| /* |
| * MMX/3DNow!/SSE/SSE2/SSE3/SSSE3/SSE4/PNI support |
| * |
| * Copyright (c) 2005 Fabrice Bellard |
| * Copyright (c) 2008 Intel Corporation <andrew.zaborowski@intel.com> |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include "crypto/aes.h" |
| |
| #if SHIFT == 0 |
| #define Reg MMXReg |
| #define XMM_ONLY(...) |
| #define B(n) MMX_B(n) |
| #define W(n) MMX_W(n) |
| #define L(n) MMX_L(n) |
| #define Q(n) MMX_Q(n) |
| #define SUFFIX _mmx |
| #else |
| #define Reg ZMMReg |
| #define XMM_ONLY(...) __VA_ARGS__ |
| #define B(n) ZMM_B(n) |
| #define W(n) ZMM_W(n) |
| #define L(n) ZMM_L(n) |
| #define Q(n) ZMM_Q(n) |
| #define SUFFIX _xmm |
| #endif |
| |
| void glue(helper_psrlw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) |
| { |
| int shift; |
| |
| if (s->Q(0) > 15) { |
| d->Q(0) = 0; |
| #if SHIFT == 1 |
| d->Q(1) = 0; |
| #endif |
| } else { |
| shift = s->B(0); |
| d->W(0) >>= shift; |
| d->W(1) >>= shift; |
| d->W(2) >>= shift; |
| d->W(3) >>= shift; |
| #if SHIFT == 1 |
| d->W(4) >>= shift; |
| d->W(5) >>= shift; |
| d->W(6) >>= shift; |
| d->W(7) >>= shift; |
| #endif |
| } |
| } |
| |
| void glue(helper_psraw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) |
| { |
| int shift; |
| |
| if (s->Q(0) > 15) { |
| shift = 15; |
| } else { |
| shift = s->B(0); |
| } |
| d->W(0) = (int16_t)d->W(0) >> shift; |
| d->W(1) = (int16_t)d->W(1) >> shift; |
| d->W(2) = (int16_t)d->W(2) >> shift; |
| d->W(3) = (int16_t)d->W(3) >> shift; |
| #if SHIFT == 1 |
| d->W(4) = (int16_t)d->W(4) >> shift; |
| d->W(5) = (int16_t)d->W(5) >> shift; |
| d->W(6) = (int16_t)d->W(6) >> shift; |
| d->W(7) = (int16_t)d->W(7) >> shift; |
| #endif |
| } |
| |
| void glue(helper_psllw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) |
| { |
| int shift; |
| |
| if (s->Q(0) > 15) { |
| d->Q(0) = 0; |
| #if SHIFT == 1 |
| d->Q(1) = 0; |
| #endif |
| } else { |
| shift = s->B(0); |
| d->W(0) <<= shift; |
| d->W(1) <<= shift; |
| d->W(2) <<= shift; |
| d->W(3) <<= shift; |
| #if SHIFT == 1 |
| d->W(4) <<= shift; |
| d->W(5) <<= shift; |
| d->W(6) <<= shift; |
| d->W(7) <<= shift; |
| #endif |
| } |
| } |
| |
| void glue(helper_psrld, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) |
| { |
| int shift; |
| |
| if (s->Q(0) > 31) { |
| d->Q(0) = 0; |
| #if SHIFT == 1 |
| d->Q(1) = 0; |
| #endif |
| } else { |
| shift = s->B(0); |
| d->L(0) >>= shift; |
| d->L(1) >>= shift; |
| #if SHIFT == 1 |
| d->L(2) >>= shift; |
| d->L(3) >>= shift; |
| #endif |
| } |
| } |
| |
| void glue(helper_psrad, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) |
| { |
| int shift; |
| |
| if (s->Q(0) > 31) { |
| shift = 31; |
| } else { |
| shift = s->B(0); |
| } |
| d->L(0) = (int32_t)d->L(0) >> shift; |
| d->L(1) = (int32_t)d->L(1) >> shift; |
| #if SHIFT == 1 |
| d->L(2) = (int32_t)d->L(2) >> shift; |
| d->L(3) = (int32_t)d->L(3) >> shift; |
| #endif |
| } |
| |
| void glue(helper_pslld, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) |
| { |
| int shift; |
| |
| if (s->Q(0) > 31) { |
| d->Q(0) = 0; |
| #if SHIFT == 1 |
| d->Q(1) = 0; |
| #endif |
| } else { |
| shift = s->B(0); |
| d->L(0) <<= shift; |
| d->L(1) <<= shift; |
| #if SHIFT == 1 |
| d->L(2) <<= shift; |
| d->L(3) <<= shift; |
| #endif |
| } |
| } |
| |
| void glue(helper_psrlq, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) |
| { |
| int shift; |
| |
| if (s->Q(0) > 63) { |
| d->Q(0) = 0; |
| #if SHIFT == 1 |
| d->Q(1) = 0; |
| #endif |
| } else { |
| shift = s->B(0); |
| d->Q(0) >>= shift; |
| #if SHIFT == 1 |
| d->Q(1) >>= shift; |
| #endif |
| } |
| } |
| |
| void glue(helper_psllq, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) |
| { |
| int shift; |
| |
| if (s->Q(0) > 63) { |
| d->Q(0) = 0; |
| #if SHIFT == 1 |
| d->Q(1) = 0; |
| #endif |
| } else { |
| shift = s->B(0); |
| d->Q(0) <<= shift; |
| #if SHIFT == 1 |
| d->Q(1) <<= shift; |
| #endif |
| } |
| } |
| |
| #if SHIFT == 1 |
| void glue(helper_psrldq, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) |
| { |
| int shift, i; |
| |
| shift = s->L(0); |
| if (shift > 16) { |
| shift = 16; |
| } |
| for (i = 0; i < 16 - shift; i++) { |
| d->B(i) = d->B(i + shift); |
| } |
| for (i = 16 - shift; i < 16; i++) { |
| d->B(i) = 0; |
| } |
| } |
| |
| void glue(helper_pslldq, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) |
| { |
| int shift, i; |
| |
| shift = s->L(0); |
| if (shift > 16) { |
| shift = 16; |
| } |
| for (i = 15; i >= shift; i--) { |
| d->B(i) = d->B(i - shift); |
| } |
| for (i = 0; i < shift; i++) { |
| d->B(i) = 0; |
| } |
| } |
| #endif |
| |
| #define SSE_HELPER_B(name, F) \ |
| void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) \ |
| { \ |
| d->B(0) = F(d->B(0), s->B(0)); \ |
| d->B(1) = F(d->B(1), s->B(1)); \ |
| d->B(2) = F(d->B(2), s->B(2)); \ |
| d->B(3) = F(d->B(3), s->B(3)); \ |
| d->B(4) = F(d->B(4), s->B(4)); \ |
| d->B(5) = F(d->B(5), s->B(5)); \ |
| d->B(6) = F(d->B(6), s->B(6)); \ |
| d->B(7) = F(d->B(7), s->B(7)); \ |
| XMM_ONLY( \ |
| d->B(8) = F(d->B(8), s->B(8)); \ |
| d->B(9) = F(d->B(9), s->B(9)); \ |
| d->B(10) = F(d->B(10), s->B(10)); \ |
| d->B(11) = F(d->B(11), s->B(11)); \ |
| d->B(12) = F(d->B(12), s->B(12)); \ |
| d->B(13) = F(d->B(13), s->B(13)); \ |
| d->B(14) = F(d->B(14), s->B(14)); \ |
| d->B(15) = F(d->B(15), s->B(15)); \ |
| ) \ |
| } |
| |
| #define SSE_HELPER_W(name, F) \ |
| void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) \ |
| { \ |
| d->W(0) = F(d->W(0), s->W(0)); \ |
| d->W(1) = F(d->W(1), s->W(1)); \ |
| d->W(2) = F(d->W(2), s->W(2)); \ |
| d->W(3) = F(d->W(3), s->W(3)); \ |
| XMM_ONLY( \ |
| d->W(4) = F(d->W(4), s->W(4)); \ |
| d->W(5) = F(d->W(5), s->W(5)); \ |
| d->W(6) = F(d->W(6), s->W(6)); \ |
| d->W(7) = F(d->W(7), s->W(7)); \ |
| ) \ |
| } |
| |
| #define SSE_HELPER_L(name, F) \ |
| void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) \ |
| { \ |
| d->L(0) = F(d->L(0), s->L(0)); \ |
| d->L(1) = F(d->L(1), s->L(1)); \ |
| XMM_ONLY( \ |
| d->L(2) = F(d->L(2), s->L(2)); \ |
| d->L(3) = F(d->L(3), s->L(3)); \ |
| ) \ |
| } |
| |
| #define SSE_HELPER_Q(name, F) \ |
| void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) \ |
| { \ |
| d->Q(0) = F(d->Q(0), s->Q(0)); \ |
| XMM_ONLY( \ |
| d->Q(1) = F(d->Q(1), s->Q(1)); \ |
| ) \ |
| } |
| |
| #if SHIFT == 0 |
| static inline int satub(int x) |
| { |
| if (x < 0) { |
| return 0; |
| } else if (x > 255) { |
| return 255; |
| } else { |
| return x; |
| } |
| } |
| |
| static inline int satuw(int x) |
| { |
| if (x < 0) { |
| return 0; |
| } else if (x > 65535) { |
| return 65535; |
| } else { |
| return x; |
| } |
| } |
| |
| static inline int satsb(int x) |
| { |
| if (x < -128) { |
| return -128; |
| } else if (x > 127) { |
| return 127; |
| } else { |
| return x; |
| } |
| } |
| |
| static inline int satsw(int x) |
| { |
| if (x < -32768) { |
| return -32768; |
| } else if (x > 32767) { |
| return 32767; |
| } else { |
| return x; |
| } |
| } |
| |
| #define FADD(a, b) ((a) + (b)) |
| #define FADDUB(a, b) satub((a) + (b)) |
| #define FADDUW(a, b) satuw((a) + (b)) |
| #define FADDSB(a, b) satsb((int8_t)(a) + (int8_t)(b)) |
| #define FADDSW(a, b) satsw((int16_t)(a) + (int16_t)(b)) |
| |
| #define FSUB(a, b) ((a) - (b)) |
| #define FSUBUB(a, b) satub((a) - (b)) |
| #define FSUBUW(a, b) satuw((a) - (b)) |
| #define FSUBSB(a, b) satsb((int8_t)(a) - (int8_t)(b)) |
| #define FSUBSW(a, b) satsw((int16_t)(a) - (int16_t)(b)) |
| #define FMINUB(a, b) ((a) < (b)) ? (a) : (b) |
| #define FMINSW(a, b) ((int16_t)(a) < (int16_t)(b)) ? (a) : (b) |
| #define FMAXUB(a, b) ((a) > (b)) ? (a) : (b) |
| #define FMAXSW(a, b) ((int16_t)(a) > (int16_t)(b)) ? (a) : (b) |
| |
| #define FAND(a, b) ((a) & (b)) |
| #define FANDN(a, b) ((~(a)) & (b)) |
| #define FOR(a, b) ((a) | (b)) |
| #define FXOR(a, b) ((a) ^ (b)) |
| |
| #define FCMPGTB(a, b) ((int8_t)(a) > (int8_t)(b) ? -1 : 0) |
| #define FCMPGTW(a, b) ((int16_t)(a) > (int16_t)(b) ? -1 : 0) |
| #define FCMPGTL(a, b) ((int32_t)(a) > (int32_t)(b) ? -1 : 0) |
| #define FCMPEQ(a, b) ((a) == (b) ? -1 : 0) |
| |
| #define FMULLW(a, b) ((a) * (b)) |
| #define FMULHRW(a, b) (((int16_t)(a) * (int16_t)(b) + 0x8000) >> 16) |
| #define FMULHUW(a, b) ((a) * (b) >> 16) |
| #define FMULHW(a, b) ((int16_t)(a) * (int16_t)(b) >> 16) |
| |
| #define FAVG(a, b) (((a) + (b) + 1) >> 1) |
