| /* |
| * QEMU ETRAX DMA Controller. |
| * |
| * Copyright (c) 2008 Edgar E. Iglesias, Axis Communications AB. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| #include <stdio.h> |
| #include <sys/time.h> |
| #include "hw.h" |
| #include "qemu-common.h" |
| #include "sysemu.h" |
| |
| #include "etraxfs_dma.h" |
| |
| #define D(x) |
| |
| #define RW_DATA 0x0 |
| #define RW_SAVED_DATA 0x58 |
| #define RW_SAVED_DATA_BUF 0x5c |
| #define RW_GROUP 0x60 |
| #define RW_GROUP_DOWN 0x7c |
| #define RW_CMD 0x80 |
| #define RW_CFG 0x84 |
| #define RW_STAT 0x88 |
| #define RW_INTR_MASK 0x8c |
| #define RW_ACK_INTR 0x90 |
| #define R_INTR 0x94 |
| #define R_MASKED_INTR 0x98 |
| #define RW_STREAM_CMD 0x9c |
| |
| #define DMA_REG_MAX 0x100 |
| |
| /* descriptors */ |
| |
| // ------------------------------------------------------------ dma_descr_group |
| typedef struct dma_descr_group { |
| struct dma_descr_group *next; |
| unsigned eol : 1; |
| unsigned tol : 1; |
| unsigned bol : 1; |
| unsigned : 1; |
| unsigned intr : 1; |
| unsigned : 2; |
| unsigned en : 1; |
| unsigned : 7; |
| unsigned dis : 1; |
| unsigned md : 16; |
| struct dma_descr_group *up; |
| union { |
| struct dma_descr_context *context; |
| struct dma_descr_group *group; |
| } down; |
| } dma_descr_group; |
| |
| // ---------------------------------------------------------- dma_descr_context |
| typedef struct dma_descr_context { |
| struct dma_descr_context *next; |
| unsigned eol : 1; |
| unsigned : 3; |
| unsigned intr : 1; |
| unsigned : 1; |
| unsigned store_mode : 1; |
| unsigned en : 1; |
| unsigned : 7; |
| unsigned dis : 1; |
| unsigned md0 : 16; |
| unsigned md1; |
| unsigned md2; |
| unsigned md3; |
| unsigned md4; |
| struct dma_descr_data *saved_data; |
| char *saved_data_buf; |
| } dma_descr_context; |
| |
| // ------------------------------------------------------------- dma_descr_data |
| typedef struct dma_descr_data { |
| struct dma_descr_data *next; |
| char *buf; |
| unsigned eol : 1; |
| unsigned : 2; |
| unsigned out_eop : 1; |
| unsigned intr : 1; |
| unsigned wait : 1; |
| unsigned : 2; |
| unsigned : 3; |
| unsigned in_eop : 1; |
| unsigned : 4; |
| unsigned md : 16; |
| char *after; |
| } dma_descr_data; |
| |
| /* Constants */ |
| enum { |
| regk_dma_ack_pkt = 0x00000100, |
| regk_dma_anytime = 0x00000001, |
| regk_dma_array = 0x00000008, |
| regk_dma_burst = 0x00000020, |
| regk_dma_client = 0x00000002, |
| regk_dma_copy_next = 0x00000010, |
| regk_dma_copy_up = 0x00000020, |
| regk_dma_data_at_eol = 0x00000001, |
| regk_dma_dis_c = 0x00000010, |
| regk_dma_dis_g = 0x00000020, |
| regk_dma_idle = 0x00000001, |
| regk_dma_intern = 0x00000004, |
| regk_dma_load_c = 0x00000200, |
| regk_dma_load_c_n = 0x00000280, |
| regk_dma_load_c_next = 0x00000240, |
| regk_dma_load_d = 0x00000140, |
| regk_dma_load_g = 0x00000300, |
| regk_dma_load_g_down = 0x000003c0, |
| regk_dma_load_g_next = 0x00000340, |
