = 0; i < ARRAY_SIZE(r->u32); i++) { |
| r->u32[i] = a->u32[i] >= b->u32[i]; |
| } |
| } |
| |
| void helper_vsumsws (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) |
| { |
| int64_t t; |
| int i, upper; |
| ppc_avr_t result; |
| int sat = 0; |
| |
| #if defined(WORDS_BIGENDIAN) |
| upper = ARRAY_SIZE(r->s32)-1; |
| #else |
| upper = 0; |
| #endif |
| t = (int64_t)b->s32[upper]; |
| for (i = 0; i < ARRAY_SIZE(r->s32); i++) { |
| t += a->s32[i]; |
| result.s32[i] = 0; |
| } |
| result.s32[upper] = cvtsdsw(t, &sat); |
| *r = result; |
| |
| if (sat) { |
| env->vscr |= (1 << VSCR_SAT); |
| } |
| } |
| |
| void helper_vsum2sws (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) |
| { |
| int i, j, upper; |
| ppc_avr_t result; |
| int sat = 0; |
| |
| #if defined(WORDS_BIGENDIAN) |
| upper = 1; |
| #else |
| upper = 0; |
| #endif |
| for (i = 0; i < ARRAY_SIZE(r->u64); i++) { |
| int64_t t = (int64_t)b->s32[upper+i*2]; |
| result.u64[i] = 0; |
| for (j = 0; j < ARRAY_SIZE(r->u64); j++) { |
| t += a->s32[2*i+j]; |
| } |
| result.s32[upper+i*2] = cvtsdsw(t, &sat); |
| } |
| |
| *r = result; |
| if (sat) { |
| env->vscr |= (1 << VSCR_SAT); |
| } |
| } |
| |
| void helper_vsum4sbs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) |
| { |
| int i, j; |
| int sat = 0; |
| |
| for (i = 0; i < ARRAY_SIZE(r->s32); i++) { |
| int64_t t = (int64_t)b->s32[i]; |
| for (j = 0; j < ARRAY_SIZE(r->s32); j++) { |
| t += a->s8[4*i+j]; |
| } |
| r->s32[i] = cvtsdsw(t, &sat); |
| } |
| |
| if (sat) { |
| env->vscr |= (1 << VSCR_SAT); |
| } |
| } |
| |
| void helper_vsum4shs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) |
| { |
| int sat = 0; |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(r->s32); i++) { |
| int64_t t = (int64_t)b->s32[i]; |
| t += a->s16[2*i] + a->s16[2*i+1]; |
| r->s32[i] = cvtsdsw(t, &sat); |
| } |
| |
| if (sat) { |
| env->vscr |= (1 << VSCR_SAT); |
| } |
| } |
| |
| void helper_vsum4ubs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) |
| { |
| int i, j; |
| int sat = 0; |
| |
| for (i = 0; i < ARRAY_SIZE(r->u32); i++) { |
| uint64_t t = (uint64_t)b->u32[i]; |
| for (j = 0; j < ARRAY_SIZE(r->u32); j++) { |
| t += a->u8[4*i+j]; |
| } |
| r->u32[i] = cvtuduw(t, &sat); |
| } |
| |
| if (sat) { |
| env->vscr |= (1 << VSCR_SAT); |
| } |
| } |
| |
| #if defined(WORDS_BIGENDIAN) |
| #define UPKHI 1 |
| #define UPKLO 0 |
| #else |
| #define UPKHI 0 |
| #define UPKLO 1 |
| #endif |
| #define VUPKPX(suffix, hi) \ |
| void helper_vupk##suffix (ppc_avr_t *r, ppc_avr_t *b) \ |
| { \ |
| int i; \ |
| ppc_avr_t result; \ |
| for (i = 0; i < ARRAY_SIZE(r->u32); i++) { \ |
| uint16_t e = b->u16[hi ? i : i+4]; \ |
| uint8_t a = (e >> 15) ? 0xff : 0; \ |
| uint8_t r = (e >> 10) & 0x1f; \ |
| uint8_t g = (e >> 5) & 0x1f; \ |
| uint8_t b = e & 0x1f; \ |
| result.u32[i] = (a << 24) | (r << 16) | (g << 8) | b; \ |
| } \ |
| *r = result; \ |
| } |
| VUPKPX(lpx, UPKLO) |
| VUPKPX(hpx, UPKHI) |
| #undef VUPKPX |
| |
| #define VUPK(suffix, unpacked, packee, hi) \ |
| void helper_vupk##suffix (ppc_avr_t *r, ppc_avr_t *b) \ |
| { \ |
| int i; \ |
| ppc_avr_t result; \ |
| if (hi) { \ |
| for (i = 0; i < ARRAY_SIZE(r->unpacked); i++) { \ |
| result.unpacked[i] = b->packee[i]; \ |
| } \ |
| } else { \ |
| for (i = ARRAY_SIZE(r->unpacked); i < ARRAY_SIZE(r->packee); i++) { \ |
| result.unpacked[i-ARRAY_SIZE(r->unpacked)] = b->packee[i]; \ |
| } \ |
| } \ |
| *r = result; \ |
| } |
| VUPK(hsb, s16, s8, UPKHI) |
| VUPK(hsh, s32, s16, UPKHI) |
| VUPK(lsb, s16, s8, UPKLO) |
| VUPK(lsh, s32, s16, UPKLO) |
| #undef VUPK |
| #undef UPKHI |
| #undef UPKLO |
| |
| #undef DO_HANDLE_NAN |
| #undef HANDLE_NAN1 |
| #undef HANDLE_NAN2 |
| #undef HANDLE_NAN3 |
| #undef VECTOR_FOR_INORDER_I |
| #undef HI_IDX |
| #undef LO_IDX |
| |
| /*****************************************************************************/ |
| /* SPE extension helpers */ |
| /* Use a table to make this quicker */ |