| #endif |
| |
| SSE_HELPER_B(helper_paddb, FADD) |
| SSE_HELPER_W(helper_paddw, FADD) |
| SSE_HELPER_L(helper_paddl, FADD) |
| SSE_HELPER_Q(helper_paddq, FADD) |
| |
| SSE_HELPER_B(helper_psubb, FSUB) |
| SSE_HELPER_W(helper_psubw, FSUB) |
| SSE_HELPER_L(helper_psubl, FSUB) |
| SSE_HELPER_Q(helper_psubq, FSUB) |
| |
| SSE_HELPER_B(helper_paddusb, FADDUB) |
| SSE_HELPER_B(helper_paddsb, FADDSB) |
| SSE_HELPER_B(helper_psubusb, FSUBUB) |
| SSE_HELPER_B(helper_psubsb, FSUBSB) |
| |
| SSE_HELPER_W(helper_paddusw, FADDUW) |
| SSE_HELPER_W(helper_paddsw, FADDSW) |
| SSE_HELPER_W(helper_psubusw, FSUBUW) |
| SSE_HELPER_W(helper_psubsw, FSUBSW) |
| |
| SSE_HELPER_B(helper_pminub, FMINUB) |
| SSE_HELPER_B(helper_pmaxub, FMAXUB) |
| |
| SSE_HELPER_W(helper_pminsw, FMINSW) |
| SSE_HELPER_W(helper_pmaxsw, FMAXSW) |
| |
| SSE_HELPER_Q(helper_pand, FAND) |
| SSE_HELPER_Q(helper_pandn, FANDN) |
| SSE_HELPER_Q(helper_por, FOR) |
| SSE_HELPER_Q(helper_pxor, FXOR) |
| |
| SSE_HELPER_B(helper_pcmpgtb, FCMPGTB) |
| SSE_HELPER_W(helper_pcmpgtw, FCMPGTW) |
| SSE_HELPER_L(helper_pcmpgtl, FCMPGTL) |
| |
| SSE_HELPER_B(helper_pcmpeqb, FCMPEQ) |
| SSE_HELPER_W(helper_pcmpeqw, FCMPEQ) |
| SSE_HELPER_L(helper_pcmpeql, FCMPEQ) |
| |
| SSE_HELPER_W(helper_pmullw, FMULLW) |
| #if SHIFT == 0 |
| SSE_HELPER_W(helper_pmulhrw, FMULHRW) |
| #endif |
| SSE_HELPER_W(helper_pmulhuw, FMULHUW) |
| SSE_HELPER_W(helper_pmulhw, FMULHW) |
| |
| SSE_HELPER_B(helper_pavgb, FAVG) |
| SSE_HELPER_W(helper_pavgw, FAVG) |
| |
| void glue(helper_pmuludq, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) |
| { |
| d->Q(0) = (uint64_t)s->L(0) * (uint64_t)d->L(0); |
| #if SHIFT == 1 |
| d->Q(1) = (uint64_t)s->L(2) * (uint64_t)d->L(2); |
| #endif |
| } |
| |
| void glue(helper_pmaddwd, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) |
| { |
| int i; |
| |
| for (i = 0; i < (2 << SHIFT); i++) { |
| d->L(i) = (int16_t)s->W(2 * i) * (int16_t)d->W(2 * i) + |
| (int16_t)s->W(2 * i + 1) * (int16_t)d->W(2 * i + 1); |
| } |
| } |
| |
| #if SHIFT == 0 |
| static inline int abs1(int a) |
| { |
| if (a < 0) { |
| return -a; |
| } else { |
| return a; |
| } |
| } |
| #endif |
| void glue(helper_psadbw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) |
| { |
| unsigned int val; |
| |
| val = 0; |
| val += abs1(d->B(0) - s->B(0)); |
| val += abs1(d->B(1) - s->B(1)); |
| val += abs1(d->B(2) - s->B(2)); |
| val += abs1(d->B(3) - s->B(3)); |
| val += abs1(d->B(4) - s->B(4)); |
| val += abs1(d->B(5) - s->B(5)); |
| val += abs1(d->B(6) - s->B(6)); |
| val += abs1(d->B(7) - s->B(7)); |
| d->Q(0) = val; |
| #if SHIFT == 1 |
| val = 0; |
| val += abs1(d->B(8) - s->B(8)); |
| val += abs1(d->B(9) - s->B(9)); |
| val += abs1(d->B(10) - s->B(10)); |
| val += abs1(d->B(11) - s->B(11)); |
| val += abs1(d->B(12) - s->B(12)); |
| val += abs1(d->B(13) - s->B(13)); |
| val += abs1(d->B(14) - s->B(14)); |
| val += abs1(d->B(15) - s->B(15)); |
| d->Q(1) = val; |
| #endif |
| } |
| |
| void glue(helper_maskmov, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, |
| target_ulong a0) |
| { |
| int i; |
| |
| for (i = 0; i < (8 << SHIFT); i++) { |
| if (s->B(i) & 0x80) { |
| cpu_stb_data_ra(env, a0 + i, d->B(i), GETPC()); |
| } |
| } |
| } |
| |
| void glue(helper_movl_mm_T0, SUFFIX)(Reg *d, uint32_t val) |
| { |
| d->L(0) = val; |
| d->L(1) = 0; |
| #if SHIFT == 1 |
| d->Q(1) = 0; |
| #endif |
| } |
| |
| #ifdef TARGET_X86_64 |
| void glue(helper_movq_mm_T0, SUFFIX)(Reg *d, uint64_t val) |
| { |
| d->Q(0) = val; |
| #if SHIFT == 1 |
| d->Q(1) = 0; |
| #endif |
| } |
| #endif |
| |
| #if SHIFT == 0 |
| void glue(helper_pshufw, SUFFIX)(Reg *d, Reg *s, int order) |
| { |
| Reg r; |
| |
| r.W(0) = s->W(order & 3); |
| r.W(1) = s->W((order >> 2) & 3); |
| r.W(2) = s->W((order >> 4) & 3); |
| r.W(3) = s->W((order >> 6) & 3); |
| *d = r; |
| } |
| #else |
| void helper_shufps(Reg *d, Reg *s, int order) |
| { |
| Reg r; |
| |
| r.L(0) = d->L(order & 3); |
| r.L(1) = d->L((order >> 2) & 3); |
| r.L(2) = s->L((order >> 4) & 3); |
| r.L(3) = s->L((order >> 6) & 3); |
| *d = r; |
| } |
| |
| void helper_shufpd(Reg *d, Reg *s, int order) |
| { |
| Reg r; |
| |
| r.Q(0) = d->Q(order & 1); |
| r.Q(1) = s->Q((order >> 1) & 1); |
| *d = r; |
| } |
| |
| void glue(helper_pshufd, SUFFIX)(Reg *d, Reg *s, int order) |
| { |
| Reg r; |
| |
| r.L(0) = s->L(order & 3); |
| r.L(1) = s->L((order >> 2) & 3); |
| r.L(2) = s->L((order >> 4) & 3); |
| r.L(3) = s->L((order >> 6) & 3); |
| *d = r; |
| } |
| |
| void glue(helper_pshuflw, SUFFIX)(Reg *d, Reg *s, int order) |
| { |
| Reg r; |
| |
| r.W(0) = s->W(order & 3); |
| r.W(1) = s->W((order >> 2) & 3); |
| r.W(2) = s->W((order >> 4) & 3); |
| r.W(3) = s->W((order >> 6) & 3); |
| r.Q(1) = s->Q(1); |
| *d = r; |
| } |
| |
| void glue(helper_pshufhw, SUFFIX)(Reg *d, Reg *s, int order) |
| { |
| Reg r; |
| |
| r.Q(0) = s->Q(0); |
| r.W(4) = s->W(4 + (order & 3)); |
| r.W(5) = s->W(4 + ((order >> 2) & 3)); |
| r.W(6) = s->W(4 + ((order >> 4) & 3)); |
| r.W(7) = s->W(4 + ((order >> 6) & 3)); |
| *d = r; |
| } |
| #endif |
| |
| #if SHIFT == 1 |
| /* FPU ops */ |
| /* XXX: not accurate */ |
| |
| #define SSE_HELPER_S(name, F) \ |
| void helper_ ## name ## ps(CPUX86State *env, Reg *d, Reg *s) \ |
| { \ |
| d->ZMM_S(0) = F(32, d->ZMM_S(0), s->ZMM_S(0)); \ |
| d->ZMM_S(1) = F(32, d->ZMM_S(1), s->ZMM_S(1)); \ |
| d->ZMM_S(2) = F(32, d->ZMM_S(2), s->ZMM_S(2)); \ |
| d->ZMM_S(3) = F(32, d->ZMM_S(3), s->ZMM_S(3)); \ |
| } \ |
| \ |
| void helper_ ## name ## ss(CPUX86State *env, Reg *d, Reg *s) \ |
| { \ |
| d->ZMM_S(0) = F(32, d->ZMM_S(0), s->ZMM_S(0)); \ |
| } \ |
| \ |
| void helper_ ## name ## pd(CPUX86State *env, Reg *d, Reg *s) \ |
| { \ |
| d->ZMM_D(0) = F(64, d->ZMM_D(0), s->ZMM_D(0)); \ |
| d->ZMM_D(1) = F(64, d->ZMM_D(1), s->ZMM_D(1)); \ |
| } \ |
| \ |
| void helper_ ## name ## sd(CPUX86State *env, Reg *d, Reg *s) \ |
| { \ |
| d->ZMM_D(0) = F(64, d->ZMM_D(0), s->ZMM_D(0)); \ |
| } |
| |
| #define FPU_ADD(size, a, b) float ## size ## _add(a, b, &env->sse_status) |
| #define FPU_SUB(size, a, b) float ## size ## _sub(a, b, &env->sse_status) |
| #define FPU_MUL(size, a, b) float ## size ## _mul(a, b, &env->sse_status) |
| #define FPU_DIV(size, a, b) float ## size ## _div(a, b, &env->sse_status) |
| #define FPU_SQRT(size, a, b) float ## size ## _sqrt(b, &env->sse_status) |
| |
| /* Note that the choice of comparison op here is important to get the |
| * special cases right: for min and max Intel specifies that (-0,0), |
| * (NaN, anything) and (anything, NaN) return the second argument. |
| */ |
| #define FPU_MIN(size, a, b) \ |
| (float ## size ## _lt(a, b, &env->sse_status) ? (a) : (b)) |
| #define FPU_MAX(size, a, b) \ |
| (float ## size ## _lt(b, a, &env->sse_status) ? (a) : (b)) |
| |
| SSE_HELPER_S(add, FPU_ADD) |
| SSE_HELPER_S(sub, FPU_SUB) |
| SSE_HELPER_S(mul, FPU_MUL) |
| SSE_HELPER_S(div, FPU_DIV) |
| SSE_HELPER_S(min, FPU_MIN) |
| SSE_HELPER_S(max, FPU_MAX) |
| SSE_HELPER_S(sqrt, FPU_SQRT) |
| |
| |
| /* float to float conversions */ |
| void helper_cvtps2pd(CPUX86State *env, Reg *d, Reg *s) |
| { |
| float32 s0, s1; |
| |
| s0 = s->ZMM_S(0); |
| s1 = s->ZMM_S(1); |
| d->ZMM_D(0) = float32_to_float64(s0, &env->sse_status); |
| d->ZMM_D(1) = float32_to_float64(s1, &env->sse_status); |
| } |
| |
| void helper_cvtpd2ps(CPUX86State *env, Reg *d, Reg *s) |
| { |
| d->ZMM_S(0) = float64_to_float32(s->ZMM_D(0), &env->sse_status); |
| d->ZMM_S(1) = float64_to_float32(s->ZMM_D(1), &env->sse_status); |
| d->Q(1) = 0; |
| } |
| |
| void helper_cvtss2sd(CPUX86State *env, Reg *d, Reg *s) |
| { |
| d->ZMM_D(0) = float32_to_float64(s->ZMM_S(0), &env->sse_status); |
| } |
| |
| void helper_cvtsd2ss(CPUX86State *env, Reg *d, Reg *s) |
| { |
| d->ZMM_S(0) = float64_to_float32(s->ZMM_D(0), &env->sse_status); |
| } |
| |
| /* integer to float */ |
| void helper_cvtdq2ps(CPUX86State *env, Reg *d, Reg *s) |
| { |
| d->ZMM_S(0) = int32_to_float32(s->ZMM_L(0), &env->sse_status); |
| d->ZMM_S(1) = int32_to_float32(s->ZMM_L(1), &env->sse_status); |
| d->ZMM_S(2) = int32_to_float32(s->ZMM_L(2), &env->sse_status); |
| d->ZMM_S(3) = int32_to_float32(s->ZMM_L(3), &env->sse_status); |
| } |
| |
| void helper_cvtdq2pd(CPUX86State *env, Reg *d, Reg *s) |
| { |
| int32_t l0, l1; |
| |
