| /* | 
 |  * QEMU AVR CPU helpers | 
 |  * | 
 |  * Copyright (c) 2016-2020 Michael Rolnik | 
 |  * | 
 |  * This library is free software; you can redistribute it and/or | 
 |  * modify it under the terms of the GNU Lesser General Public | 
 |  * License as published by the Free Software Foundation; either | 
 |  * version 2.1 of the License, or (at your option) any later version. | 
 |  * | 
 |  * This library is distributed in the hope that it will be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
 |  * Lesser General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU Lesser General Public | 
 |  * License along with this library; if not, see | 
 |  * <http://www.gnu.org/licenses/lgpl-2.1.html> | 
 |  */ | 
 |  | 
 | #include "qemu/osdep.h" | 
 | #include "qemu/log.h" | 
 | #include "qemu/error-report.h" | 
 | #include "cpu.h" | 
 | #include "hw/core/tcg-cpu-ops.h" | 
 | #include "exec/exec-all.h" | 
 | #include "exec/page-protection.h" | 
 | #include "exec/cpu_ldst.h" | 
 | #include "exec/address-spaces.h" | 
 | #include "exec/helper-proto.h" | 
 |  | 
 | bool avr_cpu_exec_interrupt(CPUState *cs, int interrupt_request) | 
 | { | 
 |     CPUAVRState *env = cpu_env(cs); | 
 |  | 
 |     /* | 
 |      * We cannot separate a skip from the next instruction, | 
 |      * as the skip would not be preserved across the interrupt. | 
 |      * Separating the two insn normally only happens at page boundaries. | 
 |      */ | 
 |     if (env->skip) { | 
 |         return false; | 
 |     } | 
 |  | 
 |     if (interrupt_request & CPU_INTERRUPT_RESET) { | 
 |         if (cpu_interrupts_enabled(env)) { | 
 |             cs->exception_index = EXCP_RESET; | 
 |             avr_cpu_do_interrupt(cs); | 
 |  | 
 |             cs->interrupt_request &= ~CPU_INTERRUPT_RESET; | 
 |             return true; | 
 |         } | 
 |     } | 
 |     if (interrupt_request & CPU_INTERRUPT_HARD) { | 
 |         if (cpu_interrupts_enabled(env) && env->intsrc != 0) { | 
 |             int index = ctz64(env->intsrc); | 
 |             cs->exception_index = EXCP_INT(index); | 
 |             avr_cpu_do_interrupt(cs); | 
 |  | 
 |             env->intsrc &= env->intsrc - 1; /* clear the interrupt */ | 
 |             if (!env->intsrc) { | 
 |                 cs->interrupt_request &= ~CPU_INTERRUPT_HARD; | 
 |             } | 
 |             return true; | 
 |         } | 
 |     } | 
 |     return false; | 
 | } | 
 |  | 
 | void avr_cpu_do_interrupt(CPUState *cs) | 
 | { | 
 |     CPUAVRState *env = cpu_env(cs); | 
 |  | 
 |     uint32_t ret = env->pc_w; | 
 |     int vector = 0; | 
 |     int size = avr_feature(env, AVR_FEATURE_JMP_CALL) ? 2 : 1; | 
 |     int base = 0; | 
 |  | 
 |     if (cs->exception_index == EXCP_RESET) { | 
 |         vector = 0; | 
 |     } else if (env->intsrc != 0) { | 
 |         vector = ctz64(env->intsrc) + 1; | 
 |     } | 
 |  | 
 |     if (avr_feature(env, AVR_FEATURE_3_BYTE_PC)) { | 
 |         cpu_stb_data(env, env->sp--, (ret & 0x0000ff)); | 
 |         cpu_stb_data(env, env->sp--, (ret & 0x00ff00) >> 8); | 
 |         cpu_stb_data(env, env->sp--, (ret & 0xff0000) >> 16); | 
 |     } else if (avr_feature(env, AVR_FEATURE_2_BYTE_PC)) { | 
 |         cpu_stb_data(env, env->sp--, (ret & 0x0000ff)); | 
 |         cpu_stb_data(env, env->sp--, (ret & 0x00ff00) >> 8); | 
 |     } else { | 
 |         cpu_stb_data(env, env->sp--, (ret & 0x0000ff)); | 
 |     } | 
 |  | 
 |     env->pc_w = base + vector * size; | 
 |     env->sregI = 0; /* clear Global Interrupt Flag */ | 
 |  | 
 |     cs->exception_index = -1; | 
 | } | 
 |  | 
 | hwaddr avr_cpu_get_phys_page_debug(CPUState *cs, vaddr addr) | 
 | { | 
 |     return addr; /* I assume 1:1 address correspondence */ | 
 | } | 
 |  | 
 | bool avr_cpu_tlb_fill(CPUState *cs, vaddr address, int size, | 
 |                       MMUAccessType access_type, int mmu_idx, | 
 |                       bool probe, uintptr_t retaddr) | 
 | { | 
 |     int prot, page_size = TARGET_PAGE_SIZE; | 
 |     uint32_t paddr; | 
 |  | 
 |     address &= TARGET_PAGE_MASK; | 
 |  | 
 |     if (mmu_idx == MMU_CODE_IDX) { | 