| regk_dma_load_g_up = 0x00000380, |
| regk_dma_next_en = 0x00000010, |
| regk_dma_next_pkt = 0x00000010, |
| regk_dma_no = 0x00000000, |
| regk_dma_only_at_wait = 0x00000000, |
| regk_dma_restore = 0x00000020, |
| regk_dma_rst = 0x00000001, |
| regk_dma_running = 0x00000004, |
| regk_dma_rw_cfg_default = 0x00000000, |
| regk_dma_rw_cmd_default = 0x00000000, |
| regk_dma_rw_intr_mask_default = 0x00000000, |
| regk_dma_rw_stat_default = 0x00000101, |
| regk_dma_rw_stream_cmd_default = 0x00000000, |
| regk_dma_save_down = 0x00000020, |
| regk_dma_save_up = 0x00000020, |
| regk_dma_set_reg = 0x00000050, |
| regk_dma_set_w_size1 = 0x00000190, |
| regk_dma_set_w_size2 = 0x000001a0, |
| regk_dma_set_w_size4 = 0x000001c0, |
| regk_dma_stopped = 0x00000002, |
| regk_dma_store_c = 0x00000002, |
| regk_dma_store_descr = 0x00000000, |
| regk_dma_store_g = 0x00000004, |
| regk_dma_store_md = 0x00000001, |
| regk_dma_sw = 0x00000008, |
| regk_dma_update_down = 0x00000020, |
| regk_dma_yes = 0x00000001 |
| }; |
| |
| enum dma_ch_state |
| { |
| RST = 1, |
| STOPPED = 2, |
| RUNNING = 4 |
| }; |
| |
| struct fs_dma_channel |
| { |
| int regmap; |
| qemu_irq *irq; |
| struct etraxfs_dma_client *client; |
| |
| |
| /* Internal status. */ |
| int stream_cmd_src; |
| enum dma_ch_state state; |
| |
| unsigned int input : 1; |
| unsigned int eol : 1; |
| |
| struct dma_descr_group current_g; |
| struct dma_descr_context current_c; |
| struct dma_descr_data current_d; |
| |
| /* Controll registers. */ |
| uint32_t regs[DMA_REG_MAX]; |
| }; |
| |
| struct fs_dma_ctrl |
| { |
| CPUState *env; |
| target_phys_addr_t base; |
| |
| int nr_channels; |
| struct fs_dma_channel *channels; |
| |
| QEMUBH *bh; |
| }; |
| |
| static inline uint32_t channel_reg(struct fs_dma_ctrl *ctrl, int c, int reg) |
| { |
| return ctrl->channels[c].regs[reg]; |
| } |
| |
| static inline int channel_stopped(struct fs_dma_ctrl *ctrl, int c) |
| { |
| return channel_reg(ctrl, c, RW_CFG) & 2; |
| } |
| |
| static inline int channel_en(struct fs_dma_ctrl *ctrl, int c) |
| { |
| return (channel_reg(ctrl, c, RW_CFG) & 1) |
| && ctrl->channels[c].client; |
| } |
| |
| static inline int fs_channel(target_phys_addr_t base, target_phys_addr_t addr) |
| { |
| /* Every channel has a 0x2000 ctrl register map. */ |
| return (addr - base) >> 13; |
| } |
| |
| #ifdef USE_THIS_DEAD_CODE |
| static void channel_load_g(struct fs_dma_ctrl *ctrl, int c) |
| { |
| target_phys_addr_t addr = channel_reg(ctrl, c, RW_GROUP); |
| |
| /* Load and decode. FIXME: handle endianness. */ |
| cpu_physical_memory_read (addr, |
| (void *) &ctrl->channels[c].current_g, |
| sizeof ctrl->channels[c].current_g); |
| } |
| |
| static void dump_c(int ch, struct dma_descr_context *c) |
| { |
| printf("%s ch=%d\n", __func__, ch); |
| printf("next=%p\n", c->next); |
| printf("saved_data=%p\n", c->saved_data); |
| printf("saved_data_buf=%p\n", c->saved_data_buf); |
| printf("eol=%x\n", (uint32_t) c->eol); |