| l0 = (int32_t)s->ZMM_L(0); |
| l1 = (int32_t)s->ZMM_L(1); |
| d->ZMM_D(0) = int32_to_float64(l0, &env->sse_status); |
| d->ZMM_D(1) = int32_to_float64(l1, &env->sse_status); |
| } |
| |
| void helper_cvtpi2ps(CPUX86State *env, ZMMReg *d, MMXReg *s) |
| { |
| d->ZMM_S(0) = int32_to_float32(s->MMX_L(0), &env->sse_status); |
| d->ZMM_S(1) = int32_to_float32(s->MMX_L(1), &env->sse_status); |
| } |
| |
| void helper_cvtpi2pd(CPUX86State *env, ZMMReg *d, MMXReg *s) |
| { |
| d->ZMM_D(0) = int32_to_float64(s->MMX_L(0), &env->sse_status); |
| d->ZMM_D(1) = int32_to_float64(s->MMX_L(1), &env->sse_status); |
| } |
| |
| void helper_cvtsi2ss(CPUX86State *env, ZMMReg *d, uint32_t val) |
| { |
| d->ZMM_S(0) = int32_to_float32(val, &env->sse_status); |
| } |
| |
| void helper_cvtsi2sd(CPUX86State *env, ZMMReg *d, uint32_t val) |
| { |
| d->ZMM_D(0) = int32_to_float64(val, &env->sse_status); |
| } |
| |
| #ifdef TARGET_X86_64 |
| void helper_cvtsq2ss(CPUX86State *env, ZMMReg *d, uint64_t val) |
| { |
| d->ZMM_S(0) = int64_to_float32(val, &env->sse_status); |
| } |
| |
| void helper_cvtsq2sd(CPUX86State *env, ZMMReg *d, uint64_t val) |
| { |
| d->ZMM_D(0) = int64_to_float64(val, &env->sse_status); |
| } |
| #endif |
| |
| /* float to integer */ |
| |
| /* |
| * x86 mandates that we return the indefinite integer value for the result |
| * of any float-to-integer conversion that raises the 'invalid' exception. |
| * Wrap the softfloat functions to get this behaviour. |
| */ |
| #define WRAP_FLOATCONV(RETTYPE, FN, FLOATTYPE, INDEFVALUE) \ |
| static inline RETTYPE x86_##FN(FLOATTYPE a, float_status *s) \ |
| { \ |
| int oldflags, newflags; \ |
| RETTYPE r; \ |
| \ |
| oldflags = get_float_exception_flags(s); \ |
| set_float_exception_flags(0, s); \ |
| r = FN(a, s); \ |
| newflags = get_float_exception_flags(s); \ |
| if (newflags & float_flag_invalid) { \ |
| r = INDEFVALUE; \ |
| } \ |
| set_float_exception_flags(newflags | oldflags, s); \ |
| return r; \ |
| } |
| |
| WRAP_FLOATCONV(int32_t, float32_to_int32, float32, INT32_MIN) |
| WRAP_FLOATCONV(int32_t, float32_to_int32_round_to_zero, float32, INT32_MIN) |
| WRAP_FLOATCONV(int32_t, float64_to_int32, float64, INT32_MIN) |
| WRAP_FLOATCONV(int32_t, float64_to_int32_round_to_zero, float64, INT32_MIN) |
| WRAP_FLOATCONV(int64_t, float32_to_int64, float32, INT64_MIN) |
| WRAP_FLOATCONV(int64_t, float32_to_int64_round_to_zero, float32, INT64_MIN) |
| WRAP_FLOATCONV(int64_t, float64_to_int64, float64, INT64_MIN) |
| WRAP_FLOATCONV(int64_t, float64_to_int64_round_to_zero, float64, INT64_MIN) |
| |
| void helper_cvtps2dq(CPUX86State *env, ZMMReg *d, ZMMReg *s) |
| { |
| d->ZMM_L(0) = x86_float32_to_int32(s->ZMM_S(0), &env->sse_status); |
| d->ZMM_L(1) = x86_float32_to_int32(s->ZMM_S(1), &env->sse_status); |
| d->ZMM_L(2) = x86_float32_to_int32(s->ZMM_S(2), &env->sse_status); |
| d->ZMM_L(3) = x86_float32_to_int32(s->ZMM_S(3), &env->sse_status); |
| } |
| |
| void helper_cvtpd2dq(CPUX86State *env, ZMMReg *d, ZMMReg *s) |
| { |
| d->ZMM_L(0) = x86_float64_to_int32(s->ZMM_D(0), &env->sse_status); |
| d->ZMM_L(1) = x86_float64_to_int32(s->ZMM_D(1), &env->sse_status); |
| d->ZMM_Q(1) = 0; |
| } |
| |
| void helper_cvtps2pi(CPUX86State *env, MMXReg *d, ZMMReg *s) |
| { |
| d->MMX_L(0) = x86_float32_to_int32(s->ZMM_S(0), &env->sse_status); |
| d->MMX_L(1) = x86_float32_to_int32(s->ZMM_S(1), &env->sse_status); |
| } |
| |
| void helper_cvtpd2pi(CPUX86State *env, MMXReg *d, ZMMReg *s) |
| { |
| d->MMX_L(0) = x86_float64_to_int32(s->ZMM_D(0), &env->sse_status); |
| d->MMX_L(1) = x86_float64_to_int32(s->ZMM_D(1), &env->sse_status); |
| } |
| |
| int32_t helper_cvtss2si(CPUX86State *env, ZMMReg *s) |
| { |
| return x86_float32_to_int32(s->ZMM_S(0), &env->sse_status); |
| } |
| |
| int32_t helper_cvtsd2si(CPUX86State *env, ZMMReg *s) |
| { |
| return x86_float64_to_int32(s->ZMM_D(0), &env->sse_status); |
| } |
| |
| #ifdef TARGET_X86_64 |
| int64_t helper_cvtss2sq(CPUX86State *env, ZMMReg *s) |
| { |
| return x86_float32_to_int64(s->ZMM_S(0), &env->sse_status); |
| } |
| |
| int64_t helper_cvtsd2sq(CPUX86State *env, ZMMReg *s) |
| { |
| return x86_float64_to_int64(s->ZMM_D(0), &env->sse_status); |
| } |
| #endif |
| |
| /* float to integer truncated */ |
| void helper_cvttps2dq(CPUX86State *env, ZMMReg *d, ZMMReg *s) |
| { |
| d->ZMM_L(0) = x86_float32_to_int32_round_to_zero(s->ZMM_S(0), &env->sse_status); |
| d->ZMM_L(1) = x86_float32_to_int32_round_to_zero(s->ZMM_S(1), &env->sse_status); |
| d->ZMM_L(2) = x86_float32_to_int32_round_to_zero(s->ZMM_S(2), &env->sse_status); |
| d->ZMM_L(3) = x86_float32_to_int32_round_to_zero(s->ZMM_S(3), &env->sse_status); |
| } |
| |
| void helper_cvttpd2dq(CPUX86State *env, ZMMReg *d, ZMMReg *s) |
| { |
| d->ZMM_L(0) = x86_float64_to_int32_round_to_zero(s->ZMM_D(0), &env->sse_status); |
| d->ZMM_L(1) = x86_float64_to_int32_round_to_zero(s->ZMM_D(1), &env->sse_status); |
| d->ZMM_Q(1) = 0; |
| } |
| |
| void helper_cvttps2pi(CPUX86State *env, MMXReg *d, ZMMReg *s) |
| { |
| d->MMX_L(0) = x86_float32_to_int32_round_to_zero(s->ZMM_S(0), &env->sse_status); |
| d->MMX_L(1) = x86_float32_to_int32_round_to_zero(s->ZMM_S(1), &env->sse_status); |
| } |
| |
| void helper_cvttpd2pi(CPUX86State *env, MMXReg *d, ZMMReg *s) |
| { |
| d->MMX_L(0) = x86_float64_to_int32_round_to_zero(s->ZMM_D(0), &env->sse_status); |
| d->MMX_L(1) = x86_float64_to_int32_round_to_zero(s->ZMM_D(1), &env->sse_status); |
| } |
| |
| int32_t helper_cvttss2si(CPUX86State *env, ZMMReg *s) |
| { |
| return x86_float32_to_int32_round_to_zero(s->ZMM_S(0), &env->sse_status); |
| } |
| |
| int32_t helper_cvttsd2si(CPUX86State *env, ZMMReg *s) |
| { |
| return x86_float64_to_int32_round_to_zero(s->ZMM_D(0), &env->sse_status); |
| } |
| |
| #ifdef TARGET_X86_64 |
| int64_t helper_cvttss2sq(CPUX86State *env, ZMMReg *s) |
| { |
| return x86_float32_to_int64_round_to_zero(s->ZMM_S(0), &env->sse_status); |
| } |
| |
| int64_t helper_cvttsd2sq(CPUX86State *env, ZMMReg *s) |
| { |
| return x86_float64_to_int64_round_to_zero(s->ZMM_D(0), &env->sse_status); |
| } |
| #endif |
| |
| void helper_rsqrtps(CPUX86State *env, ZMMReg *d, ZMMReg *s) |
| { |
| d->ZMM_S(0) = float32_div(float32_one, |
| float32_sqrt(s->ZMM_S(0), &env->sse_status), |
| &env->sse_status); |
| d->ZMM_S(1) = float32_div(float32_one, |
| float32_sqrt(s->ZMM_S(1), &env->sse_status), |
| &env->sse_status); |
| d->ZMM_S(2) = float32_div(float32_one, |
| float32_sqrt(s->ZMM_S(2), &env->sse_status), |
| &env->sse_status); |
| d->ZMM_S(3) = float32_div(float32_one, |
| float32_sqrt(s->ZMM_S(3), &env->sse_status), |
| &env->sse_status); |
| } |
| |
| void helper_rsqrtss(CPUX86State *env, ZMMReg *d, ZMMReg *s) |
| { |
| d->ZMM_S(0) = float32_div(float32_one, |
| float32_sqrt(s->ZMM_S(0), &env->sse_status), |
| &env->sse_status); |
| } |
| |
| void helper_rcpps(CPUX86State *env, ZMMReg *d, ZMMReg *s) |
| { |
| d->ZMM_S(0) = float32_div(float32_one, s->ZMM_S(0), &env->sse_status); |
| d->ZMM_S(1) = float32_div(float32_one, s->ZMM_S(1), &env->sse_status); |
| d->ZMM_S(2) = float32_div(float32_one, s->ZMM_S(2), &env->sse_status); |
| d->ZMM_S(3) = float32_div(float32_one, s->ZMM_S(3), &env->sse_status); |
| } |
| |
| void helper_rcpss(CPUX86State *env, ZMMReg *d, ZMMReg *s) |
| { |
| d->ZMM_S(0) = float32_div(float32_one, s->ZMM_S(0), &env->sse_status); |
| } |
| |
| static inline uint64_t helper_extrq(uint64_t src, int shift, int len) |
| { |
| uint64_t mask; |
| |
| if (len == 0) { |
| mask = ~0LL; |
| } else { |
| mask = (1ULL << len) - 1; |
| } |
| return (src >> shift) & mask; |
| } |
| |
| void helper_extrq_r(CPUX86State *env, ZMMReg *d, ZMMReg *s) |
| { |
| d->ZMM_Q(0) = helper_extrq(d->ZMM_Q(0), s->ZMM_B(1), s->ZMM_B(0)); |
| } |
| |
| void helper_extrq_i(CPUX86State *env, ZMMReg *d, int index, int length) |
| { |
| d->ZMM_Q(0) = helper_extrq(d->ZMM_Q(0), index, length); |
| } |
| |
| static inline uint64_t helper_insertq(uint64_t src, int shift, int len) |
| { |
| uint64_t mask; |
| |
| if (len == 0) { |
| mask = ~0ULL; |
| } else { |
| mask = (1ULL << len) - 1; |
| } |
| return (src & ~(mask << shift)) | ((src & mask) << shift); |
| } |
| |
| void helper_insertq_r(CPUX86State *env, ZMMReg *d, ZMMReg *s) |
| { |
| d->ZMM_Q(0) = helper_insertq(s->ZMM_Q(0), s->ZMM_B(9), s->ZMM_B(8)); |
| } |
| |