 |         /* Access to code in flash. */ | 
 |         paddr = OFFSET_CODE + address; | 
 |         prot = PAGE_READ | PAGE_EXEC; | 
 |         if (paddr >= OFFSET_DATA) { | 
 |             /* | 
 |              * This should not be possible via any architectural operations. | 
 |              * There is certainly not an exception that we can deliver. | 
 |              * Accept probing that might come from generic code. | 
 |              */ | 
 |             if (probe) { | 
 |                 return false; | 
 |             } | 
 |             error_report("execution left flash memory"); | 
 |             abort(); | 
 |         } | 
 |     } else { | 
 |         /* Access to memory. */ | 
 |         paddr = OFFSET_DATA + address; | 
 |         prot = PAGE_READ | PAGE_WRITE; | 
 |         if (address < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) { | 
 |             /* | 
 |              * Access to CPU registers, exit and rebuilt this TB to use | 
 |              * full access in case it touches specially handled registers | 
 |              * like SREG or SP.  For probing, set page_size = 1, in order | 
 |              * to force tlb_fill to be called for the next access. | 
 |              */ | 
 |             if (probe) { | 
 |                 page_size = 1; | 
 |             } else { | 
 |                 cpu_env(cs)->fullacc = 1; | 
 |                 cpu_loop_exit_restore(cs, retaddr); | 
 |             } | 
 |         } | 
 |     } | 
 |  | 
 |     tlb_set_page(cs, address, paddr, prot, mmu_idx, page_size); | 
 |     return true; | 
 | } | 
 |  | 
 | /* | 
 |  *  helpers | 
 |  */ | 
 |  | 
 | void helper_sleep(CPUAVRState *env) | 
 | { | 
 |     CPUState *cs = env_cpu(env); | 
 |  | 
 |     cs->exception_index = EXCP_HLT; | 
 |     cpu_loop_exit(cs); | 
 | } | 
 |  | 
 | void helper_unsupported(CPUAVRState *env) | 
 | { | 
 |     CPUState *cs = env_cpu(env); | 
 |  | 
 |     /* | 
 |      *  I count not find what happens on the real platform, so | 
 |      *  it's EXCP_DEBUG for meanwhile | 
 |      */ | 
 |     cs->exception_index = EXCP_DEBUG; | 
 |     if (qemu_loglevel_mask(LOG_UNIMP)) { | 
 |         qemu_log("UNSUPPORTED\n"); | 
 |         cpu_dump_state(cs, stderr, 0); | 
 |     } | 
 |     cpu_loop_exit(cs); | 
 | } | 
 |  | 
 | void helper_debug(CPUAVRState *env) | 
 | { | 
 |     CPUState *cs = env_cpu(env); | 
 |  | 
 |     cs->exception_index = EXCP_DEBUG; | 
 |     cpu_loop_exit(cs); | 
 | } | 
 |  | 
 | void helper_break(CPUAVRState *env) | 
 | { | 
 |     CPUState *cs = env_cpu(env); | 
 |  | 
 |     cs->exception_index = EXCP_DEBUG; | 
 |     cpu_loop_exit(cs); | 
 | } | 
 |  | 
 | void helper_wdr(CPUAVRState *env) | 
 | { | 
 |     qemu_log_mask(LOG_UNIMP, "WDG reset (not implemented)\n"); | 
 | } | 
 |  | 
 | /* | 
 |  * This function implements IN instruction | 
 |  * | 
 |  * It does the following | 
 |  * a.  if an IO register belongs to CPU, its value is read and returned | 
 |  * b.  otherwise io address is translated to mem address and physical memory | 
 |  *     is read. | 
 |  * c.  it caches the value for sake of SBI, SBIC, SBIS & CBI implementation | 
 |  * | 
 |  */ | 
 | target_ulong helper_inb(CPUAVRState *env, uint32_t port) | 
 | { | 
 |     target_ulong data = 0; | 
 |  | 
 |     switch (port) { | 
 |     case 0x38: /* RAMPD */ | 
 |         data = 0xff & (env->rampD >> 16); | 
 |         break; | 
 |     case 0x39: /* RAMPX */ | 
 |         data = 0xff & (env->rampX >> 16); | 
 |         break; | 
 |     case 0x3a: /* RAMPY */ | 
 |         data = 0xff & (env->rampY >> 16); | 
 |         break; | 
 |     case 0x3b: /* RAMPZ */ | 
 |         data = 0xff & (env->rampZ >> 16); | 
 |         break; | 
 |     case 0x3c: /* EIND */ | 
 |         data = 0xff & (env->eind >> 16); | 
 |         break; | 
 |     case 0x3d: /* SPL */ | 
 |         data = env->sp & 0x00ff; | 
 |         break; | 
 |     case 0x3e: /* SPH */ | 
 |         data = env->sp >> 8; | 
 |         break; | 
 |     case 0x3f: /* SREG */ | 
 |         data = cpu_get_sreg(env); | 
 |         break; | 
 |     default: | 
 |         /* not a special register, pass to normal memory access */ | 
