|  | /* | 
|  | * General purpose implementation of a simple periodic countdown timer. | 
|  | * | 
|  | * Copyright (c) 2007 CodeSourcery. | 
|  | * | 
|  | * This code is licensed under the GNU LGPL. | 
|  | */ | 
|  |  | 
|  | #include "qemu/osdep.h" | 
|  | #include "hw/ptimer.h" | 
|  | #include "migration/vmstate.h" | 
|  | #include "qemu/host-utils.h" | 
|  | #include "exec/replay-core.h" | 
|  | #include "sysemu/cpu-timers.h" | 
|  | #include "sysemu/qtest.h" | 
|  | #include "block/aio.h" | 
|  | #include "hw/clock.h" | 
|  |  | 
|  | #define DELTA_ADJUST     1 | 
|  | #define DELTA_NO_ADJUST -1 | 
|  |  | 
|  | struct ptimer_state | 
|  | { | 
|  | uint8_t enabled; /* 0 = disabled, 1 = periodic, 2 = oneshot.  */ | 
|  | uint64_t limit; | 
|  | uint64_t delta; | 
|  | uint32_t period_frac; | 
|  | int64_t period; | 
|  | int64_t last_event; | 
|  | int64_t next_event; | 
|  | uint8_t policy_mask; | 
|  | QEMUTimer *timer; | 
|  | ptimer_cb callback; | 
|  | void *callback_opaque; | 
|  | /* | 
|  | * These track whether we're in a transaction block, and if we | 
|  | * need to do a timer reload when the block finishes. They don't | 
|  | * need to be migrated because migration can never happen in the | 
|  | * middle of a transaction block. | 
|  | */ | 
|  | bool in_transaction; | 
|  | bool need_reload; | 
|  | }; | 
|  |  | 
|  | /* Use a bottom-half routine to avoid reentrancy issues.  */ | 
|  | static void ptimer_trigger(ptimer_state *s) | 
|  | { | 
|  | s->callback(s->callback_opaque); | 
|  | } | 
|  |  | 
|  | static void ptimer_reload(ptimer_state *s, int delta_adjust) | 
|  | { | 
|  | uint32_t period_frac; | 
|  | uint64_t period; | 
|  | uint64_t delta; | 
|  | bool suppress_trigger = false; | 
|  |  | 
|  | /* | 
|  | * Note that if delta_adjust is 0 then we must be here because of | 
|  | * a count register write or timer start, not because of timer expiry. | 
|  | * In that case the policy might require us to suppress the timer trigger | 
|  | * that we would otherwise generate for a zero delta. | 
|  | */ | 
|  | if (delta_adjust == 0 && | 
|  | (s->policy_mask & PTIMER_POLICY_TRIGGER_ONLY_ON_DECREMENT)) { | 
|  | suppress_trigger = true; | 
|  | } | 
|  | if (s->delta == 0 && !(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER) | 
|  | && !suppress_trigger) { | 
|  | ptimer_trigger(s); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Note that ptimer_trigger() might call the device callback function, | 
|  | * which can then modify timer state, so we must not cache any fields | 
|  | * from ptimer_state until after we have called it. | 
|  | */ | 
|  | delta = s->delta; | 
|  | period = s->period; | 
|  | period_frac = s->period_frac; | 
|  |  | 
|  | if (delta == 0 && !(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_RELOAD)) { | 
|  | delta = s->delta = s->limit; | 
|  | } | 
|  |  | 
|  | if (s->period == 0 && s->period_frac == 0) { | 
|  | if (!qtest_enabled()) { | 
|  | fprintf(stderr, "Timer with period zero, disabling\n"); | 
|  | } | 
|  | timer_del(s->timer); | 
|  | s->enabled = 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (s->policy_mask & PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD) { | 
|  | if (delta_adjust != DELTA_NO_ADJUST) { | 
|  | delta += delta_adjust; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (delta == 0 && (s->policy_mask & PTIMER_POLICY_CONTINUOUS_TRIGGER)) { | 
|  | if (s->enabled == 1 && s->limit == 0) { | 
|  | delta = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (delta == 0 && (s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)) { | 
|  | if (delta_adjust != DELTA_NO_ADJUST) { | 
|  | delta = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (delta == 0 && (s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_RELOAD)) { | 
|  | if (s->enabled == 1 && s->limit != 0) { | 
|  | delta = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (delta == 0) { | 
|  | if (s->enabled == 0) { | 