| void helper_insertq_i(CPUX86State *env, ZMMReg *d, int index, int length) |
| { |
| d->ZMM_Q(0) = helper_insertq(d->ZMM_Q(0), index, length); |
| } |
| |
| void helper_haddps(CPUX86State *env, ZMMReg *d, ZMMReg *s) |
| { |
| ZMMReg r; |
| |
| r.ZMM_S(0) = float32_add(d->ZMM_S(0), d->ZMM_S(1), &env->sse_status); |
| r.ZMM_S(1) = float32_add(d->ZMM_S(2), d->ZMM_S(3), &env->sse_status); |
| r.ZMM_S(2) = float32_add(s->ZMM_S(0), s->ZMM_S(1), &env->sse_status); |
| r.ZMM_S(3) = float32_add(s->ZMM_S(2), s->ZMM_S(3), &env->sse_status); |
| *d = r; |
| } |
| |
| void helper_haddpd(CPUX86State *env, ZMMReg *d, ZMMReg *s) |
| { |
| ZMMReg r; |
| |
| r.ZMM_D(0) = float64_add(d->ZMM_D(0), d->ZMM_D(1), &env->sse_status); |
| r.ZMM_D(1) = float64_add(s->ZMM_D(0), s->ZMM_D(1), &env->sse_status); |
| *d = r; |
| } |
| |
| void helper_hsubps(CPUX86State *env, ZMMReg *d, ZMMReg *s) |
| { |
| ZMMReg r; |
| |
| r.ZMM_S(0) = float32_sub(d->ZMM_S(0), d->ZMM_S(1), &env->sse_status); |
| r.ZMM_S(1) = float32_sub(d->ZMM_S(2), d->ZMM_S(3), &env->sse_status); |
| r.ZMM_S(2) = float32_sub(s->ZMM_S(0), s->ZMM_S(1), &env->sse_status); |
| r.ZMM_S(3) = float32_sub(s->ZMM_S(2), s->ZMM_S(3), &env->sse_status); |
| *d = r; |
| } |
| |
| void helper_hsubpd(CPUX86State *env, ZMMReg *d, ZMMReg *s) |
| { |
| ZMMReg r; |
| |
| r.ZMM_D(0) = float64_sub(d->ZMM_D(0), d->ZMM_D(1), &env->sse_status); |
| r.ZMM_D(1) = float64_sub(s->ZMM_D(0), s->ZMM_D(1), &env->sse_status); |
| *d = r; |
| } |
| |
| void helper_addsubps(CPUX86State *env, ZMMReg *d, ZMMReg *s) |
| { |
| d->ZMM_S(0) = float32_sub(d->ZMM_S(0), s->ZMM_S(0), &env->sse_status); |
| d->ZMM_S(1) = float32_add(d->ZMM_S(1), s->ZMM_S(1), &env->sse_status); |
| d->ZMM_S(2) = float32_sub(d->ZMM_S(2), s->ZMM_S(2), &env->sse_status); |
| d->ZMM_S(3) = float32_add(d->ZMM_S(3), s->ZMM_S(3), &env->sse_status); |
| } |
| |
| void helper_addsubpd(CPUX86State *env, ZMMReg *d, ZMMReg *s) |
| { |
| d->ZMM_D(0) = float64_sub(d->ZMM_D(0), s->ZMM_D(0), &env->sse_status); |
| d->ZMM_D(1) = float64_add(d->ZMM_D(1), s->ZMM_D(1), &env->sse_status); |
| } |
| |
| /* XXX: unordered */ |
| #define SSE_HELPER_CMP(name, F) \ |
| void helper_ ## name ## ps(CPUX86State *env, Reg *d, Reg *s) \ |
| { \ |
| d->ZMM_L(0) = F(32, d->ZMM_S(0), s->ZMM_S(0)); \ |
| d->ZMM_L(1) = F(32, d->ZMM_S(1), s->ZMM_S(1)); \ |
| d->ZMM_L(2) = F(32, d->ZMM_S(2), s->ZMM_S(2)); \ |
| d->ZMM_L(3) = F(32, d->ZMM_S(3), s->ZMM_S(3)); \ |
| } \ |
| \ |
| void helper_ ## name ## ss(CPUX86State *env, Reg *d, Reg *s) \ |
| { \ |
| d->ZMM_L(0) = F(32, d->ZMM_S(0), s->ZMM_S(0)); \ |
| } \ |
| \ |
| void helper_ ## name ## pd(CPUX86State *env, Reg *d, Reg *s) \ |
| { \ |
| d->ZMM_Q(0) = F(64, d->ZMM_D(0), s->ZMM_D(0)); \ |
| d->ZMM_Q(1) = F(64, d->ZMM_D(1), s->ZMM_D(1)); \ |
| } \ |
| \ |
| void helper_ ## name ## sd(CPUX86State *env, Reg *d, Reg *s) \ |
| { \ |
| d->ZMM_Q(0) = F(64, d->ZMM_D(0), s->ZMM_D(0)); \ |
| } |
| |
| #define FPU_CMPEQ(size, a, b) \ |
| (float ## size ## _eq_quiet(a, b, &env->sse_status) ? -1 : 0) |
| #define FPU_CMPLT(size, a, b) \ |
| (float ## size ## _lt(a, b, &env->sse_status) ? -1 : 0) |
| #define FPU_CMPLE(size, a, b) \ |
| (float ## size ## _le(a, b, &env->sse_status) ? -1 : 0) |
| #define FPU_CMPUNORD(size, a, b) \ |
| (float ## size ## _unordered_quiet(a, b, &env->sse_status) ? -1 : 0) |
| #define FPU_CMPNEQ(size, a, b) \ |
| (float ## size ## _eq_quiet(a, b, &env->sse_status) ? 0 : -1) |
| #define FPU_CMPNLT(size, a, b) \ |
| (float ## size ## _lt(a, b, &env->sse_status) ? 0 : -1) |
| #define FPU_CMPNLE(size, a, b) \ |
| (float ## size ## _le(a, b, &env->sse_status) ? 0 : -1) |
| #define FPU_CMPORD(size, a, b) \ |
| (float ## size ## _unordered_quiet(a, b, &env->sse_status) ? 0 : -1) |
| |
| SSE_HELPER_CMP(cmpeq, FPU_CMPEQ) |
| SSE_HELPER_CMP(cmplt, FPU_CMPLT) |
| SSE_HELPER_CMP(cmple, FPU_CMPLE) |
| SSE_HELPER_CMP(cmpunord, FPU_CMPUNORD) |
| SSE_HELPER_CMP(cmpneq, FPU_CMPNEQ) |
| SSE_HELPER_CMP(cmpnlt, FPU_CMPNLT) |
| SSE_HELPER_CMP(cmpnle, FPU_CMPNLE) |
| SSE_HELPER_CMP(cmpord, FPU_CMPORD) |
| |
| static const int comis_eflags[4] = {CC_C, CC_Z, 0, CC_Z | CC_P | CC_C}; |
| |
| void helper_ucomiss(CPUX86State *env, Reg *d, Reg *s) |
| { |
| FloatRelation ret; |
| float32 s0, s1; |
| |
| s0 = d->ZMM_S(0); |
| s1 = s->ZMM_S(0); |
| ret = float32_compare_quiet(s0, s1, &env->sse_status); |
| CC_SRC = comis_eflags[ret + 1]; |
| } |
| |
| void helper_comiss(CPUX86State *env, Reg *d, Reg *s) |
| { |
| FloatRelation ret; |
| float32 s0, s1; |
| |
| s0 = d->ZMM_S(0); |
| s1 = s->ZMM_S(0); |
| ret = float32_compare(s0, s1, &env->sse_status); |
| CC_SRC = comis_eflags[ret + 1]; |
| } |
| |
| void helper_ucomisd(CPUX86State *env, Reg *d, Reg *s) |
| { |
| FloatRelation ret; |
| float64 d0, d1; |
| |
| d0 = d->ZMM_D(0); |
| d1 = s->ZMM_D(0); |
| ret = float64_compare_quiet(d0, d1, &env->sse_status); |
| CC_SRC = comis_eflags[ret + 1]; |
| } |
| |
| void helper_comisd(CPUX86State *env, Reg *d, Reg *s) |
| { |
| FloatRelation ret; |
| float64 d0, d1; |
| |
| d0 = d->ZMM_D(0); |
| d1 = s->ZMM_D(0); |
| ret = float64_compare(d0, d1, &env->sse_status); |
| CC_SRC = comis_eflags[ret + 1]; |
| } |
| |
| uint32_t helper_movmskps(CPUX86State *env, Reg *s) |
| { |
| int b0, b1, b2, b3; |
| |
| b0 = s->ZMM_L(0) >> 31; |
| b1 = s->ZMM_L(1) >> 31; |
| b2 = s->ZMM_L(2) >> 31; |
| b3 = s->ZMM_L(3) >> 31; |
| return b0 | (b1 << 1) | (b2 << 2) | (b3 << 3); |
| } |
| |
| uint32_t helper_movmskpd(CPUX86State *env, Reg *s) |
| { |
| int b0, b1; |
| |
| b0 = s->ZMM_L(1) >> 31; |
| b1 = s->ZMM_L(3) >> 31; |
| return b0 | (b1 << 1); |
| } |
| |
| #endif |
| |
| uint32_t glue(helper_pmovmskb, SUFFIX)(CPUX86State *env, Reg *s) |
| { |
| uint32_t val; |
| |
| val = 0; |
| val |= (s->B(0) >> 7); |
| val |= (s->B(1) >> 6) & 0x02; |
| val |= (s->B(2) >> 5) & 0x04; |
| val |= (s->B(3) >> 4) & 0x08; |
| val |= (s->B(4) >> 3) & 0x10; |
| val |= (s->B(5) >> 2) & 0x20; |
| val |= (s->B(6) >> 1) & 0x40; |
| val |= (s->B(7)) & 0x80; |
| #if SHIFT == 1 |
| val |= (s->B(8) << 1) & 0x0100; |
| val |= (s->B(9) << 2) & 0x0200; |
| val |= (s->B(10) << 3) & 0x0400; |
| val |= (s->B(11) << 4) & 0x0800; |
| val |= (s->B(12) << 5) & 0x1000; |
| val |= (s->B(13) << 6) & 0x2000; |
| val |= (s->B(14) << 7) & 0x4000; |
| val |= (s->B(15) << 8) & 0x8000; |
| #endif |
| return val; |
| } |
| |
| void glue(helper_packsswb, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) |
| { |
| Reg r; |
| |
| r.B(0) = satsb((int16_t)d->W(0)); |
| r.B(1) = satsb((int16_t)d->W(1)); |
| r.B(2) = satsb((int16_t)d->W(2)); |
| r.B(3) = satsb((int16_t)d->W(3)); |
| #if SHIFT == 1 |
| r.B(4) = satsb((int16_t)d->W(4)); |
| r.B(5) = satsb((int16_t)d->W(5)); |
| r.B(6) = satsb((int16_t)d->W(6)); |
| r.B(7) = satsb((int16_t)d->W(7)); |
| #endif |
| r.B((4 << SHIFT) + 0) = satsb((int16_t)s->W(0)); |
| r.B((4 << SHIFT) + 1) = satsb((int16_t)s->W(1)); |
| r.B((4 << SHIFT) + 2) = satsb((int16_t)s->W(2)); |
| r.B((4 << SHIFT) + 3) = satsb((int16_t)s->W(3)); |
| #if SHIFT == 1 |
| r.B(12) = satsb((int16_t)s->W(4)); |
| r.B(13) = satsb((int16_t)s->W(5)); |
| r.B(14) = satsb((int16_t)s->W(6)); |
| r.B(15) = satsb((int16_t)s->W(7)); |
| #endif |
| *d = r; |
| } |
| |
| void glue(helper_packuswb, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) |
| { |
| Reg r; |
| |
| r.B(0) = satub((int16_t)d->W(0)); |
| r.B(1) = satub((int16_t)d->W(1)); |
| r.B(2) = satub((int16_t)d->W(2)); |
| r.B(3) = satub((int16_t)d->W(3)); |
| #if SHIFT == 1 |
| r.B(4) = satub((int16_t)d->W(4)); |
| r.B(5) = satub((int16_t)d->W(5)); |
| r.B(6) = satub((int16_t)d->W(6)); |
| r.B(7) = satub((int16_t)d->W(7)); |
| #endif |
| r.B((4 << SHIFT) + 0) = satub((int16_t)s->W(0)); |
| r.B((4 << SHIFT) + 1) = satub((int16_t)s->W(1)); |
| r.B((4 << SHIFT) + 2) = satub((int16_t)s->W(2)); |
| r.B((4 << SHIFT) + 3) = satub((int16_t)s->W(3)); |
| #if SHIFT == 1 |
| r.B(12) = satub((int16_t)s->W(4)); |
| r.B(13) = satub((int16_t)s->W(5)); |
| r.B(14) = satub((int16_t)s->W(6)); |
| r.B(15) = satub((int16_t)s->W(7)); |
| #endif |
| *d = r; |
| } |
| |
| void glue(helper_packssdw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) |
| { |
| Reg r; |
| |
| r.W(0) = satsw(d->L(0)); |
| r.W(1) = satsw(d->L(1)); |
| #if SHIFT == 1 |
| r.W(2) = satsw(d->L(2)); |
| r.W(3) = satsw(d->L(3)); |