| static uint8_t hbrev[16] = { |
| 0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE, |
| 0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF, |
| }; |
| |
| static always_inline uint8_t byte_reverse (uint8_t val) |
| { |
| return hbrev[val >> 4] | (hbrev[val & 0xF] << 4); |
| } |
| |
| static always_inline uint32_t word_reverse (uint32_t val) |
| { |
| return byte_reverse(val >> 24) | (byte_reverse(val >> 16) << 8) | |
| (byte_reverse(val >> 8) << 16) | (byte_reverse(val) << 24); |
| } |
| |
| #define MASKBITS 16 // Random value - to be fixed (implementation dependant) |
| target_ulong helper_brinc (target_ulong arg1, target_ulong arg2) |
| { |
| uint32_t a, b, d, mask; |
| |
| mask = UINT32_MAX >> (32 - MASKBITS); |
| a = arg1 & mask; |
| b = arg2 & mask; |
| d = word_reverse(1 + word_reverse(a | ~b)); |
| return (arg1 & ~mask) | (d & b); |
| } |
| |
| uint32_t helper_cntlsw32 (uint32_t val) |
| { |
| if (val & 0x80000000) |
| return clz32(~val); |
| else |
| return clz32(val); |
| } |
| |
| uint32_t helper_cntlzw32 (uint32_t val) |
| { |
| return clz32(val); |
| } |
| |
| /* Single-precision floating-point conversions */ |
| static always_inline uint32_t efscfsi (uint32_t val) |
| { |
| CPU_FloatU u; |
| |
| u.f = int32_to_float32(val, &env->vec_status); |
| |
| return u.l; |
| } |
| |
| static always_inline uint32_t efscfui (uint32_t val) |
| { |
| CPU_FloatU u; |
| |
| u.f = uint32_to_float32(val, &env->vec_status); |
| |
| return u.l; |
| } |
| |
| static always_inline int32_t efsctsi (uint32_t val) |
| { |
| CPU_FloatU u; |
| |
| u.l = val; |
| /* NaN are not treated the same way IEEE 754 does */ |
| if (unlikely(float32_is_nan(u.f))) |
| return 0; |
| |
| return float32_to_int32(u.f, &env->vec_status); |
| } |
| |
| static always_inline uint32_t efsctui (uint32_t val) |
| { |
| CPU_FloatU u; |
| |
| u.l = val; |
| /* NaN are not treated the same way IEEE 754 does */ |
| if (unlikely(float32_is_nan(u.f))) |
| return 0; |
| |
| return float32_to_uint32(u.f, &env->vec_status); |
| } |
| |
| static always_inline uint32_t efsctsiz (uint32_t val) |
| { |
| CPU_FloatU u; |
| |
| u.l = val; |
| /* NaN are not treated the same way IEEE 754 does */ |
| if (unlikely(float32_is_nan(u.f))) |
| return 0; |
| |
| return float32_to_int32_round_to_zero(u.f, &env->vec_status); |
| } |
| |
| static always_inline uint32_t efsctuiz (uint32_t val) |
| { |
| CPU_FloatU u; |
| |
| u.l = val; |
| /* NaN are not treated the same way IEEE 754 does */ |
| if (unlikely(float32_is_nan(u.f))) |
| return 0; |
| |
| return float32_to_uint32_round_to_zero(u.f, &env->vec_status); |
| } |
| |
| static always_inline uint32_t efscfsf (uint32_t val) |
| { |
| CPU_FloatU u; |
| float32 tmp; |
| |
| u.f = int32_to_float32(val, &env->vec_status); |
| tmp = int64_to_float32(1ULL << 32, &env->vec_status); |
| u.f = float32_div(u.f, tmp, &env->vec_status); |
| |
| return u.l; |
| } |
| |
| static always_inline uint32_t efscfuf (uint32_t val) |
| { |
| CPU_FloatU u; |
| float32 tmp; |
| |
| u.f = uint32_to_float32(val, &env->vec_status); |
| tmp = uint64_to_float32(1ULL << 32, &env->vec_status); |
| u.f = float32_div(u.f, tmp, &env->vec_status); |
| |
| return u.l; |
| } |
| |
| static always_inline uint32_t efsctsf (uint32_t val) |
| { |
| CPU_FloatU u; |
| float32 tmp; |
| |
| u.l = val; |
| /* NaN are not treated the same way IEEE 754 does */ |
| if (unlikely(float32_is_nan(u.f))) |
| return 0; |
| tmp = uint64_to_float32(1ULL << 32, &env->vec_status); |
| u.f = float32_mul(u.f, tmp, &env->vec_status); |
| |
| return float32_to_int32(u.f, &env->vec_status); |
| } |
| |
| static always_inline uint32_t efsctuf (uint32_t val) |
| { |
| CPU_FloatU u; |
| float32 tmp; |
| |
| u.l = val; |
| /* NaN are not treated the same way IEEE 754 does */ |
| if (unlikely(float32_is_nan(u.f))) |
| return 0; |
| tmp = uint64_to_float32(1ULL << 32, &env->vec_status); |