|  | /* trigger callback disabled the timer already */ | 
|  | return; | 
|  | } | 
|  | if (!qtest_enabled()) { | 
|  | fprintf(stderr, "Timer with delta zero, disabling\n"); | 
|  | } | 
|  | timer_del(s->timer); | 
|  | s->enabled = 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Artificially limit timeout rate to something | 
|  | * achievable under QEMU.  Otherwise, QEMU spends all | 
|  | * its time generating timer interrupts, and there | 
|  | * is no forward progress. | 
|  | * About ten microseconds is the fastest that really works | 
|  | * on the current generation of host machines. | 
|  | */ | 
|  |  | 
|  | if (s->enabled == 1 && (delta * period < 10000) && | 
|  | !icount_enabled() && !qtest_enabled()) { | 
|  | period = 10000 / delta; | 
|  | period_frac = 0; | 
|  | } | 
|  |  | 
|  | s->last_event = s->next_event; | 
|  | s->next_event = s->last_event + delta * period; | 
|  | if (period_frac) { | 
|  | s->next_event += ((int64_t)period_frac * delta) >> 32; | 
|  | } | 
|  | timer_mod(s->timer, s->next_event); | 
|  | } | 
|  |  | 
|  | static void ptimer_tick(void *opaque) | 
|  | { | 
|  | ptimer_state *s = (ptimer_state *)opaque; | 
|  | bool trigger = true; | 
|  |  | 
|  | /* | 
|  | * We perform all the tick actions within a begin/commit block | 
|  | * because the callback function that ptimer_trigger() calls | 
|  | * might make calls into the ptimer APIs that provoke another | 
|  | * trigger, and we want that to cause the callback function | 
|  | * to be called iteratively, not recursively. | 
|  | */ | 
|  | ptimer_transaction_begin(s); | 
|  |  | 
|  | if (s->enabled == 2) { | 
|  | s->delta = 0; | 
|  | s->enabled = 0; | 
|  | } else { | 
|  | int delta_adjust = DELTA_ADJUST; | 
|  |  | 
|  | if (s->delta == 0 || s->limit == 0) { | 
|  | /* If a "continuous trigger" policy is not used and limit == 0, | 
|  | we should error out. delta == 0 means that this tick is | 
|  | caused by a "no immediate reload" policy, so it shouldn't | 
|  | be adjusted.  */ | 
|  | delta_adjust = DELTA_NO_ADJUST; | 
|  | } | 
|  |  | 
|  | if (!(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)) { | 
|  | /* Avoid re-trigger on deferred reload if "no immediate trigger" | 
|  | policy isn't used.  */ | 
|  | trigger = (delta_adjust == DELTA_ADJUST); | 
|  | } | 
|  |  | 
|  | s->delta = s->limit; | 
|  |  | 
|  | ptimer_reload(s, delta_adjust); | 
|  | } | 
|  |  | 
|  | if (trigger) { | 
|  | ptimer_trigger(s); | 
|  | } | 
|  |  | 
|  | ptimer_transaction_commit(s); | 
|  | } | 
|  |  | 
|  | uint64_t ptimer_get_count(ptimer_state *s) | 
|  | { | 
|  | uint64_t counter; | 
|  |  | 
|  | if (s->enabled && s->delta != 0) { | 
|  | int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); | 
|  | int64_t next = s->next_event; | 
|  | int64_t last = s->last_event; | 
|  | bool expired = (now - next >= 0); | 
|  | bool oneshot = (s->enabled == 2); | 
|  |  | 
|  | /* Figure out the current counter value.  */ | 
|  | if (expired) { | 
|  | /* Prevent timer underflowing if it should already have | 
|  | triggered.  */ | 
|  | counter = 0; | 
|  | } else { | 
|  | uint64_t rem; | 
|  | uint64_t div; | 
|  | int clz1, clz2; | 
|  | int shift; | 
|  | uint32_t period_frac = s->period_frac; | 
|  | uint64_t period = s->period; | 
|  |  | 
|  | if (!oneshot && (s->delta * period < 10000) && | 
|  | !icount_enabled() && !qtest_enabled()) { | 
|  | period = 10000 / s->delta; | 
|  | period_frac = 0; | 
|  | } | 
|  |  | 
|  | /* We need to divide time by period, where time is stored in | 
|  | rem (64-bit integer) and period is stored in period/period_frac | 
|  | (64.32 fixed point). | 
|  |  | 
|  | Doing full precision division is hard, so scale values and | 
|  | do a 64-bit division.  The result should be rounded down, | 
|  | so that the rounding error never causes the timer to go | 
|  | backwards. | 
|  | */ | 
|  |  | 
|  | rem = next - now; | 
|  | div = period; | 
|  |  | 