| #endif |
| r.W((2 << SHIFT) + 0) = satsw(s->L(0)); |
| r.W((2 << SHIFT) + 1) = satsw(s->L(1)); |
| #if SHIFT == 1 |
| r.W(6) = satsw(s->L(2)); |
| r.W(7) = satsw(s->L(3)); |
| #endif |
| *d = r; |
| } |
| |
| #define UNPCK_OP(base_name, base) \ |
| \ |
| void glue(helper_punpck ## base_name ## bw, SUFFIX)(CPUX86State *env,\ |
| Reg *d, Reg *s) \ |
| { \ |
| Reg r; \ |
| \ |
| r.B(0) = d->B((base << (SHIFT + 2)) + 0); \ |
| r.B(1) = s->B((base << (SHIFT + 2)) + 0); \ |
| r.B(2) = d->B((base << (SHIFT + 2)) + 1); \ |
| r.B(3) = s->B((base << (SHIFT + 2)) + 1); \ |
| r.B(4) = d->B((base << (SHIFT + 2)) + 2); \ |
| r.B(5) = s->B((base << (SHIFT + 2)) + 2); \ |
| r.B(6) = d->B((base << (SHIFT + 2)) + 3); \ |
| r.B(7) = s->B((base << (SHIFT + 2)) + 3); \ |
| XMM_ONLY( \ |
| r.B(8) = d->B((base << (SHIFT + 2)) + 4); \ |
| r.B(9) = s->B((base << (SHIFT + 2)) + 4); \ |
| r.B(10) = d->B((base << (SHIFT + 2)) + 5); \ |
| r.B(11) = s->B((base << (SHIFT + 2)) + 5); \ |
| r.B(12) = d->B((base << (SHIFT + 2)) + 6); \ |
| r.B(13) = s->B((base << (SHIFT + 2)) + 6); \ |
| r.B(14) = d->B((base << (SHIFT + 2)) + 7); \ |
| r.B(15) = s->B((base << (SHIFT + 2)) + 7); \ |
| ) \ |
| *d = r; \ |
| } \ |
| \ |
| void glue(helper_punpck ## base_name ## wd, SUFFIX)(CPUX86State *env,\ |
| Reg *d, Reg *s) \ |
| { \ |
| Reg r; \ |
| \ |
| r.W(0) = d->W((base << (SHIFT + 1)) + 0); \ |
| r.W(1) = s->W((base << (SHIFT + 1)) + 0); \ |
| r.W(2) = d->W((base << (SHIFT + 1)) + 1); \ |
| r.W(3) = s->W((base << (SHIFT + 1)) + 1); \ |
| XMM_ONLY( \ |
| r.W(4) = d->W((base << (SHIFT + 1)) + 2); \ |
| r.W(5) = s->W((base << (SHIFT + 1)) + 2); \ |
| r.W(6) = d->W((base << (SHIFT + 1)) + 3); \ |
| r.W(7) = s->W((base << (SHIFT + 1)) + 3); \ |
| ) \ |
| *d = r; \ |
| } \ |
| \ |
| void glue(helper_punpck ## base_name ## dq, SUFFIX)(CPUX86State *env,\ |
| Reg *d, Reg *s) \ |
| { \ |
| Reg r; \ |
| \ |
| r.L(0) = d->L((base << SHIFT) + 0); \ |
| r.L(1) = s->L((base << SHIFT) + 0); \ |
| XMM_ONLY( \ |
| r.L(2) = d->L((base << SHIFT) + 1); \ |
| r.L(3) = s->L((base << SHIFT) + 1); \ |
| ) \ |
| *d = r; \ |
| } \ |
| \ |
| XMM_ONLY( \ |
| void glue(helper_punpck ## base_name ## qdq, SUFFIX)(CPUX86State \ |
| *env, \ |
| Reg *d, \ |
| Reg *s) \ |
| { \ |
| Reg r; \ |
| \ |
| r.Q(0) = d->Q(base); \ |
| r.Q(1) = s->Q(base); \ |
| *d = r; \ |
| } \ |
| ) |
| |
| UNPCK_OP(l, 0) |
| UNPCK_OP(h, 1) |
| |
| /* 3DNow! float ops */ |
| #if SHIFT == 0 |
| void helper_pi2fd(CPUX86State *env, MMXReg *d, MMXReg *s) |
| { |
| d->MMX_S(0) = int32_to_float32(s->MMX_L(0), &env->mmx_status); |
| d->MMX_S(1) = int32_to_float32(s->MMX_L(1), &env->mmx_status); |
| } |
| |
| void helper_pi2fw(CPUX86State *env, MMXReg *d, MMXReg *s) |
| { |
| d->MMX_S(0) = int32_to_float32((int16_t)s->MMX_W(0), &env->mmx_status); |
| d->MMX_S(1) = int32_to_float32((int16_t)s->MMX_W(2), &env->mmx_status); |
| } |
| |
| void helper_pf2id(CPUX86State *env, MMXReg *d, MMXReg *s) |
| { |
| d->MMX_L(0) = float32_to_int32_round_to_zero(s->MMX_S(0), &env->mmx_status); |
| d->MMX_L(1) = float32_to_int32_round_to_zero(s->MMX_S(1), &env->mmx_status); |
| } |
| |
| void helper_pf2iw(CPUX86State *env, MMXReg *d, MMXReg *s) |
| { |
| d->MMX_L(0) = satsw(float32_to_int32_round_to_zero(s->MMX_S(0), |
| &env->mmx_status)); |
| d->MMX_L(1) = satsw(float32_to_int32_round_to_zero(s->MMX_S(1), |
| &env->mmx_status)); |
| } |
| |
| void helper_pfacc(CPUX86State *env, MMXReg *d, MMXReg *s) |
| { |
| MMXReg r; |
| |
| r.MMX_S(0) = float32_add(d->MMX_S(0), d->MMX_S(1), &env->mmx_status); |
| r.MMX_S(1) = float32_add(s->MMX_S(0), s->MMX_S(1), &env->mmx_status); |
| *d = r; |
| } |
| |
| void helper_pfadd(CPUX86State *env, MMXReg *d, MMXReg *s) |
| { |
| d->MMX_S(0) = float32_add(d->MMX_S(0), s->MMX_S(0), &env->mmx_status); |
| d->MMX_S(1) = float32_add(d->MMX_S(1), s->MMX_S(1), &env->mmx_status); |
| } |
| |
| void helper_pfcmpeq(CPUX86State *env, MMXReg *d, MMXReg *s) |
| { |
| d->MMX_L(0) = float32_eq_quiet(d->MMX_S(0), s->MMX_S(0), |
| &env->mmx_status) ? -1 : 0; |
| d->MMX_L(1) = float32_eq_quiet(d->MMX_S(1), s->MMX_S(1), |
| &env->mmx_status) ? -1 : 0; |
| } |
| |
| void helper_pfcmpge(CPUX86State *env, MMXReg *d, MMXReg *s) |
| { |
| d->MMX_L(0) = float32_le(s->MMX_S(0), d->MMX_S(0), |
| &env->mmx_status) ? -1 : 0; |
| d->MMX_L(1) = float32_le(s->MMX_S(1), d->MMX_S(1), |
| &env->mmx_status) ? -1 : 0; |
| } |
| |
| void helper_pfcmpgt(CPUX86State *env, MMXReg *d, MMXReg *s) |
| { |
| d->MMX_L(0) = float32_lt(s->MMX_S(0), d->MMX_S(0), |
| &env->mmx_status) ? -1 : 0; |
| d->MMX_L(1) = float32_lt(s->MMX_S(1), d->MMX_S(1), |
| &env->mmx_status) ? -1 : 0; |
| } |
| |
| void helper_pfmax(CPUX86State *env, MMXReg *d, MMXReg *s) |
| { |
| if (float32_lt(d->MMX_S(0), s->MMX_S(0), &env->mmx_status)) { |
| d->MMX_S(0) = s->MMX_S(0); |
| } |
| if (float32_lt(d->MMX_S(1), s->MMX_S(1), &env->mmx_status)) { |
| d->MMX_S(1) = s->MMX_S(1); |
| } |
| } |
| |
| void helper_pfmin(CPUX86State *env, MMXReg *d, MMXReg *s) |
| { |
| if (float32_lt(s->MMX_S(0), d->MMX_S(0), &env->mmx_status)) { |
| d->MMX_S(0) = s->MMX_S(0); |
| } |
| if (float32_lt(s->MMX_S(1), d->MMX_S(1), &env->mmx_status)) { |
| d->MMX_S(1) = s->MMX_S(1); |
| } |
| } |
| |
| void helper_pfmul(CPUX86State *env, MMXReg *d, MMXReg *s) |
| { |
| d->MMX_S(0) = float32_mul(d->MMX_S(0), s->MMX_S(0), &env->mmx_status); |
| d->MMX_S(1) = float32_mul(d->MMX_S(1), s->MMX_S(1), &env->mmx_status); |
| } |
| |
| void helper_pfnacc(CPUX86State *env, MMXReg *d, MMXReg *s) |
| { |
| MMXReg r; |
| |
| r.MMX_S(0) = float32_sub(d->MMX_S(0), d->MMX_S(1), &env->mmx_status); |
| r.MMX_S(1) = float32_sub(s->MMX_S(0), s->MMX_S(1), &env->mmx_status); |
| *d = r; |
| } |
| |
| void helper_pfpnacc(CPUX86State *env, MMXReg *d, MMXReg *s) |
| { |
| MMXReg r; |
| |
| r.MMX_S(0) = float32_sub(d->MMX_S(0), d->MMX_S(1), &env->mmx_status); |
| r.MMX_S(1) = float32_add(s->MMX_S(0), s->MMX_S(1), &env->mmx_status); |
| *d = r; |
| } |
| |
| void helper_pfrcp(CPUX86State *env, MMXReg *d, MMXReg *s) |
| { |
| d->MMX_S(0) = float32_div(float32_one, s->MMX_S(0), &env->mmx_status); |
| d->MMX_S(1) = d->MMX_S(0); |
| } |
| |
| void helper_pfrsqrt(CPUX86State *env, MMXReg *d, MMXReg *s) |
| { |
| d->MMX_L(1) = s->MMX_L(0) & 0x7fffffff; |
| d->MMX_S(1) = float32_div(float32_one, |
| float32_sqrt(d->MMX_S(1), &env->mmx_status), |
| &env->mmx_status); |
| d->MMX_L(1) |= s->MMX_L(0) & 0x80000000; |
| d->MMX_L(0) = d->MMX_L(1); |
| } |
| |
| void helper_pfsub(CPUX86State *env, MMXReg *d, MMXReg *s) |
| { |
| d->MMX_S(0) = float32_sub(d->MMX_S(0), s->MMX_S(0), &env->mmx_status); |
| d->MMX_S(1) = float32_sub(d->MMX_S(1), s->MMX_S(1), &env->mmx_status); |
| } |
| |
| void helper_pfsubr(CPUX86State *env, MMXReg *d, MMXReg *s) |
| { |
| d->MMX_S(0) = float32_sub(s->MMX_S(0), d->MMX_S(0), &env->mmx_status); |
| d->MMX_S(1) = float32_sub(s->MMX_S(1), d->MMX_S(1), &env->mmx_status); |
| } |
| |
| void helper_pswapd(CPUX86State *env, MMXReg *d, MMXReg *s) |
| { |
| MMXReg r; |
| |
| r.MMX_L(0) = s->MMX_L(1); |
| r.MMX_L(1) = s->MMX_L(0); |
| *d = r; |
| } |
| #endif |
| |
| /* SSSE3 op helpers */ |
| void glue(helper_pshufb, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) |
| { |
| int i; |
| Reg r; |
| |
| for (i = 0; i < (8 << SHIFT); i++) { |
| r.B(i) = (s->B(i) & 0x80) ? 0 : (d->B(s->B(i) & ((8 << SHIFT) - 1))); |
| } |
| |
| *d = r; |
| } |
| |
| void glue(helper_phaddw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) |
| { |
| |
| Reg r; |
| |
| r.W(0) = (int16_t)d->W(0) + (int16_t)d->W(1); |
| r.W(1) = (int16_t)d->W(2) + (int16_t)d->W(3); |
| XMM_ONLY(r.W(2) = (int16_t)d->W(4) + (int16_t)d->W(5)); |
| XMM_ONLY(r.W(3) = (int16_t)d->W(6) + (int16_t)d->W(7)); |
| r.W((2 << SHIFT) + 0) = (int16_t)s->W(0) + (int16_t)s->W(1); |
| r.W((2 << SHIFT) + 1) = (int16_t)s->W(2) + (int16_t)s->W(3); |
| XMM_ONLY(r.W(6) = (int16_t)s->W(4) + (int16_t)s->W(5)); |
| XMM_ONLY(r.W(7) = (int16_t)s->W(6) + (int16_t)s->W(7)); |
| |
| *d = r; |
| } |
| |
| void glue(helper_phaddd, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) |
| { |
| Reg r; |
| |
| r.L(0) = (int32_t)d->L(0) + (int32_t)d->L(1); |
| XMM_ONLY(r.L(1) = (int32_t)d->L(2) + (int32_t)d->L(3)); |
| r.L((1 << SHIFT) + 0) = (int32_t)s->L(0) + (int32_t)s->L(1); |
| XMM_ONLY(r.L(3) = (int32_t)s->L(2) + (int32_t)s->L(3)); |