| } |
| |
| static void dump_d(int ch, struct dma_descr_data *d) |
| { |
| printf("%s ch=%d\n", __func__, ch); |
| printf("next=%p\n", d->next); |
| printf("buf=%p\n", d->buf); |
| printf("after=%p\n", d->after); |
| printf("intr=%x\n", (uint32_t) d->intr); |
| printf("out_eop=%x\n", (uint32_t) d->out_eop); |
| printf("in_eop=%x\n", (uint32_t) d->in_eop); |
| printf("eol=%x\n", (uint32_t) d->eol); |
| } |
| #endif |
| |
| static void channel_load_c(struct fs_dma_ctrl *ctrl, int c) |
| { |
| target_phys_addr_t addr = channel_reg(ctrl, c, RW_GROUP_DOWN); |
| |
| /* Load and decode. FIXME: handle endianness. */ |
| cpu_physical_memory_read (addr, |
| (void *) &ctrl->channels[c].current_c, |
| sizeof ctrl->channels[c].current_c); |
| |
| D(dump_c(c, &ctrl->channels[c].current_c)); |
| /* I guess this should update the current pos. */ |
| ctrl->channels[c].regs[RW_SAVED_DATA] = |
| (uint32_t)(unsigned long)ctrl->channels[c].current_c.saved_data; |
| ctrl->channels[c].regs[RW_SAVED_DATA_BUF] = |
| (uint32_t)(unsigned long)ctrl->channels[c].current_c.saved_data_buf; |
| } |
| |
| static void channel_load_d(struct fs_dma_ctrl *ctrl, int c) |
| { |
| target_phys_addr_t addr = channel_reg(ctrl, c, RW_SAVED_DATA); |
| |
| /* Load and decode. FIXME: handle endianness. */ |
| D(printf("%s ch=%d addr=%x\n", __func__, c, addr)); |
| cpu_physical_memory_read (addr, |
| (void *) &ctrl->channels[c].current_d, |
| sizeof ctrl->channels[c].current_d); |
| |
| D(dump_d(c, &ctrl->channels[c].current_d)); |
| ctrl->channels[c].regs[RW_DATA] = addr; |
| } |
| |
| static void channel_store_c(struct fs_dma_ctrl *ctrl, int c) |
| { |
| target_phys_addr_t addr = channel_reg(ctrl, c, RW_GROUP_DOWN); |
| |
| /* Encode and store. FIXME: handle endianness. */ |
| D(printf("%s ch=%d addr=%x\n", __func__, c, addr)); |
| D(dump_d(c, &ctrl->channels[c].current_d)); |
| cpu_physical_memory_write (addr, |
| (void *) &ctrl->channels[c].current_c, |
| sizeof ctrl->channels[c].current_c); |
| } |
| |
| static void channel_store_d(struct fs_dma_ctrl *ctrl, int c) |
| { |
| target_phys_addr_t addr = channel_reg(ctrl, c, RW_SAVED_DATA); |
| |
| /* Encode and store. FIXME: handle endianness. */ |
| D(printf("%s ch=%d addr=%x\n", __func__, c, addr)); |
| cpu_physical_memory_write (addr, |
| (void *) &ctrl->channels[c].current_d, |
| sizeof ctrl->channels[c].current_d); |
| } |
| |
| static inline void channel_stop(struct fs_dma_ctrl *ctrl, int c) |
| { |
| /* FIXME: */ |
| } |
| |
| static inline void channel_start(struct fs_dma_ctrl *ctrl, int c) |
| { |
| if (ctrl->channels[c].client) |
| { |
| ctrl->channels[c].eol = 0; |
| ctrl->channels[c].state = RUNNING; |
| } else |
| printf("WARNING: starting DMA ch %d with no client\n", c); |
| |
| qemu_bh_schedule_idle(ctrl->bh); |
| } |
| |
| static void channel_continue(struct fs_dma_ctrl *ctrl, int c) |
| { |
| if (!channel_en(ctrl, c) |
| || channel_stopped(ctrl, c) |