| u.f = float32_mul(u.f, tmp, &env->vec_status); |
| |
| return float32_to_uint32(u.f, &env->vec_status); |
| } |
| |
| #define HELPER_SPE_SINGLE_CONV(name) \ |
| uint32_t helper_e##name (uint32_t val) \ |
| { \ |
| return e##name(val); \ |
| } |
| /* efscfsi */ |
| HELPER_SPE_SINGLE_CONV(fscfsi); |
| /* efscfui */ |
| HELPER_SPE_SINGLE_CONV(fscfui); |
| /* efscfuf */ |
| HELPER_SPE_SINGLE_CONV(fscfuf); |
| /* efscfsf */ |
| HELPER_SPE_SINGLE_CONV(fscfsf); |
| /* efsctsi */ |
| HELPER_SPE_SINGLE_CONV(fsctsi); |
| /* efsctui */ |
| HELPER_SPE_SINGLE_CONV(fsctui); |
| /* efsctsiz */ |
| HELPER_SPE_SINGLE_CONV(fsctsiz); |
| /* efsctuiz */ |
| HELPER_SPE_SINGLE_CONV(fsctuiz); |
| /* efsctsf */ |
| HELPER_SPE_SINGLE_CONV(fsctsf); |
| /* efsctuf */ |
| HELPER_SPE_SINGLE_CONV(fsctuf); |
| |
| #define HELPER_SPE_VECTOR_CONV(name) \ |
| uint64_t helper_ev##name (uint64_t val) \ |
| { \ |
| return ((uint64_t)e##name(val >> 32) << 32) | \ |
| (uint64_t)e##name(val); \ |
| } |
| /* evfscfsi */ |
| HELPER_SPE_VECTOR_CONV(fscfsi); |
| /* evfscfui */ |
| HELPER_SPE_VECTOR_CONV(fscfui); |
| /* evfscfuf */ |
| HELPER_SPE_VECTOR_CONV(fscfuf); |
| /* evfscfsf */ |
| HELPER_SPE_VECTOR_CONV(fscfsf); |
| /* evfsctsi */ |
| HELPER_SPE_VECTOR_CONV(fsctsi); |
| /* evfsctui */ |
| HELPER_SPE_VECTOR_CONV(fsctui); |
| /* evfsctsiz */ |
| HELPER_SPE_VECTOR_CONV(fsctsiz); |
| /* evfsctuiz */ |
| HELPER_SPE_VECTOR_CONV(fsctuiz); |
| /* evfsctsf */ |
| HELPER_SPE_VECTOR_CONV(fsctsf); |
| /* evfsctuf */ |
| HELPER_SPE_VECTOR_CONV(fsctuf); |
| |
| /* Single-precision floating-point arithmetic */ |
| static always_inline uint32_t efsadd (uint32_t op1, uint32_t op2) |
| { |
| CPU_FloatU u1, u2; |
| u1.l = op1; |
| u2.l = op2; |
| u1.f = float32_add(u1.f, u2.f, &env->vec_status); |
| return u1.l; |
| } |
| |
| static always_inline uint32_t efssub (uint32_t op1, uint32_t op2) |
| { |
| CPU_FloatU u1, u2; |
| u1.l = op1; |
| u2.l = op2; |
| u1.f = float32_sub(u1.f, u2.f, &env->vec_status); |
| return u1.l; |
| } |
| |
| static always_inline uint32_t efsmul (uint32_t op1, uint32_t op2) |
| { |
| CPU_FloatU u1, u2; |
| u1.l = op1; |
| u2.l = op2; |
| u1.f = float32_mul(u1.f, u2.f, &env->vec_status); |
| return u1.l; |
| } |
| |
| static always_inline uint32_t efsdiv (uint32_t op1, uint32_t op2) |
| { |
| CPU_FloatU u1, u2; |
| u1.l = op1; |
| u2.l = op2; |
| u1.f = float32_div(u1.f, u2.f, &env->vec_status); |
| return u1.l; |
| } |
| |
| #define HELPER_SPE_SINGLE_ARITH(name) \ |
| uint32_t helper_e##name (uint32_t op1, uint32_t op2) \ |
| { \ |
| return e##name(op1, op2); \ |
| } |
| /* efsadd */ |
| HELPER_SPE_SINGLE_ARITH(fsadd); |
| /* efssub */ |
| HELPER_SPE_SINGLE_ARITH(fssub); |
| /* efsmul */ |
| HELPER_SPE_SINGLE_ARITH(fsmul); |
| /* efsdiv */ |
| HELPER_SPE_SINGLE_ARITH(fsdiv); |
| |
| #define HELPER_SPE_VECTOR_ARITH(name) \ |
| uint64_t helper_ev##name (uint64_t op1, uint64_t op2) \ |
| { \ |
| return ((uint64_t)e##name(op1 >> 32, op2 >> 32) << 32) | \ |
| (uint64_t)e##name(op1, op2); \ |
| } |
| /* evfsadd */ |
| HELPER_SPE_VECTOR_ARITH(fsadd); |
| /* evfssub */ |
| HELPER_SPE_VECTOR_ARITH(fssub); |
| /* evfsmul */ |
| HELPER_SPE_VECTOR_ARITH(fsmul); |
| /* evfsdiv */ |
| HELPER_SPE_VECTOR_ARITH(fsdiv); |
| |
| /* Single-precision floating-point comparisons */ |
| static always_inline uint32_t efststlt (uint32_t op1, uint32_t op2) |
| { |
| CPU_FloatU u1, u2; |
| u1.l = op1; |
| u2.l = op2; |
| return float32_lt(u1.f, u2.f, &env->vec_status) ? 4 : 0; |
| } |
| |
| static always_inline uint32_t efststgt (uint32_t op1, uint32_t op2) |
| { |
| CPU_FloatU u1, u2; |
| u1.l = op1; |
| u2.l = op2; |
| return float32_le(u1.f, u2.f, &env->vec_status) ? 0 : 4; |
| } |
| |
| static always_inline uint32_t efststeq (uint32_t op1, uint32_t op2) |
| { |
| CPU_FloatU u1, u2; |
| u1.l = op1; |
| u2.l = op2; |
| return float32_eq(u1.f, u2.f, &env->vec_status) ? 4 : 0; |
| } |
| |
| static always_inline uint32_t efscmplt (uint32_t op1, uint32_t op2) |