| |
| *d = r; |
| } |
| |
| void glue(helper_phaddsw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) |
| { |
| Reg r; |
| |
| r.W(0) = satsw((int16_t)d->W(0) + (int16_t)d->W(1)); |
| r.W(1) = satsw((int16_t)d->W(2) + (int16_t)d->W(3)); |
| XMM_ONLY(r.W(2) = satsw((int16_t)d->W(4) + (int16_t)d->W(5))); |
| XMM_ONLY(r.W(3) = satsw((int16_t)d->W(6) + (int16_t)d->W(7))); |
| r.W((2 << SHIFT) + 0) = satsw((int16_t)s->W(0) + (int16_t)s->W(1)); |
| r.W((2 << SHIFT) + 1) = satsw((int16_t)s->W(2) + (int16_t)s->W(3)); |
| XMM_ONLY(r.W(6) = satsw((int16_t)s->W(4) + (int16_t)s->W(5))); |
| XMM_ONLY(r.W(7) = satsw((int16_t)s->W(6) + (int16_t)s->W(7))); |
| |
| *d = r; |
| } |
| |
| void glue(helper_pmaddubsw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) |
| { |
| d->W(0) = satsw((int8_t)s->B(0) * (uint8_t)d->B(0) + |
| (int8_t)s->B(1) * (uint8_t)d->B(1)); |
| d->W(1) = satsw((int8_t)s->B(2) * (uint8_t)d->B(2) + |
| (int8_t)s->B(3) * (uint8_t)d->B(3)); |
| d->W(2) = satsw((int8_t)s->B(4) * (uint8_t)d->B(4) + |
| (int8_t)s->B(5) * (uint8_t)d->B(5)); |
| d->W(3) = satsw((int8_t)s->B(6) * (uint8_t)d->B(6) + |
| (int8_t)s->B(7) * (uint8_t)d->B(7)); |
| #if SHIFT == 1 |
| d->W(4) = satsw((int8_t)s->B(8) * (uint8_t)d->B(8) + |
| (int8_t)s->B(9) * (uint8_t)d->B(9)); |
| d->W(5) = satsw((int8_t)s->B(10) * (uint8_t)d->B(10) + |
| (int8_t)s->B(11) * (uint8_t)d->B(11)); |
| d->W(6) = satsw((int8_t)s->B(12) * (uint8_t)d->B(12) + |
| (int8_t)s->B(13) * (uint8_t)d->B(13)); |
| d->W(7) = satsw((int8_t)s->B(14) * (uint8_t)d->B(14) + |
| (int8_t)s->B(15) * (uint8_t)d->B(15)); |
| #endif |
| } |
| |
| void glue(helper_phsubw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) |
| { |
| d->W(0) = (int16_t)d->W(0) - (int16_t)d->W(1); |
| d->W(1) = (int16_t)d->W(2) - (int16_t)d->W(3); |
| XMM_ONLY(d->W(2) = (int16_t)d->W(4) - (int16_t)d->W(5)); |
| XMM_ONLY(d->W(3) = (int16_t)d->W(6) - (int16_t)d->W(7)); |
| d->W((2 << SHIFT) + 0) = (int16_t)s->W(0) - (int16_t)s->W(1); |
| d->W((2 << SHIFT) + 1) = (int16_t)s->W(2) - (int16_t)s->W(3); |
| XMM_ONLY(d->W(6) = (int16_t)s->W(4) - (int16_t)s->W(5)); |
| XMM_ONLY(d->W(7) = (int16_t)s->W(6) - (int16_t)s->W(7)); |
| } |
| |
| void glue(helper_phsubd, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) |
| { |
| d->L(0) = (int32_t)d->L(0) - (int32_t)d->L(1); |
| XMM_ONLY(d->L(1) = (int32_t)d->L(2) - (int32_t)d->L(3)); |
| d->L((1 << SHIFT) + 0) = (int32_t)s->L(0) - (int32_t)s->L(1); |
| XMM_ONLY(d->L(3) = (int32_t)s->L(2) - (int32_t)s->L(3)); |
| } |
| |
| void glue(helper_phsubsw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) |
| { |
| d->W(0) = satsw((int16_t)d->W(0) - (int16_t)d->W(1)); |
| d->W(1) = satsw((int16_t)d->W(2) - (int16_t)d->W(3)); |
| XMM_ONLY(d->W(2) = satsw((int16_t)d->W(4) - (int16_t)d->W(5))); |
| XMM_ONLY(d->W(3) = satsw((int16_t)d->W(6) - (int16_t)d->W(7))); |
| d->W((2 << SHIFT) + 0) = satsw((int16_t)s->W(0) - (int16_t)s->W(1)); |
| d->W((2 << SHIFT) + 1) = satsw((int16_t)s->W(2) - (int16_t)s->W(3)); |
| XMM_ONLY(d->W(6) = satsw((int16_t)s->W(4) - (int16_t)s->W(5))); |
| XMM_ONLY(d->W(7) = satsw((int16_t)s->W(6) - (int16_t)s->W(7))); |
| } |
| |
| #define FABSB(_, x) (x > INT8_MAX ? -(int8_t)x : x) |
| #define FABSW(_, x) (x > INT16_MAX ? -(int16_t)x : x) |
| #define FABSL(_, x) (x > INT32_MAX ? -(int32_t)x : x) |
| SSE_HELPER_B(helper_pabsb, FABSB) |
| SSE_HELPER_W(helper_pabsw, FABSW) |
| SSE_HELPER_L(helper_pabsd, FABSL) |
| |
| #define FMULHRSW(d, s) (((int16_t) d * (int16_t)s + 0x4000) >> 15) |
| SSE_HELPER_W(helper_pmulhrsw, FMULHRSW) |
| |
| #define FSIGNB(d, s) (s <= INT8_MAX ? s ? d : 0 : -(int8_t)d) |
| #define FSIGNW(d, s) (s <= INT16_MAX ? s ? d : 0 : -(int16_t)d) |
| #define FSIGNL(d, s) (s <= INT32_MAX ? s ? d : 0 : -(int32_t)d) |
| SSE_HELPER_B(helper_psignb, FSIGNB) |
| SSE_HELPER_W(helper_psignw, FSIGNW) |
| SSE_HELPER_L(helper_psignd, FSIGNL) |
| |
| void glue(helper_palignr, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, |
| int32_t shift) |
| { |
| Reg r; |
| |
| /* XXX could be checked during translation */ |
| if (shift >= (16 << SHIFT)) { |
| r.Q(0) = 0; |
| XMM_ONLY(r.Q(1) = 0); |
| } else { |
| shift <<= 3; |
| #define SHR(v, i) (i < 64 && i > -64 ? i > 0 ? v >> (i) : (v << -(i)) : 0) |
| #if SHIFT == 0 |
| r.Q(0) = SHR(s->Q(0), shift - 0) | |
| SHR(d->Q(0), shift - 64); |
| #else |
| r.Q(0) = SHR(s->Q(0), shift - 0) | |
| SHR(s->Q(1), shift - 64) | |
| SHR(d->Q(0), shift - 128) | |
| SHR(d->Q(1), shift - 192); |
| r.Q(1) = SHR(s->Q(0), shift + 64) | |
| SHR(s->Q(1), shift - 0) | |
| SHR(d->Q(0), shift - 64) | |
| SHR(d->Q(1), shift - 128); |
| #endif |
| #undef SHR |
| } |
| |
| *d = r; |
| } |
| |
| #define XMM0 (env->xmm_regs[0]) |
| |
| #if SHIFT == 1 |
| #define SSE_HELPER_V(name, elem, num, F) \ |
| void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) \ |
| { \ |
| d->elem(0) = F(d->elem(0), s->elem(0), XMM0.elem(0)); \ |
| d->elem(1) = F(d->elem(1), s->elem(1), XMM0.elem(1)); \ |
| if (num > 2) { \ |
| d->elem(2) = F(d->elem(2), s->elem(2), XMM0.elem(2)); \ |
| d->elem(3) = F(d->elem(3), s->elem(3), XMM0.elem(3)); \ |
| if (num > 4) { \ |
| d->elem(4) = F(d->elem(4), s->elem(4), XMM0.elem(4)); \ |
| d->elem(5) = F(d->elem(5), s->elem(5), XMM0.elem(5)); \ |
| d->elem(6) = F(d->elem(6), s->elem(6), XMM0.elem(6)); \ |
| d->elem(7) = F(d->elem(7), s->elem(7), XMM0.elem(7)); \ |
| if (num > 8) { \ |
| d->elem(8) = F(d->elem(8), s->elem(8), XMM0.elem(8)); \ |
| d->elem(9) = F(d->elem(9), s->elem(9), XMM0.elem(9)); \ |
| d->elem(10) = F(d->elem(10), s->elem(10), XMM0.elem(10)); \ |
| d->elem(11) = F(d->elem(11), s->elem(11), XMM0.elem(11)); \ |
| d->elem(12) = F(d->elem(12), s->elem(12), XMM0.elem(12)); \ |
| d->elem(13) = F(d->elem(13), s->elem(13), XMM0.elem(13)); \ |
| d->elem(14) = F(d->elem(14), s->elem(14), XMM0.elem(14)); \ |
| d->elem(15) = F(d->elem(15), s->elem(15), XMM0.elem(15)); \ |
| } \ |
| } \ |
| } \ |
| } |
| |
| #define SSE_HELPER_I(name, elem, num, F) \ |
| void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, uint32_t imm) \ |
| { \ |
| d->elem(0) = F(d->elem(0), s->elem(0), ((imm >> 0) & 1)); \ |
| d->elem(1) = F(d->elem(1), s->elem(1), ((imm >> 1) & 1)); \ |
| if (num > 2) { \ |
| d->elem(2) = F(d->elem(2), s->elem(2), ((imm >> 2) & 1)); \ |
| d->elem(3) = F(d->elem(3), s->elem(3), ((imm >> 3) & 1)); \ |
| if (num > 4) { \ |
| d->elem(4) = F(d->elem(4), s->elem(4), ((imm >> 4) & 1)); \ |
| d->elem(5) = F(d->elem(5), s->elem(5), ((imm >> 5) & 1)); \ |
| d->elem(6) = F(d->elem(6), s->elem(6), ((imm >> 6) & 1)); \ |
| d->elem(7) = F(d->elem(7), s->elem(7), ((imm >> 7) & 1)); \ |
| if (num > 8) { \ |
| d->elem(8) = F(d->elem(8), s->elem(8), ((imm >> 8) & 1)); \ |
| d->elem(9) = F(d->elem(9), s->elem(9), ((imm >> 9) & 1)); \ |
| d->elem(10) = F(d->elem(10), s->elem(10), \ |
| ((imm >> 10) & 1)); \ |
| d->elem(11) = F(d->elem(11), s->elem(11), \ |
| ((imm >> 11) & 1)); \ |
| d->elem(12) = F(d->elem(12), s->elem(12), \ |
| ((imm >> 12) & 1)); \ |
| d->elem(13) = F(d->elem(13), s->elem(13), \ |
| ((imm >> 13) & 1)); \ |
| d->elem(14) = F(d->elem(14), s->elem(14), \ |
| ((imm >> 14) & 1)); \ |
| d->elem(15) = F(d->elem(15), s->elem(15), \ |
| ((imm >> 15) & 1)); \ |
| } \ |
| } \ |
| } \ |
| } |
| |
| /* SSE4.1 op helpers */ |
| #define FBLENDVB(d, s, m) ((m & 0x80) ? s : d) |
| #define FBLENDVPS(d, s, m) ((m & 0x80000000) ? s : d) |
| #define FBLENDVPD(d, s, m) ((m & 0x8000000000000000LL) ? s : d) |
| SSE_HELPER_V(helper_pblendvb, B, 16, FBLENDVB) |
| SSE_HELPER_V(helper_blendvps, L, 4, FBLENDVPS) |
| SSE_HELPER_V(helper_blendvpd, Q, 2, FBLENDVPD) |
| |
| void glue(helper_ptest, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) |
| { |
| uint64_t zf = (s->Q(0) & d->Q(0)) | (s->Q(1) & d->Q(1)); |
| uint64_t cf = (s->Q(0) & ~d->Q(0)) | (s->Q(1) & ~d->Q(1)); |
| |
| CC_SRC = (zf ? 0 : CC_Z) | (cf ? 0 : CC_C); |
| } |
| |
| #define SSE_HELPER_F(name, elem, num, F) \ |
| void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) \ |
| { \ |
| if (num > 2) { \ |
| if (num > 4) { \ |
| d->elem(7) = F(7); \ |
| d->elem(6) = F(6); \ |
| d->elem(5) = F(5); \ |
| d->elem(4) = F(4); \ |
| } \ |
| d->elem(3) = F(3); \ |
| d->elem(2) = F(2); \ |
| } \ |
| d->elem(1) = F(1); \ |
| d->elem(0) = F(0); \ |
| } |
| |