|  | clz1 = clz64(rem); | 
|  | clz2 = clz64(div); | 
|  | shift = clz1 < clz2 ? clz1 : clz2; | 
|  |  | 
|  | rem <<= shift; | 
|  | div <<= shift; | 
|  | if (shift >= 32) { | 
|  | div |= ((uint64_t)period_frac << (shift - 32)); | 
|  | } else { | 
|  | if (shift != 0) | 
|  | div |= (period_frac >> (32 - shift)); | 
|  | /* Look at remaining bits of period_frac and round div up if | 
|  | necessary.  */ | 
|  | if ((uint32_t)(period_frac << shift)) | 
|  | div += 1; | 
|  | } | 
|  | counter = rem / div; | 
|  |  | 
|  | if (s->policy_mask & PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD) { | 
|  | /* Before wrapping around, timer should stay with counter = 0 | 
|  | for a one period.  */ | 
|  | if (!oneshot && s->delta == s->limit) { | 
|  | if (now == last) { | 
|  | /* Counter == delta here, check whether it was | 
|  | adjusted and if it was, then right now it is | 
|  | that "one period".  */ | 
|  | if (counter == s->limit + DELTA_ADJUST) { | 
|  | return 0; | 
|  | } | 
|  | } else if (counter == s->limit) { | 
|  | /* Since the counter is rounded down and now != last, | 
|  | the counter == limit means that delta was adjusted | 
|  | by +1 and right now it is that adjusted period.  */ | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (s->policy_mask & PTIMER_POLICY_NO_COUNTER_ROUND_DOWN) { | 
|  | /* If now == last then delta == limit, i.e. the counter already | 
|  | represents the correct value. It would be rounded down a 1ns | 
|  | later.  */ | 
|  | if (now != last) { | 
|  | counter += 1; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | counter = s->delta; | 
|  | } | 
|  | return counter; | 
|  | } | 
|  |  | 
|  | void ptimer_set_count(ptimer_state *s, uint64_t count) | 
|  | { | 
|  | assert(s->in_transaction); | 
|  | s->delta = count; | 
|  | if (s->enabled) { | 
|  | s->need_reload = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | void ptimer_run(ptimer_state *s, int oneshot) | 
|  | { | 
|  | bool was_disabled = !s->enabled; | 
|  |  | 
|  | assert(s->in_transaction); | 
|  |  | 
|  | if (was_disabled && s->period == 0 && s->period_frac == 0) { | 
|  | if (!qtest_enabled()) { | 
|  | fprintf(stderr, "Timer with period zero, disabling\n"); | 
|  | } | 
|  | return; | 
|  | } | 
|  | s->enabled = oneshot ? 2 : 1; | 
|  | if (was_disabled) { | 
|  | s->need_reload = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Pause a timer.  Note that this may cause it to "lose" time, even if it | 
|  | is immediately restarted.  */ | 
|  | void ptimer_stop(ptimer_state *s) | 
|  | { | 
|  | assert(s->in_transaction); | 
|  |  | 
|  | if (!s->enabled) | 
|  | return; | 
|  |  | 
|  | s->delta = ptimer_get_count(s); | 
|  | timer_del(s->timer); | 
|  | s->enabled = 0; | 
|  | s->need_reload = false; | 
|  | } | 
|  |  | 
|  | /* Set counter increment interval in nanoseconds.  */ | 
|  | void ptimer_set_period(ptimer_state *s, int64_t period) | 
|  | { | 
|  | assert(s->in_transaction); | 
|  | s->delta = ptimer_get_count(s); | 
|  | s->period = period; | 
|  | s->period_frac = 0; | 
|  | if (s->enabled) { | 
|  | s->need_reload = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Set counter increment interval from a Clock */ | 
|  | void ptimer_set_period_from_clock(ptimer_state *s, const Clock *clk, | 
|  | unsigned int divisor) | 
|  | { | 
|  | /* | 
|  | * The raw clock period is a 64-bit value in units of 2^-32 ns; | 
|  | * put another way it's a 32.32 fixed-point ns value. Our internal | 
|  | * representation of the period is 64.32 fixed point ns, so | 
|  | * the conversion is simple. | 
|  | */ | 
|  | uint64_t raw_period = clock_get(clk); | 
|  | uint64_t period_frac; | 
|  |  | 
|  | assert(s->in_transaction); | 
|  | s->delta = ptimer_get_count(s); | 
|  | s->period = extract64(raw_period, 32, 32); | 
|  | period_frac = extract64(raw_period, 0, 32); | 
|  | /* | 
|  | * divisor specifies a possible frequency divisor between the | 