| { |
| /* XXX: TODO: test special values (NaN, infinites, ...) */ |
| return efststlt(op1, op2); |
| } |
| |
| static always_inline uint32_t efscmpgt (uint32_t op1, uint32_t op2) |
| { |
| /* XXX: TODO: test special values (NaN, infinites, ...) */ |
| return efststgt(op1, op2); |
| } |
| |
| static always_inline uint32_t efscmpeq (uint32_t op1, uint32_t op2) |
| { |
| /* XXX: TODO: test special values (NaN, infinites, ...) */ |
| return efststeq(op1, op2); |
| } |
| |
| #define HELPER_SINGLE_SPE_CMP(name) \ |
| uint32_t helper_e##name (uint32_t op1, uint32_t op2) \ |
| { \ |
| return e##name(op1, op2) << 2; \ |
| } |
| /* efststlt */ |
| HELPER_SINGLE_SPE_CMP(fststlt); |
| /* efststgt */ |
| HELPER_SINGLE_SPE_CMP(fststgt); |
| /* efststeq */ |
| HELPER_SINGLE_SPE_CMP(fststeq); |
| /* efscmplt */ |
| HELPER_SINGLE_SPE_CMP(fscmplt); |
| /* efscmpgt */ |
| HELPER_SINGLE_SPE_CMP(fscmpgt); |
| /* efscmpeq */ |
| HELPER_SINGLE_SPE_CMP(fscmpeq); |
| |
| static always_inline uint32_t evcmp_merge (int t0, int t1) |
| { |
| return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1); |
| } |
| |
| #define HELPER_VECTOR_SPE_CMP(name) \ |
| uint32_t helper_ev##name (uint64_t op1, uint64_t op2) \ |
| { \ |
| return evcmp_merge(e##name(op1 >> 32, op2 >> 32), e##name(op1, op2)); \ |
| } |
| /* evfststlt */ |
| HELPER_VECTOR_SPE_CMP(fststlt); |
| /* evfststgt */ |
| HELPER_VECTOR_SPE_CMP(fststgt); |
| /* evfststeq */ |
| HELPER_VECTOR_SPE_CMP(fststeq); |
| /* evfscmplt */ |
| HELPER_VECTOR_SPE_CMP(fscmplt); |
| /* evfscmpgt */ |
| HELPER_VECTOR_SPE_CMP(fscmpgt); |
| /* evfscmpeq */ |
| HELPER_VECTOR_SPE_CMP(fscmpeq); |
| |
| /* Double-precision floating-point conversion */ |
| uint64_t helper_efdcfsi (uint32_t val) |
| { |
| CPU_DoubleU u; |
| |
| u.d = int32_to_float64(val, &env->vec_status); |
| |
| return u.ll; |
| } |
| |
| uint64_t helper_efdcfsid (uint64_t val) |
| { |
| CPU_DoubleU u; |
| |
| u.d = int64_to_float64(val, &env->vec_status); |
| |
| return u.ll; |
| } |
| |
| uint64_t helper_efdcfui (uint32_t val) |
| { |
| CPU_DoubleU u; |
| |
| u.d = uint32_to_float64(val, &env->vec_status); |
| |
| return u.ll; |
| } |
| |
| uint64_t helper_efdcfuid (uint64_t val) |
| { |
| CPU_DoubleU u; |
| |
| u.d = uint64_to_float64(val, &env->vec_status); |
| |
| return u.ll; |
| } |
| |
| uint32_t helper_efdctsi (uint64_t val) |
| { |
| CPU_DoubleU u; |
| |
| u.ll = val; |
| /* NaN are not treated the same way IEEE 754 does */ |
| if (unlikely(float64_is_nan(u.d))) |
| return 0; |
| |
| return float64_to_int32(u.d, &env->vec_status); |
| } |
| |
| uint32_t helper_efdctui (uint64_t val) |
| { |
| CPU_DoubleU u; |
| |
| u.ll = val; |
| /* NaN are not treated the same way IEEE 754 does */ |
| if (unlikely(float64_is_nan(u.d))) |
| return 0; |
| |
| return float64_to_uint32(u.d, &env->vec_status); |
| } |
| |
| uint32_t helper_efdctsiz (uint64_t val) |
| { |
| CPU_DoubleU u; |
| |
| u.ll = val; |
| /* NaN are not treated the same way IEEE 754 does */ |
| if (unlikely(float64_is_nan(u.d))) |
| return 0; |
| |
| return float64_to_int32_round_to_zero(u.d, &env->vec_status); |
| } |
| |
| uint64_t helper_efdctsidz (uint64_t val) |
| { |
| CPU_DoubleU u; |
| |
| u.ll = val; |
| /* NaN are not treated the same way IEEE 754 does */ |
| if (unlikely(float64_is_nan(u.d))) |
| return 0; |
| |
| return float64_to_int64_round_to_zero(u.d, &env->vec_status); |
| } |
| |
| uint32_t helper_efdctuiz (uint64_t val) |
| { |
| CPU_DoubleU u; |
| |
| u.ll = val; |
| /* NaN are not treated the same way IEEE 754 does */ |
| if (unlikely(float64_is_nan(u.d))) |
| return 0; |
| |
| return float64_to_uint32_round_to_zero(u.d, &env->vec_status); |
| } |
| |
| uint64_t helper_efdctuidz (uint64_t val) |
| { |
| CPU_DoubleU u; |
| |
| u.ll = val; |
| /* NaN are not treated the same way IEEE 754 does */ |
| if (unlikely(float64_is_nan(u.d))) |
| return 0; |
| |