| SSE_HELPER_F(helper_pmovsxbw, W, 8, (int8_t) s->B) |
| SSE_HELPER_F(helper_pmovsxbd, L, 4, (int8_t) s->B) |
| SSE_HELPER_F(helper_pmovsxbq, Q, 2, (int8_t) s->B) |
| SSE_HELPER_F(helper_pmovsxwd, L, 4, (int16_t) s->W) |
| SSE_HELPER_F(helper_pmovsxwq, Q, 2, (int16_t) s->W) |
| SSE_HELPER_F(helper_pmovsxdq, Q, 2, (int32_t) s->L) |
| SSE_HELPER_F(helper_pmovzxbw, W, 8, s->B) |
| SSE_HELPER_F(helper_pmovzxbd, L, 4, s->B) |
| SSE_HELPER_F(helper_pmovzxbq, Q, 2, s->B) |
| SSE_HELPER_F(helper_pmovzxwd, L, 4, s->W) |
| SSE_HELPER_F(helper_pmovzxwq, Q, 2, s->W) |
| SSE_HELPER_F(helper_pmovzxdq, Q, 2, s->L) |
| |
| void glue(helper_pmuldq, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) |
| { |
| d->Q(0) = (int64_t)(int32_t) d->L(0) * (int32_t) s->L(0); |
| d->Q(1) = (int64_t)(int32_t) d->L(2) * (int32_t) s->L(2); |
| } |
| |
| #define FCMPEQQ(d, s) (d == s ? -1 : 0) |
| SSE_HELPER_Q(helper_pcmpeqq, FCMPEQQ) |
| |
| void glue(helper_packusdw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) |
| { |
| Reg r; |
| |
| r.W(0) = satuw((int32_t) d->L(0)); |
| r.W(1) = satuw((int32_t) d->L(1)); |
| r.W(2) = satuw((int32_t) d->L(2)); |
| r.W(3) = satuw((int32_t) d->L(3)); |
| r.W(4) = satuw((int32_t) s->L(0)); |
| r.W(5) = satuw((int32_t) s->L(1)); |
| r.W(6) = satuw((int32_t) s->L(2)); |
| r.W(7) = satuw((int32_t) s->L(3)); |
| *d = r; |
| } |
| |
| #define FMINSB(d, s) MIN((int8_t)d, (int8_t)s) |
| #define FMINSD(d, s) MIN((int32_t)d, (int32_t)s) |
| #define FMAXSB(d, s) MAX((int8_t)d, (int8_t)s) |
| #define FMAXSD(d, s) MAX((int32_t)d, (int32_t)s) |
| SSE_HELPER_B(helper_pminsb, FMINSB) |
| SSE_HELPER_L(helper_pminsd, FMINSD) |
| SSE_HELPER_W(helper_pminuw, MIN) |
| SSE_HELPER_L(helper_pminud, MIN) |
| SSE_HELPER_B(helper_pmaxsb, FMAXSB) |
| SSE_HELPER_L(helper_pmaxsd, FMAXSD) |
| SSE_HELPER_W(helper_pmaxuw, MAX) |
| SSE_HELPER_L(helper_pmaxud, MAX) |
| |
| #define FMULLD(d, s) ((int32_t)d * (int32_t)s) |
| SSE_HELPER_L(helper_pmulld, FMULLD) |
| |
| void glue(helper_phminposuw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) |
| { |
| int idx = 0; |
| |
| if (s->W(1) < s->W(idx)) { |
| idx = 1; |
| } |
| if (s->W(2) < s->W(idx)) { |
| idx = 2; |
| } |
| if (s->W(3) < s->W(idx)) { |
| idx = 3; |
| } |
| if (s->W(4) < s->W(idx)) { |
| idx = 4; |
| } |
| if (s->W(5) < s->W(idx)) { |
| idx = 5; |
| } |
| if (s->W(6) < s->W(idx)) { |
| idx = 6; |
| } |
| if (s->W(7) < s->W(idx)) { |
| idx = 7; |
| } |
| |
| d->W(0) = s->W(idx); |
| d->W(1) = idx; |
| d->L(1) = 0; |
| d->Q(1) = 0; |
| } |
| |
| void glue(helper_roundps, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, |
| uint32_t mode) |
| { |
| signed char prev_rounding_mode; |
| |
| prev_rounding_mode = env->sse_status.float_rounding_mode; |
| if (!(mode & (1 << 2))) { |
| switch (mode & 3) { |
| case 0: |
| set_float_rounding_mode(float_round_nearest_even, &env->sse_status); |
| break; |
| case 1: |
| set_float_rounding_mode(float_round_down, &env->sse_status); |
| break; |
| case 2: |
| set_float_rounding_mode(float_round_up, &env->sse_status); |
| break; |
| case 3: |
| set_float_rounding_mode(float_round_to_zero, &env->sse_status); |
| break; |
| } |
| } |
| |
| d->ZMM_S(0) = float32_round_to_int(s->ZMM_S(0), &env->sse_status); |
| d->ZMM_S(1) = float32_round_to_int(s->ZMM_S(1), &env->sse_status); |
| d->ZMM_S(2) = float32_round_to_int(s->ZMM_S(2), &env->sse_status); |
| d->ZMM_S(3) = float32_round_to_int(s->ZMM_S(3), &env->sse_status); |
| |
| #if 0 /* TODO */ |
| if (mode & (1 << 3)) { |
| set_float_exception_flags(get_float_exception_flags(&env->sse_status) & |
| ~float_flag_inexact, |
| &env->sse_status); |
| } |
| #endif |
| env->sse_status.float_rounding_mode = prev_rounding_mode; |
| } |
| |
| void glue(helper_roundpd, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, |
| uint32_t mode) |
| { |
| signed char prev_rounding_mode; |
| |
| prev_rounding_mode = env->sse_status.float_rounding_mode; |
| if (!(mode & (1 << 2))) { |
| switch (mode & 3) { |
| case 0: |
| set_float_rounding_mode(float_round_nearest_even, &env->sse_status); |
| break; |
| case 1: |
| set_float_rounding_mode(float_round_down, &env->sse_status); |
| break; |
| case 2: |
| set_float_rounding_mode(float_round_up, &env->sse_status); |
| break; |
| case 3: |
| set_float_rounding_mode(float_round_to_zero, &env->sse_status); |
| break; |
| } |
| } |
| |
| d->ZMM_D(0) = float64_round_to_int(s->ZMM_D(0), &env->sse_status); |
| d->ZMM_D(1) = float64_round_to_int(s->ZMM_D(1), &env->sse_status); |
| |
| #if 0 /* TODO */ |
| if (mode & (1 << 3)) { |
| set_float_exception_flags(get_float_exception_flags(&env->sse_status) & |
| ~float_flag_inexact, |
| &env->sse_status); |
| } |
| #endif |
| env->sse_status.float_rounding_mode = prev_rounding_mode; |
| } |
| |
| void glue(helper_roundss, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, |
| uint32_t mode) |
| { |
| signed char prev_rounding_mode; |
| |
| prev_rounding_mode = env->sse_status.float_rounding_mode; |
| if (!(mode & (1 << 2))) { |
| switch (mode & 3) { |
| case 0: |
| set_float_rounding_mode(float_round_nearest_even, &env->sse_status); |
| break; |
| case 1: |
| set_float_rounding_mode(float_round_down, &env->sse_status); |
| break; |
| case 2: |
| set_float_rounding_mode(float_round_up, &env->sse_status); |
| break; |
| case 3: |
| set_float_rounding_mode(float_round_to_zero, &env->sse_status); |
| break; |
| } |
| } |
| |
| d->ZMM_S(0) = float32_round_to_int(s->ZMM_S(0), &env->sse_status); |
| |
| #if 0 /* TODO */ |
| if (mode & (1 << 3)) { |
| set_float_exception_flags(get_float_exception_flags(&env->sse_status) & |
| ~float_flag_inexact, |
| &env->sse_status); |
| } |
| #endif |
| env->sse_status.float_rounding_mode = prev_rounding_mode; |
| } |
| |
| void glue(helper_roundsd, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, |
| uint32_t mode) |
| { |
| signed char prev_rounding_mode; |
| |
| prev_rounding_mode = env->sse_status.float_rounding_mode; |
| if (!(mode & (1 << 2))) { |
| switch (mode & 3) { |
| case 0: |
| set_float_rounding_mode(float_round_nearest_even, &env->sse_status); |
| break; |
| case 1: |
| set_float_rounding_mode(float_round_down, &env->sse_status); |
| break; |
| case 2: |
| set_float_rounding_mode(float_round_up, &env->sse_status); |
| break; |
| case 3: |
| set_float_rounding_mode(float_round_to_zero, &env->sse_status); |
| break; |
| } |
| } |
| |
| d->ZMM_D(0) = float64_round_to_int(s->ZMM_D(0), &env->sse_status); |
| |
| #if 0 /* TODO */ |
| if (mode & (1 << 3)) { |
| set_float_exception_flags(get_float_exception_flags(&env->sse_status) & |
| ~float_flag_inexact, |
| &env->sse_status); |
| } |
| #endif |
| env->sse_status.float_rounding_mode = prev_rounding_mode; |
| } |
| |
| #define FBLENDP(d, s, m) (m ? s : d) |
| SSE_HELPER_I(helper_blendps, L, 4, FBLENDP) |
| SSE_HELPER_I(helper_blendpd, Q, 2, FBLENDP) |
| SSE_HELPER_I(helper_pblendw, W, 8, FBLENDP) |
| |
| void glue(helper_dpps, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, uint32_t mask) |
| { |
| float32 iresult = float32_zero; |
| |
| if (mask & (1 << 4)) { |
| iresult = float32_add(iresult, |
| float32_mul(d->ZMM_S(0), s->ZMM_S(0), |
| &env->sse_status), |
| &env->sse_status); |
| } |
| if (mask & (1 << 5)) { |
| iresult = float32_add(iresult, |
| float32_mul(d->ZMM_S(1), s->ZMM_S(1), |
| &env->sse_status), |
| &env->sse_status); |
| } |
| if (mask & (1 << 6)) { |
| iresult = float32_add(iresult, |
| float32_mul(d->ZMM_S(2), s->ZMM_S(2), |
| &env->sse_status), |
| &env->sse_status); |
| } |
| if (mask & (1 << 7)) { |
| iresult = float32_add(iresult, |
| float32_mul(d->ZMM_S(3), s->ZMM_S(3), |
| &env->sse_status), |
| &env->sse_status); |
| } |
| d->ZMM_S(0) = (mask & (1 << 0)) ? iresult : float32_zero; |
| d->ZMM_S(1) = (mask & (1 << 1)) ? iresult : float32_zero; |
| d->ZMM_S(2) = (mask & (1 << 2)) ? iresult : float32_zero; |
| d->ZMM_S(3) = (mask & (1 << 3)) ? iresult : float32_zero; |
| } |
| |
| void glue(helper_dppd, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, uint32_t mask) |
| { |
| float64 iresult = float64_zero; |
| |
| if (mask & (1 << 4)) { |
| iresult = float64_add(iresult, |
| float64_mul(d->ZMM_D(0), s->ZMM_D(0), |
| &env->sse_status), |
| &env->sse_status); |
| } |
| if (mask & (1 << 5)) { |
| iresult = float64_add(iresult, |