|  | * clock and the timer, so it is a multiplier on the period. | 
|  | * We do the multiply after splitting the raw period out into | 
|  | * period and frac to avoid having to do a 32*64->96 multiply. | 
|  | */ | 
|  | s->period *= divisor; | 
|  | period_frac *= divisor; | 
|  | s->period += extract64(period_frac, 32, 32); | 
|  | s->period_frac = (uint32_t)period_frac; | 
|  |  | 
|  | if (s->enabled) { | 
|  | s->need_reload = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Set counter frequency in Hz.  */ | 
|  | void ptimer_set_freq(ptimer_state *s, uint32_t freq) | 
|  | { | 
|  | assert(s->in_transaction); | 
|  | s->delta = ptimer_get_count(s); | 
|  | s->period = 1000000000ll / freq; | 
|  | s->period_frac = (1000000000ll << 32) / freq; | 
|  | if (s->enabled) { | 
|  | s->need_reload = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Set the initial countdown value.  If reload is nonzero then also set | 
|  | count = limit.  */ | 
|  | void ptimer_set_limit(ptimer_state *s, uint64_t limit, int reload) | 
|  | { | 
|  | assert(s->in_transaction); | 
|  | s->limit = limit; | 
|  | if (reload) | 
|  | s->delta = limit; | 
|  | if (s->enabled && reload) { | 
|  | s->need_reload = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | uint64_t ptimer_get_limit(ptimer_state *s) | 
|  | { | 
|  | return s->limit; | 
|  | } | 
|  |  | 
|  | void ptimer_transaction_begin(ptimer_state *s) | 
|  | { | 
|  | assert(!s->in_transaction); | 
|  | s->in_transaction = true; | 
|  | s->need_reload = false; | 
|  | } | 
|  |  | 
|  | void ptimer_transaction_commit(ptimer_state *s) | 
|  | { | 
|  | assert(s->in_transaction); | 
|  | /* | 
|  | * We must loop here because ptimer_reload() can call the callback | 
|  | * function, which might then update ptimer state in a way that | 
|  | * means we need to do another reload and possibly another callback. | 
|  | * A disabled timer never needs reloading (and if we don't check | 
|  | * this then we loop forever if ptimer_reload() disables the timer). | 
|  | */ | 
|  | while (s->need_reload && s->enabled) { | 
|  | s->need_reload = false; | 
|  | s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); | 
|  | ptimer_reload(s, 0); | 
|  | } | 
|  | /* Now we've finished reload we can leave the transaction block. */ | 
|  | s->in_transaction = false; | 
|  | } | 
|  |  | 
|  | const VMStateDescription vmstate_ptimer = { | 
|  | .name = "ptimer", | 
|  | .version_id = 1, | 
|  | .minimum_version_id = 1, | 
|  | .fields = (const VMStateField[]) { | 
|  | VMSTATE_UINT8(enabled, ptimer_state), | 
|  | VMSTATE_UINT64(limit, ptimer_state), | 
|  | VMSTATE_UINT64(delta, ptimer_state), | 
|  | VMSTATE_UINT32(period_frac, ptimer_state), | 
|  | VMSTATE_INT64(period, ptimer_state), | 
|  | VMSTATE_INT64(last_event, ptimer_state), | 
|  | VMSTATE_INT64(next_event, ptimer_state), | 
|  | VMSTATE_TIMER_PTR(timer, ptimer_state), | 
|  | VMSTATE_END_OF_LIST() | 
|  | } | 
|  | }; | 
|  |  | 
|  | ptimer_state *ptimer_init(ptimer_cb callback, void *callback_opaque, | 
|  | uint8_t policy_mask) | 
|  | { | 
|  | ptimer_state *s; | 
|  |  | 
|  | /* The callback function is mandatory. */ | 
|  | assert(callback); | 
|  |  | 
|  | s = g_new0(ptimer_state, 1); | 
|  | s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, ptimer_tick, s); | 
|  | s->policy_mask = policy_mask; | 
|  | s->callback = callback; | 
|  | s->callback_opaque = callback_opaque; | 
|  |  | 
|  | /* | 
|  | * These two policies are incompatible -- trigger-on-decrement implies | 
|  | * a timer trigger when the count becomes 0, but no-immediate-trigger | 
|  | * implies a trigger when the count stops being 0. | 
|  | */ | 
|  | assert(!((policy_mask & PTIMER_POLICY_TRIGGER_ONLY_ON_DECREMENT) && | 
|  | (policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER))); | 
|  | return s; | 
|  | } | 
|  |  | 
|  | void ptimer_free(ptimer_state *s) | 
|  | { | 
|  | timer_free(s->timer); | 
|  | g_free(s); | 
|  | } |