| return float64_to_uint64_round_to_zero(u.d, &env->vec_status); |
| } |
| |
| uint64_t helper_efdcfsf (uint32_t val) |
| { |
| CPU_DoubleU u; |
| float64 tmp; |
| |
| u.d = int32_to_float64(val, &env->vec_status); |
| tmp = int64_to_float64(1ULL << 32, &env->vec_status); |
| u.d = float64_div(u.d, tmp, &env->vec_status); |
| |
| return u.ll; |
| } |
| |
| uint64_t helper_efdcfuf (uint32_t val) |
| { |
| CPU_DoubleU u; |
| float64 tmp; |
| |
| u.d = uint32_to_float64(val, &env->vec_status); |
| tmp = int64_to_float64(1ULL << 32, &env->vec_status); |
| u.d = float64_div(u.d, tmp, &env->vec_status); |
| |
| return u.ll; |
| } |
| |
| uint32_t helper_efdctsf (uint64_t val) |
| { |
| CPU_DoubleU u; |
| float64 tmp; |
| |
| u.ll = val; |
| /* NaN are not treated the same way IEEE 754 does */ |
| if (unlikely(float64_is_nan(u.d))) |
| return 0; |
| tmp = uint64_to_float64(1ULL << 32, &env->vec_status); |
| u.d = float64_mul(u.d, tmp, &env->vec_status); |
| |
| return float64_to_int32(u.d, &env->vec_status); |
| } |
| |
| uint32_t helper_efdctuf (uint64_t val) |
| { |
| CPU_DoubleU u; |
| float64 tmp; |
| |
| u.ll = val; |
| /* NaN are not treated the same way IEEE 754 does */ |
| if (unlikely(float64_is_nan(u.d))) |
| return 0; |
| tmp = uint64_to_float64(1ULL << 32, &env->vec_status); |
| u.d = float64_mul(u.d, tmp, &env->vec_status); |
| |
| return float64_to_uint32(u.d, &env->vec_status); |
| } |
| |
| uint32_t helper_efscfd (uint64_t val) |
| { |
| CPU_DoubleU u1; |
| CPU_FloatU u2; |
| |
| u1.ll = val; |
| u2.f = float64_to_float32(u1.d, &env->vec_status); |
| |
| return u2.l; |
| } |
| |
| uint64_t helper_efdcfs (uint32_t val) |
| { |
| CPU_DoubleU u2; |
| CPU_FloatU u1; |
| |
| u1.l = val; |
| u2.d = float32_to_float64(u1.f, &env->vec_status); |
| |
| return u2.ll; |
| } |
| |
| /* Double precision fixed-point arithmetic */ |
| uint64_t helper_efdadd (uint64_t op1, uint64_t op2) |
| { |
| CPU_DoubleU u1, u2; |
| u1.ll = op1; |
| u2.ll = op2; |
| u1.d = float64_add(u1.d, u2.d, &env->vec_status); |
| return u1.ll; |
| } |
| |
| uint64_t helper_efdsub (uint64_t op1, uint64_t op2) |
| { |
| CPU_DoubleU u1, u2; |
| u1.ll = op1; |
| u2.ll = op2; |
| u1.d = float64_sub(u1.d, u2.d, &env->vec_status); |
| return u1.ll; |
| } |
| |
| uint64_t helper_efdmul (uint64_t op1, uint64_t op2) |
| { |
| CPU_DoubleU u1, u2; |
| u1.ll = op1; |
| u2.ll = op2; |
| u1.d = float64_mul(u1.d, u2.d, &env->vec_status); |
| return u1.ll; |
| } |
| |
| uint64_t helper_efddiv (uint64_t op1, uint64_t op2) |
| { |
| CPU_DoubleU u1, u2; |
| u1.ll = op1; |
| u2.ll = op2; |
| u1.d = float64_div(u1.d, u2.d, &env->vec_status); |
| return u1.ll; |
| } |
| |
| /* Double precision floating point helpers */ |
| uint32_t helper_efdtstlt (uint64_t op1, uint64_t op2) |
| { |
| CPU_DoubleU u1, u2; |
| u1.ll = op1; |
| u2.ll = op2; |
| return float64_lt(u1.d, u2.d, &env->vec_status) ? 4 : 0; |
| } |
| |
| uint32_t helper_efdtstgt (uint64_t op1, uint64_t op2) |
| { |
| CPU_DoubleU u1, u2; |
| u1.ll = op1; |
| u2.ll = op2; |
| return float64_le(u1.d, u2.d, &env->vec_status) ? 0 : 4; |
| } |
| |
| uint32_t helper_efdtsteq (uint64_t op1, uint64_t op2) |
| { |
| CPU_DoubleU u1, u2; |
| u1.ll = op1; |
| u2.ll = op2; |
| return float64_eq(u1.d, u2.d, &env->vec_status) ? 4 : 0; |
| } |
| |
| uint32_t helper_efdcmplt (uint64_t op1, uint64_t op2) |
| { |
| /* XXX: TODO: test special values (NaN, infinites, ...) */ |
| return helper_efdtstlt(op1, op2); |
| } |
| |
| uint32_t helper_efdcmpgt (uint64_t op1, uint64_t op2) |
| { |
| /* XXX: TODO: test special values (NaN, infinites, ...) */ |
| return helper_efdtstgt(op1, op2); |
| } |
| |
| uint32_t helper_efdcmpeq (uint64_t op1, uint64_t op2) |
| { |
| /* XXX: TODO: test special values (NaN, infinites, ...) */ |
| return helper_efdtsteq(op1, op2); |
| } |
| |
| /*****************************************************************************/ |
| /* Softmmu support */ |