 |         data = address_space_ldub(&address_space_memory, | 
 |                                   OFFSET_IO_REGISTERS + port, | 
 |                                   MEMTXATTRS_UNSPECIFIED, NULL); | 
 |     } | 
 |  | 
 |     return data; | 
 | } | 
 |  | 
 | /* | 
 |  *  This function implements OUT instruction | 
 |  * | 
 |  *  It does the following | 
 |  *  a.  if an IO register belongs to CPU, its value is written into the register | 
 |  *  b.  otherwise io address is translated to mem address and physical memory | 
 |  *      is written. | 
 |  *  c.  it caches the value for sake of SBI, SBIC, SBIS & CBI implementation | 
 |  * | 
 |  */ | 
 | void helper_outb(CPUAVRState *env, uint32_t port, uint32_t data) | 
 | { | 
 |     data &= 0x000000ff; | 
 |  | 
 |     switch (port) { | 
 |     case 0x38: /* RAMPD */ | 
 |         if (avr_feature(env, AVR_FEATURE_RAMPD)) { | 
 |             env->rampD = (data & 0xff) << 16; | 
 |         } | 
 |         break; | 
 |     case 0x39: /* RAMPX */ | 
 |         if (avr_feature(env, AVR_FEATURE_RAMPX)) { | 
 |             env->rampX = (data & 0xff) << 16; | 
 |         } | 
 |         break; | 
 |     case 0x3a: /* RAMPY */ | 
 |         if (avr_feature(env, AVR_FEATURE_RAMPY)) { | 
 |             env->rampY = (data & 0xff) << 16; | 
 |         } | 
 |         break; | 
 |     case 0x3b: /* RAMPZ */ | 
 |         if (avr_feature(env, AVR_FEATURE_RAMPZ)) { | 
 |             env->rampZ = (data & 0xff) << 16; | 
 |         } | 
 |         break; | 
 |     case 0x3c: /* EIDN */ | 
 |         env->eind = (data & 0xff) << 16; | 
 |         break; | 
 |     case 0x3d: /* SPL */ | 
 |         env->sp = (env->sp & 0xff00) | (data); | 
 |         break; | 
 |     case 0x3e: /* SPH */ | 
 |         if (avr_feature(env, AVR_FEATURE_2_BYTE_SP)) { | 
 |             env->sp = (env->sp & 0x00ff) | (data << 8); | 
 |         } | 
 |         break; | 
 |     case 0x3f: /* SREG */ | 
 |         cpu_set_sreg(env, data); | 
 |         break; | 
 |     default: | 
 |         /* not a special register, pass to normal memory access */ | 
 |         address_space_stb(&address_space_memory, OFFSET_IO_REGISTERS + port, | 
 |                           data, MEMTXATTRS_UNSPECIFIED, NULL); | 
 |     } | 
 | } | 
 |  | 
 | /* | 
 |  *  this function implements LD instruction when there is a possibility to read | 
 |  *  from a CPU register | 
 |  */ | 
 | target_ulong helper_fullrd(CPUAVRState *env, uint32_t addr) | 
 | { | 
 |     uint8_t data; | 
 |  | 
 |     env->fullacc = false; | 
 |  | 
 |     if (addr < NUMBER_OF_CPU_REGISTERS) { | 
 |         /* CPU registers */ | 
 |         data = env->r[addr]; | 
 |     } else if (addr < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) { | 
 |         /* IO registers */ | 
 |         data = helper_inb(env, addr - NUMBER_OF_CPU_REGISTERS); | 
 |     } else { | 
 |         /* memory */ | 
 |         data = address_space_ldub(&address_space_memory, OFFSET_DATA + addr, | 
 |                                   MEMTXATTRS_UNSPECIFIED, NULL); | 
 |     } | 
 |     return data; | 
 | } | 
 |  | 
 | /* | 
 |  *  this function implements ST instruction when there is a possibility to write | 
 |  *  into a CPU register | 
 |  */ | 
 | void helper_fullwr(CPUAVRState *env, uint32_t data, uint32_t addr) | 
 | { | 
 |     env->fullacc = false; | 
 |  | 
 |     /* Following logic assumes this: */ | 
 |     assert(OFFSET_CPU_REGISTERS == OFFSET_DATA); | 
 |     assert(OFFSET_IO_REGISTERS == OFFSET_CPU_REGISTERS + | 
 |                                   NUMBER_OF_CPU_REGISTERS); | 
 |  | 
 |     if (addr < NUMBER_OF_CPU_REGISTERS) { | 
 |         /* CPU registers */ | 
 |         env->r[addr] = data; | 
 |     } else if (addr < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) { | 
 |         /* IO registers */ | 
 |         helper_outb(env, addr - NUMBER_OF_CPU_REGISTERS, data); | 
 |     } else { | 
 |         /* memory */ | 
 |         address_space_stb(&address_space_memory, OFFSET_DATA + addr, data, | 
 |                           MEMTXATTRS_UNSPECIFIED, NULL); | 
 |     } | 
 | } |