| float64_mul(d->ZMM_D(1), s->ZMM_D(1), |
| &env->sse_status), |
| &env->sse_status); |
| } |
| d->ZMM_D(0) = (mask & (1 << 0)) ? iresult : float64_zero; |
| d->ZMM_D(1) = (mask & (1 << 1)) ? iresult : float64_zero; |
| } |
| |
| void glue(helper_mpsadbw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, |
| uint32_t offset) |
| { |
| int s0 = (offset & 3) << 2; |
| int d0 = (offset & 4) << 0; |
| int i; |
| Reg r; |
| |
| for (i = 0; i < 8; i++, d0++) { |
| r.W(i) = 0; |
| r.W(i) += abs1(d->B(d0 + 0) - s->B(s0 + 0)); |
| r.W(i) += abs1(d->B(d0 + 1) - s->B(s0 + 1)); |
| r.W(i) += abs1(d->B(d0 + 2) - s->B(s0 + 2)); |
| r.W(i) += abs1(d->B(d0 + 3) - s->B(s0 + 3)); |
| } |
| |
| *d = r; |
| } |
| |
| /* SSE4.2 op helpers */ |
| #define FCMPGTQ(d, s) ((int64_t)d > (int64_t)s ? -1 : 0) |
| SSE_HELPER_Q(helper_pcmpgtq, FCMPGTQ) |
| |
| static inline int pcmp_elen(CPUX86State *env, int reg, uint32_t ctrl) |
| { |
| int val; |
| |
| /* Presence of REX.W is indicated by a bit higher than 7 set */ |
| if (ctrl >> 8) { |
| val = abs1((int64_t)env->regs[reg]); |
| } else { |
| val = abs1((int32_t)env->regs[reg]); |
| } |
| |
| if (ctrl & 1) { |
| if (val > 8) { |
| return 8; |
| } |
| } else { |
| if (val > 16) { |
| return 16; |
| } |
| } |
| return val; |
| } |
| |
| static inline int pcmp_ilen(Reg *r, uint8_t ctrl) |
| { |
| int val = 0; |
| |
| if (ctrl & 1) { |
| while (val < 8 && r->W(val)) { |
| val++; |
| } |
| } else { |
| while (val < 16 && r->B(val)) { |
| val++; |
| } |
| } |
| |
| return val; |
| } |
| |
| static inline int pcmp_val(Reg *r, uint8_t ctrl, int i) |
| { |
| switch ((ctrl >> 0) & 3) { |
| case 0: |
| return r->B(i); |
| case 1: |
| return r->W(i); |
| case 2: |
| return (int8_t)r->B(i); |
| case 3: |
| default: |
| return (int16_t)r->W(i); |
| } |
| } |
| |
| static inline unsigned pcmpxstrx(CPUX86State *env, Reg *d, Reg *s, |
| int8_t ctrl, int valids, int validd) |
| { |
| unsigned int res = 0; |
| int v; |
| int j, i; |
| int upper = (ctrl & 1) ? 7 : 15; |
| |
| valids--; |
| validd--; |
| |
| CC_SRC = (valids < upper ? CC_Z : 0) | (validd < upper ? CC_S : 0); |
| |
| switch ((ctrl >> 2) & 3) { |
| case 0: |
| for (j = valids; j >= 0; j--) { |
| res <<= 1; |
| v = pcmp_val(s, ctrl, j); |
| for (i = validd; i >= 0; i--) { |
| res |= (v == pcmp_val(d, ctrl, i)); |
| } |
| } |
| break; |
| case 1: |
| for (j = valids; j >= 0; j--) { |
| res <<= 1; |
| v = pcmp_val(s, ctrl, j); |
| for (i = ((validd - 1) | 1); i >= 0; i -= 2) { |
| res |= (pcmp_val(d, ctrl, i - 0) >= v && |
| pcmp_val(d, ctrl, i - 1) <= v); |
| } |
| } |
| break; |
| case 2: |
| res = (1 << (upper - MAX(valids, validd))) - 1; |
| res <<= MAX(valids, validd) - MIN(valids, validd); |
| for (i = MIN(valids, validd); i >= 0; i--) { |
| res <<= 1; |
| v = pcmp_val(s, ctrl, i); |
| res |= (v == pcmp_val(d, ctrl, i)); |
| } |
| break; |
| case 3: |
| if (validd == -1) { |
| res = (2 << upper) - 1; |
| break; |
| } |
| for (j = valids == upper ? valids : valids - validd; j >= 0; j--) { |
| res <<= 1; |
| v = 1; |
| for (i = MIN(valids - j, validd); i >= 0; i--) { |
| v &= (pcmp_val(s, ctrl, i + j) == pcmp_val(d, ctrl, i)); |
| } |
| res |= v; |
| } |
| break; |
| } |
| |
| switch ((ctrl >> 4) & 3) { |
| case 1: |
| res ^= (2 << upper) - 1; |
| break; |
| case 3: |
| res ^= (1 << (valids + 1)) - 1; |
| break; |
| } |
| |
| if (res) { |
| CC_SRC |= CC_C; |
| } |
| if (res & 1) { |
| CC_SRC |= CC_O; |
| } |
| |
| return res; |
| } |
| |
| void glue(helper_pcmpestri, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, |
| uint32_t ctrl) |
| { |
| unsigned int res = pcmpxstrx(env, d, s, ctrl, |
| pcmp_elen(env, R_EDX, ctrl), |
| pcmp_elen(env, R_EAX, ctrl)); |
| |
| if (res) { |
| env->regs[R_ECX] = (ctrl & (1 << 6)) ? 31 - clz32(res) : ctz32(res); |
| } else { |
| env->regs[R_ECX] = 16 >> (ctrl & (1 << 0)); |
| } |
| } |
| |
| void glue(helper_pcmpestrm, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, |
| uint32_t ctrl) |
| { |
| int i; |
| unsigned int res = pcmpxstrx(env, d, s, ctrl, |
| pcmp_elen(env, R_EDX, ctrl), |
| pcmp_elen(env, R_EAX, ctrl)); |
| |
| if ((ctrl >> 6) & 1) { |
| if (ctrl & 1) { |
| for (i = 0; i < 8; i++, res >>= 1) { |
| env->xmm_regs[0].W(i) = (res & 1) ? ~0 : 0; |
| } |
| } else { |
| for (i = 0; i < 16; i++, res >>= 1) { |
| env->xmm_regs[0].B(i) = (res & 1) ? ~0 : 0; |
| } |
| } |
| } else { |
| env->xmm_regs[0].Q(1) = 0; |
| env->xmm_regs[0].Q(0) = res; |
| } |
| } |
| |
| void glue(helper_pcmpistri, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, |
| uint32_t ctrl) |
| { |
| unsigned int res = pcmpxstrx(env, d, s, ctrl, |
| pcmp_ilen(s, ctrl), |
| pcmp_ilen(d, ctrl)); |
| |
| if (res) { |
| env->regs[R_ECX] = (ctrl & (1 << 6)) ? 31 - clz32(res) : ctz32(res); |
| } else { |
| env->regs[R_ECX] = 16 >> (ctrl & (1 << 0)); |
| } |
| } |
| |
| void glue(helper_pcmpistrm, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, |
| uint32_t ctrl) |
| { |
| int i; |
| unsigned int res = pcmpxstrx(env, d, s, ctrl, |
| pcmp_ilen(s, ctrl), |
| pcmp_ilen(d, ctrl)); |
| |
| if ((ctrl >> 6) & 1) { |
| if (ctrl & 1) { |
| for (i = 0; i < 8; i++, res >>= 1) { |
| env->xmm_regs[0].W(i) = (res & 1) ? ~0 : 0; |
| } |
| } else { |
| for (i = 0; i < 16; i++, res >>= 1) { |
| env->xmm_regs[0].B(i) = (res & 1) ? ~0 : 0; |
| } |
| } |
| } else { |
| env->xmm_regs[0].Q(1) = 0; |
| env->xmm_regs[0].Q(0) = res; |
| } |
| } |
| |
| #define CRCPOLY 0x1edc6f41 |
| #define CRCPOLY_BITREV 0x82f63b78 |
| target_ulong helper_crc32(uint32_t crc1, target_ulong msg, uint32_t len) |
| { |
| target_ulong crc = (msg & ((target_ulong) -1 >> |
| (TARGET_LONG_BITS - len))) ^ crc1; |
| |
| while (len--) { |
| crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_BITREV : 0); |
| } |
| |
| return crc; |
| } |
| |
| void glue(helper_pclmulqdq, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, |
| uint32_t ctrl) |
| { |
| uint64_t ah, al, b, resh, resl; |
| |
| ah = 0; |
| al = d->Q((ctrl & 1) != 0); |
| b = s->Q((ctrl & 16) != 0); |
| resh = resl = 0; |
| |
| while (b) { |
| if (b & 1) { |
| resl ^= al; |
| resh ^= ah; |
| } |
| ah = (ah << 1) | (al >> 63); |
| al <<= 1; |
| b >>= 1; |
| } |
| |
| d->Q(0) = resl; |
| d->Q(1) = resh; |
| } |
| |
| void glue(helper_aesdec, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) |
| { |
| int i; |
| Reg st = *d; |
| Reg rk = *s; |
| |
| for (i = 0 ; i < 4 ; i++) { |
| d->L(i) = rk.L(i) ^ bswap32(AES_Td0[st.B(AES_ishifts[4*i+0])] ^ |
| AES_Td1[st.B(AES_ishifts[4*i+1])] ^ |
| AES_Td2[st.B(AES_ishifts[4*i+2])] ^ |
| AES_Td3[st.B(AES_ishifts[4*i+3])]); |
| } |
| } |
| |
| void glue(helper_aesdeclast, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) |
| { |
| int i; |
| Reg st = *d; |
| Reg rk = *s; |
| |
| for (i = 0; i < 16; i++) { |
| d->B(i) = rk.B(i) ^ (AES_isbox[st.B(AES_ishifts[i])]); |
| } |
| } |
| |
| void glue(helper_aesenc, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) |
| { |
| int i; |
| Reg st = *d; |
| Reg rk = *s; |
| |
| for (i = 0 ; i < 4 ; i++) { |
| d->L(i) = rk.L(i) ^ bswap32(AES_Te0[st.B(AES_shifts[4*i+0])] ^ |
| AES_Te1[st.B(AES_shifts[4*i+1])] ^ |
| AES_Te2[st.B(AES_shifts[4*i+2])] ^ |
| AES_Te3[st.B(AES_shifts[4*i+3])]); |
| } |
| } |
| |
| void glue(helper_aesenclast, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) |
| { |
| int i; |
| Reg st = *d; |
| Reg rk = *s; |
| |
| for (i = 0; i < 16; i++) { |
| d->B(i) = rk.B(i) ^ (AES_sbox[st.B(AES_shifts[i])]); |
| } |
| |
| } |
| |
| void glue(helper_aesimc, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) |
| { |
| int i; |
| Reg tmp = *s; |
| |
| for (i = 0 ; i < 4 ; i++) { |
| d->L(i) = bswap32(AES_imc[tmp.B(4*i+0)][0] ^ |
| AES_imc[tmp.B(4*i+1)][1] ^ |
| AES_imc[tmp.B(4*i+2)][2] ^ |
| AES_imc[tmp.B(4*i+3)][3]); |
| } |
| } |
| |
| void glue(helper_aeskeygenassist, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, |
| uint32_t ctrl) |
| { |
| int i; |
| Reg tmp = *s; |
| |
| for (i = 0 ; i < 4 ; i++) { |
| d->B(i) = AES_sbox[tmp.B(i + 4)]; |
| d->B(i + 8) = AES_sbox[tmp.B(i + 12)]; |
| } |
| d->L(1) = (d->L(0) << 24 | d->L(0) >> 8) ^ ctrl; |
| d->L(3) = (d->L(2) << 24 | d->L(2) >> 8) ^ ctrl; |
| } |
| #endif |
| |
| #undef SHIFT |
| #undef XMM_ONLY |
| #undef Reg |
| #undef B |
| #undef W |
| #undef L |
| #undef Q |
| #undef SUFFIX |