| || ctrl->channels[c].state != RUNNING |
| /* Only reload the current data descriptor if it has eol set. */ |
| || !ctrl->channels[c].current_d.eol) { |
| D(printf("continue failed ch=%d state=%d stopped=%d en=%d eol=%d\n", |
| c, ctrl->channels[c].state, |
| channel_stopped(ctrl, c), |
| channel_en(ctrl,c), |
| ctrl->channels[c].eol)); |
| D(dump_d(c, &ctrl->channels[c].current_d)); |
| return; |
| } |
| |
| /* Reload the current descriptor. */ |
| channel_load_d(ctrl, c); |
| |
| /* If the current descriptor cleared the eol flag and we had already |
| reached eol state, do the continue. */ |
| if (!ctrl->channels[c].current_d.eol && ctrl->channels[c].eol) { |
| D(printf("continue %d ok %p\n", c, |
| ctrl->channels[c].current_d.next)); |
| ctrl->channels[c].regs[RW_SAVED_DATA] = |
| (uint32_t)(unsigned long)ctrl->channels[c].current_d.next; |
| channel_load_d(ctrl, c); |
| channel_start(ctrl, c); |
| } |
| ctrl->channels[c].regs[RW_SAVED_DATA_BUF] = |
| (uint32_t)(unsigned long)ctrl->channels[c].current_d.buf; |
| } |
| |
| static void channel_stream_cmd(struct fs_dma_ctrl *ctrl, int c, uint32_t v) |
| { |
| unsigned int cmd = v & ((1 << 10) - 1); |
| |
| D(printf("%s ch=%d cmd=%x\n", |
| __func__, c, cmd)); |
| if (cmd & regk_dma_load_d) { |
| channel_load_d(ctrl, c); |
| if (cmd & regk_dma_burst) |
| channel_start(ctrl, c); |
| } |
| |
| if (cmd & regk_dma_load_c) { |
| channel_load_c(ctrl, c); |
| channel_start(ctrl, c); |
| } |
| } |
| |
| static void channel_update_irq(struct fs_dma_ctrl *ctrl, int c) |
| { |
| D(printf("%s %d\n", __func__, c)); |
| ctrl->channels[c].regs[R_INTR] &= |
| ~(ctrl->channels[c].regs[RW_ACK_INTR]); |
| |
| ctrl->channels[c].regs[R_MASKED_INTR] = |
| ctrl->channels[c].regs[R_INTR] |
| & ctrl->channels[c].regs[RW_INTR_MASK]; |
| |
| D(printf("%s: chan=%d masked_intr=%x\n", __func__, |
| c, |
| ctrl->channels[c].regs[R_MASKED_INTR])); |
| |
| if (ctrl->channels[c].regs[R_MASKED_INTR]) |
| qemu_irq_raise(ctrl->channels[c].irq[0]); |
| else |
| qemu_irq_lower(ctrl->channels[c].irq[0]); |
| } |
| |
| static int channel_out_run(struct fs_dma_ctrl *ctrl, int c) |
| { |
| uint32_t len; |
| uint32_t saved_data_buf; |
| unsigned char buf[2 * 1024]; |
| |
| if (ctrl->channels[c].eol) |
| return 0; |
| |
| do { |
| saved_data_buf = channel_reg(ctrl, c, RW_SAVED_DATA_BUF); |
| |
| D(printf("ch=%d buf=%x after=%x saved_data_buf=%x\n", |
| c, |
| (uint32_t)ctrl->channels[c].current_d.buf, |
| (uint32_t)ctrl->channels[c].current_d.after, |
| saved_data_buf)); |
| |
| len = (uint32_t)(unsigned long) |
| ctrl->channels[c].current_d.after; |
| len -= saved_data_buf; |
| |
| if (len > sizeof buf) |
| len = sizeof buf; |
| cpu_physical_memory_read (saved_data_buf, buf, len); |
| |
| D(printf("channel %d pushes %x %u bytes\n", c, |
| saved_data_buf, len)); |
| |
| if (ctrl->channels[c].client->client.push) |
| ctrl->channels[c].client->client.push( |
| ctrl->channels[c].client->client.opaque, |