| #if !defined (CONFIG_USER_ONLY) |
| |
| #define MMUSUFFIX _mmu |
| |
| #define SHIFT 0 |
| #include "softmmu_template.h" |
| |
| #define SHIFT 1 |
| #include "softmmu_template.h" |
| |
| #define SHIFT 2 |
| #include "softmmu_template.h" |
| |
| #define SHIFT 3 |
| #include "softmmu_template.h" |
| |
| /* try to fill the TLB and return an exception if error. If retaddr is |
| NULL, it means that the function was called in C code (i.e. not |
| from generated code or from helper.c) */ |
| /* XXX: fix it to restore all registers */ |
| void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr) |
| { |
| TranslationBlock *tb; |
| CPUState *saved_env; |
| unsigned long pc; |
| int ret; |
| |
| /* XXX: hack to restore env in all cases, even if not called from |
| generated code */ |
| saved_env = env; |
| env = cpu_single_env; |
| ret = cpu_ppc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1); |
| if (unlikely(ret != 0)) { |
| if (likely(retaddr)) { |
| /* now we have a real cpu fault */ |
| pc = (unsigned long)retaddr; |
| tb = tb_find_pc(pc); |
| if (likely(tb)) { |
| /* the PC is inside the translated code. It means that we have |
| a virtual CPU fault */ |
| cpu_restore_state(tb, env, pc, NULL); |
| } |
| } |
| helper_raise_exception_err(env->exception_index, env->error_code); |
| } |
| env = saved_env; |
| } |
| |
| /* Segment registers load and store */ |
| target_ulong helper_load_sr (target_ulong sr_num) |
| { |
| #if defined(TARGET_PPC64) |
| if (env->mmu_model & POWERPC_MMU_64) |
| return ppc_load_sr(env, sr_num); |
| #endif |
| return env->sr[sr_num]; |
| } |
| |
| void helper_store_sr (target_ulong sr_num, target_ulong val) |
| { |
| ppc_store_sr(env, sr_num, val); |
| } |
| |
| /* SLB management */ |
| #if defined(TARGET_PPC64) |
| target_ulong helper_load_slb (target_ulong slb_nr) |
| { |
| return ppc_load_slb(env, slb_nr); |
| } |
| |
| void helper_store_slb (target_ulong rb, target_ulong rs) |
| { |
| ppc_store_slb(env, rb, rs); |
| } |
| |
| void helper_slbia (void) |
| { |
| ppc_slb_invalidate_all(env); |
| } |
| |
| void helper_slbie (target_ulong addr) |
| { |
| ppc_slb_invalidate_one(env, addr); |
| } |
| |
| #endif /* defined(TARGET_PPC64) */ |
| |
| /* TLB management */ |
| void helper_tlbia (void) |
| { |
| ppc_tlb_invalidate_all(env); |
| } |
| |
| void helper_tlbie (target_ulong addr) |
| { |
| ppc_tlb_invalidate_one(env, addr); |
| } |
| |
| /* Software driven TLBs management */ |
| /* PowerPC 602/603 software TLB load instructions helpers */ |
| static void do_6xx_tlb (target_ulong new_EPN, int is_code) |
| { |
| target_ulong RPN, CMP, EPN; |
| int way; |
| |
| RPN = env->spr[SPR_RPA]; |
| if (is_code) { |
| CMP = env->spr[SPR_ICMP]; |
| EPN = env->spr[SPR_IMISS]; |
| } else { |
| CMP = env->spr[SPR_DCMP]; |
| EPN = env->spr[SPR_DMISS]; |
| } |
| way = (env->spr[SPR_SRR1] >> 17) & 1; |
| LOG_SWTLB("%s: EPN " ADDRX " " ADDRX " PTE0 " ADDRX |
| " PTE1 " ADDRX " way %d\n", |
| __func__, new_EPN, EPN, CMP, RPN, way); |
| /* Store this TLB */ |
| ppc6xx_tlb_store(env, (uint32_t)(new_EPN & TARGET_PAGE_MASK), |
| way, is_code, CMP, RPN); |
| } |
| |
| void helper_6xx_tlbd (target_ulong EPN) |
| { |
| do_6xx_tlb(EPN, 0); |
| } |
| |
| void helper_6xx_tlbi (target_ulong EPN) |
| { |
| do_6xx_tlb(EPN, 1); |
| } |
| |
| /* PowerPC 74xx software TLB load instructions helpers */ |
| static void do_74xx_tlb (target_ulong new_EPN, int is_code) |
| { |
| target_ulong RPN, CMP, EPN; |
| int way; |
| |
| RPN = env->spr[SPR_PTELO]; |
| CMP = env->spr[SPR_PTEHI]; |
| EPN = env->spr[SPR_TLBMISS] & ~0x3; |
| way = env->spr[SPR_TLBMISS] & 0x3; |
| LOG_SWTLB("%s: EPN " ADDRX " " ADDRX " PTE0 " ADDRX |
| " PTE1 " ADDRX " way %d\n", |
| __func__, new_EPN, EPN, CMP, RPN, way); |
| /* Store this TLB */ |
| ppc6xx_tlb_store(env, (uint32_t)(new_EPN & TARGET_PAGE_MASK), |
| way, is_code, CMP, RPN); |
| } |
| |
| void helper_74xx_tlbd (target_ulong EPN) |
| { |
| do_74xx_tlb(EPN, 0); |
| } |
| |
| void helper_74xx_tlbi (target_ulong EPN) |
| { |
| do_74xx_tlb(EPN, 1); |
| } |
| |
| static always_inline target_ulong booke_tlb_to_page_size (int size) |
| { |
| return 1024 << (2 * size); |
| } |
| |
| static always_inline int booke_page_size_to_tlb (target_ulong page_size) |
| { |
| int size; |
| |
| switch (page_size) { |
| case 0x00000400UL: |
| size = 0x0; |
| break; |
| case 0x00001000UL: |
| size = 0x1; |
| break; |
| case 0x00004000UL: |
| size = 0x2; |
| break; |
| case 0x00010000UL: |
| size = 0x3; |
| break; |
| case 0x00040000UL: |
| size = 0x4; |
| break; |
| case 0x00100000UL: |
| size = 0x5; |
| break; |
| case 0x00400000UL: |
| size = 0x6; |
| break; |
| case 0x01000000UL: |
| size = 0x7; |
| break; |
| case 0x04000000UL: |
| size = 0x8; |
| break; |
| case 0x10000000UL: |
| size = 0x9; |
| break; |
| case 0x40000000UL: |
| size = 0xA; |
| break; |
| #if defined (TARGET_PPC64) |
| case 0x000100000000ULL: |
| size = 0xB; |
| break; |
| case 0x000400000000ULL: |
| size = 0xC; |
| break; |
| case 0x001000000000ULL: |
| size = 0xD; |
| break; |
| case 0x004000000000ULL: |
| size = 0xE; |
| break; |
| case 0x010000000000ULL: |
| size = 0xF; |
| break; |
| #endif |
| default: |
| size = -1; |
| break; |
| } |
| |
| return size; |
| } |
| |
| /* Helpers for 4xx TLB management */ |
| target_ulong helper_4xx_tlbre_lo (target_ulong entry) |
| { |
| ppcemb_tlb_t *tlb; |
| target_ulong ret; |
| int size; |
| |
| entry &= 0x3F; |
| tlb = &env->tlb[entry].tlbe; |
| ret = tlb->EPN; |
| if (tlb->prot & PAGE_VALID) |
| ret |= 0x400; |
| size = booke_page_size_to_tlb(tlb->size); |
| if (size < 0 || size > 0x7) |
| size = 1; |
| ret |= size << 7; |
| env->spr[SPR_40x_PID] = tlb->PID; |
| return ret; |
| } |
| |
| target_ulong helper_4xx_tlbre_hi (target_ulong entry) |
| { |
| ppcemb_tlb_t *tlb; |
| target_ulong ret; |
| |
| entry &= 0x3F; |
| tlb = &env->tlb[entry].tlbe; |
| ret = tlb->RPN; |
| if (tlb->prot & PAGE_EXEC) |
| ret |= 0x200; |
| if (tlb->prot & PAGE_WRITE) |
| ret |= 0x100; |
| return ret; |
| } |
| |
| void helper_4xx_tlbwe_hi (target_ulong entry, target_ulong val) |
| { |
| ppcemb_tlb_t *tlb; |
| target_ulong page, end; |
| |
| LOG_SWTLB("%s entry %d val " ADDRX "\n", __func__, (int)entry, val); |
| entry &= 0x3F; |
| tlb = &env->tlb[entry].tlbe; |
| /* Invalidate previous TLB (if it's valid) */ |
| if (tlb->prot & PAGE_VALID) { |
| end = tlb->EPN + tlb->size; |
| LOG_SWTLB("%s: invalidate old TLB %d start " ADDRX |
| " end " ADDRX "\n", __func__, (int)entry, tlb->EPN, end); |
| for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE) |
| tlb_flush_page(env, page); |
| } |
| tlb->size = booke_tlb_to_page_size((val >> 7) & 0x7); |
| /* We cannot handle TLB size < TARGET_PAGE_SIZE. |
| * If this ever occurs, one should use the ppcemb target instead |
| * of the ppc or ppc64 one |
| */ |
| if ((val & 0x40) && tlb->size < TARGET_PAGE_SIZE) { |
| cpu_abort(env, "TLB size " TARGET_FMT_lu " < %u " |
| "are not supported (%d)\n", |
| tlb->size, TARGET_PAGE_SIZE, (int)((val >> 7) & 0x7)); |
| } |
| tlb->EPN = val & ~(tlb->size - 1); |
| if (val & 0x40) |
| tlb->prot |= PAGE_VALID; |
| else |
| tlb->prot &= ~PAGE_VALID; |
| if (val & 0x20) { |
| /* XXX: TO BE FIXED */ |
| cpu_abort(env, "Little-endian TLB entries are not supported by now\n"); |
| } |
| tlb->PID = env->spr[SPR_40x_PID]; /* PID */ |
| tlb->attr = val & 0xFF; |
| LOG_SWTLB("%s: set up TLB %d RPN " PADDRX " EPN " ADDRX |
| " size " ADDRX " prot %c%c%c%c PID %d\n", __func__, |
| (int)entry, tlb->RPN, tlb->EPN, tlb->size, |
| tlb->prot & PAGE_READ ? 'r' : '-', |
| tlb->prot & PAGE_WRITE ? 'w' : '-', |
| tlb->prot & PAGE_EXEC ? 'x' : '-', |
| tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID); |
| /* Invalidate new TLB (if valid) */ |
| if (tlb->prot & PAGE_VALID) { |
| end = tlb->EPN + tlb->size; |
| LOG_SWTLB("%s: invalidate TLB %d start " ADDRX |