| buf, len); |
| else |
| printf("WARNING: DMA ch%d dataloss," |
| " no attached client.\n", c); |
| |
| saved_data_buf += len; |
| |
| if (saved_data_buf == (uint32_t)(unsigned long) |
| ctrl->channels[c].current_d.after) { |
| /* Done. Step to next. */ |
| if (ctrl->channels[c].current_d.out_eop) { |
| /* TODO: signal eop to the client. */ |
| D(printf("signal eop\n")); |
| } |
| if (ctrl->channels[c].current_d.intr) { |
| /* TODO: signal eop to the client. */ |
| /* data intr. */ |
| D(printf("signal intr\n")); |
| ctrl->channels[c].regs[R_INTR] |= (1 << 2); |
| channel_update_irq(ctrl, c); |
| } |
| if (ctrl->channels[c].current_d.eol) { |
| D(printf("channel %d EOL\n", c)); |
| ctrl->channels[c].eol = 1; |
| |
| /* Mark the context as disabled. */ |
| ctrl->channels[c].current_c.dis = 1; |
| channel_store_c(ctrl, c); |
| |
| channel_stop(ctrl, c); |
| } else { |
| ctrl->channels[c].regs[RW_SAVED_DATA] = |
| (uint32_t)(unsigned long)ctrl-> |
| channels[c].current_d.next; |
| /* Load new descriptor. */ |
| channel_load_d(ctrl, c); |
| saved_data_buf = (uint32_t)(unsigned long) |
| ctrl->channels[c].current_d.buf; |
| } |
| |
| channel_store_d(ctrl, c); |
| ctrl->channels[c].regs[RW_SAVED_DATA_BUF] = |
| saved_data_buf; |
| D(dump_d(c, &ctrl->channels[c].current_d)); |
| } |
| ctrl->channels[c].regs[RW_SAVED_DATA_BUF] = saved_data_buf; |
| } while (!ctrl->channels[c].eol); |
| return 1; |
| } |
| |
| static int channel_in_process(struct fs_dma_ctrl *ctrl, int c, |
| unsigned char *buf, int buflen, int eop) |
| { |
| uint32_t len; |
| uint32_t saved_data_buf; |
| |
| if (ctrl->channels[c].eol == 1) |
| return 0; |
| |
| saved_data_buf = channel_reg(ctrl, c, RW_SAVED_DATA_BUF); |
| len = (uint32_t)(unsigned long)ctrl->channels[c].current_d.after; |
| len -= saved_data_buf; |
| |
| if (len > buflen) |
| len = buflen; |
| |
| cpu_physical_memory_write (saved_data_buf, buf, len); |
| saved_data_buf += len; |
| |
| if (saved_data_buf == |
| (uint32_t)(unsigned long)ctrl->channels[c].current_d.after |
| || eop) { |
| uint32_t r_intr = ctrl->channels[c].regs[R_INTR]; |
| |
| D(printf("in dscr end len=%d\n", |
| ctrl->channels[c].current_d.after |
| - ctrl->channels[c].current_d.buf)); |
| ctrl->channels[c].current_d.after = |
| (void *)(unsigned long) saved_data_buf; |
| |
| /* Done. Step to next. */ |
| if (ctrl->channels[c].current_d.intr) { |
| /* TODO: signal eop to the client. */ |
| /* data intr. */ |
| ctrl->channels[c].regs[R_INTR] |= 3; |
| } |
| if (eop) { |
| ctrl->channels[c].current_d.in_eop = 1; |
| ctrl->channels[c].regs[R_INTR] |= 8; |
| } |
| if (r_intr != ctrl->channels[c].regs[R_INTR]) |
| channel_update_irq(ctrl, c); |
| |
| channel_store_d(ctrl, c); |
| D(dump_d(c, &ctrl->channels[c].current_d)); |
| |
| if (ctrl->channels[c].current_d.eol) { |
| D(printf("channel %d EOL\n", c)); |
| ctrl->channels[c].eol = 1; |
| |
| /* Mark the context as disabled. */ |