| " end " ADDRX "\n", __func__, (int)entry, tlb->EPN, end); |
| for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE) |
| tlb_flush_page(env, page); |
| } |
| } |
| |
| void helper_4xx_tlbwe_lo (target_ulong entry, target_ulong val) |
| { |
| ppcemb_tlb_t *tlb; |
| |
| LOG_SWTLB("%s entry %i val " ADDRX "\n", __func__, (int)entry, val); |
| entry &= 0x3F; |
| tlb = &env->tlb[entry].tlbe; |
| tlb->RPN = val & 0xFFFFFC00; |
| tlb->prot = PAGE_READ; |
| if (val & 0x200) |
| tlb->prot |= PAGE_EXEC; |
| if (val & 0x100) |
| tlb->prot |= PAGE_WRITE; |
| LOG_SWTLB("%s: set up TLB %d RPN " PADDRX " EPN " ADDRX |
| " size " ADDRX " prot %c%c%c%c PID %d\n", __func__, |
| (int)entry, tlb->RPN, tlb->EPN, tlb->size, |
| tlb->prot & PAGE_READ ? 'r' : '-', |
| tlb->prot & PAGE_WRITE ? 'w' : '-', |
| tlb->prot & PAGE_EXEC ? 'x' : '-', |
| tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID); |
| } |
| |
| target_ulong helper_4xx_tlbsx (target_ulong address) |
| { |
| return ppcemb_tlb_search(env, address, env->spr[SPR_40x_PID]); |
| } |
| |
| /* PowerPC 440 TLB management */ |
| void helper_440_tlbwe (uint32_t word, target_ulong entry, target_ulong value) |
| { |
| ppcemb_tlb_t *tlb; |
| target_ulong EPN, RPN, size; |
| int do_flush_tlbs; |
| |
| LOG_SWTLB("%s word %d entry %d value " ADDRX "\n", |
| __func__, word, (int)entry, value); |
| do_flush_tlbs = 0; |
| entry &= 0x3F; |
| tlb = &env->tlb[entry].tlbe; |
| switch (word) { |
| default: |
| /* Just here to please gcc */ |
| case 0: |
| EPN = value & 0xFFFFFC00; |
| if ((tlb->prot & PAGE_VALID) && EPN != tlb->EPN) |
| do_flush_tlbs = 1; |
| tlb->EPN = EPN; |
| size = booke_tlb_to_page_size((value >> 4) & 0xF); |
| if ((tlb->prot & PAGE_VALID) && tlb->size < size) |
| do_flush_tlbs = 1; |
| tlb->size = size; |
| tlb->attr &= ~0x1; |
| tlb->attr |= (value >> 8) & 1; |
| if (value & 0x200) { |
| tlb->prot |= PAGE_VALID; |
| } else { |
| if (tlb->prot & PAGE_VALID) { |
| tlb->prot &= ~PAGE_VALID; |
| do_flush_tlbs = 1; |
| } |
| } |
| tlb->PID = env->spr[SPR_440_MMUCR] & 0x000000FF; |
| if (do_flush_tlbs) |
| tlb_flush(env, 1); |
| break; |
| case 1: |
| RPN = value & 0xFFFFFC0F; |
| if ((tlb->prot & PAGE_VALID) && tlb->RPN != RPN) |
| tlb_flush(env, 1); |
| tlb->RPN = RPN; |
| break; |
| case 2: |
| tlb->attr = (tlb->attr & 0x1) | (value & 0x0000FF00); |
| tlb->prot = tlb->prot & PAGE_VALID; |
| if (value & 0x1) |
| tlb->prot |= PAGE_READ << 4; |
| if (value & 0x2) |
| tlb->prot |= PAGE_WRITE << 4; |
| if (value & 0x4) |
| tlb->prot |= PAGE_EXEC << 4; |
| if (value & 0x8) |
| tlb->prot |= PAGE_READ; |
| if (value & 0x10) |
| tlb->prot |= PAGE_WRITE; |
| if (value & 0x20) |
| tlb->prot |= PAGE_EXEC; |
| break; |
| } |
| } |
| |
| target_ulong helper_440_tlbre (uint32_t word, target_ulong entry) |
| { |
| ppcemb_tlb_t *tlb; |
| target_ulong ret; |
| int size; |
| |
| entry &= 0x3F; |
| tlb = &env->tlb[entry].tlbe; |
| switch (word) { |
| default: |
| /* Just here to please gcc */ |
| case 0: |
| ret = tlb->EPN; |
| size = booke_page_size_to_tlb(tlb->size); |
| if (size < 0 || size > 0xF) |
| size = 1; |
| ret |= size << 4; |
| if (tlb->attr & 0x1) |
| ret |= 0x100; |
| if (tlb->prot & PAGE_VALID) |
| ret |= 0x200; |
| env->spr[SPR_440_MMUCR] &= ~0x000000FF; |
| env->spr[SPR_440_MMUCR] |= tlb->PID; |
| break; |
| case 1: |
| ret = tlb->RPN; |
| break; |
| case 2: |
| ret = tlb->attr & ~0x1; |
| if (tlb->prot & (PAGE_READ << 4)) |
| ret |= 0x1; |
| if (tlb->prot & (PAGE_WRITE << 4)) |
| ret |= 0x2; |
| if (tlb->prot & (PAGE_EXEC << 4)) |
| ret |= 0x4; |
| if (tlb->prot & PAGE_READ) |
| ret |= 0x8; |
| if (tlb->prot & PAGE_WRITE) |
| ret |= 0x10; |
| if (tlb->prot & PAGE_EXEC) |
| ret |= 0x20; |
| break; |
| } |
| return ret; |
| } |
| |
| target_ulong helper_440_tlbsx (target_ulong address) |
| { |
| return ppcemb_tlb_search(env, address, env->spr[SPR_440_MMUCR] & 0xFF); |
| } |
| |
| #endif /* !CONFIG_USER_ONLY */ |