| ctrl->channels[c].current_c.dis = 1; |
| channel_store_c(ctrl, c); |
| |
| channel_stop(ctrl, c); |
| } else { |
| ctrl->channels[c].regs[RW_SAVED_DATA] = |
| (uint32_t)(unsigned long)ctrl-> |
| channels[c].current_d.next; |
| /* Load new descriptor. */ |
| channel_load_d(ctrl, c); |
| saved_data_buf = (uint32_t)(unsigned long) |
| ctrl->channels[c].current_d.buf; |
| } |
| } |
| |
| ctrl->channels[c].regs[RW_SAVED_DATA_BUF] = saved_data_buf; |
| return len; |
| } |
| |
| static inline int channel_in_run(struct fs_dma_ctrl *ctrl, int c) |
| { |
| if (ctrl->channels[c].client->client.pull) { |
| ctrl->channels[c].client->client.pull( |
| ctrl->channels[c].client->client.opaque); |
| return 1; |
| } else |
| return 0; |
| } |
| |
| static uint32_t dma_rinvalid (void *opaque, target_phys_addr_t addr) |
| { |
| struct fs_dma_ctrl *ctrl = opaque; |
| CPUState *env = ctrl->env; |
| cpu_abort(env, "Unsupported short access. reg=" TARGET_FMT_plx "\n", |
| addr); |
| return 0; |
| } |
| |
| static uint32_t |
| dma_readl (void *opaque, target_phys_addr_t addr) |
| { |
| struct fs_dma_ctrl *ctrl = opaque; |
| int c; |
| uint32_t r = 0; |
| |
| /* Make addr relative to this instances base. */ |
| c = fs_channel(ctrl->base, addr); |
| addr &= 0x1fff; |
| switch (addr) |
| { |
| case RW_STAT: |
| r = ctrl->channels[c].state & 7; |
| r |= ctrl->channels[c].eol << 5; |
| r |= ctrl->channels[c].stream_cmd_src << 8; |
| break; |
| |
| default: |
| r = ctrl->channels[c].regs[addr]; |
| D(printf ("%s c=%d addr=%x\n", |
| __func__, c, addr)); |
| break; |
| } |
| return r; |
| } |
| |
| static void |
| dma_winvalid (void *opaque, target_phys_addr_t addr, uint32_t value) |
| { |
| struct fs_dma_ctrl *ctrl = opaque; |
| CPUState *env = ctrl->env; |
| cpu_abort(env, "Unsupported short access. reg=" TARGET_FMT_plx "\n", |
| addr); |
| } |
| |
| static void |
| dma_update_state(struct fs_dma_ctrl *ctrl, int c) |
| { |
| if ((ctrl->channels[c].regs[RW_CFG] & 1) != 3) { |
| if (ctrl->channels[c].regs[RW_CFG] & 2) |
| ctrl->channels[c].state = STOPPED; |
| if (!(ctrl->channels[c].regs[RW_CFG] & 1)) |
| ctrl->channels[c].state = RST; |
| } |
| } |
| |
| static void |
| dma_writel (void *opaque, target_phys_addr_t addr, uint32_t value) |
| { |
| struct fs_dma_ctrl *ctrl = opaque; |
| int c; |
| |
| /* Make addr relative to this instances base. */ |
| c = fs_channel(ctrl->base, addr); |
| addr &= 0x1fff; |
| switch (addr) |
| { |
| case RW_DATA: |
| ctrl->channels[c].regs[addr] = value; |
| break; |
| |
| case RW_CFG: |
| ctrl->channels[c].regs[addr] = value; |
| dma_update_state(ctrl, c); |
| break; |
| case RW_CMD: |
| /* continue. */ |
| if (value & ~1) |
| printf("Invalid store to ch=%d RW_CMD %x\n", |
| c, value); |
| ctrl->channels[c].regs[addr] = value; |
| channel_continue(ctrl, c); |
| break; |
| |
| case RW_SAVED_DATA: |
| case RW_SAVED_DATA_BUF: |
| case RW_GROUP: |
| case RW_GROUP_DOWN: |
| ctrl->channels[c].regs[addr] = value; |
| break; |
| |
| case RW_ACK_INTR: |
| case RW_INTR_MASK: |
| ctrl->channels[c].regs[addr] = value; |
| channel_update_irq(ctrl, c); |
| if (addr == RW_ACK_INTR) |
| ctrl->channels[c].regs[RW_ACK_INTR] = 0; |
| break; |
| |
| case RW_STREAM_CMD: |
| if (value & ~1023) |
| printf("Invalid store to ch=%d " |
| "RW_STREAMCMD %x\n", |
| c, value); |
| ctrl->channels[c].regs[addr] = value; |
| D(printf("stream_cmd ch=%d\n", c)); |
| channel_stream_cmd(ctrl, c, value); |
| break; |
| |
| default: |
| D(printf ("%s c=%d %x %x\n", __func__, c, addr)); |
| break; |
| } |
| } |
| |
| static CPUReadMemoryFunc *dma_read[] = { |
| &dma_rinvalid, |
| &dma_rinvalid, |
| &dma_readl, |
| }; |
| |
| static CPUWriteMemoryFunc *dma_write[] = { |
| &dma_winvalid, |
| &dma_winvalid, |
| &dma_writel, |
| }; |
| |
| static int etraxfs_dmac_run(void *opaque) |
| { |
| struct fs_dma_ctrl *ctrl = opaque; |
| int i; |
| int p = 0; |
| |
| for (i = 0; |
| i < ctrl->nr_channels; |
| i++) |
| { |
| if (ctrl->channels[i].state == RUNNING) |
| { |
| if (ctrl->channels[i].input) { |
| p += channel_in_run(ctrl, i); |
| } else { |
| p += channel_out_run(ctrl, i); |
| } |
| } |
| } |
| return p; |
| } |
| |
| int etraxfs_dmac_input(struct etraxfs_dma_client *client, |
| void *buf, int len, int eop) |
| { |
| return channel_in_process(client->ctrl, client->channel, |
| buf, len, eop); |
| } |
| |
| /* Connect an IRQ line with a channel. */ |
| void etraxfs_dmac_connect(void *opaque, int c, qemu_irq *line, int input) |
| { |
| struct fs_dma_ctrl *ctrl = opaque; |
| ctrl->channels[c].irq = line; |
| ctrl->channels[c].input = input; |
| } |
| |
| void etraxfs_dmac_connect_client(void *opaque, int c, |
| struct etraxfs_dma_client *cl) |
| { |
| struct fs_dma_ctrl *ctrl = opaque; |
| cl->ctrl = ctrl; |
| cl->channel = c; |
| ctrl->channels[c].client = cl; |
| } |
| |
| |
| static void DMA_run(void *opaque) |
| { |
| struct fs_dma_ctrl *etraxfs_dmac = opaque; |
| int p = 1; |
| |
| if (vm_running) |
| p = etraxfs_dmac_run(etraxfs_dmac); |
| |
| if (p) |
| qemu_bh_schedule_idle(etraxfs_dmac->bh); |
| } |
| |
| void *etraxfs_dmac_init(CPUState *env, |
| target_phys_addr_t base, int nr_channels) |
| { |
| struct fs_dma_ctrl *ctrl = NULL; |
| int i; |
| |
| ctrl = qemu_mallocz(sizeof *ctrl); |
| if (!ctrl) |
| return NULL; |
| |
| ctrl->bh = qemu_bh_new(DMA_run, ctrl); |
| |
| ctrl->base = base; |
| ctrl->env = env; |
| ctrl->nr_channels = nr_channels; |
| ctrl->channels = qemu_mallocz(sizeof ctrl->channels[0] * nr_channels); |
| if (!ctrl->channels) |
| goto err; |
| |
| for (i = 0; i < nr_channels; i++) |
| { |
| ctrl->channels[i].regmap = cpu_register_io_memory(0, |
| dma_read, |
| dma_write, |
| ctrl); |
| cpu_register_physical_memory (base + i * 0x2000, |
| sizeof ctrl->channels[i].regs, |
| ctrl->channels[i].regmap); |
| } |
| |
| return ctrl; |
| err: |
| qemu_free(ctrl->channels); |
| qemu_free(ctrl); |
| return NULL; |
| } |